126

New scalar
and vector
elementary
functions for the
IBM System/370

by Ramesh C. Agarwal
James W. Cooley
Fred G. Gustavson
James B. Shearer
Gordon Slishman
Bryant Tuckerman

Algorithms have been developed to compute
short- and long-precision elementary functions:
SIN, COS, TAN, COTAN, LOG, LOG10, EXP,
POWER, SQRT, ATAN, ASIN, ACOS, ATAN2, and
CABS, in scalar (28 functions) and vector (22
functions) mode. They have been implemented
as part of the new VS FORTRAN library recently
announced along with the IBM 3090 Vector
Facility. These algorithms are essentially table-
based algorithms. An important feature of these
algorithms is that they produce bitwise-identical
results on scalar and vector System/370
machines. Of these, for five functions the
computed value result is always the correctly
rounded value of the infinite-precision result. For
the rest of the functions, the value returned is
one of the two floating-point neighbors
bordering the infinite-precision result, which
implies exact results if they are machine-
representable. For the five correctly rounded
elementary functions, scalar and vector
algorithms are designed independently so as to
optimize performance in each case. For other
functions, the bitwise-identical constraint leads
to algorithms which compromise between scalar

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

RAMESH C. AGARWAL ET AL.

and vector performance. We have been able to
design algorithms where this compromise is
minimal and thus achieve very good
performance on both scalar and vector
implementations. For our test measurements on
high-end System/370 machines, our scalar
functions are always faster (sometimes by as
much as a factor of 2.5) as compared to the old
VS FORTRAN library. Our vector functions are
usually two to three times faster than our scalar
functions.

1. Introduction

o History of the FORTRAN intrinsic functions

When FORTRAN became widely available, there were
already many subroutines {1] for elementary functions in the
SHARE (IBM users’ organization) library. In addition, many
computer installations had their own libraries, obtained from
various sources. These were written for assembly language
programs but could be used with FORTRAN. One compiled
and ran in separate sessions and in the run session one could
use subroutines of one’s own choosing.

It soon became obvious that a standard “best” set of
subroutines should be included in all of IBM’s versions of
FORTRAN. The original FORTRAN library that came with
704/709/7090 FORTRAN was written by IBM. It was
“adequate,” but many programmers continued writing new
and improved versions of various routines. Eventually most
SHARE installations converged on a set of improved
versions (mainly by W, Kahan at the University of Toronto,

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

W. J. Cody at the Argonne National Laboratory, and H.
Kuki at the University of Chicago) and distributed them via
the SHARE library. The new routines were good enough for
IBM to take them over as the official versions.

When work began on System/360, Kuki was contracted to
write the new library (since he had done the bulk of the
then-current version). The first set of routines was available
with the initial releases of System/360 FORTRAN. See [2-4]
for general discussions of the problem and objectives of
computing elementary functions.

In his presentation [5] at the Mini-Symposium on
Elementary Functions at the SIAM National Meeting in
Seattle in July 1984, titled “Software for the Elementary
Functions,” Cody described these subroutines:

The result was an excellent library, but still not the best that
could be done, even by standards of that time. Kuki was
severely handicapped by a requirement that each program
had to produce identical numerical results on all machines in
the family. Speed and space restrictions imposed by the
smaller machines in the line, and variations in the machine
architectures, meant that he could not produce programs that
were optimal for any one of the machines. For example,
because of timing considerations on the smaller machines, he
used careful argument reduction on single-precision (32-bit)
programs but not double-precision (64-bit) ones, and he
minimized the use of double-precision floating point division.
This penalized those doing scientific computations on larger
machines to meet restrictions imposed by smaller machines
intended primarily for non-scientific use. Because of the
inadequacy of the double-precision programs, many
installations reverted to a non-standard library containing
replacement programs written by Kuki or the group at
Argonne.

The first set of modifications to these routines was made at
the time of the “Improved Floating Point Engineering
Change” (IFPEC), which fixed some of the deficiencies (most
importantly, the lack of a guard digit in long floating-point
arithmetic) in the original floating-point architecture. Kuki
made modifications to some of the routines to exploit the
corrections (e.g., the fact that the Halve instructions now
produced a normalized result), but the changes were not
extensive.

When the System/360 Model 85 was in design [with
extended (128-bit) precision], Kuki was asked (see [6]) to
revise the library to add extended-precision functions. That
version of the library was announced with FORTRAN H
Extended about 1971 and has been the “standard” library
ever since [6].

At the SHARE-54 meeting in Anaheim, California, in
March 1980, Wang [7] (see also [8, 9]) described some
inadequacies in the IBM System/360 FORTRAN IV

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

libraries and made suggestions for their improvement. He
also described some results with a new set of subroutines
which overcame these difficulties. The SHARE FORTRAN
Project submitted a requirement to IBM to provide the
Wang routines as an alternate to the standard product
library; IBM accepted the requirement and shipped the
routines with VS FORTRAN Version | Release 2 as
VALTLIB in 1982. The routines did not meet with
enormous acceptance due to the trigonometric functions
being 20-40% slower than the standard library; many users
with small arguments stayed with the original versions, even
though for large arguments the standard library was less
accurate.

Scarborough [10] wrote versions of the library routines as
part of the Optimization Enhancement [IUP (FORTRAN Q).
He made no changes to the Kuki algorithms, but changed
the programs to use shorter execution paths with less
preparation for error cases until the errors actually occurred.
He also changed the conversion routines slightly, again to
gain speed but with no perceptible change in accuracy.

In the earlier computers, memory space was quite small
and computer speed was orders of magnitude higher than
many users were accustomed to. Compactness of the
program and accuracy were therefore the most important
considerations. As succeeding generations of machines and
FORTRAN revisions were produced, the practice was to be
able to assure users that the new versions would yield the
same results as the old ones (see [10], for example). In many
cases, certain FORTRAN programs were established as the
tests of acceptability of plans and designs. Therefore, and
this may be folklore, succeeding generations of users
requested that new subroutines give exactly the same results
as old ones even when the old ones were inaccurate.

o The need for new functions

After some time, the requirement of complete numeric
compatibility became an undesirable constraint. A
compelling reason for a break with this rule came with the
advent of IBM’s new Vector Facility. We thought that a
program using the new vector instructions to mimic the old
algorithms in such a way as to produce exactly the same
results would result in inefficient vector subroutines.
Furthermore, since a good algorithm for a scalar subroutine
is, in general, not a good algorithm for a vector subroutine,
and since the previous algorithms used divide instructions, it
was necessary for the sake of speed to develop new
algorithms and, therefore, forego the requirement for strict
compatibility with the old subroutines. However, we agreed
to provide the user the ability to get the same results from
the subroutines whether or not he used the Vector Facility;
thus, our task was to produce a companion set of scalar
versions of all subroutines which produced exactly the same
results as the vector versions. Our new set of scalar

elementary-function subroutines yield higher speed and 127

RAMESH C. AGARWAL ET AL.

128

DTAN YKT

Error (ulps)

e o e e

Yorktown DTAN. Plot of errors in the Yorktown DTAN subroutine in
ulps for evenly distributed random arguments in the interval (— /2,
w2).

6
10 DTAN KUKI

Absolute value of error (ulps)

Argument

FORTRAN (Kuki) DTAN. Plot of errors in the FORTRAN DTAN
subroutine in ulps for evenly distributed random arguments in the
interval (—m/2, w/2). Note that errors are given on a logarithmic
scale due to their large size.

|
:

greater accuracy in a wide range of System/370 machines. In
producing this new library, the new technology afforded us a
number of great advantages:

& With more memory available, we could make the
subroutines longer and use tables.

RAMESH C. AGARWAL ET AL.

o Program development tools such as interactive computing
and graphics were available.

o Computer speed and availability permitted extensive
testing, including, in some cases, testing every possible
argument.

o Software development tools produced

To achieve the high performance goal set for the project and
to obtain the greatest advantages from the facilities
available, a number of programs were developed.

The Vector Facility simulator

In order to write and test programs long before the vector
machine was available, Tuckerman wrote a functional
simulator permitting one to run and trace modest-sized
vector programs on the available System/370 machines. The
simulator was very easy to use and its tracing facilities were
of enormous help in debugging programs. Its use enabled us
to complete most of the vector subroutines long before the
Model 3090 with its Vector Facility was available.

The ulp plot

Starting with a demonstration by Moler {11] showing how
graphical displays of errors in ulps (units in or of the last
place) can reveal important characteristics of error
distributions, Agarwal developed such programs for use on
our graphics systems. An ulp is the distance between the two
nearest floating-point numbers of the actual result. These
programs tested elementary-function algorithms and
presented a graphical picture of the distribution of errors.
They evolved into a very effective interactive tool for
analyzing errors and suggesting strategies for the
improvement and correction of our algorithms. Samples of
output plots from this program are shown in Figures 1
through 9, and they are discussed in Sections 2 and 4.

Polynomial approximation

Polynomial approximation subroutines were available from
SL-MATH [12], the mathematical subroutine library. These
were revised to compute in extended precision in order to
give the high accuracy needed for the double-precision
routines. Since much experimentation was needed to get
last-bit accuracy, the approximation subroutines were
incorporated into interactive programs which computed
error distributions and statistics. They also produced
machine-readable assembly language and/or FORTRAN
statements containing the exact hexadecimal representations
of the approximation coefficients.

o Why do we want correctly rounded results?

A great deal of satisfaction was obtained from the fact that
five of the intrinsic functions reported here always deliver
correctly rounded results; these are SQRT, DSQRT, CABS,
CDABS, and EXP. One important aspect of this is that

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

correctly rounded results were obtained with surprisingly
little sacrifice in performance. A second, which may have
more far-reaching consequences, is that the requirement for
future compatibility does not compel one to use the same
algorithm when a new machine architecture would make a
different algorithm more efficient.

o Intangibles

Use of the one-ulp criterion facilitates the preservation of
many desired mathematical properties of elementary
functions such as monotonicity, symmetry, and important
identities. Furthermore, when the result is an exactly
representable machine value, the one-ulp criterion
guarantees that this result will be obtained. In most cases,
the very nature of our algorithm design guaranteed correct
symmetry properties. Special attention was paid to the
examination of table boundaries in order 1o ensure that
monotonicity was not violated. Of course, monotonicity is
not violated for the routines that always deliver correctly
rounded results. For other subroutines, large numbers of
arguments were tested and no violation of monotonicity was
found.

Another desirable property is the preservation of the
quadrants in computing the inverse trigonometric functions.
Surprisingly, this is an example of a situation where the
desire to obtain correctly rounded results was in conflict with
the preservation of a mathematical property. For example,
DATAN2(Y,X) was made to lie within the quadrant
indicated by (X, Y). This means that at times we deliberately
incorrectly round the result. In one case, if X is a very small
negative number and Y is a very large positive number, the
exact result is slightly greater than =/2. The nearest machine
number happens to lie in the first quadrant, but we produce
the rounded-up value which is in the second quadrant.

o Performance of the new programs

Speed

At first glance, it would seem that the use of a vector
algorithm would make it necessary to use the same
algorithm for a whole vector of arguments, while a scalar
program would test each argument and branch to a routine
employing the best method for that argument. Therefore,
one might expect the scalar-vector compatibility requirement
to cause a loss of performance. By applying special strategies,
as described in Section 3, we found that we could keep the
performance loss of the scalar subroutines minimal.

