
102

An experimental
computer
architecture
supporting
expert systems
and logic
programming

by H. Diel
N. Lenz
H. M. Welsch

This paper describes a set of function primitives
which have been designed for support of expert
systems and logic programs. The functions
could be offered as part of the computer
architecture by implementing them in microcode
and partially in hardware. The functions are
primarily (but not exclusively) oriented towards
support of logic programming languages such
as Prolog for implementing expert systems.
Particular emphasis is given to supporting the
parallel execution of expert system applications
by multiple processors. The concepts described
are based on the Concurrent Data Access
Architecture (CDAA). It is shown that OR-
parallelism, as well as AND-parallelism, can be
supported.

1. Introduction
In recent years, several proposals for computer architectures
intended to support artificial intelligence applications have

"Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

been published and in some cases implemented [1, 21. This
paper describes a computer architecture having a similar aim
but which has two specific additional goals:

1. The proposed computer architecture is an evolutionary
extension of the standard von Neumann computer.

2. The proposed computer architecture is intended to be the
basis for further extensions and modifications (i.e., it is
experimental). The authors believe that too much rigidity
in such an architecture is undesirable at this time. This
idea is similar to that of the CM* Testbed [3].

The computer architecture described here is called AIK-0.
It is oriented primarily towards support of logic
programming languages such as Prolog [4] and is intended to
permit efficient implementations of Prolog. Furthermore, the
authors assume that languages other than Prolog (e&, LISP,
OPS5) will continue to be used (not only for performance
reasons) for implementing expert systems. Therefore, AIK-0
aims at providing support for such languages as well.
However, the support offered by AIK-0 is described here
only in general terms.

Particular emphasis is put on support of parallel
processing. The performance improvements which are
necessary to extend the range of feasible expert systems
applications can only be achieved by utilizing a high degree
of parallel processing. The authors believe that significant,

IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 H. DIEL, N. LENZ, AND H. M. WELSCH

H3S13M 'Mi 'H aNV 'ZN31 'N '%la 'H

Jossa3oJd ayi dq ssa33e ~ a l s q 01) ay3e3 e 30 asodmd

Shared read-only data

r l Private

Interconnection bus
t I

I I I I

Global control information
Datafield-state
Dispatcbing-state
Lock-owner-table

to data), in CDAA the cache holds a local copy of the
Shared Read/Write data. This allows an efficient
realization of the explicitly controlled data access
mentioned above by assuming that such data are
accessible only when they reside in the cache. The data are
moved into the cache only as the result of the LOCK-
Datafield instruction. In addition, the concept of an
explicitly controlled cache supports versions of data and
thereby the facilities to back out (transaction processing)
or backtrack (logic programming) to previous states.
Dispatching of processes is controlled by CDAA. This
means that a process is set to the wait state when it tries to
obtain an inaccessible lock or to read uninitialized data.
The process is resumed when a data field it has been
waiting for becomes available (unlocked or instantiated).

0 CDAA instructions
Two groups of CDAA instructions are distinguished:

Data field management instructions - (CLEAR-DF,
LOCK-DF, UNLOCK-DF, READ-UNSAFE,
COMPARE-AND-SWAP).
Cache management instructions - (CLEAR-CACHE,
COMMIT-CACHE, CHECKPOINT-CACHE, RESTORE-
CACHE).

An overview of these instructions is given below.

CLEAR-DF (address,length)
The CLEAR-DF instruction prepares for the detection of
read-type references to the specified data field before this

data field is initialized. The instruction changes the state of
the data field such that CDAA can audit read attempts to the
data field. Such read references are either rejected or result in
setting the process issuing the read request to the wait state.
Update of the data field (by use of LOCK-DF with WRITE
access or by COMPARE-AND-SWAP) resets the data field
state such that read references are no longer supervised.

If a data field to be cleared is locked by another process,
the process which issued the CLEAR-DF instruction is set to
the wait state.

