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Algorithms  have  been  developed to compute 
short-  and  long-precision  elementary  functions: 
SIN,  COS,  TAN,  COTAN, LOG,  LOG10, EXP, 
POWER,  SQRT,  ATAN,  ASIN,  ACOS,  ATAN2, and 
CABS, in scalar  (28  functions)  and  vector  (22 
functions) mode.  They  have  been  implemented 
as  part  of  the  new VS  FORTRAN library  recently 
announced  along  with  the IBM 3090  Vector 
Facility.  These  algorithms  are  essentially  table- 
based  algorithms. An important  feature  of  these 
algorithms is that  they  produce  bitwise-identical 
results  on  scalar  and  vector  Systeml370 
machines.  Of  these,  for five  functions  the 
computed  value  result is always  the  correctly 
rounded  value of the  infinite-precision  result. For 
the  rest of the  functions,  the  value  returned is 
one  of  the  two  floating-point  neighbors 
bordering  the  infinite-precision  result,  which 
implies  exact  results if they  are  machine- 
representable.  For  the  five  correctly  rounded 
elementary  functions,  scalar  and  vector 
algorithms  are  designed  independently so as to 
optimize  performance in each  case. For other 
functions,  the  bitwise-identical  constraint  leads 
to algorithms  which  compromise  between  scalar 
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and  vector  performance. We have  been  able to 
design  algorithms  where this compromise is 
minimal  and  thus  achieve  very  good 
performance  on  both  scalar  and  vector 
implementations.  For  our test measurements  on 
high-end  Systeml370 machines,  our  scalar 
functions  are  always  faster  (sometimes  by  as 
much  as  a  factor  of 2.5) as  compared to the old 
VS  FORTRAN library. Our vector  functions  are 
usually two to three  times  faster  than  our  scalar 
functions. 

1. Introduction 

History of the FORTRAN intrinsic functions 
When FORTRAN became widely available, there were 
already many  subroutines [ 11 for  elementary  functions in  the 
SHARE (IBM users’ organization) library. In  addition,  many 
computer installations had their own libraries, obtained from 
various sources. These were written  for assembly language 
programs but could be used with FORTRAN.  One compiled 
and ran  in  separate sessions and  in  the  run session one  could 
use subroutines of one’s own choosing. 

It soon  became  obvious that a standard “best” set of 
subroutines should be included in all of IBM’s versions of 
FORTRAN.  The original FORTRAN library that  came with 
704/709/1090 FORTRAN was written by IBM. It was 
“adequate,”  but  many  programmers  continued writing new 
and  improved versions of  various  routines.  Eventually  most 
SHARE installations  converged on a set of  improved 
versions (mainly by W. Kahan  at  the University  of Toronto, 
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W. J. Cody at  the Argonne  National  Laboratory, and H. 
Kuki  at  the University of Chicago) and distributed them via 
the  SHARE library. The new routines were good  enough for 
IBM to  take  them over  as the official versions. 

When work began on System/360, Kuki was contracted to 
write the new library (since he had  done  the bulk  of the 
then-current version). The first set of  routines was available 
with the initial releases of System/360 FORTRAN. See [2-41 
for general discussions of the problem and objectives of 
computing elementary  functions. 

In his  presentation  [5] at  the Mini-Symposium on 
Elementary Functions  at  the SIAM National  Meeting  in 
Seattle  in July 1984, titled “Software for the Elementary 
Functions,” Cody described these  subroutines: 

The result  was an excellent library, but still not the best that 
could be done, even by standards of that time.  Kuki was 
severely handicapped by a requirement that each program 
had to produce identical numerical results on all machines  in 
the  family. Speed and space restrictions imposed by  the 
smaller machines  in the line, and variations in the machine 
architectures, meant that he could not produce programs that 
were optimal for  any one of the machines. For example, 
because of timing considerations on the smaller machines, he 
used careful argument reduction on single-precision (32-bit) 
programs but not double-precision (64-bit) ones, and he 
minimized  the use of double-precision floating point division. 
This penalized  those doing scientific computations on larger 
machines to meet restrictions imposed by smaller machines 
intended primarily for non-scientific use. Because of the 
inadequacy of the double-precision programs, many 
installations reverted to a non-standard library containing 
replacement programs written by  Kuki or the group at 
Argonne. 

The first set of  modifications to these  routines was made at 
the  time of the “Improved  Floating  Point Engineering 
Change”  (IFPEC), which fixed some of the deficiencies (most 
importantly,  the lack of  a guard digit in  long floating-point 
arithmetic) in  the original floating-point architecture.  Kuki 
made  modifications to  some of the routines to exploit the 
corrections (e.g., the fact that  the Halve instructions now 
produced  a  normalized result), but  the changes were not 
extensive. 

When the System/360  Model 85 was in design [with 
extended (128-bit) precision], Kuki was asked (see [6]) to 
revise the library to  add extended-precision  functions. That 
version of the library was announced with FORTRAN H 
Extended about 197 1 and  has been the  “standard” library 
ever  since  [6]. 

At the SHARE-54  meeting  in Anaheim, California,  in 
March 1980, Wang [7] (see also [8, 91) described some 
inadequacies  in the IBM System/360 FORTRAN IV 
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libraries and  made suggestions for their improvement.  He 
also described some results with a new set of subroutines 
which overcame  these difficulties. The  SHARE  FORTRAN 
Project submitted a requirement  to IBM to provide the 
Wang  routines as an  alternate  to  the  standard product 
library; IBM accepted the  requirement  and shipped the 
routines with VS FORTRAN Version 1 Release 2 as 
VALTLIB  in 1982. The  routines  did  not meet with 
enormous acceptance due  to  the trigonometric  functions 
being 20-40% slower than  the  standard library; many users 
with small arguments stayed with the original versions, even 
though  for large arguments  the  standard library was less 
accurate. 

Scarborough [ 101 wrote versions of the library  routines as 
part of the  Optimization  Enhancement  IUP  (FORTRAN Q). 
He  made  no changes to  the  Kuki algorithms, but changed 
the programs to use shorter execution  paths with less 
preparation  for error cases until  the  errors actually  occurred. 
He also changed the conversion  routines slightly, again to 
gain speed but with no perceptible  change  in  accuracy. 

In the earlier computers,  memory space was quite small 
and  computer speed was orders  of magnitude higher than 
many users were accustomed to. Compactness of the 
program and accuracy were therefore the most important 
considerations. As succeeding  generations of machines and 
FORTRAN revisions were produced, the practice was to be 
able to assure users that  the new versions would yield the 
same results as the old ones (see [IO],  for example). In many 
cases, certain FORTRAN programs were established as  the 
tests of acceptability of plans and designs. Therefore, and 
this  may be folklore, succeeding  generations of users 
requested that new subroutines give exactly the  same results 
as  old ones even when the old ones were inaccurate. 

The need for new functions 
After some  time,  the  requirement of  complete numeric 
compatibility  became an undesirable  constraint.  A 
compelling  reason for a  break with this  rule came with the 
advent of IBM’s new Vector Facility. We  thought  that a 
program using the new vector instructions to  mimic  the old 
algorithms in such  a way as to produce exactly the  same 
results would result in inefficient vector subroutines. 
Furthermore, since  a good algorithm  for  a scalar subroutine 
is, in general, not a good algorithm for a vector subroutine, 
and since the previous  algorithms used divide  instructions,  it 
was necessary for the sake of speed to develop new 
algorithms and, therefore, forego the  requirement for strict 
compatibility with the old  subroutines.  However, we agreed 
to provide the user the ability to get the  same results from 
the  subroutines whether or not he used the Vector Facility; 
thus, our task was to produce  a companion set of scalar 
versions of all subroutines which produced exactly the  same 
results as  the vector versions. Our new set of scalar 
elementary-function  subroutines yield higher speed and 
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FORTRAN (Kuki) DTAN. Plot of errors in the FORTRAN DTAN 
subroutine in ulps for evenly distributed random arguments in the 
interval ( -  r i 2 ,  ~ 1 2 ) .  Note that errors are given on a logarithmic 
scale due to their large size. 

greater  accuracy  in a wide range of System/370  machines. In 
producing this new library, the new technology afforded us a 
number of  great advantages: 

With  more  memory available, we could make  the 
128 subroutines longer and use tables. 
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Program development tools  such as interactive computing 

Computer speed and availability permitted extensive 
and graphics were available. 

testing, including, in  some cases, testing every possible 
argument. 

Software development tools produced 
To achieve the high performance goal set for the project and 
to obtain the greatest advantages from  the facilities 
available, a number of  programs were developed. 

The Vector Facility simulator 
In order  to write and test programs  long before the vector 
machine was available, Tuckerman wrote a functional 
simulator permitting one  to  run  and  trace modest-sized 
vector programs on  the available  System/370  machines. The 
simulator was very easy to use and its  tracing facilities were 
of enormous  help in debugging programs.  Its use enabled  us 
to complete  most  of the vector subroutines long before the 
Model 3090 with its Vector Facility was available. 

The ulp plot 
Starting with a demonstration by Moler [ 1 I ]  showing how 
graphical displays of errors  in ulps (units in or of the lust 
place) can reveal important characteristics  of error 
distributions, Aganval developed  such  programs for use on 
our graphics systems. An ulp is the distance between the two 
nearest floating-point numbers of the  actual result. These 
programs tested elementary-function  algorithms and 
presented a graphical  picture  of the  distribution of errors. 
They evolved into a very effective interactive  tool  for 
analyzing errors  and suggesting strategies for the 
improvement  and correction  of our algorithms.  Samples  of 
output plots from  this program are shown in Figures 1 
through 9, and they are discussed in  Sections 2 and 4. 

Polynomial approximation 
Polynomial approximation  subroutines were available  from 
SL-MATH [ 121, the  mathematical  subroutine library. These 
were revised to  compute  in extended precision in  order  to 
give the high accuracy needed for the double-precision 
routines.  Since much  experimentation was needed to get 
last-bit accuracy, the  approximation  subroutines were 
incorporated into interactive  programs which computed 
error  distributions  and statistics. They  also  produced 
machine-readable assembly language and/or  FORTRAN 
statements  containing  the exact hexadecimal  representations 
of the  approximation coefficients. 

0 Why  do we want correctly rounded  results? 
A great deal  of satisfaction was obtained from  the fact that 
five of the intrinsic functions reported  here always deliver 
correctly rounded results; these are  SQRT,  DSQRT, CABS, 
CDABS, and EXP. One  important aspect  of  this is that 
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correctly rounded results were obtained with surprisingly 
little sacrifice in  performance.  A  second, which may have 
more far-reaching consequences, is that  the requirement  for 
future  compatibility does  not compel one  to use the  same 
algorithm  when a new machine  architecture would make a 
different algorithm more efficient. 