Accuracy

For our algorithms, the use of “tuned” tables and other
techniques to be discussed below always gives errors of less
than one ulp. To be more precise, the result is always one of
the two machine numbers bordering the infinite-precision
result. Extensive testing showed that correctly rounded
results are obtained for more than 95% of the arguments. If

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

30
DTAN WANG

20

B
=2 ;
2 b
s3] §o
—10f
._20_.
-30C_1 1 X 1 1 1 1
-1.5 -1 —0.5 0 0.5 1 1.5
Argument

Wang’s DTAN. Plot of errors in Wang’s DTAN subroutine in ulps for
evenly distributed random arguments in the interval (— /2, 7/2).

any computed value is subsequently found to violate the
one-ulp criterion, it will be treated as a program error and
the program will be corrected. Our programs were, in many
cases, subjected to mathematical analysis which ensured
accuracy provided that certain conditions were fulfilled.
These conditions, in many cases, were tested numerically to
ensure that no violations occurred, and so correct results
within one ulp are virtually certain,

Robustness

The old VS FORTRAN library was written with the
assumption that little or no effort should be spent on
arguments which are unnormalized or subnormal (below the
smallest number which can be represented in normalized
floating-point format) or which, in some way, may be
considered pathological. The present programs give results
for both subnormal and unnormalized arguments, where
possible.

For arguments near singularities of the tangent function,
the old intrinsic TAN function often gave error returns
where, in fact, the correct results were machine-representable
numbers. It was shown for the present work that for all our
intrinsic functions except COTAN near zero, there can be no
machine-representable argument so close to a singularity
that the result is not a machine-representable number. The
present scalar subroutines were written so as to give results
correct to within one ulp for all arguments for which
normalized machine-representable results exist.

2. Accuracy—The ulp concept

The accuracy of these new programs is described here in
terms of units in the last place, or “ulps,” and is shown in
Figs. 1, 4, and 7 and Table 1.

RAMESH C. AGARWAL ET AL.

129

Table 1 version2 accuracy statistics (for 10 000 trials): percent correctly rounded, average error, 99th percentile error bound.

130

FUNCTION DISTRIBUTION (RANGE) P EAVE E99%
ACOS CIRC(0,PI) 99.07 0.25 0.50
DACOS CIRC(0,PI) 97.46 0.25 0.52
ASIN CIRC(-PI/2,PI/2) 99.36 0.25 0.50
DASIN CIRC(-PI/2,P1/2) 95.65 0.25 0.55
ATAN TAN(-PI/2,PI/2) 96.41 0.25 0.54
DATAN TAN(-PI/2,PI/2) 97.58 0.25 0.52
ATAN2 POLAR(16**-16,16%¥%16) 98.23 0.27 0.53
DATAN2 POLAR(16**-16,16%%16) 98.79 0.25 0.50
COS LINEAR(-PI,PI) 98.29 0.25 0.51
COS LOG(2%*-18%PI,2%*18%PT) 98.96 0.23 0.50
DCOS LINEAR(-PI,PI) 96.43 0.25 0.53
DCOS LOG (2%%-50%PI,2**50%P1) 96.91 0.20 0.53
SIN LINEAR(-PI,PI) 98.06 0.25 0.51
SIN LOG(2%%-18%PI,2%*18%PT) 98.74 0.22 0.50
DSIN LINEAR(-PI,PI) 96.62 0.25 0.53
DSIN LOG(2%*-50%PI,2%*50%PI) 97.60 0.20 0.52
TAN LINEAR(-PI/2,PI/2) 96.89 0.25 0.55
TAN LOG (2%*-18%PI,2%*18*PI) 97.81 0.22 0.53
DTAN LINEAR(-PI/2,PI/2) 96.39 0.25 0.53
DTAN LOG (2%*-39%PI,2**39%PT) 97.56 0.22 0.52
COTAN LINEAR(-PI/2,PI/2) 96.99 0.25 0.54
COTAN LOG (2%*~-18%PI,2%*18%PI) 97.79 0.25 0.53
DCOTAN LINEAR(-PI/2,PI/2) 96.29 0.25 0.53
DCOTAN LOG (2%%-39%PI,2**39%PT) 96.31 0.25 0.53
EXP LINEAR(-100,100) 100.00 0.25 0.49
EXP LINEAR(-16,16) 100.00 0.25 0.50
DEXP LINEAR(-100,100) 99.86 0.25 0.49
DEXP LINEAR(-16,16) 99.85 0.25 0.50
ALOG LOG (16*%%-65,16*%*63) 100.00 0.25 0.50
DLOG LOG(16%%-65,16%*63) 96.72 0.25 0.52
ALOG10 LOG(16**-65, 16**63) 100.00 0.25 0.50
DLOG10 LOG(16%*-65, 16%¥%63) 97.07 0.25 0.52
SORT LOG(16*%*-65,16%%63) 100.00 0.25 0.50
DSQRT LOG(16%*-65, 16**63) 100.00 0.25 0.50
X**Y LINEAR(.1,10)*%*60.1 99.99 0.25 0.50
X¥*Y LOG(16%%-65,16%%63) ** 7 99.99 0.25 0.49
DX**Y LINEAR(.1,10)*%60.1 96.66 0.25 0.53
DX**Y LOG(16%%-65,16%%63) %% 7 96.58 0.25 0.53
CABS POLAR(16%%*-16,16%%16) 100.00 0.25 0.49
CDABS POLAR(16%¥*-16,16%*16) 100.00 0.25 0.49

& Floating-point number systems

We assume that the computer arithmetic is being carried out
in a given floating-point number system. Let b be the base, k
be the number of base-b digits in the fraction, and /, u be the
lower and upper limits of the exponent ¢ of 5. Then a
floating-point number X can be represented by s, ¢, a;, - - -,
a,, where s =+ /=< e < u, 0 =< g, < b, and the associated
value is

X=s-mb

where
k

Osm=Yab <l

i=1

A nonzero floating-point number is normalized if the leading
digit a, of the fraction is nonzero. The range of positive
normalized floating-point numbers X is ™' = X < b*.

In the IBM System/370 series of computers, b = 16; k = 6,
14, or 28 for the short-, long-, or extended-precision formats;
and / = —64, u = +63.

RAMESH C. AGARWAL ET AL.

& The ulp concept

Consider a positive normalized floating-point number X in
such a system. Then a unit in the last place of X is defined as
the difference between X and the next larger floating-point
number (or between X and 5" if X is the largest floating-
point number). In the System/370 representation, if

X =m-16°
where
/16 =m< 1,

then an ulp of X in that system is

ulp(X)=.0...01.16° = L 0-165

For example an ulp of .765432.16' is .000001-16' =
.100000- 16™*. The digits of the fraction are hexadecimal
digits (0, 1, ---,9, A, B, ..., F).
If x is a positive real number (of infinite precision) lying in
the range of floating-point numbers, then an ulp of x, from
the standpoint of the floating-point number system, is

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

DSIN YKT

4
g
i

Error (ulps)

Absolute value of argument

Yorktown DSIN. Plot of errors in the Yorktown DSIN subroutine
in ulps for evenly log-distributed random arguments in the interval
(2=, 2%0m).

10 DSIN KUKI

Absolute value of error (ulps)

Absolute value of argument

FORTRAN (Kuki) DSIN. Plot of errors in the FORTRAN DSIN
subroutine in ulps for evenly log-distributed random arguments in the
interval (279, 2507), Note that errors are given on a logarithmic
scale due to their large size.

§
§

defined as an ulp of the largest floating-point number X
which does not exceed x, i.e., where X is derived from x by
“chopping.”

It is convenient to define an ulp of a negative floating-
point or real number as the negative of an ulp of its absolute
value. An ulp of zero is undefined.

If we are given a computer program which defines a
floating-point-valued function Y = F(X) of a floating-point-
valued argument X, and which is intended to approximate a
given mathematical function y = f{x) (which cannot in
general be realized exactly) at floating-point arguments x =
X, then the absolute (i.e., not relative) signed error in F at a
given floating-point argument X is defined as error (F, f, X)
= F(X) — f{X) =Y — y = computed value minus true value.
It is convenient to express this error in terms of ulps, i.e.,

ulp error (F, f, X) = error (F, f, X)/ulp (Y, y).

Here ulp (7, y) is defined as the common value of ulp (Y)
and ulp (»), in the usual case when these values are equal.
However, in the rare cases when they are unequal, which is
when Y and y have different exponents, then ulp (Y, y) is
defined as the one of them which has the smaller absolute
value. For exampte, if y = .100000- 16" + ¢-ulp (y), where
0 <<, then ulp (y) = 16 "; and if ¥ = .FFFFFC, then
ulp(Y) = 16°%. Then ulp(Y, y) = 167, and ulp error

(F, [X) = 16e + 4, correctly indicating a poor
approximation, rather than ¢ + 4/16, which would
erroneously indicate a good approximation. A good
approximation, of course, is ¥ = .100000-16' = 1, for
which ulp (Y, y) = 167, ulp error (F, f, X) = e. For
brevity we write this quantity as e/u.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

16 E DSIN WANG

Absolute value of error (ulps)

Absolute value of argument

Wang’s DSIN. Plot of errors in Wang’s DSIN subroutine in ulps
for evenly log-distributed random arguments in the interval (2=,
25%), Note that errors are given on a logarithmic scale due to their
large size.

In the new programs, an attempt has been made to
minimize the maximum ulp errors. The results are
summarized below and in the section on accuracy statistics.

Our SQRT, DSQRT, and EXP functions satisfy | e/u| <
0.5; they have best-possible rounding. This is sometimes
called the “half-ulp” or “one-point” criterion.

RAMESH C. AGARWAL ET AL.

132

Error (ulps)

X**Y YKT

0.8

Argument

Yorktown X**Y. Plot of errors in the Yorktown single-precision
implicit X**Y subprogram in ulps for an evenly distributed random
argument X in the interval (.01, 10.) and Y = 60.1.

10 X**Y KUKI

Absolute value of error (ulps)

Argument

§ FORTRAN (Kuki) X**Y. Plot of errors in the FORTRAN single-
§ precision implicit X**Y subprogram in ulps for an evenly distributed
|
53

random argument X in the interval (.01, 10.) and Y = 60.1. Note that
errors are given on a logarithmic scale due to their large size.

Our CABS and CDABS functions satisfy | e/u| < 0.5 (this
can also be called a half-ulp criterion). They have best-
possible rounding, except that unavoidably there are cases
when | e/u| = 0.5, in which case it would be equally correct
to round downward or upward; we choose to round upward.
This is consistent with the System/370 definition of
rounding. An example in short precision is the following. Let
N=.4-16.°— 8. = 3FFFF8.16°, and let W= X+ iY = 3N
+ 4Ni = BFFFES-16° + FFFFEOQ-16°. Then z = abs (W)

RAMESH C. AGARWAL ET AL.

= 5N = .13FFFD8-16’ lies exactly midway between
13FFFD- 16" and .13FFFE- 16 . Either of those numbers
can be regarded as a rounding Z of the true value, and in
either case | e/u| = 0.5. One of them (the larger) is returned
by CABS, and similarly for CDABS.