LOCK-DF (address,length,type)
The LOCK-DF instruction must be issued before a data field
in the Shared Read/Write Data can be accessed by a
processor. The “type” field may be READ or WRITE.
WRITE locks are exclusive locks; READ locks can be shared
by multiple processors.

The instruction causes the specified data fields to be
copied from the Shared Read/Write Data to the cache. If a
data field to be locked has already been locked by another
process (except when it is a READ-lock request for a READ-
locked data field), the current process is set to the wait state.

UNLOCK-DF (address,length,type)
The UNLOCK-DF instruction releases locks held for data
fields and in case of WRITE locks commits the data field
values. By use of a type parameter (whose value may be
either READ or 0), it is possible to change a lock from
WRITE to READ.

Committing data means that the data fields are copied
from the cache back to the Shared Read/Write memory.

A further result of the UNLOCK-DF instruction is that
processes waiting for the unlocked data fields are made
dispatchable.

READ-UNSAFE (source-address,target-addresslength)
The contents of the source data field are copied to the target
data field. The source data field may be located in the Shared
Read/Write Memory; the target data field must be in Private
Memory. The source data field is not locked (i.e., for Read
access). Therefore, the value copied may change before it is
further processed (it is unsafe). The instruction is primarily
useful in connection with the Compare-and-Swap instruction
described next.

COMPARE-AND-SWAP (source-addr,comp-addr.target-
addrlength)
The target data field gets the value of the source data field,
provided its present value is equal to that of the comparison
data field. The combined function of comparison and value
update is executed as an atomic operation.

rejected.
If the specified data field is locked, the instruction is

n. DIEL, N. LENZ, AND H. M. WELSCH IBM I. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

CLEAR-CACHE
The contents of the cache are cleared and all locks held by
the process are released.

COMMIT-CACHE
All data field values of the cache are written (committed) to
the Shared Read/Write Data.

CHECKPOINT-CACHE (uddress,length)
The contents of the cache are saved at the specified area. By
the use of the RESTORE-CACHE instruction, the saved
copy can be reinstalled at a later time. This facility is useful
to establish versions of data and to back out or backtrack
to previous versions.

RESTORE-CACHE (uddress,option)
The cache is loaded with the data fields contained in the
specified area. The specified area must have been previously
loaded by a CHECKPOINT-CACHE instruction.

Two cases are distinguished by the option parameter.
Option = RESET indicates the case where a previously
checkpointed status is reestablished. Option = COPY is
provided primarily for support of OR-node parallelism and
means that a previously checkpointed status is used;
however, it is mapped to a new area and therefore does not
interfere with the original data fields.

For a more detailed description of the Concurrent Data
Access Architecture, see 151.

CDAA is assumed to be used not only for the
implementation of the AIK-0 instructions but also directly
for controlling parallelism by an expert system
application. Therefore, because it might be utilized in other
application areas (e.& transaction processing), the CDAA
instructions are part of the AIK-0 machine interface.

4. AIK-0 instructions
This section describes the machine instructions which
represent AIK-0, except for the CDAA instructions, which
have already been described. The AIK-0 machine
instructions provide support in areas such as parallel
processing, process management, storage management, logic
programming, and pattern matching. Table 1 summarizes
the AIK-0 machine instructions.

The reasons for including particular instructions in AIK-0
differ. In order of priority, the following four reasons are
distinguished:

I . To provide basic functions which are not available with
typical von Neumann computers. The CDAA functions
belong to this category.

2. To provide functions whose performance is of critical
importance to the overall performance of expert systems
and logic programming applications. The GET, PUT,
and PMATCH instructions are in this category.

Table 1 Summary of AIK-0 instructions.