Intangibles 
Use of the  one-ulp criterion facilitates the preservation of 
many desired mathematical properties of elementary 
functions such as monotonicity,  symmetry, and  important 
identities. Furthermore, when the result is an exactly 
representable machine value, the one-ulp  criterion 
guarantees that this result will be obtained. In most cases, 
the very nature of our algorithm design guaranteed  correct 
symmetry properties. Special attention was paid to  the 
examination of table boundaries  in order  to  ensure  that 
monotonicity was not violated. Of  course,  monotonicity is 
not violated for the routines that always deliver correctly 
rounded results. For  other subroutines, large numbers of 
arguments were tested and  no violation  of  monotonicity was 
found. 

Another  desirable  property is the preservation of the 
quadrants in computing  the inverse trigonometric  functions. 
Surprisingly, this is an example  of  a  situation where the 
desire to obtain  correctly rounded results was in conflict with 
the preservation  of  a  mathematical  property. For example, 
DATAN2(Y,X) was made  to lie within the  quadrant 
indicated by ( X ,  Y).  This  means  that  at  times we deliberately 
incorrectly round  the result. In one case, if X is a very small 
negative number  and Y is a very large positive number,  the 
exact result is slightly greater than ~ / 2 .  The nearest machine 
number happens to lie in the first quadrant,  but we produce 
the  rounded-up value which is  in the second quadrant. 

Performance of the new programs 

Speed 
At first glance, it would seem that  the use of  a vector 
algorithm  would make it necessary to use the  same 
algorithm  for  a whole vector of  arguments, while a scalar 
program would test each argument  and branch to a routine 
employing the best method for that  argument. Therefore, 
one might  expect the scalar-vector compatibility  requirement 
to cause  a loss of  performance. By applying special strategies, 
as described in  Section 3, we found that we could keep the 
performance loss of the scalar subroutines  minimal. 

Accuracy 
For  our algorithms, the use of “tuned” tables and  other 
techniques to be discussed below always gives errors of less 
than  one ulp. To be more precise, the result is always one of 
the  two  machine  numbers bordering the infinite-precision 
result. Extensive testing showed that correctly rounded 
results are  obtained  for  more than 95% of the arguments. If 
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Wang’s DTAN. Plot of errors in Wang’s DTAN subroutine  in ulps for a evenly  distributed  random  arguments in the  interval ( -  7r/2, ~r /2 ) .  

any  computed value is subsequently  found to violate the 
one-ulp  criterion,  it will be treated  as  a  program error  and 
the program will be corrected. Our programs were, in many 
cases, subjected to  mathematical analysis which ensured 
accuracy provided that certain conditions were fulfilled. 
These  conditions,  in many cases, were tested numerically to 
ensure that  no violations  occurred, and so correct results 
within one  ulp  are virtually certain. 

Robustness 
The old VS FORTRAN library was written with the 
assumption  that little or  no effort should be spent  on 
arguments which are  unnormalized or subnormal (below the 
smallest number which can be represented  in  normalized 
floating-point format)  or which, in some way, may be 
considered pathological. The present  programs give results 
for both subnormal  and  unnormalized  arguments, where 
possible. 

For  arguments near  singularities of the  tangent function, 
the old intrinsic TAN  function often gave error  returns 
where, in fact, the correct results were machine-representable 
numbers. It was shown  for the present work that for all our 
intrinsic functions except COTAN near  zero, there  can be no 
machine-representable argument so close to a singularity 
that  the result is not a  machine-representable  number. The 
present scalar subroutines were written so as to give results 
correct to within one ulp  for all arguments for which 
normalized  machine-representable results exist. 

2. Accuracy-The  ulp  concept 
The accuracy  of these new programs is described here in 
terms of units in the last place, or “ulps,” and is shown  in 
Figs. 1, 4, and 7 and Table 1. 129 
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Table 1 Version 2 accuracy  statistics (for 10 OOO trials):  percent  correctly rounded, average  error, 99th percentile  error bound. 

FUNCTION  DISTRIBUTION  (RANGE) 

DACOS CIRC(0,PI) 
ACOS CIRC (0, PI) 

ASIN  CIRC(-PI/2,PI/2) 
DASIN  CIRC(-PI/2,PI/2) 
ATAN  TAN(-PI/2,PI/2) 

ATAN2  POLAR(16**-16,16**16) 
DATAN  TAN(-PI/2,PI/2) 

DATAN2  POLAR(16**-16,16**16) 
COS LINEAR(-P1,PI) 

DCOS  LINEAR(-P1,PI) 
COS LOG(2**-18*PI,2**18*PI) 

DCOS LOG(2**-50*PI,2**50*PI) 
SIN  LINEAR(-P1,PI) 
SIN  LOG(2**-18*PI,2**18*PI) 
DSIN  LINEAR(-P1,PI) 
DSIN  LOG(2**-50*PI,2**50*PI) 
TAN  LINEAR(-PI/2,PI/2) 

DTAN  LINEAR(-PI/2,PI/2) 
TAN LOG(2**-18*PI,2**18*PI) 

DTAN LOG(2**-39*PI,2**39*PI) 
COTAN  LINEAR(-PI/2,PI/2) 
COTAN LOG(2**-18*PI,2**18*PI) 
DCOTAN  LINEAR(-PI/2,PI/2) 
DCOTAN LOG(2**-39*PI,2**39*PI) 

EXP  LINEAR(-100,100) 

DEXP  LINEAR(-100,100) 
EXP  LINEAR(-16,16) 

ALOG  LOG(16**-65,16**63) 
DEXP  LINEAR(-16,16) 

DLOG  LOG(16**-65,16**63) 
ALOG10  LOG(16**-65,16**63) 
DLOG10  LOG(16**-65,16**63) 
SQRT  LOG(16**-65,16**63) 
DSQRT  LOG(16**-65,16**63) 
X**Y  LINEAR(.  1,lO)  **60.1 
X**Y LOG(16**-65,16**63)**.7 
DX**Y  LINEAR(.1,10)**60.1 
DX**Y  LOG(16**-65,16**63)**.7 
CABS  POLAR(16**-16,16**16) 
CDABS  POLAR(16**-16,16**16) 

Floating-point  number  systems 
We  assume  that  the  computer  arithmetic is  being  carried out 
in a given floating-point number system. Let b be the base, k 
be the  number of base-b digits in  the fraction, and I ,  u be the 
lower and  upper limits  of the  exponent e of b. Then a 
floating-point number X can be represented by s, e, a,, . . . , 
ak, where s = &, 11 e 5 u, 0 I ai < b, and  the associated 
value is 

X = s.m.be, 

where 

0 5 m = sib" < I .  
k 

i= I 

A nonzero floating-point number is normalized if the leading 
digit a, of the fraction  is  nonzero. The range of positive 
normalized  floating-point numbers X is b"' 5 X b". 

In  the IBM System/370 series of computers, b = 16; k = 6, 
14, or 28 for the short-, long-, or extended-precision  formats; 
and I = -64, u = -1-63. 130 
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0.51 
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0.53 
0.53 
0.52 
0.54 
0.53 
0.53 
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0.50 
0.52 
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0.49 
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The ulp  concept 
Consider  a positive normalized floating-point number X in 
such  a system. Then a unit in the last place of X is defined as 
the difference between X and  the next larger floating-point 
number  (or between X and b" if X is the largest floating- 
point  number).  In  the System/370  representation, if 

X = m .  16', 

where 

1/16 5 m < 1, 

then  an  ulp of X in  that system is 

ulp ( X )  = .O . . . 01.16' = . I O  . . . 0.  16'k+l. 

For example, an ulp  of .765432.16' is .OOOOO 1 .16' = 

.lOOOOO. 1 6-4. The digits of the fraction are hexadecimal 
digits (0, 1, . . ., 9, A, B, . . ., F). 

the range of floating-point numbers,  then  an  ulp of x, from 
the  standpoint of the floating-point number system, is 

If x is  a positive real number (of infinite precision) lying in 
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Yorktown DSIN. Plot of errors in the Yorktown DSIN subroutine 
in ulps for evenly log-distributed random arguments in the interval 
(2-50T,  2 5 0 ~ ) .  

defined  as an  ulp of the largest floating-point number X 
which does  not exceed x, i.e., where X is derived from x by 
“chopping.” 

It is convenient  to define an  ulp of a negative floating- 
point or real number  as  the negative of an  ulp of its  absolute 
value. An ulp of zero  is  undefined. 

floating-point-valued function Y = F ( X )  of  a floating-point- 
valued argument X, and which is intended  to  approximate a 
given mathematical  function y =f(x) (which cannot  in 
general be realized exactly) at floating-point arguments x = 
X, then  the absolute (i.e., not relative) signed error in F a t  a 
given floating-point argument X is defined as  error (F,J; X )  
= F ( X )  - A X )  = Y - y = computed value minus  true value. 
It is convenient  to express this  error  in  terms of ulps, i.e., 

ulp  error ( F ,  J;  X) = error ( F ,  J;  X)/ulp ( Y, y ) .  

Here  ulp (Y ,  y )  is defined as  the  common value of ulp ( Y )  
and  ulp ( y ) ,  in  the usual case when  these values are equal. 
However,  in the rare cases when  they are  unequal, which is 
when Y and y have different exponents, then  ulp ( Y, y )  is 
defined as the  one of them which has  the smaller  absolute 
value. For example, if y = . 100000 .16’ + e .  ulp ( y ) ,  where 
0 I c < Y2, then  ulp ( y )  = 16-’; and if Y = .FFFFFC, then 
ulp ( Y )  = 16-6. Then  ulp( Y, y )  = 16-6, and  ulp  error 
(F ,  J X) = 1 6 ~  + 4, correctly  indicating  a poor 
approximation,  rather  than c + 4/16, which would 
erroneously  indicate  a  good approximation. A  good 
approximation, of  course,  is Y = . 100000.16’ = 1, for 
which ulp ( Y, y )  = 16-’, ulp  error (F,J  X) = C. For 
brevity we write this  quantity  as elu. 

If we are given a computer program which defines a 

IBM J.  RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 

l0’.s DSIN KUKI .... 

Absolute value of argument 

4 FORTRAN  (Kuki)  DSIN.  Plot of errors in the  FORTRAN  DSIN 
subroutine in ulps for evenly log-distributed random  arguments in the 
interval ( 2 - 5 0 ~ ,  2 5 0 ~ ) .  Note that errors are given on  a  logarithmic 1 scale due to their  large  size. 
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Wang’s DSIN.  Plot of errors in Wang’s DSIN  subroutine in ulps f for evenly log-distributed random arguments in the interval ( 2 - 5 0 ~ ,  1 Z!~OP) .  Note that errors are given on a  logarithmic  scale  due to their 
4 large size. 