This rounding ambiguity can also occur for x”; for an
example in short precision, 258.> = (.102000. 16’y =
.1060C08- 167, which lies exactly midway between .1060C0-
16" and .1060C1.16’. However, correct rounding is not
always achieved for x’. The rounding ambiguity cannot
occur for any other of our functions. (The only rational
solutions x, y of log,, x = y are for y a nonnegative integer.
The only algebraic solutions x, y of our remaining f(x) = y
are for x = 0 in sin x, cos x, tan x, ¢", and for y = 0 in their
inverse functions [13]. Except for EXP, correct rounding is
not always achieved for our other functions.

All of our functions are believed to satisfy | e/u| < 1.0;
equivalently, a computed function value 7Y, if not exactly
equal to the true value y, is one of the floating-point
numbers just above or just below y. We have called this the
“one-ulp” or “two-point” criterion. An effort has been made
to make the errors | e/u| substantially less than 1.0, and the
results can be judged from Table 1 and the ulp plots (Figs. 1,
4, and 7). Note that errors in | ¢/u| of up to 0.5 are an
unavoidable result of any rounding, and we have endeavored
to keep the actual errors as nearly within this bound as is
practical.

Additionally, the following desirable properties are
attained:

1. Special case values which should be exact floating-point
numbers are 50 in fact, e.g., EXP(0.) = 1., SQRT(.25) =
.5, 16.”° = 2. (This is a consequence of the one-ulp
criterion.)

2. The F(X) are strictly even or odd functions, i.e., F(—X)
= F(X) or F(—X) = —F(X), respectively, for every
floating-point number X, if the underlying function f{x)
is even or odd, like cosine or sine, respectively. Because of
the previous definition of an ulp of a negative number as
the negative of an ulp of its absolute value, ulp error
(F, £, X) = ulp error (F, f, —X) whenever fand F are
either even or odd. (That definition also makes the
interpretation of ulp plots of oscillatory functions easier
than if an ulp were always considered to be positive, in
which case there would be a near-mirroring of the regions
Y = 0 and Y = 0 onto each other.)

3. The functions are believed to be monotonic where
appropriate, although this is not guaranteed.

e Ulp plots
The “ulp plots” shown later in this paper are examples of the
output of a very useful tool which we developed on hearing
from Paul [14] of similar outputs produced by Moler [11].

A specified set of arguments, chosen at random or

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

linearly, based on a given distribution (e.g., linear or
logarithmic) over a given range, is supplied to two functions,
typically one which is to be tested and another which is to be
used as a reference (e.g., an extended-precision version). The
differences are computed in terms of ulps; they can be
plotted immediately on a high-resolution graphics terminal
and can also be plotted immediately on hard copy if desired.
The horizontal axis shows the range of arguments; the
vertical axis shows the error in ulps, plotted linearly if its
range is small, logarithmically if its range is large.

The ulp plots of our functions are rather featureless,
showing a random scattering of points, mostly within +0.5
ulp, because of the accuracy attained. But during
development the ulp plots were very revealing of specific
numerical difficulties, much more so than mere statistical
summaries would have been. Some of these revelations can
be seen in the plots of functions from the older libraries.

For example, the plot (Fig. 5) of DSIN from the VS
FORTRAN library versus QSIN shows, for one thing, the
loss of ulp precision for large arguments, starting not far
above x = 1, due to imperfect argument reduction. It also
shows, surprisingly, “spikes” of errors of up to 12 ulps (see
also Figs. 2, 3, and 6), even for very small arguments [15],
where the approximation sin x = x should be accurate to
well under 0.5 ulp. These errors resulted from a
multiplication of all arguments by 4/r during range
reduction, followed eventually by a polynomial evaluation
which in effect multiplied the reduced arguments by /4.
Whenever the fraction of a floating-point argument lies
between #/4 and 1, the first multiplication yields a fraction
between 1 and 4/7 and an exponent increased by 1. This
results in a “chopping” loss of nearly a digit of precision,
which is, of course, not restored by the second
multiplication. Both of these sources of errors have been
eliminated in our programs.

The ulp plots and statistics of our functions were made for
10000 or more random arguments, and show no errors as
large as one ulp. The value of 10000 was chosen because it
nicely exhibits the salient features of our functions. In testing
our functions, we ran sample sizes well into the tens of
millions. The single-precision functions of one argument
were nearly exhaustively tested. This is how we know that
the short EXP algorithm delivers the correctly rounded
result for all arguments. However, it was not feasible to test a
function for all long-precision arguments, nor for all pairs of
short-precision arguments (including complex arguments).
Our belief that it is possible to produce a library satisfying
the one-ulp criterion throughout has been buttressed by
analysis, by extra-dense ulp plots in some narrow critical
regions such as across boundaries of table intervals and
hexadecimal exponent boundaries, and by extensive
numerical testing, but it has not been proven in all cases.
Any observed violations will be regarded as program errors
and will be corrected.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

-
| X**Y WANG

Error (ulps)

-14 | 1 i 1 i 1 1 | i §

Argument

Wang’s X**Y. Plot of errors in Wang’s single-precision implicit-
X**Y subprogram in ulps for an evenly distributed random argument

H
|
| Xintheinterval (.01, 10.)and ¥ = 60.1.

The collection of accuracy statistics for each of the 28
functions, for samples of size 10000 over suitable
distributions of arguments, is described in the subsection
“Near-correct accuracy.” Table 1 shows the number of
correctly rounded arguments and the maximum ulp errors
observed. Tables 2 and 3 show the corresponding statistics
for the VFORTLIB and VALTLIB (Wang) routines. These
tables are described in detail in Section 4.

3. Programming strategy

o Introduction

In this section we describe the main concepts and
programming methodology that constitute the theory and
implementation of our new set of elementary function
programs.

Our original task was to produce bitwise-compatible
algorithms in both scalar and vector for the Model 3090;
that is, the vector and scalar versions should produce
identical results for all legal arguments. The divide
instruction on the 3090 is a relatively slow instruction
compared to multiply, add, and subtract instructions for the
vector and scalar. Therefore, almost all of our algorithms
avoid divide instructions. Previous scalar routines have not
handled unnormalized arguments acceptably. We decided to
handle unnormalized arguments in scalar in order to make
our functions robust. In the vector hardware, multiplication
by an unnormalized nonzero argument produces an
unnormalized-operand exception. The scalar hardware does
not have this exception. Therefore, we decided not to handle
unnormalized nonzero arguments in the vector elementary
functions. These arguments may produce unpredictable

RAMESH C. AGARWAL ET AL.

133

134

Table 2

Version 1 accuracy statistics: percent correctly rounded, average error, 99th percentile error bound.

FUNCTION DISTRIBUTION (RANGE) P EAVE E99% TRIALS
ACOS CIRC(O,PI) 63.34 0.44 1.26 10000
DACOS CIRC(O,PI) 42.26 0.63 1.47 10000
ASIN CIRC(-PI/2,PI/2) 68.97 0.38 0.98 10000
DASIN CIRC(-PI/2,PI/2) 56.68 0.46 1.13 10000
ATAN TAN(-PI/2,PI/2) 41,74 0.88 3.78 10000
DATAN TAN(-PI/2,PI/2) 38.82 0.69 2.03 10000
ATAN2 POLAR(16%%¥-16, 16%*16) 46.27 0.99 8.38 10000
DATAN2 POLAR(16*%-16, 16%%16) 45,29 0.77 4.55 10000
COS LINEAR(-PI,PI) 35.99 0.74 1.78 10000
COS LOG(2%%—18%PI,2%*18%PI) 46.10 0.60 1.66 10000
DCOS LINEAR(-PI,PI) 12.86 10.93 146.39 10000
DCOS LOG (2%*—50%PT,2%*50%PT) 33.87 .79E+14 .17E+16 10000
SIN LINEAR(-PI,PI) 36.17 0.75 1.83 10000
SIN LOG(2%%—18%PI,2%*18*pI) 27.08 1.04 10.19 10000
DSIN LINEAR(-PI,PI) 15.91 9.76 109.42 10000
DSIN LOG (2%%-50%*pPI,2%*50%pI) 3.87 .79E+14 _17E+16 10000
TAN LINEAR(-PI/2,PI/2) 37.64 0.84 5.33 10000
TAN LOG (2%%-18%PI,2%%18%pI) 35.37 0.98 7.81 9696
DTAN LINEAR(-PI/2,PI/2) 17.47 18.37 129.23 10000
DTAN LOG (2%*—-39%pPI,2%*39%pT) 14.67 .24E+12 .32E+13 10000
COTAN LINEAR(-PI/2,P1/2) 38.82 0.84 5.79 10000
COTAN LOG (2%*—18%PI,2%*18%pPI) 34.93 1.04 6.81 9709
DCOTAN LINEAR(-PI/2,PI/2) 19.65 24.25 163,46 10000
DCOTAN LOG (2%*—39%PI, 2%*30%PT) 10.53 .30E+12 .33E+13 10000
EXP LINEAR(-100,100) 98.43 0.25 0.51 10000
EXP LINEAR(-16,16) 97.86 0.25 0.52 10000
DEXP LINEAR(-100,100) 63.76 0.41 1.10 10000
DEXP LINEAR(-16,16) 64,27 0.40 1.05 10000
ALOG LOG(16%%-65, 16%%63) 74,94 0.34 0.99 10000
DLOG LOG (16%*-65, 16%*63) 57.06 0.50 1.47 10000
ALOG10 LOG(16%%-65, 16%%63) 67.80 0.57 4.75 10000
DLOG10 LOG(16*%*-65, 16%%63) 58.81 0.85 8.05 10000
SORT LOG(16%*-65, 16%%63) 97.21 0.25 0.54 10000
DSORT LOG (16*%*-65, 16%%63) 100.00 0.25 0.50 10000
X**y LINEAR(.1,10)*%*60.1 1.29 124.57 691.65 10000
XK**Y LOG(16%%-65, 16%*63) %% 7 3.35 37.14 194.40 10000
DX**Y LINEAR(.1,10)**60.1 0.61 154.86 874.08 10000
DX**Y LOG (16%%—65, 16%%G3) *% 7 2.20 53.99 282.56 10000
CABS POLAR (16%%-16, 16%%16) 37.41 0.77 2.12 10000
CDABS POLAR(16%%-16, 16*%16) 38.18 0.78 2.13 10000

results. All arguments with zero fraction are correctly
handled, regardless of whether the exponent is zero. Thus we
claim bitwise compatibility between the new scalar and
vector routines for all arguments except nonzero
unnormalized operands.

Under this requirement we wanted our functions to be as
accurate as and to execute faster than the current VS
FORTRAN product. The very stringent requirement of
bitwise compatibility restricted the speed of both the vector
and scalar algorithms. Our requirement was to weigh scalar
and vector algorithms equally in our attempt to meet the
above goals. Some remarks on the way we handled vector/
scalar trade-offs now follow. In our vector codes, only those
arguments are handled which would have been processed in
the main path(s) of the scalar code. All arguments which
require special processing are handled by the scalar code,
either by branching to the appropriate scalar function or by
duplicating some of the scalar code as part of the vector
function. For trigonometric functions, more than 90% of the
arguments between zero and «/2 are handled in the vector

RAMESH C. AGARWAL ET AL.

mode. For other functions, almost all of the arguments in a
certain distribution are handled in the vector mode. Some of
the elementary-function routines always produce correctly
rounded results. For these routines, different algorithms can
be used in the scalar and the vector mode, while preserving
the bitwise compatibility feature of the library. This fact was
used to redesign the vector algorithms for some of the
correctly rounded vector functions so that they could be
independently optimized for better performance on the
vector hardware.