ATTACH
CHECKPOINT-CACHE
CLEAR-CACHE
CLEAR-DF
COMMIT-CACHE
COMPARE-AND-SWAP
DEREF
FREM
GET
GETM
LOCK-DF
MAKE-DISPATCHABLE
PMATCH
PUT

RESET
RESTORE-CACHE
UNBIND
UNLOCK-DF
WAIT

READ-UNSAFE

Start a new process(or)
Checkpoint cache contents
Clear cache contents
Clear data field
Commit complete cache
Do an atomic compare and update
Dereference a variable
Free allocated storage
Get parameter bindings
Allocate storage
Lock data field
Make process(es) dispatchable
Do pattern matching
Put parameter bindings
Read shared memory w/o lock
Terminate process(or)
Restore cache contents
Undo variable bindings
Unlock data field
Wait for a resource

To provide functions which are heavily impacted by
parallel processing and where there is a chance to handle
this impact more efficiently in microcode. With GETM,
FREM, and part of the process management instructions,
this is the case.
To provide functions in AIK-0 to establish a clean
layering structure. By inclusion of UNBIND, DEREF,
and some of the process management instructions, it is
possible to hide certain control information from the
AIK-0 user.

The individual AIK-0 instructions are now described.

ATTACH (utt-list,puss_list-ptr,process-id,)
A new process is started and a processid uniquely
identifying the process is returned.

are passed in att l ist ; e.g., the entry I oint address, where
control is to be passed; pass-listptr points to a parameter
list to be passed to the newly created process.

If a free processor is available (Le., free-processor-count
> 0), the process is started on a new processor and the free-
processor-count is updated. If there is no free processor
available, the process is created; however, it is held dormant
until a processor becomes free.

RESET (process-id)
The process denoted by the processid is terminated. If
processid = 0, the process issuing the RESET request itself
is reset. Termination of the process means that its execution
is stopped and all resources allocated by the process are
freed.

All parameters defining the type of process being started

105

H. DIEL, N. LENZ. AND H M. WELSCH IBM 1. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

If there is no other process waiting to be dispatched on the
present processor, the processor is stopped and the free-
processor-count is updated.

WAIT (waitcondition,datafield)
The current process is set into wait state until the specified
wait condition is signaled for the specified data field.

In general, the wait conditions are numbers whose
meaning is not known to AIK-0 (e.g., wait-condition-I =

wait for terminal input, wait-condition-2 = wait for messages
from process-x). The numbers get their desired meaning
from the fact that a complementary MAKE-
DISPATCHABLE instruction with the same wait
condition (number) has to be issued. In addition, some wait
condition numbers are preassigned by AIK-0, such as
“wait for data field to become unlocked.”

MAKE-DISPATCHABLE (process-id,
waitcondition,dataJield)
The specified process (or all processes if process-id = 0) is
made dispatchable if it is waiting for the specified wait
condition and data field.

GETM (subpool-no,area-addr,area-length)
A storage area of the specified arealength is allocated for
the issuing process within the subpool specified by subpool
no.

A subpool identifies a collection of storage with common
characteristics, such as lifetime, protection, access rights.
These subpools are allocated in either of the following parts
of the virtual memory:

Private Virtual Storage (PVS) 0 5 subpoolno 5 127
Shared Virtual Storage (SVS) 128 I subpoolno 5 255

If no more storage of the requested type (PVS or SVS) is
available, the condition code is set to I and areaaddr is
zeroed on return.

If arealength = 0 is specified, the maximum available
space is returned in the arealength parameter. In this case,

GET (context~ptr,parm~block,arg~block,gst~ptr,Ist-ptr,
tot-ptr)
The GET instruction unifies the parameters of a clause head
with the arguments of a call. Parameters are assumed to be
given in a parm-block, arguments are assumed to be given
in an argblock. The context describes the logic program
state. If no parallelism occurs, the context consists of the
global stack, local stack, and trail. In the case of parallelism,
these stacks are tree-shaped. Nodes in these trees occur
whenever parallelism is started. The corresponding pieces of
global stack, local stack, and trail together with some header
information form a context. The contexts are backward
chained.

local stack, and the top of the trail, respectively. If 1st-ptr is
zero, all bindings are made in the global stack. If t o t p t r is
zero, bindings are not logged in the trail. This makes sense if
no backtracking is supported or if backtracking is
implemented without using a trail area.

by a Prolog compiler. On the basis of this information, the
GET instruction can execute all loading and unifying for
each of the parameters in the parm-list:

parm-block := nop, /*number of parameters*/

Gstptr , Is tptr , and t o t p t r point to the global stack, the

A parm-block consists of information which can be built

parm-list;

P a m := parm-tag, /*identifies type of item*/
mode, /*read-only or read/write*/
parm-body (parm-tag);

Read-only variables are required for support of languages
such as Concurrent Prolog and Parlog.