In  the new programs, an  attempt has  been made  to 
minimize  the  maximum  ulp errors. The results are 
summarized below and in the section on accuracy statistics. 

Our SQRT, DSQRT,  and EXP functions satisfy I e/u I < 
0.5; they  have best-possible rounding. This is sometimes 
called the “half-ulp” or “one-point’’ criterion. 
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FORTRAN (Kuki) X:“gY. Plot of errors in the FORTRAN single- 
precision implicit X**Y subprogram in ulps for an  evenly distributed 
random argument X in the interval ( .Ol ,  IO . )  and Y = 60.1. Note that 
errors are given on a logarithmic scale due to their large size. 

Our CABS and CDABS functions satisfy I e/u I 5 0.5 (this 
can also be called a half-ulp criterion).  They have best- 
possible rounding, except that unavoidably there  are cases 
when 1 e/u I = 0.5, in which case it would be equally  correct 
to  round downward or upward; we choose to  round upward. 
This is consistent with the System/370  definition  of 
rounding. An example  in short precision is the following. Let 
N=.4.16.6-8.=.3FFFF8.166,andlet W = X + i Y = 3 N  

132 + 4Ni = .BFFFE8. 166 + . F F F F E O .  166i. Then z = abs ( W )  
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= 5N = .13FFFD8.1  67 lies exactly midway between 
.13FFFD- 167 and .13FFFE. 167. Either  of  those numbers 
can  be regarded as a rounding Z of the  true value, and  in 
either case I e/u I = 0.5. One of them  (the larger) is returned 
by CABS, and similarly for CDABS. 

This  rounding ambiguity can also occur for xy;  for an 
example  in short precision, 258.’ = (.102000. 163)3 = 
.1060C08.1 67, which lies exactly midway between .1060CO I 
1 67  and .1060C 1 . 167. However,  correct rounding is not 
always achieved  for x”. The  rounding ambiguity cannot 
occur for any  other of our functions. (The only  rational 
solutions x, y of log,, x = y are for y a nonnegative integer. 
The only algebraic solutions x, y of our  remainingf(x) = y 
are for x = 0 in  sin x, cos x, tan x, e”, and for y = 0 in their 
inverse functions [ 131. Except  for EXP, correct rounding is 
not always achieved for our other functions. 

All of our  functions  are believed to satisfy I e/u I < 1 .O; 
equivalently, a computed  function value Y, if not exactly 
equal to  the  true value y, is one of the floating-point 
numbers  just  above  or  just below y .  We have called this  the 
“one-ulp” or “two-point’’ criterion. An effort has been made 
to  make  the  errors I e/u I substantially less than 1 .O, and  the 
results can be judged from  Table 1 and  the  ulp plots (Figs. 1, 
4, and 7). Note  that  errors  in I e/u I of up  to 0.5 are  an 
unavoidable result of any rounding, and we have  endeavored 
to keep the  actual  errors  as nearly within this  bound  as is 
practical. 

attained: 
Additionally, the following desirable properties are 

1. Special case values which should be exact floating-point 
numbers  are so in fact, e.g., EXP(0.) = 1 ., SQRT.25) = 
.5,  16.’25 = 2. (This is a consequence of the one-ulp 
criterion.) 

2. The F ( X )  are strictly even or odd functions, i.e., F ( - X )  
= F ( X )  or F ( - X )  = -F(X) ,  respectively, for every 
floating-point number X ,  if the underlying functionflx) 
is even or  odd, like cosine or sine, respectively. Because of 
the previous  definition  of an  ulp of a negative number  as 
the negative of an  ulp of  its absolute value, ulp  error 
(F,1; X )  = ulp  error (F,1; - X )  wheneverfand F are 
either even or odd.  (That definition also makes the 
interpretation of ulp plots of oscillatory functions easier 
than if an ulp were always considered to be positive, in 
which case there would be a near-mirroring of the regions 
Y 2 0 and Y I 0 onto each  other.) 

appropriate, although  this is not guaranteed. 
3. The  functions  are believed to be monotonic where 

Ulp plots 
The  ‘Up plots” shown  later in  this  paper  are examples  of the 
output of a very useful tool which we developed on hearing 
from  Paul [ 141 of similar outputs produced by Moler [ 1 11. 

A specified set of arguments,  chosen at  random  or 
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linearly, based on a given distribution (e.g., linear or 
logarithmic)  over a given range, is supplied to two  functions, 
typically one which is to be tested and  another which is to be 
used as a reference (e.g., an extended-precision version). The 
differences are  computed in terms of ulps; they can be 
plotted  immediately on a high-resolution graphics terminal 
and  can also be plotted  immediately on hard copy if desired. 
The horizontal  axis shows the range of  arguments; the 
vertical axis shows the  error in ulps, plotted linearly if its 
range is small, logarithmically if its range is large. 

The  ulp plots of our  functions  are  rather featureless, 
showing a random scattering  of  points, mostly within +OS 
ulp, because of the accuracy attained. But during 
development the  ulp plots were very revealing of specific 
numerical difficulties, much more so than mere statistical 
summaries would  have been. Some of  these revelations can 
be seen in the plots  of functions from the older libraries. 

For example, the plot (Fig. 5 )  of  DSIN from  the VS 
FORTRAN library versus QSIN shows, for one thing, the 
loss of ulp precision for large arguments, starting not far 
above x = 1, due  to imperfect argument reduction. It also 
shows, surprisingly, “spikes” of errors of up  to 12 ulps (see 
also Figs. 2, 3, and 6) ,  even for very small arguments [ 151, 
where the  approximation sin x = x should be accurate to 
well under 0.5 ulp.  These errors resulted from a 
multiplication  of all arguments by 4/7r during range 
reduction, followed eventually by a polynomial  evaluation 
which in effect multiplied the reduced arguments by 7r/4. 
Whenever the fraction  of a floating-point argument lies 
between 7r/4 and 1, the first multiplication yields a fraction 
between 1 and 4/7r and  an  exponent increased by 1. This 
results in a “chopping” loss of nearly a digit of precision, 
which is, of course, not restored by the second 
multiplication. Both of these sources of errors have been 
eliminated  in our programs. 

10000 or more  random arguments, and show no  errors  as 
large as  one ulp. The value of 10000 was chosen because it 
nicely exhibits the salient  features of our functions. In testing 
our functions, we ran sample sizes well into  the  tens of 
millions. The single-precision functions of one  argument 
were nearly exhaustively tested. This is how we know that 
the  short  EXP algorithm delivers the correctly rounded 
result for all arguments. However, it was not feasible to test a 
function for all long-precision arguments, nor for all pairs  of 
short-precision arguments (including  complex  arguments). 
Our belief that it is possible to produce a library satisfying 
the one-ulp  criterion throughout  has been buttressed by 
analysis, by extra-dense  ulp  plots  in some narrow critical 
regions such as across boundaries of table  intervals and 
hexadecimal exponent boundaries, and by extensive 
numerical testing, but it has not been proven in all cases. 
Any observed violations will be regarded as program errors 
and will  be corrected. 

The ulp  plots and statistics of our  functions were made for 
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8 Wang’s X**Y. Plot of errors  in  Wang’s single-precision  implicit 
f X**Y subprogram  in ulps for an evenly distributed  random  argument 1 Xin the  interval (.Ol, IO.) and Y = 60.1. 

The collection  of  accuracy  statistics  for  each  of the 28 
functions,  for  samples  of size 10000 over  suitable 
distributions of  arguments, is described in the subsection 
“Near-correct  accuracy.” Table 1 shows the  number of 
correctly rounded  arguments  and  the  maximum ulp errors 
observed. Tables 2 and 3 show the corresponding statistics 
for the  VFORTLIB  and VALTLIB  (Wang)  routines.  These 
tables are described in  detail  in Section 4. 

3. Programming  strategy 

Introduction 
In this section we describe the  main concepts and 
programming  methodology that  constitute  the theory and 
implementation of our new set of  elementary  function 
programs. 

Our original task was to produce bitwise-compatible 
algorithms  in  both  scalar and vector for the Model 3090; 
that is, the vector and scalar versions should  produce 
identical results for all legal arguments. The divide 
instruction on  the 3090 is a relatively slow instruction 
compared  to multiply, add,  and subtract  instructions for the 
vector and scalar. Therefore, almost all of our algorithms 
avoid  divide  instructions.  Previous scalar routines have not 
handled unnormalized  arguments acceptably. We decided to 
handle unnormalized  arguments in scalar in order  to  make 
our  functions robust. In the vector hardware,  multiplication 
by an  unnormalized  nonzero  argument produces an 
unnormalized-operand  exception. The scalar hardware does 
not have this  exception.  Therefore, we decided not  to  handle 
unnormalized nonzero  arguments in the vector elementary 
functions.  These arguments may  produce  unpredictable 
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Table 2 Version I accuracy  statistics:  percent  correctly  rounded,  average  error,  99th  percentile  error bound. 