In this section, we cover the following topics: Tuckerman
rounding (see [16(a), p.10] and [16(b), p. 14]), table-based
approach, near-correct accuracy, fast-track programming,
robustness, and error handling. Tuckerman rounding is a
simple multiplicative algebraic/numeric condition that
allows us to produce correctly rounded results for the square
root and CABS functions. Hull [17] has also described a
condition, but his condition requires higher-precision
arithmetic. Kahan [18] has also discovered a similar
condition; his result uses a divide instruction. Tuckerman’s

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Table 3 VALTLIB accuracy statistics (for 10 000 trials). percent correctly rounded, average error, 99th percentile error bound.

FUNCTION DISTRIBUTION (RANGE) P EAVE E99%
DCOS LINEAR(-PI,PI) 21.51 1.40 4.16
DCOS LOG(2**-50*PI,2**50%PTI)) 41.88 J46E+13 .16E+09
DSIN LINEAR(-PI,PI) 24.66 1.36 4.16
DSIN LOG(2%*-50%PI,2**50%PI) 8.57 . 73E+07 . 15E+09
DTAN LINEAR(-PI/2,PI/2) 36.68 1.02 7.57
DTAN LOG (2%*-39%PI, 2%¥*39%pT) 24.21 . 16E+05 . 17E+06

DCOTAN LINEAR(-PI/2,PI/2) 30.25 1.01 4.87
DCOTAN LOG (2*%*-39%PI,b 2%*39%PT) 19.43 17E+05 15E+06
EXP LINEAR(-100, 100} 98.43 0.25 0.5
EXP LINEAR(-16,16) 97.86 0.25 0.52
DEXP LINEAR(-100,100) 63.76 0.41 1.10
DEXP LINEAR(-16,16) 64.27 0.40 1.05
X**Y LINEAR(.1,10)**60.1 56.45 0.81 5.01
X*x*Y LOG(16**-65,16*%%63) **x 7 98.94 0.25 0.50
DX**Y LINEAR(.1,10)**60.1 27.27 1.45 6.82
DX**Y LOG(16%*-65,16%*63) ** 7 67.48 0.39 1.32

condition is of historic significance, as its use allowed us to
produce IBM’s first elementary function that delivered
correctly rounded results for all arguments.

The table-based approach follows naturally from a
fundamental idea: Let an elementary function be expressed
as the sum of some exact value and a small correction, cf.
Kuki and Ascoly [6], Fullerton [19]. We developed several
ways to find such an exact value. For example, we adopted a
strategy of sharing one large (about 256 entries) table over 14
routines (TAN, COT, ATAN, ATAN?2) in both short and
long, vector and scalar. (We did not vectorize short-precision
TAN and COT.) We originally coded SQRT and CABS
using this technique (eight routines sharing a table of size
192 entries of 12 bytes per entry). In our TAN/COT/ATAN/
ATAN?2 scalar/vector programs, we use a common table
where, for each table entry, an x, is chosen near the middle
of the table interval such that tan (x,) is an exact short word
and x, is stored as a double word followed by its short-word
continuation (hexadecimal digits 15-20). Actually, x, is a
transcendental number which we approximate to 20 hex
digits. In our approach, with the same amount of table
storage (16 bytes per table entry) we are able to get up to 20-
digit precision. The only disadvantage of this approach over
the next one is that it requires an extra addition (to account
for the continuation of x,).

We heard about another way, called the Accurate Tabie
Method, from the work of Gal [20]. Kahan has also
informed us that Miller [21] wrote about the extra-accurate
table idea in 1958. Gal’s idea helps in eliminating the need
to store the continuation (beyond the 14th digit) of the
function value. Typically, the last digits of x, (a double
word) are chosen so that typically hex digits 15~17 of f{x,)
are zero. Thus, with 16 bytes of storage per table entry,
approximately 17-digit precision can be obtained. This
method saves one floating-point addition over the alternative
approach above that develops an exact value. There is
another way to save arithmetic; for example, the table for

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

DEXP is an accurate table with a constant built into it so
that an extra floating-point add can be saved. For other
codes (DSIN/DCOS, DASIN/DACOS) we developed a new
concept of built-in rounding. Combining the use of this type
of “accurate table” with Gal’s method saves an extra
addition.

We usually get correctly rounded results by keeping the
correction term sufficiently small. When the correction term
is then added to the exact values a right shift occurs, usually
producing the correctly rounded result. We chose to make
this right shift at least two hexadecimal digits. This choice
produced correctly rounded results more than 95% of the
time.

The idea behind fast-track programming is to judiciously
choose a series of cheap tests which filter out difficult
arguments that rarely occur. These rare arguments require
extra computing; our approach is to do more computing
only when necessary. The normal arguments filter quickly
into the main path of the code where the instructions are few
so that the execution is fast.

Robustness and error handling are features that cost very
little. Error handling is a rare event; we presume that it will
not occur. Only when an error-producing argument is
detected by the code do we set up the complete subroutine
linkage necessary for a trace-back. Hence, most of the time
we pay only the cost of a minimal subroutine linkage. In the
text to follow, we discuss error handling as part of fast-track
programming,

The term robustness refers mainly to delivering correctly
rounded results for unnormalized arguments [22] and to
being precise at overflow and underflow boundaries. These
problems rarely occur in the FORTRAN environment.
Again, we have cheap or no-cost tests to detect
unnormalized operands. The benefit to the user is that he
knows he will never get garbage from the scalar elementary-
function routines; for all inputs in the domain of the

elementary function the result is correct within one ulp. 135

RAMESH C. AGARWAL ET AL.

136

o Tuckerman rounding

The previous square-root routines, SQRT and DSQRT,
usually return the correctly rounded square root, but not
always. The new routines always do, by the following means,
which we call Tuckerman rounding,

If x, y, y are positive floating-point numbers, such that y is
the (possibly unknown) nearest floating-point number to Vx,
and y is a “candidate” to be y, produced by some
approximation, then y = y if and only if

(y_+ 2 <Jx<(y+y)2

(equalities cannot occur), where y_ and y, are the floating-
point numbers just below and just above y. The terms in
these inequalities cannot be evaluated directly on the
computer, since Vx is irrational and unknown, and the other
terms of the inequality are not floating-point numbers of the
given precision. However, these inequalities can be shown to
be equivalent to

Yyory<x=y=x),,

where * denotes System/360/370 multiplication (which
truncates the result), so that the tests are easily carried out
without the need for extra precision. (Note the asymmetry:
one <, one <.) If the left inequality fails, y is too large; if the
right inequality fails, y is too small.

It is convenient to first use an approximation which is
known to give y in the range

Vx — 1.5 ulp < y< vVx + 0.5 ulp.
Then it is sufficient to test whether
X=y=*y,,

where y, = y + ulp (y). If the inequality holds, y = y;
otherwise, y = y,.

A modification of these tests is used to achieve correct
rounding in CABS and CDABS (absolute value of a complex
number). Here, however, in some cases the true function
value can lie exactly between two consecutive floating-point
numbers; in these cases the larger is chosen.

o Table-based approach
A central idea in obtaining high accuracy for our elementary
functions is the following: Let

efix) = EXACT (xy) + corr (x, X), (1)

where ef'stands for an elementary function, EXACT is some
machine number that represents ef{x,) exactly or to higher
precision, and corr is approximated by CORR, a small—
usually two orders of magnitude smaller—machine number
that is computed. The value x, is either nor a machine
number or some specially chosen machine number that
makes ef{(x,) especially precise, where x — X, is again about
two orders of magnitude smaller than x and x,. Suppose that

RAMESH C. AGARWAL ET AL.

[corr| < ﬁ | EXACT| .)

Then an ulp of ¢f(x) is at least 256 times an ulp of corr, and
several floating-point operations will, in worst case,
contribute no more than, say, 5/256-ulp error to the
computation of corr by CORR, a polynomial minimax
approximation to corr. Now | CORR — corr] < 5/256 ulp,
and, if desirable, a rounding can be added to CORR. The
final addition of the table value and the correction term
always introduces an error in the range zero to one ulp (if
both the terms are of the same sign) or —1/16 ulp to 15/16
ulp (if they are of opposite signs) because of the properties of
the IBM System/370 floating-point Add and Subtract
operations. This is the largest single source of error in our
computation. Moreover, this error is biased with an average
of 1/2 ulp (if the terms are of the same sign) or 7/16 ulp (if
they are of opposite signs). We compensate for this bias by
incorporating a compensatory term of 15/32 ulp (which is
the average of 1/2 ulp and 7/16 ulp) in CORR. This
imperfect compensation of bias adds 1/32 ulp to our overall
error. Thus the final floating addition, EXACT + CORR, is
made with absolute error <1/32 ulp, and hence ef{x) can be
computed with error no more than, say, 13/256 ulp. For our
elementary functions these facts vield the correctly rounded
¢f(x) most of the time, and with error less than one ulp for
all x. For some functions, such as DEXP, the relative signs
of the two terms are fixed, and for these functions we can
apply perfect compensation for the bias error. This results in
99.8% correctly rounded results for DEXP.

A consequence of (1), (2), and the fact that ef(x) is
differentiable is that the set x, of points needed to compute
ef(x) for arbitrary x is about size 256. The function CORR
approximating corr is a linear combination of polynomials
in the variable Ax = x — x,. The constants in the linear
combination are functions of x, x,, and Ax, and these can be
easily and cheaply represented in tables. An unexpected
benefit of this approach is that CORR can be computed
cheaply, mainly because the polynomials in Ax have low
degree. Thus the table-based approach simultaneously
produces a method to compute ef{x) both more accurately
and faster than the approach of using a single polynomial or
rational approximation.

e Near-correct accuracy

All the functions produce results which are strictly less than
one ulp away from the infinite-precision results. One
implication of this is that if the infinite-precision result is
machine-representable (i.e., it is a valid machine number), it
is produced by these functions. This is particularly important
for functions such as square root, absolute value of a
complex number, and the power function. For these
functions, the result is often an exact machine-representable
number, which our routines produce. Most elementary
function libraries do not guarantee that. As an example,

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

X**1.0 will always be X for our functions, while for some
other libraries the result could be many ulps away from X,
sometimes as much as hundreds of ulps away. Also, X**2.0
usually produces a correctly rounded value, while X*X
always produces the truncated value of X

In computing the elementary functions, one can always
obtain sufficient accuracy by doing arithmetic in higher
precision. On most IBM System/370 machines, except the
low-end machines, short-precision operations take about as
much time as long-precision operations. Therefore, we
decided to take advantage of this to obtain good accuracy for
short-precision routines. On all IBM System/370 machines,
extended-precision routines are considerably more
expensive. On the 3090 Vector Facility, they are not
supported. Therefore, we could not rely on extended-
precision operations to deliver the desired accuracy for the
long-precision routines. The tables were designed to deliver
the desired accuracy for the long-precision routines. In most
cases, the same tables were used to compute the short-
precision functions. Except for EXP, short-precision routines
were not independently designed.