It is assumed that al l constants referenced within a
program are numbered. Their corresponding reference
number cons tno is used to identify them uniquely; c o n s t
no may be a pointer. The constant nil is handled the same
way.

and a list may be viewed as a structure with a special
functor.

Functors of structures are referenced by the same scheme,

areaaddr = 0 is returned and the condition code is set to 2. parm_tag
No space is allocated in this case!

FREM (subpool-no,area-addr,area-length)
The allocated storage within the given subpool, starting at
areaaddr and having the indicated length, is freed. The area
to be freed must fit completely into an area allocated with
previous GETM instructions.

With shared subpools it is the responsibility of the user to

:= perm-var-tag I
temp-var-tag I
unsafe-tag I
perm-valtag I
temp-valtag I
consttag I
structtag I
l is t tag

ensure that the allocated storage is not freed while there are /*see Warren [7]*/
still users accessing that area.

If arealength = 0 and areaaddr = 0, then the complete
parm-body(perm-var-tag) := perm-varindex;

subpool is freed. parm-body(temp-var-tag) := temp-varindex;

H. DIEL, N. LENZ, AND H. M. WELSCH IBM I. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

parm-body(unsafe-tag) := unsafeindex;

parm-body(perm-valtag) := perm-valindex;

pambody(temp-valtag) := temp-valindex;

parm-body(consttag) := constno;

parm-body(structtag) := func-no,
parm-block;

parm-body(1isttag) := parm-block;

The parm-block parameter represents the actual code to be
executed, whereas all the run time information is passed to
AIK-0 by the contextptr. The variable bindings are
grouped into localstack and globalstack:

context := context-head,
localstack,
globalstack,
trail;

contexthead := contfather, /*ptr. to father context*/
locanc, /*ptr. to local stack*/
globanc, /*ptr. to global stack*/
t r a ibnc ; /*ptr. to trail*/

localstack := refllist,
other-info-]; /*other information*/

/*unknown to AIK-0*/

globalstack := refllist;
other-info-2; /*other information*/

/*unknown to AIK-0*/

trail

ref

:= refllist;

:= ref-type,
ref-mode,
refllevel,
(ref-offset I getptr-offsets);

ref-type := localvar I /*reference to local var*/
globalvar I /*reference to global var*/
const I /*reference to constant*/
struct I /*reference to structure*/
list I /*reference to list*/
ge tp t r ; /*reference to copied vaP/

Get-pointers (ref-type = getp t r) are required to support
the copying of goal variables with OR-parallelism (see
Section 5 and [6]):

ref-mode := read I /*variable is read only*/
write ; /*variable may be bound*/

All the unifications and therefore all the bindings take
place within AIK-0. When variables are to be bound in a
context located in the shared read/write memory, GET uses
the appropriate CDAA instructions (LOCK-DF, READ-
UNSAFE, COMPARE-AND-SWAP) to access the data
fields.

The GET instruction is a generalization of the GET
instructions of Warren [7]. Since control flow will take place
above the AIK-0 interface, a compiler producing code for
sequential processing can produce code equivalent to that of
the Warren machine. All register optimizations are possible,
as in’[7]. The identity of argument registers and temporary
variable registers can be exploited; temporary and permanent
variables can be distinguished.