FUNCTION  DISTRIBUTION  (RANGE) 

DACOS CIRC (0, PI) 
ACOS CIRC(0,PI) 

ASIN  CIRC(-PI/2,PI/2) 
DASIN  CIRC(-PI/2,PI/2) 
ATAN  TAN  (-PI/2,  PI/2) 
DATAN  TAN(-PI/2,PI/2) 
ATAN2  POLAR(16**-16,16**16) 
DATAN2  POLAR(16**-16,16**16) 

COS  LINEAR(-P1,PI) 
COS  LOG(2**-18*PI,2**18*PI) 
DCOS  LINEAR (-PI, PI) 
DCOS  LOG(2**-50*PI,2**50*PI) 
SIN  LINEAR (-PI, PI) 
SIN  LOG(2**-18*PI,2**18*PI) 
DSIN  LINEAR(-PI,PI) 
DSIN  LOG(2**-50*PI,2**50*PI) 
TAN  LINEAR(-PI/2,PI/2) 

DTAN  LINEAR(-PI/2,PI/2) 
TAN  LOG(2**-18*PI,2**18*PI) 

DTAN  LOG(2**-39*PI,2**39*PI) 
COTAN  LINEAR(-PI/2,PI/2) 

DCOTAN  LINEAR(-PI/2,PI/2) 
COTAN LOG(2**-18*PI,2**18*PI) 

DCOTAN  LOG(2**-39*PI,2**39*PI) 
EXP LINEAR(-100,100) 
EXP  LINEAR(-16,16) 
DEXP  LINEAR(-100,100) 

ALOG  LOG(16**-65,16**63) 
DEXP  LINEAR(-16,16) 

ALOGIO LOG(16**-65,16**63) 
DLOG LOG(16**-65,16**63) 

DLOGlO  LOG(16**-65,16**63) 
SQRT  LOG(16**-65,16**63) 
DSQRT  LOG(16**-65,16**63) 
X**Y LINEAR(.1,10)**60.1 
X**Y LOG(16**-65,16**63)**.7 
DX**Y  LINEAR(.1,10)**60.1 
DX**Y  LOG(16**-65,16**63)**.7 
CABS  POLAR(16**-16,16**16) 
CDABS POLAR(16**-16,16**16) 

results. All arguments with zero  fraction are correctly 
handled, regardless of whether the  exponent is zero. Thus we 
claim bitwise compatibility between the new scalar and 
vector routines for all arguments except nonzero 
unnormalized operands. 

accurate  as  and  to execute faster than  the  current VS 
FORTRAN product. The very stringent requirement of 
bitwise compatibility  restricted the speed of both  the vector 
and scalar  algorithms. Our  requirement was to weigh scalar 
and vector algorithms  equally  in our  attempt  to meet the 
above goals. Some  remarks  on  the way  we handled vector/ 
scalar trade-offs now follow. In our vector codes, only  those 
arguments  are handled which would  have been processed in 
the main  path(s)  of the scalar  code. All arguments which 
require special processing are handled by the scalar code, 
either by branching to  the  appropriate scalar function or by 
duplicating some of the scalar  code as part of the vector 
function. For trigonometric  functions, more  than 90% of the 
arguments between zero and a/2 are handled in  the vector 

Under this  requirement we wanted our  functions  to be as 

P EAVE  E99 % TRIALS 

63.34 
42.26 
68.97 
56.68 
41.74 
38.82 
46.21 
45.29 

46.10 
35.99 

12.86 
33.87 
36.17 
27.08 
15.91 
3.87 
31.64 
35.31 
11.47 
14.67 
38.82 
34.93 
19.65 
10.53 
98.43 
97.86 
63.16 
64.27 
74.94 
57.06 
67.80 
58.81 
91.21 
100.00 
1.29 
3.35 
0.61 

37.41 
2.20 

38.18 

0.44 
0.63 
0.38 
0.46 
0.88 
0.69 
0.99 
0.17 
0.74 
0.60 
10.93 

.79E+  14 
0.15 
1.04 

.79E+ 14 
9.76 

0.84 

18.31 
0.98 

.24E+ 12 
0.84 

24.25 
1.04 

.30E+12 
0.25 
0.25 

0.40 
0.41 

0.34 
0.50 
0.51 
0.85 
0.25 
0.25 

124.57 
37.14 
154.86 
53.99 
0.77 
0.18 

1.26 

0.98 
1.47 

1.13 

2.03 
3.18 

4.55 
8.38 

1.78 

146.39 
1.66 

.17E+16 
1.83 

109.42 
10.19 

.17E+16 
5.33 
1.81 

129.23 
.32E+13 

5.79 

163.46 
6.81 

.3  3E+ 1 3 
0.51 
0.52 
1.10 
1.05 
0.99 
1.47 
4.75 
8.05 
0.54 
0.50 

691.65 
194.40 
874.08 
282.56 
2.12 
2.13 

10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
9696 
10000 
10000 
10000 
9709 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 

mode. For other functions,  almost all of the  arguments  in a 
certain  distribution are handled  in the vector  mode. Some of 
the elementary-function routines always produce correctly 
rounded results. For these  routines, different algorithms can 
be used in the scalar and  the vector mode, while preserving 
the bitwise compatibility  feature of the library. This fact was 
used to redesign the vector  algorithms  for some of the 
correctly rounded vector functions so that they  could be 
independently  optimized  for  better  performance on  the 
vector hardware. 

In this  section, we cover the following topics: Tuckerman 
rounding (see [ 16(a), p. 101 and [ 16(b), p. 14]), table-based 
approach, near-correct  accuracy, fast-track programming, 
robustness, and  error handling. Tuckerman  rounding is a 
simple  multiplicative  algebraic/numeric condition  that 
allows us to produce  correctly rounded results for the square 
root and CABS functions. Hull [ 171 has  also described a 
condition,  but his condition requires higher-precision 
arithmetic. Kahan [ 181 has also discovered a similar 
condition; his result uses a divide instruction.  Tuckerman’s 



Table 3 VALTLIB accuracy statistics (for I O  OOO trials): percent correctly rounded, average error, 99th percentile error  bound 

FUNCTION DISTRIBUTION (RANGE) P EAVE z99 % 

DCOS LINEAR (-PI, PI) 21.51 1.40 4.16 
DCOS LOG(2**-50*PI,2**50*PI) I 41.88 .46E+ 1 3 . 16E+09 
DSIN LINEAR (-FI, PI) I 24.66 1.36 4.16 

DCOTAN 
DCOTAN 

EXP 
EXP 

DEXP 
DEXP 
X**Y 
X**Y 
DX**Y 
DX**Y 

LINEAR (-PI/2, PI/2 
LOG(2**-39*PI,2**39*PI) 
LINEAR(-100,100) 
LINEAR(-16,16) 
LINEAR(-100,100) 
LINEAR(-16,16) 
LINEAR(.1,10)**60.1 
LOG(16**-65,16**63)**.7 
LINEAR(. 1,lO) **60.1 
LOG(16**-65,16**63)**.7 

DSIN LOG(2**-50*PI,2**50*PI) 8.57 .73E+07 . 15E+09 
DTAN LINEAR(-PI/2,PI/2) 36.68 1.02 7.57 
DTAN LOG(2**-39*PI,2**39*PI) 24.21 .16E+05 .17E+06 

15E+06 
4.87 

0.51 
0.52 
1.10 
1.05 
5.01 
0.50 
6.82 
1.32 

I 

condition is of historic significance, as its use allowed us to 
produce IBM’s first elementary function  that delivered 
correctly rounded results for all arguments. 

The table-based approach follows naturally from a 
fundamental idea: Let an elementary function be expressed 
as  the sum of some exact  value and a  small  correction, cf. 
Kuki and Ascoly [6],  Fullerton [ 191. We developed several 
ways to find such an exact value. For example, we adopted  a 
strategy of sharing one large (about 256 entries) table over 14 
routines  (TAN,  COT, ATAN,  ATAN2)  in  both short  and 
long, vector and scalar. (We did  not vectorize short-precision 
TAN  and COT.) We originally coded SQRT  and CABS 
using this  technique (eight routines sharing  a  table  of size 
192 entries of 12 bytes per entry). In our TAN/COT/ATAN/ 
ATAN2 scalar/vector  programs, we use a common table 
where, for each table entry, an x,, is chosen near  the middle 
of the table  interval  such that  tan (x,) is an exact short word 
and x, is stored as a double word followed by its  short-word 
continuation (hexadecimal digits 15-20). Actually, x, is a 
transcendental number which we approximate  to  20 hex 
digits. In our approach, with the  same  amount of table 
storage ( 16 bytes per  table entry) we are able to get up  to 20- 
digit precision. The only  disadvantage of this  approach over 
the next one is that it  requires an  extra  addition  (to  account 
for the  continuation of x,). 

We heard about  another way, called the Accurate  Table 
Method, from the work of Gal [20]. Kahan has also 
informed us that Miller [2 I] wrote about  the extra-accurate 
table  idea  in 1958. Gal’s idea  helps  in  eliminating the need 
to store the  continuation (beyond the 14th digit) of the 
function value. Typically, the last digits of x,, (a double 
word) are chosen so that typically hex digits 15- 17 off( x,) 
are zero. Thus, with 16 bytes of storage per table entry, 
approximately 17-digit precision can be obtained. This 
method saves one floating-point addition over the alternative 
approach  above  that develops an exact value. There is 
another way to save arithmetic; for example, the table for 

30.25 
19.43 
98.43 
97.86 
63.76 
64.27 
56.45 
98.94 
27.27 
67.48 

17E+05 
1.01 

0.25 
0.25 

0.40 
0.41 

0.81 
0.25 
1.45 
0.39 

DEXP is an  accurate table with a constant built into it so 
that  an  extra floating-point add  can be saved. For  other 
codes  (DSIN/DCOS,  DASIN/DACOS) we developed  a new 
concept  of  built-in  rounding. Combining  the use of this type 
of  “accurate  table” with Gal’s method saves an extra 
addition. 

We usually get correctly rounded results by keeping the 
correction term sufficiently small.  When the correction term 
is then  added  to  the exact values a right shift occurs, usually 
producing the correctly rounded result. We chose to  make 
this right shift at least two  hexadecimal digits. This choice 
produced  correctly rounded results more  than  95% of the 
time. 

The idea  behind fast-track programming is to judiciously 
choose a series of cheap tests which filter out difficult 
arguments  that rarely occur.  These  rare arguments require 
extra computing; our approach is to  do  more  computing 
only when necessary. The  normal  arguments filter quickly 
into  the  main  path of the code where the  instructions  are few 
so that  the execution is fast. 

Robustness and  error handling are features that cost very 
little. Error handling is a  rare  event; we presume  that it will 
not occur.  Only when an error-producing argument is 
detected by the code do we set up  the complete subroutine 
linkage necessary for  a  trace-back.  Hence,  most of the  time 
we pay only the cost of a minimal  subroutine linkage. In  the 
text to follow, we discuss error handling  as part of fast-track 
programming. 

The  term robustness refers mainly to delivering correctly 
rounded results for unnormalized  arguments [22] and  to 
being precise at overflow and underflow boundaries.  These 
problems rarely occur in the  FORTRAN  environment. 
Again, we have cheap or no-cost tests to detect 
unnormalized operands. The benefit to  the user is that he 
knows  he will never get garbage from the scalar elementary- 
function  routines;  for all inputs in the  domain of the 
elementary function  the result is correct  within one ulp. 135 
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Tuckerman rounding 
The previous  square-root  routines, SQRT  and  DSQRT, 
usually return  the correctly rounded  square root, but  not 
always. The new routines always do, by the following means, 
which we call Tuckerman  rounding. 