Since short-precision routines use mostly long-precision
operations, the final rounding was easily and accurately
accomplished by the LRER (load-rounded short-precision
from long) instruction. This explains why most short-
precision routines have close to 100% correctly rounded
results. On the negative side, use of long-precision operations
slows down short-precision routines on the low-end
machines.

e Fast-track programming and ervor handling

One of the standard practices in assembly language
programming is to place at the beginning of the program a
header or “eye-catcher” identifying the program. This is
useful for trace-back in case of an error but slows down the
code, as an extra branch is required. For the scalar
elementary-function routines, where the total number of
instructions executed is small, this overhead becomes
significant. Since our routines are robust and do not produce
an unexpected error (such as an intermediate underflow or
overflow), we have eliminated the header, which speeds up
the execution for most of the arguments. In the rare case
where the argument or result is out of range, the registers are
appropriately modified to point to a correct header, so that
proper error messages and error trace-back information can
be given to the caller. This technique was used by
Scarborough [10] when he sped up the original IBM library
designed by Kuki.

In coding the scalar elementary-function routines, a great
deal of effort was spent in minimizing the number of general
registers used, as they need to be saved and restored, except
that by convention the registers RO and R1 need not be
saved and restored. Therefore, RO can always be used and
R1 can be used after it is no longer needed to fetch the

IBM). RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

arguments or for error traceback. Additional registers, if
needed, are saved and restored in a double-word-aligned
area. The registers are restored just before the final result is
computed. This facilitates use of the conditional branch
instructions to exit from the routine. In many situations, a
test is made and for certain conditions we exit from the
routine, or else we do more processing before exiting from
the routine,

Similarly, in coding the vector elementary functions, a
great deal of effort was spent in minimizing the number of
vector registers used, since they need to be saved and

restored if they are in use, as signaled by the calling program.

In coding these functions, we have optimized performance
for what we consider a reasonable distribution of the
arguments, although all arguments are properly handled.
These “most-likely” arguments are handled in the main path
of the routine with no branches or minimal branches taken.
The unusual arguments which require extra processing or
somewhat different processing are quickly filtered out and
processed by branching to different segments of the program.
The program flow can be described as a tree structure. The
very first test in the main path usually routes most of the
unusual arguments to some point of control. At that point,
further tests are done to properly classify and process the
argument. This minimizes the number of tests to be made in
the main path of the code, leading to an efficient
implementation for the most likely arguments.

As mentioned above, for some arguments extra processing
may be required. This extra processing may take the form of
some preprocessing and postprocessing, with essentially the
main path code in between. In this situation, after the
problem argument has been identified and preprocessed, we
save R14 (the return address register) and modify it to point
to a postprocessing label. Then we branch into the main
path, where after all the processing BR 14 automatically
branches to the postprocessing label. There, extra processing
is carried out, and R14 is restored to its original value for
exit from the routine. This procedure eliminates the need for
additional tests in the main path of the code.

The vector functions do not handle error reporting for the
arguments. The arguments which require error messages are
handled by the scalar code. In the vector code, some quick
checks are made for the possibility of error reporting, and in
that case, either all the arguments or some of the arguments
are processed by calling the corresponding scalar function.

The vector-mask-mode instructions are heavily used to do
conditional operations, which in the scalar code are
normally handled by branching. By doing a few mask-mode
operations we are able to combine many main paths of the
scalar code into one single vector code. This helps in
maintaining close to full vector lengths for all the operations.
Where appropniate, vector-store-compressed (VSTK/
VSTKE/VSTKD) instructions are used to separate the
arguments into two or more cases or to collect the

RAMESH C AGARWAL ET AL.

137

138

exceptional arguments. The separated arguments are
processed in either the scalar or the vector mode depending
on the specific situation, and the results are inserted into the
result vector by vector-load-expanded (VLY/VLYE/VLYD)
instructions.

Care is taken not to produce any intermediate underflows.
This problem can sometimes be avoided by masking out the
underflow mask bit in the program status word (PSW). For
the scalar code, where only one argument is processed in
each call, the extra cycles required to mask out the
underflow bit and to restore it on exit are not justified, and
so other coding precautions are taken. But in the vector
code, where many arguments are processed in a single call,
the extra cost of saving and restoring the underflow bit is
justified. This is done for some of the vector functions to
improve performance.

o Robustness

The new functions handle unnormalized arguments correctly
in scalar mode. For unnormalized arguments, a normalized
result is produced with an accuracy of one ulp (or 0.5 ulp, in
the case of perfect rounding). (For the functions with one-
ulp accuracy, in rare cases, this result may be one ulp away
from the result produced by the equivalent normalized
argument.) The previous library did not always handle
unnormalized arguments correctly. Often the results were
meaningless.

Another feature of the library is that the argument and
result boundaries are strictly observed. For example, for the
power function, if the result is within the range of machine-
representable numbers (i.e., it does not underflow or
overflow), it is always produced without any error messages.
In the previous VS FORTRAN library, for a large number of
machine-representable results close to underflow/overflow
boundaries, an underflow or overflow message was issued
and the result was not computed. This was true for many
functions. For all the new functions, if the exact result is
within the underflow and overflow range of the machine, it
is computed with one-ulp accuracy. Furthermore, in the
computing process, intermediate underflows and overflows
are strictly avoided. This has been achieved by appropriate
scaling, if the possibility of an underflow or overflow exists.
After the scaled result is computed, it is examined to see if
the final result is going to be within the machine-
representable range. The previous library produced
intermediate underflows for many functions.

4. Performance

o Speed
In this section we compare the speed and accuracy of the
new elementary functions to those in the present libraries
(VFORTLIB and VALTLIB).

Tables 4-7 present information on speed. Table 4 gives
the time per call (in microseconds) for the new functions,

RAMESH C. AGARWAL ET AL.

averaged over 10000 random arguments on the machines
indicated. These times were obtained by timing a
FORTRAN loop like

DO1J=1N
1 Z(J) = F(X(J))

compiled with VS FORTRAN 1.4.0 (with N = 10000) and
dividing the resulting time by V. The time listed is the
median of three trials (with different random arguments).
This procedure means that the times include loop and
subroutine-linkage overhead. To give the reader an
indication of the magnitude of this overhead we have
included “dummy” times, which are timings for functions F
which consist of an immediate return to the caller (a BR 14).
There are six of these, depending on whether F is a single- or
double-precision function of one or two real or one complex
argument. For some reason, in the DO-loops we used, the
FORTRAN compiler treats X(J)**Y(J) differently from
other functions of X(J) and Y(J); hence, the two-argument
dummy times only apply to (D)ATAN2. Timings for the
new functions depend on what distribution of arguments is
assumed. We have attempted to choose representative
distributions. The times will increase when scaling is
required to avoid intermediate underflow or overflow. For
the inverse trigonometric functions, we assume that the
result is uniformly distributed in the indicated range. The
logarithmic distribution means that the arguments are
chosen in the indicated interval in such a way that their
logarithms are uniformly distributed. The polar distribution
means that we choose a pair of arguments r cos 6, r sin 8 so
that r is logarithmically distributed in the indicated range
and # is uniformly distributed in (0, 27). For the power
function, X varies as indicated while Y is held constant. For
the trigonometric functions, the logarithmic distribution in
effect averages the speed on large arguments (which require
precise argument reduction) with the speed on small
arguments (which may take a special fast track through the
code). So that the interested reader may separate these
ranges, we have indicated below each of these times what
percentage of the total time is contributed by arguments in
the lower and upper halves of the logarithmic range,
respectively. This separation is not always possible for vector
routines, but in these cases it is roughly correct.

Table 5 lists the ratio of the VFORTLIB times to the new
function times (as given in Table 4). Since there are no
vector functions in VFORTLIB, Column 7 is the ratio of the
times for the scalar routines in VFORTLIB to the times for
the new vector routines. Table 6 similarly compares the
VALTLIB times to those of the new functions. We include
in Table 6 all the functions in VALTLIB.

Table 7 gives three sets of ratios. Column 1 is the ratio of
the times for the old library on the 3081 KX to the times for
the new scalar library on the 3090. Column 3 is the ratio of
the times for the old library on the 3081 KX to the times for

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Table 4 Kernel measurements in microseconds for new scalar elementary functions (VS FORTRAN Version 2) by model.

FUNCTION DISTRIBUTION (RANGE) 4331-2 4361-5 4341-2 4381-3 3081KX 3090-S 3090~V
EDUM 9.90 3.07 4.88 2.19 .85 .46
E2DUM 12.21 3.93 5.66 2.61 .96 .55
CDUM 10.58 3.17 5.18 2.43 .84 .47
DDUM 10.71 3.54 5.05 2.22 .85 .49
D2DUM 13.47 4.63 5.72 2.72 1.00 .56
CDDUM 11.41 3.74 5.12 2.53 .86 .50
ACOS CIRC(O0,PI) 179.62 33.28 33.23 12.57 4.56 2.06
DACOS CIRC(0,PI) 496.24 61.73 64.47 20.01 7.59 3.09
ASIN CIRC(-PI/2,PI/2) 174.28 30.72 34.59 13.05 4.50 2.4
DASIN CIRC(-PI/2,PI/2) 481.10 56.79 62.68 19.21 7.26 3.01
ATAN TAN(-PI/2,P1/2) 102.96 25.62 28.93 12.81 4.00 2.04 1.41
DATAN TAN(-PI1/2,PI1/2) 360.42 53.49 51.19 19.70 6.63 2.99 1.68
ATAN2 POLAR(16**-16,16**16) 152.27 39.41 41.78 18.79 5.83 2.94 1.76
DATAN2 POLAR(16**-16, 16%¥*16) 463,13 72.55 67.17 26.30 9.23 4.21 2.16
COS LINEAR(-PI,PI) 102.38 23.33 25.68 9.99 3.51 1.56 .82
COS LOG (2**-18*%PI,2**x18%PT) 161.84 39.94 34.13 12.37 4.48 2.07 .82
SUBRANGE PERCENTAGES (32,68) (30,70) (37,63) (38,62) (38,62) (38,62) (46,54)
DCOS LINEAR(-PI,PI) 346.94 42 .49. 46.32 14.77 5.83 2.23 1.15
DCOS LOG(2*%*-50%PI,2**50%PI) 377.66 53.85 49.98 16.18 6.20 2.53 2.02
SUBRANGE PERCENTAGES (29,71) (28,72) (31,69) (32,68) (33,67) (34,66) (25,75)
SIN LINEAR(-PI,PI) 105.72 24 .13 27.08 12.66 3.61 1.73 .86
SIN LOG (2**-18#%PI,2%*18%PI) 150.54 36.88 32.14 11.90 4,17 1.97 1.28
SUBRANGE PERCENTAGES (24,76) (22,78) (32,68) (31,69) (34,66) (35,65) (66,34)
DSIN LINEAR({(-PI,PI) 338.78 40.95 46.18 14.26 5.61 2.28 1.09
DSIN LOG(2*%*-50%PI,2**50%PTI) 372.68 59.26 51.10 16.99 6.26 2.60 2.71
SUBRANGE PERCENTAGES (28,72) (21,79) (30,70) (30,70) (32,68) (32,68) (43,57)
TAN LINEAR(-PI/2,P1/2) 143.20 33.M11 34.57 14.05 4.75 2.28
TAN LOG(2%¥*-18%PI, 2**18%P]) 176.30 32.08 36.64 13.97 4.97 2.27
SUBRANGE PERCENTAGES (28,72) (33,67) (36,64) (38,62) (37,63) (38,62)
DTAN LINEAR(-PI/2,PI/2) 442 .53 65.01 56.57 21.02 7.70 3.30 2.29
DTAN LOG(2#%*%-39%PI,2*%*39%P]) 481.85 86.56 62.72 23.68 8.07 3.78 3.39
SUBRANGE PERCENTAGES (25,75) (20,80) (28,72) (27,73) (31,69) (29,71} (36,64)
COTAN LINEAR(-PI/2,PI/2) 142.92 33.18 34.29 14.49 4.72 2.28
COTAN LOG (2%%-18%PI,62%*18%PI) 197.97 38.27 39.51 15.51 5.37 2.55
SUBRANGE PERCENTAGES (36,64) (44,56) (40,60) (45,55) (42,58) (44,56)
DCOTAN LINEAR(-PI/2,PI/2) 442 .98 64.96 56.41 21.36 7.68 3.27 2.28
DCOTAN LOG (2%%-39%PI, 2%*39%PT) 620.00 104.14 76.84 28.95 9.62 4.49 4.11
SUBRANGE PERCENTAGES (42,58) (33,67) (41,59) (40,60) (43,57) (40,60) (47,53)
EXP LINEAR(-100,100) 227.40 20.35 32.99 8.56 3.51 1.74 .62
EXP LINEAR(-16,16) 254,82 39.14 37.46 10.25 3.85 1.97 .62
DEXP LINEAR(-100,100) 445,59 76.55 65.91 21.68 7.30 3.04 .89
DEXP LINEAR(-16,16) 445,43 76.55 65.73: 21.67 7.30 3.03 .88
ALOG LOG(16%*-65, 16*%63) 232.36 48.86 37.84 13.47 4.40 2.01 .74
DLOG LOG(16%*-65, 16%*63) 431.27 74.66 63.06 20.88 7.07 3.05 .94
ALOG10 LOG(16**-65,16%*63) 284 .06 53.23 45 .44 15.39 5.28 2.46 .77
DLOG10 LOG(16**-65, 16**63) 594.90 105.90 80.92 25.23 9.16 3.56 1.14
SORT LOG(16*%-65, 16%*%63) 153.86 25.65 34.83 13.18 4.40 2.15 .68
DSQRT LOG(16%*-65, 16**63) 279.65 52.75 46,95 19.94 6.46 3.21 .94
X**Y LINEAR(.1,10)%**60 481.57 81.91 73.37 25.44 8.62 3.69 1.26
X**Y LOG(16**-65, 16%*%63) *% 7 480.91 81.93 73.54 25.69 8.63 3.69 1.26
DX**Y LINEAR(.1,10)**60 1032.14 125.99 128.40 41.89 15.38 5.76 2.18
DX**Y LOG(10%*-65, 16%%63) ** 7 1030.97 125.94 128.72 41.62 15.39 5.75 2.18
CABS POLAR(16**-16, 16*%*16) 233.07 33.96 46.76 17.40 5.97 2.66 .92
CDABS POLAR(16**-16, 16**16) 639.55 80.07 86.04 31.49 10.78 4.64 1.81
the new vector library on the 3090 (with Vector Facility). page boundary, the speed of execution of the subroutine will
For full vector lengths, a user will get this gain when he be substantially decreased. Also, the functions timed are not
moves from the 308 1K X to the 3090 Vector Facility. necessarily the final versions, as changes are being made. For
Column 2 is the ratio of the times of the new scalar library these reasons the reader should interpret Tables 4-7 as
to the times of the new vector library on the 3090. giving a general indication rather than a precise
Generating precise times is difficult, since seemingly measurement of what performance (in terms of speed) users