When AIK-0 is implemented in microcode, the data
representation is fixed in the hardware. It is possible to
enrich the set of tags to support a greater diversity of data
types, e.g., integers, floating point numbers, strings, etc.
Generic data types supporting several different tags for types
with identical internal data representation would allow the
user to distinguish between different kinds of data of the
same basic type.

Whether the unification algorithm used by the GET
instruction should incorporate the occur check is left open.
It is a question of performance. If it is available, whether the
occur check should take place or not may be specifiable by a
parameter. In a software solution a unification error due to
the missing occur check results in a stack overflow; in a
hardware solution it results in an exception.

PUT (context-ptr,parrn-block,arg-block,gst-ptr)
The PUT instruction builds an argblock for a call of a
procedure corresponding to a goal in the body of a clause.
This may include creation of a reference in the global stack
in case that parm-tag = unsafe-tag or parmfag = temp-
var-tag. In the cases of structures or lists, copies are made
on the global stack as proposed by Warren [7] (“unification
in write mode”).

UNBIND (context-ptr,reJ;length)
The flow of control of a logic program (especially the
initiation of backtracking) is not controlled by AIK-0.
Therefore, the AIK-0 instruction UNBIND is provided to
undo previous bindings.

The UNBIND instruction removes the bindings of all
references listed between ref and ref + length. All the
unbound references have the same status as if they had never
been bound before.

DEREF (context_ptr,reJrl,r2)
The DEREF function scans the chain of references (through
all levels) and returns in r 1 the term to which the reference
ref is bound. This includes the handling of read-only
variables and of get-pointers. The AIK-0 concept for the
treatment of these two types of references is similar to the
one described in [6]. Field r2 points to the first get-pointer or
the last read-only variable.

When moving through the reference chain, DEREF uses
the appropriate CDAA instructions (LOCK-DF, READ-
UNSAFE, COMPARE-AND-SWAP) to access contexts
located in the shared read/write memory. 107

H. DIEL, N. LENZ, AND H. M. WELSCH IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

PMATCH (search-areaformat-descr,pattern-spec,result-area)
The PMATCH instruction supports pattern matching in a
general way. Pattern matching is applied to an area in virtual
storage. The area may be structured, for example, into fixed-
or variable-length character strings. This is specified by the
format-descr parameter:

format-descr := UNSTRUCTURED I
FIXED-LENGTH(1) I
VARIABLE-LENGTH- 1 1
LINKED-LIST- 1 I
other;

With VARIABLE-LENGTH- 1 and LINKED-LIST- 1 a
specific format for the representation of the string length and
the list chaining is assumed. The pattern specification
“pattern-spec” supports operations known from string
manipulation languages, such as SNOBOL and ICON, and
from A.I. languages, such as Planner and Popler (see [%IO]):

pattern-spec := p-match-op-list 1
(pattern-spec) I
pattern-spec OR pattern-spec;

p-match-op := string I
SKIP(1) I
POS(n) I
VAR I
ANY(string) 1
READ;

The meanings of these operations are as follows:

string match against the specified character string
SKIP(1) skip I character
POS(n) match only if at position n
VAR skip a variable number of characters until

the next operation matches

characters in string

the next operation matches and read the
characters in between into the result area

ANY(string) match current character against any of the

READ skip a variable number of characters until

Examples:

Pattern-spec := ‘Manager of READ ‘is’ READ ‘.’
would return ‘Smith’, ‘Jones’ if applied to the string
‘Manager of Smith is Jones.’

Pattern-spec := ‘.’ ‘Therefore’ finds all sentences starting with
‘Therefore’.

A pattern-spec in the syntax described above has to be

translated (compiled) into a mask before the PMATCH
instruction can be invoked. This results in operations which
offer the potential for microcode and hardware assistance
(see [1 I , 121).

of character strings and the position where the search
finished. If the result-area overflows, search is interrupted
and the position of interruption is returned in result-area.
This position may then be used to continue search with a
repeated invocation of PMATCH.

5. Logic programming with AIK-0
One of the primary objectives of AIK-0 is to permit support
of a large variety of logic programming implementations and
of different language features. This section shows the
spectrum of solutions supported by AIK-O, rather than the
details of a specific solution.