If x, j ,  y are positive floating-point numbers,  such that j is 
the (possibly unknown) nearest floating-point number  to A, 
and y is  a  “candidate” to be j ,  produced by some 
approximation,  then y = j if and only if 

( Y -  + Y)/2 < A < (Y + JJ+)/2 

(equalities cannot  occur), where y- and y+ are  the floating- 
point  numbers  just below and  just above y. The  terms in 
these  inequalities cannot be evaluated directly on  the 
computer, since & is irrational and  unknown,  and  the  other 
terms of the inequality are  not floating-point numbers of the 
given precision. However, these  inequalities can be shown to 
be equivalent to 

Y - * Y < x 5 Y * Y + ,  

where * denotes System/360/370  multiplication (which 
truncates  the result), so that  the tests are easily camed  out 
without the need  for extra precision. (Note  the asymmetry: 
one <, one 5.) If the left inequality fails, y is too large; if the 
right inequality fails, y is too small. 

It is convenient  to first use an  approximation which is 
known to give y in  the range 

& - 1.5  Ulp < y < A + 0.5 Ulp. 

Then it is sufficient to test whether 

where y+ = y + ulp ( y ) .  If the inequality holds, j = y ;  
otherwise, j = y+.  

rounding in CABS and CDABS (absolute value of a  complex 
number). Here, however, in some cases the  true function 
value can lie exactly between two  consecutive floating-point 
numbers; in  these cases the larger is chosen. 

A  modification  of  these tests is used to achieve  correct 

Table-based  approach 
A  central  idea  in obtaining high accuracy  for our elementary 
functions is the following: Let 

edx)  = EXACT (x,) + corr (x, x,), (1) 

where efstands  for an elementary  function, EXACT is some 
machine number  that represents edx,) exactly or  to higher 
precision, and corr is approximated by CORR, a small- 
usually two orders of magnitude smaller-machine number 
that is computed.  The value x, is  either not a machine 
number  or  some specially chosen machine  number  that 
makes ef(x,) especially precise, where x - x, is again about 
two  orders of magnitude smaller than x and x,. Suppose that 

I corr I < - I EXACT1 . 1 
256 

Then  an  ulp of ef(x) is at least 256 times  an ulp of corr, and 
several floating-point operations will, in worst case, 
contribute  no  more  than, say, 5/256-ulp error  to  the 
computation of corr by CORR, a polynomial minimax 
approximation  to corr. Now 1 CORR - corr 1 < 5/256  ulp, 
and, if desirable, a rounding  can be added  to CORR. The 
final addition of the table value and  the correction term 
always introduces  an  error in the range zero to  one  ulp (if 
both the  terms  are of the  same sign) or - 1 / 16 ulp  to 1 51 16 
ulp (if they are of  opposite signs) because of the properties  of 
the IBM System/370 floating-point Add and Subtract 
operations. This is the largest single source  of error in our 
computation. Moreover, this  error is biased with an average 
of 1/2 ulp (if the  terms  are of the  same sign) or 7/16 ulp (if 
they are of  opposite signs). We  compensate for this bias by 
incorporating a  compensatory term of 15/32 ulp (which is 
the average of 1/2 ulp  and 7/16  ulp)  in CORR. This 
imperfect compensation of bias adds 1/32 ulp  to  our overall 
error. Thus  the final floating addition, EXACT + CORR, is 
made with absolute error  51/32 ulp, and hence ef(x)  can be 
computed with error  no  more  than, say, 13/256 ulp. For  our 
elementary  functions  these  facts yield the correctly rounded 
eflx) most  of the  time,  and with error less than  one  ulp for 
all x. For  some functions,  such as  DEXP,  the relative signs 
of the  two  terms  are fixed, and for  these functions we can 
apply perfect compensation for the bias  error. This results in 
99.8% correctly rounded results for DEXP. 

differentiable is that  the set x, of points needed to  compute 
edx)  for  arbitrary x is about size 256. The function CORR 
approximating corr is a linear combination of  polynomials 
in the variable Ax = x - x,. The  constants in the linear 
combination  are  functions of x, x,, and Ax, and these can be 
easily and cheaply  represented  in tables. An unexpected 
benefit of this approach is that CORR can be computed 
cheaply,  mainly because the polynomials in Ax have low 
degree. Thus  the table-based approach  simultaneously 
produces  a method  to  compute eflx) both more accurately 
and faster than  the approach  of using a single polynomial or 
rational approximation. 

A  consequence of (l), (2), and  the fact that ef(x) is 

Near-correct  accuracy 
All the  functions produce results which are strictly less than 
one  ulp away from  the infinite-precision results. One 
implication  of  this is that if the infinite-precision result is 
machine-representable (i.e., it is a valid machine  number), it 
is produced by these  functions. This is particularly important 
for functions such as square  root,  absolute value of a 
complex number,  and  the power  function. For these 
functions, the result is often an exact machine-representable 
number, which our  routines produce.  Most  elementary 
function  libraries do  not  guarantee  that. As an example, 
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X** 1 .O will always be X for our functions, while for  some 
other libraries the result  could be many ulps away from X, 
sometimes as  much  as  hundreds of ulps away. Also, X**2.0 
usually produces  a correctly rounded value, while X*X 
always produces the  truncated value of x*. 

In computing  the elementary  functions, one can always 
obtain sufficient accuracy by doing  arithmetic  in higher 
precision. On most IBM System/370  machines,  except the 
low-end machines,  short-precision  operations take  about as 
much  time as long-precision operations.  Therefore, we 
decided to  take advantage of this to  obtain good  accuracy  for 
short-precision  routines. On all IBM System/370  machines, 
extended-precision  routines are considerably more 
expensive. On the 3090 Vector Facility, they are  not 
supported.  Therefore, we could not rely on extended- 
precision operations to deliver the desired accuracy  for the 
long-precision routines. The tables were designed to deliver 
the desired accuracy  for the long-precision routines. In most 
cases, the  same tables were used to  compute  the short- 
precision functions. Except for EXP, short-precision  routines 
were not independently designed. 

Since  short-precision  routines use mostly long-precision 
operations, the final rounding was easily and accurately 
accomplished by the LRER (load-rounded short-precision 
from long) instruction. This explains why most  short- 
precision routines have close to 100% correctly rounded 
results. On  the negative side, use of long-precision operations 
slows down  short-precision routines  on  the low-end 
machines. 

Fast-track programming and error handling 
One of the  standard practices  in assembly language 
programming is to place at  the beginning of the program  a 
header or “eye-catcher” identifying the program. This is 
useful for trace-back in case of an  error but slows down  the 
code, as  an  extra  branch is required. For the scalar 
elementary-function  routines, where the total number of 
instructions  executed is small, this overhead  becomes 
significant. Since our routines are robust and  do  not produce 
an unexpected error (such as an intermediate underflow or 
overflow), we have  eliminated the header, which speeds up 
the execution  for  most of the arguments. In  the rare case 
where the  argument or result is out of range, the registers are 
appropriately modified to  point  to a  correct  header, so that 
proper error messages and  error trace-back information can 
be given to  the caller. This  technique was used by 
Scarborough [IO] when  he sped up  the original IBM library 
designed by Kuki. 

In coding the scalar elementary-function  routines,  a great 
deal of effort was spent in  minimizing  the number of general 
registers used, as they need to be saved and restored,  except 
that by convention  the registers RO and R 1 need not be 
saved and restored. Therefore, RO can always be used and 
RI can be used after  it is no longer needed to fetch the 
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arguments or for error traceback.  Additional registers, if 
needed, are saved and restored in a double-word-aligned 
area. The registers are restored just before the final result is 
computed.  This facilitates use of the conditional  branch 
instructions to exit from the routine. In many situations,  a 
test is made  and for certain conditions we exit from  the 
routine, or else  we do more processing before exiting from 
the routine. 

Similarly, in  coding the vector  elementary  functions, a 
great deal  of effort was spent in  minimizing the  number of 
vector registers used, since they need to be saved and 
restored if they are  in use, as signaled by the calling program. 

In coding  these  functions, we have  optimized  performance 
for what we consider  a  reasonable  distribution  of the 
arguments, although all arguments are  properly  handled. 
These “most-likely’’ arguments  are handled  in the main  path 
of the  routine with no branches or minimal branches taken. 
The unusual arguments which require  extra processing or 
somewhat different processing are quickly filtered out  and 
processed by branching to different segments of the program. 
The program flow can be described as  a  tree  structure. The 
very first test in the main  path usually routes  most of the 
unusual arguments  to  some  point of control. At that point, 
further tests are  done  to properly classify and process the 
argument. This minimizes the  number of tests to be made in 
the main  path of the code, leading to  an efficient 
implementation for the most likely arguments. 

As mentioned above, for some  arguments extra processing 
may be required. This extra processing may take  the form  of 
some preprocessing and postprocessing, with essentially the 
main  path  code  in between. In  this situation, after the 
problem argument has been identified and preprocessed, we 
save R14 (the  return address register) and modify it to  point 
to a postprocessing label. Then we branch into  the main 
path, where after all the processing BR 14 automatically 
branches to  the postprocessing label. There, extra processing 
is camed  out,  and R14 is restored to its original value for 
exit from  the routine. This procedure  eliminates the need for 
additional  tests  in the  main path of the code. 

The vector functions  do  not  handle  error reporting  for the 
arguments. The  arguments which require error messages are 
handled by the scalar code. In  the vector code, some quick 
checks are  made for the possibility of error reporting, and  in 
that case, either all the arguments or some  of  the  arguments 
are processed by calling the corresponding  scalar  function. 

The vector-mask-mode  instructions are heavily used to  do 
conditional  operations, which in the scalar code are 
normally  handled by branching. By doing  a few mask-mode 
operations we are able to  combine  many main  paths of  the 
scalar code  into  one single vector code. This helps in 
maintaining close to full vector lengths for all the operations. 
Where appropriate, vector-store-compressed (VSTK/ 
VSTKE/VSTKD) instructions  are used to separate the 
arguments  into two or  more cases or to collect the 
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exceptional  arguments. The separated arguments  are 
processed in  either the scalar or the vector mode depending 
on  the specific situation,  and  the results are inserted into  the 
result vector by vector-load-expanded (VLY/VLYE/VLYD) 
instructions. 

Care is taken  not  to produce any intermediate underflows. 
This problem  can  sometimes be avoided by masking out  the 
underflow mask bit in the program status word (PSW). For 
the scalar code, where only one  argument is processed in 
each call, the  extra cycles required to mask out  the 
underflow bit and  to restore  it on exit are  not justified, and 
so other coding  precautions are  taken. But in the vector 
code, where many  arguments  are processed in  a single call, 
the  extra cost of  saving and restoring the underflow bit is 
justified. This is done for some of the vector functions to 
improve  performance. 