inconsequential changes in the timing procedure may have a may expect from the new library.

noticeable effect on the measured times. For example, on the

3081KX the performance of the STM and LM instructions e Accuracy

is severely degraded near page boundaries. This means that Tables 1-3 give accuracy figures for the new library,

in the rare event that the save area of a subroutine is near a VFORTLIB, and VALTLIB, respectively. For each function 139

RAMESH C. AGARWAL ET AL.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

140

Table 5 Ratios of VS FORTRAN Version | library measurements to Version 2 counterparts.

FUNCTION DISTRIBUTION (RANGE) 4331-2 4361-5 4341-2 4381-3 3081KX 3090-S 3090-v
ACOS CIRC(0,PI) 1.16 1.86 1.89 2.53 2.13 2.32
DACOS CIRC(O,PI) 1.37 2.7 1.64 2.7 2.07 2.57
ASIN CIRC(-PI/2,PI/2) 1.20 2.02 1.79 2.39 2.16 2.26
DASIN CIRC(-PI1/2,P1/2) 1.41 2.94 1.67 2.80 2.17 2.63
ATAN TAN(-PI/2,PI1/2) 1.54 1.61 1.67 1.67 1.72 1.59 2.30
DATAN TAN(-PI/2,PI/2) 1.59 2.25 1.59 1.96 1.74 1.87 3.33
ATAN2 POLAR(16**-16,16%*16) 1.28 1.32 1.43 1.48 1.54 1.44 2.40
DATAN2 POLAR(16%*-16,16%*16) 1.42 1.97 1.44 1.78 1.55 1.65 3.22
COS LINEAR(-PI,PI) 1.63 1.25 1.57 1.43 1.42 1.42 2.71
COS LOG(2**-18*pPI,2**18*PI) .98 .69 1.10 1.06 1.04 1.01 2.55
DCOS LINEAR(-PI,PI) 1.55 1.58 1.45 1.51 1.38 1.48 2.86
DCOS LOG(2**-50*pI,2**50*PI) 1.44 1.29 1.27 1.38 1.25 1.28 1.61
SIN LINEAR(-PI,PI) 1.58 1.20 1.49 1.1 1.37 1.27 2.55
SIN LOG(2%*-18#%PI,2*%*18%PI) 1.10 .76 1.21 1.14 1.14 1.08 1.66
DSIN LINEAR(-PI,PI) 1.59 1.64 1.46 1.57 1.44 1.44 3.02
DSIN LOG(2*#*-50%PI,2**50*PI) 1.44 1.15 1.24 1.28 1.22 1.23 1.18
TAN LINEAR(-PI/2,PI1/2) 1.41 1.23 1.46 1.44 1.48 1.43
TAN LOG (2%%-18%PI, 2%*18*P1) 1.28 1.44 1.56 1.66 1.63 1.72
DTAN LINEAR({-P1/2,PI/2) 1.28 1.30 1.36 1.42 1.33 1.38 1.99
DTAN LOG (2%*~-39%pI,6 2**30%pPI) 1.17 .97 1.23 1.28 1.26 1.20 1.34
COTAN LINEAR(-PI/2,P1/2) 1.44 1.25 1.52 1.46 1.54 1.47
COTAN LOG(2%*-18*%pPI,2%*18%PI) 1.17 1.25 1.50 1.56 1.57 1.60
DCOTAN LINEAR(-PI/2,PI/2) 1.29 1.32 1.39 1.46 1.36 1.42 2.03
DCOTAN LOG (2%*-39%PI, 2%*39%PI) .92 .83 1.03 1.09 1.09 1.05 1.14
EXP LINEAR(-100,100) .75 1.81 1.32 2.42 1.90 1.84 5.18
EXP LINEAR(-16,16) .65 .92 1.15 1.99 1.70 1.61 5.11
DEXP LINEAR(-100,100) 1.18 1.08 1.16 1.12 1.19 1.13 3.85
DEXP LINEAR(-16,16) 1.18 1.07 1.16 1.10 1.17 1.12 3.84
ALOG LOG(16**-65, 16%%63) .74 .91 1.24 1.44 1.43 1.49 4.04
DLOG LOG(16**-65, 16*%*63) 1.35 1.57 1.18 1.45 1.37 1.46 4.73
ALOG10 LOG(16**-65,16%*63) .65 .86 .1 1.33 1.24 1.24 3.96
DLOG10 LOG(16**-65,16*%63) 1.05 1.13 .97 1.21 1.10 1.28 4.00
SQRT LOG(16**-65,16%*%63) 70 1.34 .96 1.42 1.22 1.28 4.04
DSQRT LOG(16**-65, 16*%63) .96 1.46 1.08 1.38 1.21 1.27 4.33
X**Y LINEAR(.1,10)**60 .72 .96 1.20 1.53 1.44 1.56 4.58
X**Y LOG(16**-65,16*%*63) **_7 .72 .96 1.20 1.51 1.43 1.57 4.60
DX**Y LINEAR(.1,10)**60 1.12 1.59 1.17 1.25 1.17 1.29 3.40
DX**Y LOG(16*%-65,16%%63) %% 7 1.1 1.57 1.16 1.27 1.16 1.29 3.39
CABS POLAR(16**-16,16**16) .92 1.85 1.32 1.84 1.65 1.87 5.40
CDABS POLAR(16**-16,16%%16) .79 1.55 .97 1.34 1.20 1.42 3.64

10000 random arguments were generated according to the
indicated distributions as defined above. The first column
gives the percentage of arguments for which the function
returns the correctly rounded result. The second column
gives the average absolute error in ulps. Note that a perfect
routine will have an average absolute error of 0.25 ulp if the
residual errors are evenly distributed between —0.5 and 0.5
ulp. The third column gives the value of the 100th largest
absolute error in ulps. (Note that we would expect the
function to return a value in error by less than the amount
in the third column 99% of the time.) For all columns we
assume that the exact value is returned by the function of
next higher precision. The tan and cotan functions in
VFORTLIB and VALTLIB give an error return when close
to a singularity (while ours compute a result). Cases where
this occurs have been omitted in computing Columns 1-3
for these functions. It should be noted that although the
VFORTLIB (and to a lesser extent the VALTLIB) functions
appear to have very poor accuracy for the double-precision
trigonometric functions on large arguments, a one-ulp error

" RAMESH C. AGARWAL ET AL,

(even a rounding error) in a large argument produced by a
user can cause a propagated error even in the exact result
which is comparable to that generated by the corresponding
VFORTLIB function.

Again, these tables should be taken as a general indication
rather than a precise measurement of what performance (in
terms of accuracy) the user can expect from the new library.

e Ulp plots

Figures 1-9 give ulp plots for three functions: DTAN in the
range — «/2 to =/2 (Figs. 1-3), DSIN log distribution in the
range 2~ "r to 2°°x (Figs. 4-6), and the short-precision
X**Y, with Y = 60.1 and X linearly distributed in the range
0.1 to 10.0 (Figs. 7-9). The plots are given for all three
libraries discussed in this paper: the new VS FORTRAN
library (Figs. 1, 4, and 7), the old VS FORTRAN library
(Figs. 2, 5, and 8), and VALTLIB or the Wang library (Figs.
3, 6, and 9). These are scatter plots with randomly
distributed arguments along the x-axis and the
corresponding ulp error along the y-axis. Note that when the

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Table 6 Ratios of VALTLIB library measurements to Version 2 counterparts.