Unijication, dereferencing
Unification is the function which matches the arguments of
an actual goal against the parameters of a clause head. Its
efficiency largely determines the efficiency of the whole logic
programming implementation.

AIK-0 supports this function by the GET instruction. This
requires some assumptions with respect to the format in
which the logic programming variables are stored in memory
and the types of variables to be distinguished. Besides the
logic program constructs, such as variable, constant,
structure, and list, AIK-0 also allows one to distinguish cases
which have proven to be useful (see [7, 13, 141) for the
implementation of Prolog compilers, such as local variable,
global variable, permanent variable, temporary variable, etc.
In addition, Read-only variables are supported as required
with certain parallel logic programming languages such as
Concurrent Prolog and Parlog (see below). However, this
does not mean that all logic programming implementations
based on AIK-0 have to distinguish all these types of
variables and references. Implementations with less
sophisticated variable types are imaginable. Conversely, it
may also be reasonable to handle simple types of unification,
e.g., void variables (variables which occur only once in the
clause) without the use of the GET instruction of AIK-0.

when variables are accessed for purposes other than
unification, for example, inspected or copied (see OR-
parallelism).

Storage management
The AIK-0 instructions GET, PUT, DEREF, UNBIND
support a structuring of logic programming data into Local
Stack, Global Stack, and Trail, as known from literature on
Prolog implementations [7, 151. But these instructions can
also be used to operate on less complex structures, e.g., on a
single stack.

The result of the search is returned in result-area as a list

Dereferencing as a separate function (DEREF) is required

n. DIEL, N. LENZ, ANI, n. M. w E L s c n IBM 1. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

When parallel processing is supported, it is useful to
structure the logic program state into multiple contexts, such
that a single context comprises the information which is
uniquely related to a set of processes. Shared contexts should
be allocated in the Shared Read/Write Memory. Private
contexts may initially (as long as they are private) be
allocated in Private Memory and then, when additional
parallelism is started, moved to the Shared Read/Write
Memory; or they can be allocated in Shared Read/Write
Memory right at the beginning.

Parallel processing
The AIK-0 instructions described in Section 4 have been
designed with the view of supporting AND-parallelism as
well as OR-parallelism. However, only the low-level part of
the parallel processing support is covered by the AIK-0
instructions. The layer above AIK-0 must include the high-
level parallel processing support, e.g., support of control
flow.

Besides taking the unchanged, original Prolog (so-called
Pure-Prolog) as the logic programming language for parallel
execution, Prolog derivatives such as Concurrent Prolog [161
and Parlog [171 are especially aimed at support of parallel
processing. These various approaches and languages differ in

The way parallelism can be specified and controlled.
The way access to shared variables is controlled.

0 Whether single and/or multiple solutions are supported.
Some other language features.

AIK-0 is not tailored towards any specific alternative within
this spectrum of different concepts but aims to be suitable
for support of different approaches.

Process management
The efficiency of parallel processing support depends heavily
on the efficiency with which processes can be created and
dispatched. The instructions ATTACH, RESET, WAIT, and
MAKE-DISPATCHABLE have been included in AIK-0 to
allow an optimal realization of these functions by use of
microcode and/or hardware assistance.

Nevertheless, it is anticipated that the creation of new
processes and their dispatching on multiple processors will
still result in a noticeable overhead. It is therefore
recommended that the creation of parallel processes be
constrained by the following three means:

1. By lunguugefeatures. In Parlog it is possible to
distinguish parallel and sequential execution by use of
different syntactical symbols. In Concurrent Prolog and
Parlog clause bodies may be structured such that they
start with guards. Guards constrain the parallelism in that
only the guards are executed in parallel. As soon as one
guard out of a set of alternative clauses matches (i.e.,

unifies) the goal, the execution of all alternative clauses is
discontinued.