Robustness 
The new functions  handle  unnormalized  arguments correctly 
in scalar mode.  For  unnormalized arguments,  a  normalized 
result is produced with an accuracy  of one  ulp (or 0.5 ulp,  in 
the case of perfect rounding). (For  the functions with one- 
ulp accuracy, in rare cases, this result may be one  ulp away 
from  the result  produced by the equivalent  normalized 
argument.)  The previous library did  not always handle 
unnormalized  arguments correctly. Often the results were 
meaningless. 

Another  feature of the library is that  the  argument  and 
result boundaries  are strictly observed. For example, for the 
power function, if the result is within the range of machine- 
representable numbers (i.e., it does not underflow or 
overflow), it is always produced  without any error messages. 
In the  previous VS FORTRAN library, for a large number of 
machine-representable results close to underflow/overflow 
boundaries, an underflow or overflow message was issued 
and  the result was not  computed.  This was true for  many 
functions. For all the new functions, if the exact result is 
within  the underflow and overflow range of the machine, it 
is computed with one-ulp accuracy. Furthermore, in the 
computing process, intermediate underflows and overflows 
are strictly avoided. This has been achieved by appropriate 
scaling, if the possibility of an underflow or overflow exists. 
After the scaled result is computed, it is examined to see  if 
the final result is going to be within the machine- 
representable range. The previous library produced 
intermediate underflows for many functions. 

4. Performance 

Speed 
In this section we compare  the speed and accuracy of the 
new elementary functions  to those in the  present libraries 
(VFORTLIB  and VALTLIB). 

Tables 4-7 present  information  on speed. Table 4 gives 
138 the  time per call (in microseconds)  for  the new functions, 

averaged over 10000 random  arguments  on  the machines 
indicated.  These times were obtained by timing a 
FORTRAN  loop like 

DO 1 J = l,N 
1 Z(J) = F(X(J)) 

compiled with VS FORTRAN 1.4.0 (with N = 10000) and 
dividing the resulting time by N.  The  time listed is the 
median  of  three trials (with different random  arguments). 
This procedure means  that  the times include loop and 
subroutine-linkage  overhead. To give the reader an 
indication  of the magnitude  of  this  overhead we have 
included “dummy” times, which are timings  for functions F 
which consist of an  immediate return to  the caller (a BR 14). 
There  are six of these, depending  on whether  F is a single- or 
double-precision function of one or two real or one complex 
argument.  For  some reason,  in the DO-loops we used, the 
FORTRAN compiler  treats X(J)**Y(J) differently from 
other  functions ofX(J)  and Y(J) ;  hence, the two-argument 
dummy  times  only apply to (D)ATANZ. Timings  for the 
new functions depend on what  distribution  of  arguments is 
assumed. We have attempted  to choose  representative 
distributions. The times will increase when scaling is 
required to avoid intermediate underflow or overflow. For 
the inverse trigonometric  functions, we assume  that  the 
result is uniformly  distributed in  the indicated range. The 
logarithmic  distribution means  that  the  arguments  are 
chosen in the indicated  interval  in such a way that their 
logarithms are uniformly  distributed. The polar  distribution 
means  that we choose  a  pair of arguments r cos 0, Y sin 0 so 
that r is logarithmically distributed in the indicated range 
and 0 is uniformly  distributed  in (0, 2 ~ ) .  For  the power 
function, X varies as  indicated while Y is held constant.  For 
the trigonometric  functions, the logarithmic  distribution  in 
effect averages the speed on large arguments (which require 
precise argument  reduction) with the speed on small 
arguments (which  may take a special fast track  through the 
code). So that  the interested  reader  may  separate  these 
ranges, we have indicated below each of these times what 
percentage of the  total time is contributed by arguments in 
the lower and upper halves of the logarithmic range, 
respectively. This separation is not always possible for vector 
routines,  but in these cases it is roughly correct. 

Table 5 lists the ratio of the  VFORTLIB  times  to  the new 
function times (as given in Table 4). Since there  are  no 
vector functions in  VFORTLIB, Column 7 is the ratio  of the 
times for the scalar routines in VFORTLIB  to  the  times for 
the new vector routines. Table 6 similarly compares the 
VALTLIB times  to those of the new functions. We include 
in Table 6 all the  functions in VALTLIB. 

Table 7 gives three sets of ratios. Column 1 is the  ratio of 
the times for the  old  library on  the 308 IKX to  the times for 
the new scalar library on  the 3090. Column 3 is the  ratio of 
the times  for the old library on the 308 1 KX  to  the times  for 
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Table 4 Kernel  measurements  in microseconds for new SCLL alar elementary functions (VS FORTRAN Version 2) by model. 

FUNCTION  DISTRIBUTION  (RANGE) 
~~ 

4331-2  4361-5  4341-2  4381-3  3081KX  3090-S  3090-V 
~~ ~ 

E2DUM 
EDUM 

CDUM 
DDUM 

CDDUM 
D2DUM 

DACOS  CIRC(0,PI) 
ASIN  CIRC(-PI/2,PI/2) 
DASIN  CIRC(-PI/2,PI/2) 
ATAN  TAN(-PI/2,PI/2) 
DATAN  TAN(-PI/2,PI/2) 
ATAN2  POLAR(16**-16,16**16) 
DATAN2  POLAR(16**-16,16**16) 

ACOS CIRC ( 0, PI ) 

cos LINEAR(-PI,PI) 
COS  LOG(2**-18*PI,2**18*PI) 

SUBRANGE  PERCENTAGES 

DCOS  LOG(2**-50*PI,2**50*PI) 
DCOS LINEAR(-PI,PI) 

SUBRANGE  PERCENTAGES 
SIN  LINEAR(-PI,PI) 
SIN  LOG(2**-18*PI,2**18*PI) 

SUBRANGE  PERCENTAGES 
DSIN  LINEAR(-P1,PI) 
DSIN  LOG(2**-50*PI,2**50*PI) 

SUBRANGE  PERCENTAGES 
TAN  LINEAR(-PI/Z,PI/2) 
TAN  LOG(2**-18*PI,2**18*PI) 

SUBRANGE  PERCENTAGES 
DTAN  LINEAR(-PI/Z,PI/2) 
DTAN  LOG(2**-39*PI,2**39*PI) 

SUBRANGE  PERCENTAGES 
COTAN  LINEAR(-PI/2,PI/2) 
COTAN  LOG(2**-18*PI,2**18*PI) 

SUBRANGE  PERCENTAGES 
DCOTAN  LINEAR(-PI/Z,PI/2) 
DCOTAN  LOG(2**-39*PI,2**39*PI) 

SUBRANGE  PERCENTAGES 
EXP LINEAR(-IOO,IOO) 

DEXP LINEAR(-IOO,IOO) 
EXP  LINEAR(-16,16) 

DEXP  LINEAR(-16,16) 
ALOG  LOG(16**-65,16**63) 
DLOG  LOG(16**-65,16**63) 

ALOG10  LOG(16**-65,16**63) 
DLOGlO  LOG(16**-65,16**63) 

DSQRT  LOG(16**-65,16**63) 
SQRT  LOG(16**-65,16**63) 

X**Y  LINEAR ( . 1,lO) **60 
X**Y  LOG(16**-65,16**63)**.7 
DX**Y  LINEAR(.1,10)**60 
DX**Y  LOG(16**-65,16**63)**.7 
CABS  POLAR(16**-16,16**16) 
CDABS  POLAR(16**-16,16**16) 

9.90 
12.21 
10.58 
10.71 
13.47 

179.62 
11.41 

496.24 
174.28 
481.10 
102.96 
360.42 
152.27 
463.13 
102.38 
161.84 
(32,68) 

377.66 
346.94 

(29,71) 
105.72 
150.54 
(24,761 
338.78 
372.68 
(28,721 
143.20 
176.30 

3.93 
3.07 

3.17 
3.54 
4.63 
3.74 
33.28 
61.73 
30.72 

4.88 
5.66 
5.18 
5.05 
5.72 
5.12 
33.23 
64.47 
34.59 

2.19 
2.61 
2.43 
2.22 

2.53 
2.72 

12.57 
20.01 
13.05 
19.21 
12.81 
19.70 

26.30 
18.79 

9.99 
12.37 
(38,62) 
14.77 
16.18 

.85 

.96 
.46 

.84 
.55 

.85 
.47 
.49 

1 .oo .56 
.86 .50 

4.56 2.06 
7.59 3.09 
4.50 2.14 

56.79 62.68 
25.62 28.93 
53.49 51.19 
39.41 41.78 
72.55 67.17 
23.33 25.68 
39.94 34.13 

42.49. 46.32 
30,70) (37,63 

53.85 49.98 

7.26 3.01 
4.00 2.04 
6.63 2.99 
5.83 2.94 
9.23 4.21 
3.51 1.56 

38,62) (38,62 
4.48 2.07 

5.83 2.23 
6.20 2.53 
33,67) (34,66 
3.61 1.73 

34,66) (35,65 
4.17 1.97 

5.61 2.28 
6.26 2.60 
32,68) (32,68 
4.75 2.28 

2 . 2 7  

1.41 
1.68 
1.76 
2.16 
.82 
-82 

(46,54) 
1.15 
2.02 

(25,75) 
.86 
1.28 

(66,34) 
1.09 
2.71 

(43,57) 

28,72) (31 
24.13 27 
36.88 32 
22,78) (32 
40.95 46 
59.26 51 
21,79) (30 

34 

69 
08 
14 

) (32,68) 
12.66 
11.90 

68) (31,69) 
18  14.26 
10 16.99 
70)  (30,70) 

14.05 

I 

33.11 
32.08 

442.53  65.01 
(28,72) (33,67 

481.85 86.56 
(25,75) (20,80 
142.92 33.18 
197.97 38.27 
(36,64) (44,56 
442.98 64.96 
620.00 104.14 
(42,58) (33,67 
227.40 20.35 
254.82 39.14 
445.59 76.55 
445.43 76.55 
232.36 48.86 
431.27 74.66 
284.06 53.23 
594.90 105.90 
153.86 25.65 

481.57 81.91 
279.65 52.75 

480.91 81.93 
032.14 125.99 
030.97 125.94 
233.07 33.96 
639.55 80.07 

36.64 
.57 

(36,64) 
56.57 

(28,72) 
62.72 

34.29 
39.51 
(40,60) 
56.41 

(41,59) 
76.84 

32.99 

65.91 
37.46 

65.73 
37.84 
63.06 
45.44 

13.97 

21.02 
38,62) 

23.68 
27,73) 
14.49 
15.51 

21.36 
28.95 

45,55) 