FUNCTION DISTRIBUTION (RANGE) 4331-2 4361-5 4341-2 4381-3 3081KX 3090-s 3090-v
DCOS LINEAR(-PI,PI) 2.09 2.55 2.01 2.30 1.96 1.48 2.88
DCOS LOG (2**-50%PpI, 2*%*50*PT) 2.04 2.16 1.84 2.17 1.87 1.29 1.61
DSIN LINEAR(-PI,PI) 2.15 2.65 2.03 2.43 2.07 1.44 3.02
DSIN LOG (2**-50%PI,2*%*50%PT) 2.05 1.93 1.80 2.09 1.85 1.23 1.18
DTAN LINEAR(-PI/2,P1/2) 1.7 2.00 1.81 2.04 1.79 1.38 1.99
DTAN LOG (2%*-39*%PI , 2%*39%PT) 1.64 1.55 1.68 1.89 1.74 1.20 1.34

DCOTAN LINEAR(-PI/2,PI/2) 1.72 2.02 1.83 2.08 1.80 1.42 2.03
DCOTAN LOG (2%*-39*PI 2%%39%PI) 1.29 1.31 1.40 1.57 1.49 1.04 1.14
EXP LINEAR(-100,100) .81 2.09 1.39 2.62 1.93 1.84 5.18
EXP LINEAR(-16,16) .72 1.09 1.25 2.25 1.77 1.61 5.1
DEXP LINEAR(-100,100) 1.16 1.15 1.18 1.24 1.28 1.13 3.84
DEXP LINEAR(-16,16) 1.76 1.16 1.20 1.28 1.29 1.12 3.84
X*¥*Y LINEAR(.1,10)**60 .75 1.51 1.40 1.99 1.76 1.57 4.59
X*¥*Y LOG(16*%*-65,16%*63) ** 7 .75 1.35 1.47 2.01 1.76 1.57 4.60
DX**Y LINEAR(.1,10)**60 1.27 1.64 1.32 1.58 1.49 1.67 4.4
DX**Y LOG(16*%*-65, 16%*63) ¥* 7 1.26 1.63 1.32 1.58 1.49 1.67 4.42

ulp error is large, it is plotted on the log scale (Figs. 2, 5, 6,
and 8). The colored line represents 0.5 ulp error. For the
hnear ulp scale, all the points within the two colored lines
represent correct rounding. For the logarithmic ulp scale,
absolute value of the ulp error is plotted, and therefore all
points below the colored line represent correct rounding.

The plots for the new library are essentially featureless, as
most of the arguments are correctly rounded. The only
noteworthy feature is in Fig. 4, where for small arguments
the ulp error is essentially zero. For these arguments, sin (x)
= x is a very good approximation, resulting in almost zero
ulp errors. Although these plots look featureless on the
present scale, they will show many features and peculiarities
if magnified by a factor of 256 along the y-axis with
appropriate magnification along the x-axis to show various
table intervals.

The old VS FORTRAN library shows large errors due to
argument reduction, as indicated in Fig. 2, near +7/2. As the
argument approaches a multiple of =/2, the ulp error keeps
increasing. The argument reduction error is amplified in Fig.
5, where we see a definite pattern. The staircase pattern is
caused by the hexadecimal arithmetic, and the steps are a
factor of 16 apart in both directions. The points above the
staircase represent arguments near multiples of #. Another
interesting feature of Fig. 5 is the spikes for small arguments,
again at intervals of a factor of 16. These spikes are
explained in the subsection on ulp plots in Section 2.

Next, we examine the equivalent plots for VALTLIB. In
this library the argument reduction is done more accurately.
But, as also in the old VS FORTRAN library, even for those
arguments where the argument reduction is not needed, we
find errors of up to 16 ulps, for DTAN in Fig. 3. The
increased accuracy in argument reduction is more evident in
Fig. 6, where the staircase phenomenon is delayed to much
larger arguments. This indicates that more digits of = are
used in the argument reduction. Even for this library, if

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

DSIN or DTAN is examined for arguments very close to «,
very large ulp errors would be observed. The rest of the
features of Fig. 6, including the spikes for small arguments,
are very similar to those of Fig. 5.

In the power function, when y log (x) is large, it is very
important to calculate log (x) and y log (x) to a higher
precision, to ensure good accuracy in the final result. This
apparently was not the case with the old VS FORTRAN
library, as indicated by Fig. 8. Figure 9 shows that this
problem was considerably reduced in VALTLIB. Even for
VALTLIB, experiments with very large exponents revealed
errors of up to 100 ulps in short precision and several
hundred ulps in long precision. The plot of Fig. 8 shows
discontinuities very typical of hexadecimal arithmetic, when
the result crosses to a new exponent. The new short-
precision power function (Fig. 7) looks perfect, although it is
not.

5. Conclusions
We have presented a description of a new practical theory
for producing very accurate high-performance scalar and
vector elementary functions for System/370 IBM machines.
Our overall approach is to use tables in which we represent
each function as an exact quantity plus a small correction.
Although this idea is not new, we have shown, by a number
of novel methods, that such an approach can be made
extremely accurate and very fast. In contrast, the previous
approach of using rational functions as a minimax
approximation is not as accurate nor as fast. However, this
older approach was developed when preservation of
computer storage was important and the cost of a divide
instruction compared to that of a multiply instruction was
not large.

The development of the table approach followed rather
naturally from the new requirement to produce vector
algorithms. The requirement of producing bitwise-

141

RAMESH C. AGARWAL ET AL.

142

Table 7 Cross-system comparisons. Column 1: VS FORTRAN Version 1 scalar times on 3081 versus Version 2 scalar on 3090.
Column 2: VS FORTRAN Version 2 scalar times on 3090 versus Version 2 vector on 3090. Column 3: VS FORTRAN Version | scalar

times on 3081 versus Version 2 vector on 3090.

FUNCTION DISTRIBUTION (RANGE) 3081K 30908 3081K
30908 3090V 3090V
EDUM 1.83
E2DUM 1.75
CDUM 1.79
DDUM 1.76
D2DUM 1.77
CDDUM 1.72
ACOS CIRC(O0,PI) 4.72
DACOS CIRC(0,PI) 5.09
ASIN CIRC{-PI/2,PI1/2) 4.54
DASIN CIRC(-P1/2,P1/2} 5.23
ATAN TAN(-PI/2,P1/2) 3.38 1.45 4.89
DATAN TAN(-PI/2,PI/2) 3.87 1.78 6.88
ATAN2 POLAR(16%*-16,16%%16) 3.05 1.67 5.10
DATAN2 POLAR(16**-16,16%%16) 3.40 1.95 6.62
COS LINEAR(-PI,PI) 3.19 1.90 6.07
COS LOG(2%*-18*PI,2%*18%PI) 2.24 2.52 5.66
DCOS LINEAR(-PI,PI) 3.62 1.94 7.02
DCOS LOG(2**-50*PI,2**50%pPI) 3.06 1.25 3.83
SIN LINEAR(-PI,PI) 2.86 2.01 5.74
SIN LOG(2**-18*pPI,2%*18*%PI) 2.41 1.54 3.7
DSIN LINEAR(-PI,PI) 3.54 2.09 7.40
DSIN LOG{2**-50%PI 6 2**50%PI) 2.94 .96 2.82
TAN LINEAR(-PI/2,P1/2) 3.09
TAN LOG (2*%*-18%PI,2**18%pPI) 3.58
DTAN LINEAR(-PI1/2,PI/2) 3.10 1.44 4.46
DTAN LOG (2*%*-39%PI 2%*39%pI) 2.68 1.12 2.99
COTAN LINEAR(-PI/2,P1/2) 3.18
COTAN LOG (2%*-18%PI,2%*18%PI) 3.30
DCOTAN LINEAR(-PI/2,P1/2) 3.20 1.43 4.59
DCOTAN LOG (2%%-39%PI,2%*39%PJ) 2.33 1.09 2.54
EXP LINEAR(-100,100) 3.83 2.81 10.76
EXP LINEAR(-16,16) 3.32 3.18 10.56
DEXP LINEAR(-100,100) 2.86 3.42 9.75
DEXP LINEAR(-16,16) 2.82 3.44 9.72
ALOG LOG(16**-65,16%*63) 3.12 2.72 8.47
DLOG LOG(16%*-65,16%%*63) 3.18 3.24 10.31
ALOG10 LOG({16**-65,16**63) 2.67 3.19 8.52
DLOG10 LOG(16**-65,16**%63) 2.83 3.12 8.82
SQRT LOG(16**-65,16%*63) 2.50 3.16 7.91
DSQRT LOG(16**-65, 16**63) 2.43 3.41 8.31
X**Y LINEAR(.1,10)**60 3.36 2.93 9.83
X*¥*Y LOG(16%*~65, 16¥%63) *x .7 3.35 2.93 9.80
DX**Y LINEAR(.1,10)*#*60 3.1 2.64 8.22
DX**Y LOG(16*%~65, 16%*%63) **_7 3.10 2.64 8.17
CABS POLAR(16**-16,16**16) 3.70 2.89 10.71
CDABS POLAR(16**-16,16%%16) 2.78 2.56 7.13

compatible scalar algorithms that also performed well came
about when we achieved the capability of viewing difficult
and or special arguments as rare cases so that the main code
stream had short paths with almost full vector lengths. These
special situations are quickly detected by very inexpensive
tests and handled in the scalar mode. At times we modified
algorithms slightly to achieve better performance on the
vector machine while maintaining the scalar compatibility;
this was necessary because there is no vector counterpart for
many scalar instructions. The relative timing of various
instructions in vector and scalar mode is quite different,
which leads to changes on a vector implementation. Some of
the tables are somewhat expanded for the vector version to
achieve better performance. We have exploited the fast
vector multiply-add instruction wherever possible, especially

RAMESH C. AGARWAL ET AL.

in polynomial evaluations. In the vector mode, it is cheaper
(on a per-element basis) to mask off underflow. This has
been done for some functions to improve performance.

Acknowledgments

The authors have received help, advice, and support from
many people. Throughout the project, S. Winograd has
remained keenly interested and supportive and, in the early
phase, contributed some detailed algorithms. At the outset,
C. Micchelli, T. Rivlin, and R. Willoughby worked on the
project; they offered us valuable early advice and assistance.
Throughout the project we have profited from discussions
with W, Cody, W. Kahan, A. Karp, G. Paul, and F. Ris.
This is also true of C. Moler, who worked with IBM Palo
Alto and to whom we are indebted for the ulp plot concept.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

More recently, J. Cullum has worked closely with us in the
transfer and description of our work. Initially

XM?7 (System/360 and System/370) 5711-XM2 (IBM 1130 and
1800); available through IBM branch offices.