2. By implementation-specijic considerations. It may be
reasonable to exploit parallelism only when certain
conditions are met, rather than in all instances allowed by
the language. As an example, with Pure Prolog it may be
reasonable to exploit AND-parallelism only when there
are no shared variables between the AND-node branches
(see Restricted AND Parallelism in [18, 191).

should only be generated if the available processors are
not too heavily utilized by the existing processes. AIK-0
maintains a free processor count which can be used to
decide whether or not creation of additional processes is
useful.

3. By observing the processor workload. New processes

OR-parallelism
For support of OR-parallelism it is necessary to copy the
program state to prevent conflicting initialization attempts of
the same variable by multiple alternative clauses. There are
three major alternatives for copying the program state:

1. Copying of complete state.
2. Copying of goal variables only.
3. Demand-driven copying (see Levy 161).

Copying of goal variables (including demand-driven
copying) is supported by AIK-0 in terms of get-pointers as a
special type of reference (see Section 4, GET instruction).

Copying of the program state has to include the local copy
of the shared read/write data in the cache of the CDAA.
Copying of the cache data can be accomplished by the
instructions CHECKPOINT-CACHE and RESTORE-
CACHE.

AND-parallelism
Multiple conjunctive goals of a clause body are executed in
parallel. Support of AND-parallelism has to address the
following two interrelated problems:

1. Concurrent access to variables shared by multiple goals.
Data which are shared between parallel processes should
reside in the Shared Read/Write Memory. Access to these
data is performed by CDAA instructions. Simple tests
(e.g., whether a certain branch is already started) can be
performed by use of COMPARE-AND-SWAP. More
complex tests and updating have to use LOCK-DF and
UNLOCK-DF. Waiting for a data field to get a specific
value is implemented by use of CLEAR-DF and LOCK-
DF.

2. Backtracking. When multiple conjunctive goals share a
variable, the variable might be instantiated by one goal to
a value which might not satisfy another goal. With
nonparallel logic programming, the commonly acceptable 109

IBM 1. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 H. DIEL, N. LENZ, AND H. M. WELSCH

variable value is found by backtracking, provided there is
one at all. With parallel logic programming, simple forms
of backtracking, e.g., backtracking only the individual
goals in an uncoordinated way, is not sufficient.
Concurrent Prolog supports only so-called determinate
AND-parallelism, which does not perform any
backtracking. If backtracking is still to be supported, this
can be accomplished by more complex schemes, such as
the generation of variable streams as proposed by Conery
P O I .

6. Support of other programming languages for
writing expert systems
It is conceivable that many expert systems will still be
written in languages other than Prolog. Three types of
languages are anticipated:

1. Languages which have been designed for support of
artificial intelligence applications. OPS5 [2 11, derivations
of Planner, such as Microplanner and CONNIVER, and
similar languages, e.g., Popler and POP2 (see [9, 10, 22,
231) belong to this category.

specifically aimed at support of A.I., is very popular for
writing A.I. applications.

3. Generaf-purpose languages. In order to achieve optimal
execution performance, it is also the practice to write
expert system shells in a general-purpose programming
language, such as Pascal.

2. LISP [24]. This is a language which, although not

Although AIK-0 puts emphasis on supporting logic
programming languages, it aims at offering assistance to all
three types of languages listed above. There are some
common characteristics and requirements which can be seen
for all these languages (at least when used for the
implementation of expert systems). There are four areas
which could probably benefit from an extended computer
architecture such as AIK-0:

Parallel processing. The Concurrent Data Access
Architecture, CDAA, provides flexible and powerful
functions for support of different parallel processing
applications and for controlling the concurrent access to
shared data.
Backtracking. Some of the languages mentioned above
(eg., Planner, POP-2) support backtracking as an explicit
language feature. The CDAA cache management
instructions (CLEAR-CACHE, COMMIT-CACHE,
CHECKPOINT-CACHE, RESTORE-CACHE) are very
powerful for implementing backtracking of different styles.
Storage management. With dynamic variable binding,
which most of the above languages support, storage
allocation and deallocation is a key area where assistance
by a suitable hardware architecture is desirable, especially

in a parallel processing environment. The GETM and
FREM instructions described in Section 4 offer this
assistance.
Pattern matching. Pattern matching functions are required
to
1 . Search through a data bak or knowledge base for

specific patterns.
2. Support pattern-directed invocation schemes, e.g., for

A.I. languages such as Planner, CONNIVER, and
Popler.