37,63 
4.97 

7.70 
8.07 
31,69 
4.72 
5.37 
42,58 
7.68 
9.62 

(38,62) 
3.30 
3.78 

(29,71) 
2.28 
2.55 

(44,56) 
3.27 
4.49 

2.28 
4.11 

1.74  .62 
1.97 
3.04 

.62 

3.03 
.89 

2.01 
.88 
.74 

2.46 
3.05 

.77 

.94 

3.56  1.14 
2.15 
3.21 

.68 

3.69  1.26 
.94 

3.69 1.26 
5.76 2.18 
5.75 2.18 
2.66 .92 
4.64 1.81 

(40,60)  (47,53) 40,60) (43,57 

10.25 3.85 
8.56 3.51 

21.68 7.30 
21.67 7.30 
13.47 4.40 
20.88 7.07 
15.39 5.28 

80.92 25.23 
34.83 13.18 
46.95 19.94 
73.37 25.44 
73.54 25.69 

128.72 41.62 
128.40 41 .89 

86.04 31.49 
46.76 17.40 

9.16 
4.40 
6.46 
8.62 
8.63 
15.38 
15.39 
5.97 
10.78 

the new vector library on  the 3090 (with Vector Facility). 
For full vector lengths,  a user will get this  gain  when he 
moves from  the 308 I KX to  the 3090 Vector Facility. 
Column 2 is the  ratio of the  times of the new scalar library 
to  the  times of the new vector library on  the 3090. 

inconsequential  changes  in the  timing procedure  may  have  a 
noticeable effect on  the measured  times. For example, on  the 
308 1 KX the performance  of the  STM  and  LM instructions 
is severely degraded near page boundaries. This  means  that 
in the rare  event that  the save area of a subroutine is  near  a 

Generating precise times is difficult, since seemingly 

page boundary,  the speed  of  execution  of the  subroutine will 
be substantially decreased. Also, the  functions  timed  are  not 
necessarily the final versions, as  changes are being made.  For 
these  reasons the reader  should interpret Tables 4-7 as 
giving a general indication  rather  than a precise 
measurement of what  performance (in terms of speed) users 
may  expect from  the new library. 

Accuracy 
Tables 1-3 give accuracy figures for  the new library, 
VFORTLIB,  and VALTLIB, respectively. For each function 

IBM J. RES, DEVELOP. VOL. 30 NO. 2 MARCH 1986 RAMESH C. AGARWAL ET AL. 



Table 5 Ratios of VS FORTRAN Version I library  measurements to Version 2 counterparts. 

FUNCTION  DISTRIBUTION  (RANGE) 

ACOS CIRC (0, PI) 
DACOS CIRC(0,PI) 
ASIN  CIRC(-PI/Z,PI/Z) 
DASIN  CIRC(-PI/Z,PI/2) 
ATAN  TAN  (-PI/2,  PI/2) 
DATAN  TAN(-PI/Z,PI/Z) 
ATAN2  POLAR(16**-16,16**16) 
DATAN2  POLAR(16**-16,16**16) 

COS  LINEAR(-P1,PI) 
COS  LOG(2**-18*PI,2**18*PI) 
DCOS  LINEAR(-P1,PI) 
DCOS  LOG(2**-50*PI,2**50*PI) 
SIN  LINEAR(-P1,PI) 
SIN  LOG(2**-18*PI,2**18*PI) 
DSIN  LINEAR(-P1,PI) 
DSIN  LOG(2**-50*PI,2**50*PI) 
TAN  LINEAR(-PI/2,PI/2) 
TAN  LOG(2**-18*PI,2**18*PI) 
DTAN  LINEAR(-PI/2,PI/2) 

COTAN  LINEAR(-PI/Z,PI/2) 
DTAN  LOG(2**-39*PI,2**39*PI) 

COTAN  LOG(2**-18*PI,2**18*PI) 
DCOTAN  LINEAR(-PI/2,PI/2) 
DCOTAN  LOG(2**-39*PI,2**39*PI) 

EXP  LINEAR(-100,100) 
EXP  LINEAR(-16,16) 
DEXP  LINEAR(-100,100) 
DEXP  LINEAR(-16,16) 
ALOG  LOG(16**-65,16**63) 
DLOG  LOG(16**-65,16**63) 

ALOG10  LOG(16**-65,16**63) 
DLOG10  LOG(16**-65,16**63) 
SQRT  LOG(16**-65,16**63) 
DSQRT  LOG(16**-65,16**63) 
X**Y ~1NE~~(.1,10)**60 

DX**Y  LINEAR(.1,10)**60 
X**Y  LOG(16**-65,16**63)**.7 

DX**Y  LOG(16**-65,16**631**.7 
CABS  POLAR(16**-16,16**16) 
CDABS  POLAR(16**-16,16**16) 

4331-2  4361-5  4341-2  4381-3  3081KX  3090-S  3090-V 

1.16 

1.20 
1.37 

1.54 
1.41 

1.59 
1.28 
1.42 
1.63 
.98 
1.55 
1.44 
1.58 
1.10 
1.59 
1.44 
1.41 
1.28 
1.28 
1.17 
1.44 
1.17 
1.29 
.92 
.75 
.65 
1.18 
1.18 

1.35 
.74 

.65 
1.05 
.70 
.96 
.72 
.72 
1.12 
1.11 
.92 
.79 

1.86 
2.71 
2.02 
2.94 
1.61 
2.25 
1.32 
1.97 
1.25 
.69 
1.58 
1.29 
1.20 
.76 

1.64 
1.15 
1.23 
1.44 
1.30 
.97 
1.25 
1.25 
1.32 
.83 
1.81 
.92 
1.08 
1.07 

1.57 
.91 

.86 
1.13 
1.34 
1.46 
.96 
.96 

1.57 
1.59 

1.85 
1.55 

1.89 
1.64 
1.79 
1.67 
1.67 
1.59 
1.43 
1.44 
1.57 

1.45 
1.10 

1.27 
1.49 
1.21 
1.46 
1.24 
1.46 
1.56 
1.36 
1.23 
1.52 
1.50 
1.39 
1.03 
1.32 
1.15 
1.16 
1.16 
1.24 
1.18 
1. 1 1  
.97 
.96 

1.08 
1.20 
1.20 
1.17 
1.16 
1.32 
.97 

2.53 
2.71 
2.39 
2.80 
1.67 
1.96 
1.48 

1.43 
1.06 
1.51 
1.38 
1 . 1 1  
1.14 
1.57 
1.28 
1.44 
1.66 
1.42 
1.28 
1.46 
1.56 
1.46 
1.09 
2.42 

1.12 
1.99 

1.10 
1.44 
1.45 
1.33 
1.21 
1.42 
1.38 
1.53 
1.51 
1.25 

1.84 
1.27 

1.34 

1.78 

2.13 
2.07 
2.16 
2.17 
1.72 
1.74 
1.54 
1.55 
1.42 
1.04 
1.38 

1.37 
1.25 

1.14 
1.44 

1.48 
1.22 

1.63 
1.33 
1.26 
1.54 
1.57 
1.36 
1.09 
1.90 

1.19 
1.70 

1.17 
1.43 
1.37 
1.24 
1.10 
1.22 
1.21 
1.44 
1.43 
1.17 
1.16 
1.65 
1.20 

2.32 
2.57 
2.26 
2.63 
1.59 
1.87 
1.44 
1.65 
1.42 
1.01 
1.48 

1.27 
1.28 

1.08 
1.44 
1.23 
1.43 
1.72 
1.38 
1.20 
1.47 
1.60 
1.42 
1.05 
1.84 

1.13 
1.61 

1.12 
1.49 
1.46 
1.24 
1.28 
1.28 
1.27 
1.56 
1.57 
1.29 
1.29 
1.87 
1.42 

2.30 
3.33 
2.40 

2.71 
3.22 

2.86 
2.55 

1.61 
2.55 

3.02 
1.66 

1.18 

1.99 
1.34 

2.03 
1.14 
5.18 
5.11 
3.85 
3.84 
4.04 
4.73 
3.96 

4.04 
4.33 
4.58 
4.60 
3.40 

5.40 
3.39 

3.64 

4.00 

1OOOO random arguments were  generated  according to the 
indicated distributions as defined  above. The first column 
gives the percentage of arguments for  which the function 
returns the correctly rounded result. The second column 
gives the average absolute error in  ulps.  Note that a perfect 
routine will  have an average absolute error of 0.25 ulp if the 
residual errors are evenly distributed between -0.5 and 0.5 
ulp. The third column gives the value of the 100th  largest 
absolute error in  ulps. (Note that we  would expect the 
function to return a value in error by  less than the amount 
in the third column 99% of the time.) For all columns we 
assume that the exact  value is returned by the function of 
next  higher  precision. The tan and cotan functions in 
VFORTLIB and VALTLIB  give an error return when close 
to a singularity  (while ours compute a result).  Cases  where 
this occurs have  been omitted in computing Columns 1-3 
for these functions. It should be noted that although the 
VFORTLIB (and to a lesser extent the VALTLIB) functions 
appear to have  very poor accuracy  for the double-precision 
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(even a rounding error) in a large argument produced by a 
user  can  cause a propagated error even in the exact  result 
which is comparable to that generated by the corresponding 
VFORTLIB function. 

Again,  these  tables should be taken as a general indication 
rather than a precise measurement of what performance (in 
terms of accuracy) the user  can  expect  from the new library. 

ulp plots 
Figures 1-9 give  ulp plots  for three functions: DTAN in the 
range - ~ / 2  to ~ / 2  (Figs. 1-3), DSIN  log distribution in the 
range ~ - ' O T  to 2 5 0 ~  (Figs. 4-6), and the short-precision 
X**Y, with Y = 60.1 and X linearly distributed in the range 
0.1 to 10.0 (Figs.  7-9). The plots are given for all three 
libraries  discussed in this paper: the new  VS FORTRAN 
library  (Figs. I ,  4, and 7), the old VS FORTRAN library 
(Figs. 2, 5 ,  and 8), and VALTLIB or the Wang  library  (Figs. 
3, 6, and 9). These are scatter plots  with  randomly 
distributed arguments along the x-axis and the 
corresponding ulp error along the y-axis. Note that when the 
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Table 6 Ratios of VALTLIB library measurements to Version 2 counterparts. 