A 13. A. Baker, Transcendental Number Theory, Cambridge
D. Coppersmith read parts of the actual code and made University Press, Cambridge, England, 1975, p. 6.
some suggestions to improve it. D. Wells of Kingston helped ~ 14. G. Paul, IBM Research Division, Yorktown Heights, NY,
design the vector interface and is responsible for the error- private communication, October 1982. :
& L D . 15. F. Ris, IBM Research Division, Yorktown Heights, NY, private
handling interfaces for the scalar and vector routines. We are communication, October 1982.
also grateful to the many people in Kingston, Santa Teresa, 16. Elementary Math Library, Programming RPQ P81005 Program
Endicott. Haif: d Bobli ho h Ked h No. 5799-BTB Program Reference and Operations Manual: a)
ndico 1, _a1 a, and Boblingen w 0 have worked on or. ave First Edition (Release 1, EML1), January 1984, ST40-2230-00
responsibility for the programming of elementary functions (formerly SH20-2230-00); b) Second Edition (Release 2, EML2),
in IBM. From Kingston: J. Ruggiero, W. Heising, J. Ascoly, August 1984, SH20-2230-1. Both are available through IBM
and A. Shannon; from Santa Teresa: J. Herman branch offices. :
: K s A EMLI contained eight scalar programs, for short- and long-
A. Auyeung, R. Moyer, and J. Ehrman (who informed us of precision SQRT, EXP, LOG, LOG10; EML2 contains the 28
the early history of the FORTRAN intrinsic functions); from anlar JDrograms described in this paper. /;11 l*;; S v of
: . escribed in this paper are contained 1n the iprary o
Endicott: D. Wehrly (who set the one-ulp standard and VS FORTRAN, Version 2.
released the IBM products EMLI and EML2 [16]), 17. T. E. Hull and A. Abrham, “Properly Rounded Variable
F. Kozuh, T. Spillman, W. Perry, R. Headrick, and Precision Square Root,” ACM Trans. Math. Software 11, No. 3,
. e . . 229-237 (September 1985).
D. Jones; from Haifa: A. Hauber, J. Raviv, V. Amdurski, 18. W. Kahan, “Software x for the Proposed IEEE Standard,”
and S. Gal (the last two of whom told us about Gal’s extra Computer Science Department, University of California,
accurate-table method); from Boblingen: H. Bleher, . ?;ﬂéelﬁ% August 1980; unpublished W";kl; -
: 19. . Fullerton, private communication, February .
D. Unkauf, a.nd l.E..Lange..So_me _Of the en.gmeers of the 3090 20. S. Gal, “Computing Elementary Functions: A New Approach
were helpful in giving us timing information: R. Stanton, for Achieving High Accuracy and Good Performance,”
A. Vesper, L. Garcia, and S. Tucker. W. Buchholz was presented at the International Scientific Symposium of IBM
. . . X Germany, March 12-14, 1985, Bad Neuenahr, Germany;
helpf.ul in describing the. vector architecture; A. Padegs and proceedings 1o appear.
D. Gibson were supportive of our overall approach. 21, J. C. P. Miller, “Lecture Notes on Numerical Analysis,”
E. Heeren and A. Jaffe, summer students at IBM Research, Cambridge University, Cambridge, England, 1958.
22. The vector routines produce unpredictable results for

helped us analyze and exhaustively test our set of elementary
functions.

References and notes

1. In this paper we use the term subroutine interchangeably with
the correct term FORTRAN intrinsic function.

2. W. J. Cody, “Software for the Elementary Functions,”
Mathematical Software, J. Rice, Ed., Academic Press, Inc., New
York, 1971, pp. 171-186.

unnormalized nonzero arguments.

Received November 5, 1985; accepted for publication
December 2, 1985

Ramesh C. Agarwal [BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Agarwal received his
B.Tech. degree (with honors) from the Indian Institute of
Technology (IIT), Bombay, India, and the M.S. and Ph.D. degrees
from Rice University, Houston, Texas, all in electrical engineering,
in 1968, 1970, and 1974, respectively. During 1971-72, he was an
Associate Lecturer at the School of Radar Studies, IIT Delhi, India;
from 1974 to 1977 he was with the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York. He spent the period
1977-1981 as a Principal Scientific Officer at the Centre for Applied
Research in Electronics at IIT Delhi, India, and returned to IBM in
1982. His research interests have included network synthesis,
information theory and coding, number theoretic transforms, fast
algorithms for computing convolution and DFT, application of
digital signal processing to structure refinement of large biological
molecules using X-ray diffraction data, sonar signal processing,
architecture for special-purpose signal processors, digital DTMF/MF
receivers, filter structures, analysis of Kennedy assassination tapes,
computation of elementary functions, and vectorization for
engineering/scientific computations. Dr. Agarwal received the 1974
Acoustics, Speech, and Signal Processing Senior Award from the
Institute of Electrical and Electronics Engineers for papers on
number theoretic transforms, an IBM Outstanding Contribution
Award in 1979 for work on crystallographic refinement of biological
molecules, an IBM Outstanding Technical Achievement Award in
1984 for elementary functions work, and an IBM Outstanding
Innovation Award in 1985 for his work in vectorizing the FFT
algorithm.

3. W. J. Cody and W. Waite, Software Manual for the Elementary
Functions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

4. H. Kuki, “Mathematical Function Subprograms for Basic
System Libraries—Objectives, Constraints, and Trade-Offs,”
Mathematical Software, J. Rice, Ed., Academic Press, Inc., New
York, 1971, pp. 187-199.

5. W. J. Cody, “Software for the Elementary Functions,” presented
at the SIAM National Conference, Seattle, WA, July 1984,

6. H. Kuki and J. Ascoly, “FORTRAN Extended-Precision
Library,” IBM Syst. J. 10, 39-61 (1971).

7.). Y. Wang, “On the Improvement of Some Mathematical
Subroutines in the IBM S/360 FORTRAN IV Libraries,”
SHARE-54, Anaheim, CA, March 3, 1980, Vol. 1, pp. 75-77.

8. J. Y. Wang and J. Boyer, “A Study of the Mathematical
Routines in the IBM System/360 FORTRAN 1V and
FORTRAN IV (Mod 11} Libraries,” AMD-TM 304, Applied
Mathematics Division, Argonne National Laboratory, January
1978.

9. J. Y. Wang, “The Evaluation of Periodic Functions with Large
Input Arguments,” ACM/SIGNUM Newsletter 13, No. 4, 7-9
(1978).

10. Randolph G. Scarborough and Harwood G. Kolsky, “Improved
Optimization of FORTRAN Object Programs,” IBM J. Res.
Develop. 24, No. 6, 660-676 (1980).

11. C. Moler, “Mathematical Software for Vector Computers,”
presented at the SIAM Conference on Parallel Processing for
Scientific Computing, Norfolk, VA, November 10-11, 1983.

12. Subroutine Library—Mathematics, IBM Program Product 5736- 143

RAMESH C. AGARWAL ET AL.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

144

James W. Cooley /BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Cooley received his B.A.
from Manhattan College, New York City, in 1949 and his M.A. and
Ph.D. in applied mathematics from Columbia University, New
York, in 1951 and 1961, respectively. He was a programmer on
John von Neumann’s electronic computer at the Institute for
Advanced Study, Princeton, New Jersey, beginning in 1953; in 1956
he became a research assistant at the Computing Center of the
Courant Institute at New York Unviersity, where he worked on
numerical methods for quantum mechanical calculations. Since
1962, he has been on the Research staff of the Thomas J. Watson
Research Center in Yorktown Heights, except for a one-year
sabbatical, 1973-1974, which he spent at the Royal Institute of
Technology, Stockholm, Sweden. At IBM he has worked on
computational methods for solving diffusion and transport equations
in applications to transistor and ionic flow problems. He has assisted
in the development and use of mathematical models of the electrical
activity in nerve and muscle membranes and in assorted eigenvalue
problems and numerical methods for solving ordinary and partial
differential equations. Dr. Cooley has been involved in the
development of numerical methods for computers, including the fast
Fourier transform and convolution algorithms. In recent years, he
has participated in the development of software for elementary
functions and signal processing programs for the IBM 3090 Vector
Facility. He is a Fellow of the Institute of Electrical and Electronics
Engineers. Dr. Cooley holds five IBM awards and four IEEE awards.

Fred G. Gustavson /BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Gustavson received the
B.S. degree in physics in 1957 and the M.S. and Ph.D. degrees in
applied mathematics in 1960 and 1963, all from Rensselaer
Polytechnic Institute, Troy, New York. From 1960 to 1961 and
again from 1962 to 1963, he was engaged in research and teaching at
Rensselaer Polytechnic Institute. From 1961 to 1962 he was with the
U.S. Army Research Center at the University of Wisconsin. He
joined the Mathematical Sciences Department of the IBM Thomas
J. Watson Research Center as a research staff member in 1963.
During 1965 and 1966 he taught courses in the graduate division of
Baruch University, New York. He is currently the manager of
mathematical software in the Mathematical Sciences Department at
Yorktown. His primary interest has been in developing theory and
programming techniques for exploiting the sparseness inherent in
large systems of linear equations. He has worked in the area of
nonlinear differential equations, linear algebra, symbolic
computation, computer-aided design of networks, design and
analysis of algorithms, elementary functions, and programming
applications. Dr. Gustavson is a member of the Mathematical
Association of America, Pi Mu Epsilon, Sigma Xi, and the Society
for Industrial and Applied Mathematics. He received an IBM
Outstanding Contribution Award for his work in sparse matrices and
an IBM Outstanding Invention Award, jointly with R. K. Brayton
and G. D. Hachtel, for the sparse tableau approach to network
analysis and design. For the latter work he received the IEEE Circuit
Theory Best Paper Award in 1971. In 1973 he received an IBM First
Invention Achievement Award. In 1984 he received an IBM
Outstanding Innovation Award for producing new highly accurate
and significantly faster elementary-function algorithms for System/
370 machines. In 1985, he received an IBM Outstanding Technical
Achievement Award for his contribution to the design and
implementation of novel new high-performance algorithms for
solving linear equations.

James B. Shearer /BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Shearer did his
undergraduate work at the California Institute of Technology,
Pasadena; he received his B.S. in 1976. In 1980 he received his Ph.D.
from the Massachusetts Institute of Technology, Cambridge, for a
thesis entitled “Some Problems in Combinatorics.” Dr. Shearer

RAMESH C. AGARWAL ET AL.

joined IBM as a research staff member in the Mathematics
Department in 1983. His research interests include combinatorics
and mathematical software.

Gordon Slishman /BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Mr. Slishman received the B.S.
in mathematics in 1971 from Kansas State University, Manhattan.
He joined IBM’s Federal Systems Division in Owego, New York, in
1974, working as a VM and OS systems programmer; later he did
real-time applications programming for LAMPS (Light Airborne
Multi-Purpose System). In 1979, he joined the System Products
Division in Endicott, New York, working as a designer of physical
layout and logic for the printer channel adapter. In 1983 he worked
as a programmer on the Elementary Math Library products EML1
and EML2 for the Systems Technology Division. He is at present an
advisory programmer in the Mathematical Sciences Department at
the Thomas J. Watson Research Center. Mr. Slishman has received
an STD Award for software implementation of EML algorithms.

Bryant Tuckerman /BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Tuckerman has been a
mathematician at the IBM Thomas J. Watson Research Center since
1957. Prior to that he did military research (1941-45), taught at
Cornell University, Ithaca, New York (1947-49), and at Oberlin
College, Ohio (1949-52), and worked at the Electronic Computer
Project of the Institute for Advanced Study (1952-57). He received
his B.S. from Antioch College, Yellow Springs, Ohio, in 1939 and
his M.A. (1946) and Ph.D. (1947) from Princeton University, New
Jersey, all in mathematics. His work has included automatic
programming; the computation of ancient planetary positions;
character and speech recognition; arbitrary-precision integer
arithmetic; computational number theory, including a lower bound
for odd perfect numbers, and the discovery of the 24th Mersenne
prime; speed-enhancing programming of computers; and
cryptography, including analyzing the strengths of several
cryptographic systems, devising the method of chaining which
enhances the strength of DES (the Data Encryption Standard), and
helping to implement IPS (Information Protection System), a
software embodiment of DES with chaining. Besides working on
these new scalar and vector elementary functions, he has also
contributed to the matrix programs in the recently announced ESSL
(Engineering and Scientific Subroutine Library), which has vector
and scalar embodiments of a number of array-oriented functions.
Dr. Tuckerman has received IBM Outstanding Innovation awards
for his work on IPS and on these elementary functions, and a
Research Division Award from Kingston for his work on ESSL.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