DCOS LINEAR (-PI,  PI) 
DCOS LOG(2**-50*PI,2**50*PI) 
DSIN LINEAR(-P1,PI) 
DSIN LOG(2**-50*PI,2**50*PI) 
DTAN LINEAR(-PI/2,PI/2) 
DTAN LOG(2**-39*PI,2**39*PI) 

DCOTAN LINEAR (-P1/2, PI/2) 
DCOTAN LOG(2**-39*PI,2**39*PI) 

EXP LINEAR(-100,100) 
EXP LINEAR(-16,16) 

DEXP LINEAR(-100,100) 
DEXP LINEAR(-16,16) 
X**Y LINEAR(.1,10)**60 

DX**Y LINEAR(. 1,lO) **60 
DX**Y LOG(16**-65,16**63)**.7 

X**Y LOG(16**-65,16**63)**.7 

2.09 
2.04 
2.15 
2.05 
1.71 
1.64 
1.72 
1.29 
.81 

1.16 
.72 

1.16 
.75 

1.27 
.75 

1.26 

2.55 
2.16 
2.65 

2.00 
1.93 

2.02 
1.55 

2.09 
1.31 

1.09 
1.15 
1.16 

1.35 
1.51 

1.63 
1.64 

2.01 
1.84 
2.03 
1.80 
1.81 
1.68 
1.83 

1.39 
1.40 

1.25 
1.18 
1.20 
1.40 
1.41 
1.32 
1.32 

2.30 
2.17 
2.43 
2.09 
2.04 
1.89 
2.08 
1.57 
2.62 
2.25 
1.24 
1.28 
1.99 
2.01 
1.58 
1.58 

1.96 
1.87 
2.07 
1.85 
1.79 
1.74 
1.80 
1.49 
1.93 
1.77 
1.28 

1.76 
1.29 

1.76 
1.49 
1.49 

1.48 
1.29 
1.44 
1.23 
1.38 

1.42 
1.20 

1.04 
1.84 
1.61 
1.13 

1.57 
1.12 

1.57 
1.67 
1.67 

2.88 

3.02 
1.61 

1.18 
1.99 
1.34 
2.03 
1.14 
5.18 
5.11 
3.84 
3.84 
4.59 
4.60 

4.42 
4.41 

ulp  error is large, it is plotted on  the log scale (Figs. 2, 5 ,  6, 
and 8). The  colored line represents 0.5 ulp  error. For  the 
linear ulp scale, all the  points within the two  colored lines 
represent  correct  rounding. For  the logarithmic ulp scale, 
absolute value of the  ulp  error is plotted, and therefore all 
points below the colored  line  represent  correct  rounding. 

most  of the  arguments  are correctly rounded.  The only 
noteworthy  feature is in Fig. 4, where for small arguments 
the  ulp  error is essentially zero. For these arguments, sin (x) 
= x is a very good approximation, resulting in  almost zero 
ulp errors.  Although these plots look featureless on the 
present scale, they will show many features and peculiarities 
if magnified by a  factor of 256 along the y-axis with 
appropriate magnification along the x-axis to show various 
table intervals. 

The old VS FORTRAN library shows large errors  due  to 
argument reduction, as indicated  in Fig. 2 ,  near * a / 2 .  As the 
argument approaches  a  multiple of n / 2 ,  the  ulp  error keeps 
increasing. The  argument reduction  error is amplified in Fig. 
5 ,  where we see a definite pattern.  The staircase pattern is 
caused by the hexadecimal arithmetic, and  the steps are a 
factor of 16 apart in  both  directions. The points  above the 
staircase represent arguments near  multiples of x .  Another 
interesting  feature of Fig. 5 is the spikes for  small  arguments, 
again at intervals  of  a  factor of 16. These spikes are 
explained  in the subsection on  ulp plots in Section 2. 

Next, we examine the  equivalent plots for VALTLIB. In 
this library the  argument reduction is done  more accurately. 
But, as also in the old VS FORTRAN library, even for those 
arguments where the  argument reduction is not needed, we 
find errors  of  up  to 16 ulps, for DTAN in Fig.  3. The 
increased accuracy  in argument reduction is more  evident  in 
Fig. 6, where the staircase phenomenon is delayed to  much 
larger arguments. This indicates that more digits of T are 
used in the  argument reduction. Even for this library. if 

The plots for the new library are essentially featureless, as 

DSIN or DTAN is examined for  arguments very close to X ,  

very large ulp  errors would be observed. The rest of the 
features  of Fig. 6, including the spikes for small  arguments, 
are very similar to those of Fig. 5. 

In the power function, when y log (x) is large, it is  very 
important  to calculate log (x) and y log (x) to a higher 
precision, to  ensure good accuracy  in the final result. This 
apparently was not  the case with the old VS FORTRAN 
library,  as  indicated by Fig. 8. Figure 9 shows that this 
problem was considerably  reduced in VALTLIB. Even for 
VALTLIB, experiments with very large exponents revealed 
errors of up  to 100 ulps in short precision and several 
hundred ulps in  long precision. The plot of Fig. 8 shows 
discontinuities very typical of hexadecimal arithmetic, when 
the result crosses to a new exponent.  The new short- 
precision power  function (Fig. 7) looks perfect, although it is 
not. 

5. Conclusions 
We have presented a  description  of  a new practical theory 
for producing very accurate high-performance scalar and 
vector elementary functions for  System/370 IBM machines. 
Our overall approach is to use tables in which we represent 
each function as  an exact quantity plus a  small  correction. 
Although this  idea is not new, we have shown, by a number 
of novel methods, that such an approach can be made 
extremely accurate  and very fast. In contrast,  the previous 
approach of using rational  functions  as  a minimax 
approximation is not as accurate nor as fast. However, this 
older approach was developed when preservation of 
computer storage was important  and  the cost of a  divide 
instruction compared  to  that of a  multiply  instruction was 
not large. 

The development of the table  approach followed rather 
naturally  from the new requirement to produce vector 
algorithms. The  requirement of  producing bitwise- 141 
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Table 7 Cross-system comparisons. Column I : vs FORTRAN Version I scalar times on 308 I versus  Version 2 scalar on 3090. 
Column 2: VS FORTRAN Version 2 scalar times on 3090 versus  Version 2 vector on 3090. Column 3: VS FORTRAN Version I scalar 
times on 308 I versus  Version 2 vector on 3090. 

FUNCTION DISTRIBUTION  (RANGE) 

EDUM 
E2DUM 
CDUM 
DDUM 
D2DUM 
CDDUM 
ACOS CIRC (0, PI ) 

DACOS CIRC(0,PI) 
ASIN CIRC(-PI/2,PI/2) 

DASIN  CIRC (-PI/2, PI/2) 
ATAN TAN(-PI/2,PI/2) 
DATAN  TAN(-PI/2,PI/Z) 
ATAN2  POLAR(16**-16,16**16) 
DATAN2  POLAR(16**-16,16**16) 

COS LINEAR (-PI,  PI) 
COS  LOG(2**-18*PI,2**18*PI) 
DCOS  LINEAR(-PI,PI) 
DCOS  LOG(2**-50*PI,2**50*PI) 
SIN  LINEAR(-P1,PI) 
SIN LOG(2**-18*PI,2**18*PI) 
DSIN  LINEAR(-P1,PI) 
DSIN LOG(2**-50*P1,2**50*PII 
TAN LINEAR(-PI/Z,PI/2) 
TAN LOG(2**-18*PI,2**18*PI) 
DTAN LINEAR(-PI/Z,PI/2) 

COTAN LINEAR(-PI/2,PI/2) 
DTAN L O G ( , 2 * * - 3 9 * P I , 2 * * 3 9 * P I )  

COTAN  LOG(2**-18*PI,2**18*PI) 
DCOTAN LINEAR(-PI/2,PI/2) 
DCOTAN  LOG(2**-39*PI,2**39*PI) 

EXP LINEAR(-IOO,IOO) 

DEXP  LINEAR(-100,100) 
EXP LINEAR(-16,16) 

DEXP  LINEAR(-16,16) 
ALOG LOG(16**-65,16**63) 
DLOG  LOG(16**-65,16**63) 

ALOGlO LOG(16**-65,16**63) 
DLOGlO LOG(16**-65,16**63) 

SQRT  LOG(16**-65,16**63) 
DSQRT  LOG(16**-65,16**63) 
X**Y LINEAR(. ],lo) **60 
X**Y LOG(16**-65,;6**63)**.7 

DX**Y LINEAR(.1,10)**60 
DX**Y LOG(16**-65,16**63)**.7 
CABS  POLAR(16**-16,16**16) 
CDABS  POLAR(16**-16,16**16) 

compatible scalar  algorithms that also performed well came 
about when we achieved the capability of viewing difficult 
and  or special arguments  as  rare cases so that  the  main code 
stream  had  short  paths with almost full vector lengths. These 
special situations  are quickly  detected by very inexpensive 
tests and handled  in the scalar  mode. At times we modified 
algorithms slightly to achieve better  performance on  the 
vector machine while maintaining  the scalar  compatibility; 
this was necessary because there is no vector counterpart for 
many scalar instructions. The relative timing of various 
instructions in vector and scalar mode is quite different, 
which leads to changes on a vector implementation. Some of 
the tables are somewhat  expanded  for the vector version to 
achieve  better  performance. We have exploited the fast 
vector  multiply-add  instruction wherever possible, especially 142 
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3081K 3090s 
30905 3090V 

308 1 K 
3090V 

1.83 
1.75 
1.79 
1.76 
1.77 
1.72 
4.72 

4.54 
5.09 

5.23 
3.38 

3.05 
3.40 
3.19 
2.24 
3.62 
3.06 
2.86 
2.41 
3.54 
2.94 
3.09 
3.58 
3.10 
2.68 
3.18 
3.30 
3.20 
2.33 
3.83 
3.32 
2.86 
2.82 
3.12 
3.18 
2.67 
2.83 
2.50 
2.43 
3.36 
3.35 
3.11 
3.10 
3.70 
2.78 

3.87 
1.45 
1.78 
1.67 
1.95 
1.90 
2.52 
1.94 
1.25 
2.01 

2.09 
1.54 

.96 

1.44 
1.12 

1.43 
1.09 
2.81 
3.18 
3.42 
3.44 
r?. 72 
3.24 
3.19 
3.12 
3.16 

2.93 
3.41 

2.93 
2.64 
2.64 
2.89 
2.56 

4.89 
6.88 
5.10 

6.07 
6.62 

5.66 
7.02 
3.83 
5.74 
3.71 
7.40 
2.82 

4.46 
2.99 

4.59 
2.54 
10.76 
10.56 
9.75 
9.72 

10.31 
8.47 

8.82 
8.52 

7.9’ 
8.31 
9.83 
9.80 
8.22 
8.17 
10.71 
7.13 

in polynomial  evaluations. In  the vector mode,  it is  cheaper 
(on  a  per-element basis) to mask off underflow. This has 
been done for some  functions  to  improve performance. 
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