3. Realize part of the GET instruction.

The PMATCH instruction described in Section 4 has been
designed for support of these applications.

7. Summary
In the preceding sections a computer architecture called
AIK-0 for support of expert systems and logic programming
has been described. AIK-0, which is represented primarily by
a set of machine instructions, could be an extension of most
traditional von Neumann computers. AIK-0 is called an
experimental computer architecture because the area of
expert systems and logic programming is not yet considered
to be stable enough to aim for a firm computer architecture.
Areas where the utilization of AIK-0 may help in achieving
some consolidation are

Finding the right degree of compilation and degree of

Determining the extent to which parallel processing may
microcode or hardware assistance.

speed up expert system applications and suitable solutions
for doing this.
Determining heuristic methods for the optimal scheduling
of AND-parallelism and OR-parallelism.

8. References
1. T. Moto-oka and K. Fuchi, “The Architecture in the Fifth

Generation Computers,” Proceedings of IFIP 1983, North-
Holland Publishing Co., Amsterdam, p. 589.

2. J. A. Crammond and C. D. F. Miller, “An Architecture for
Parallel Logic Languages,” Proceedings of the Second
International Logic Programming Conference, Uppsala, Sweden,
1984, p. 183.

3. 2. Segall, A. Singh, R. T. Snodgras, A. K. Jones, and D. P.
Siewiorek, “An Integrated Instrumentation Environment for
Multiprocessors,” IEEE Trans. Computers C-32,4 (1983).

4. W. F. Clocksin and C. S. Mellish, Programming in Prolog,
Springer-Verlag New York, 198 1.

5. H. Diel, “Concurrent Data Access Architecture,” Proceedings of
the International Conference on Fifth Generation Computer
Systems, Tokyo, Japan, 1984, p. 373.

6. J. Levy, “A Unification Algorithm for Concurrent Prolog,”
Proceedings of the Second International Logic Programming
Conference, Uppsala, Sweden, 1984, p. 33 I .

7. D. H. D. Warren, “An Abstract Prolog Instruction Set,”
Technical Report 309, SRI International, Menlo Park, CA, 1983.

8. R. E. Griswold, J. F. Poage, and I. P. Polonsky, TheSNOBOL4
Programming Language, Second Edition, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 197 1.

IBM I. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

111

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 H. DIEL, N. LENZ, AND H. M. WELSCH

9. C. Hewitt, “Planner: A Language for Manipulating Models and H. Martin Welsch IBM Germany, Boblingen. Federal Republic of
Proving Theorems in a Robot,” AI Memo 168, Massachusetts Germany. Dr. Welsch is a system development engineer in the
Institute of Technology, Cambridge, MA, 1970. Advanced Technology Systems I Department working on advanced

10. D. J. M. Davies, “Popler 1.5 Reference Manual,” TPU Report system structures. He received his doctor’s degree in physics at the
No. 1, Theoretical Psychology Unit, Edinburgh, Scotland, 1973. University of Marburg, Federal Republic of Germany, in 1984 and

I I . S. Arikawa and T. Shinohara, “A Run-Time Efficient joined IBM the same year.
Realization of Aho Corasick Pattern Matching Machines,” New
Generation Computing 2, 17 1 (1984).

12. R. S. Boyer and J. S. Moore, “A Fast String Searching
Algorithm,” Commun. ACM 20, 762 (1977).

13. D. L. Bowen, L. M. Byrd, and W. F. Clocksin, “A Portable
Prolog Compiler,’’ Logic Programming Workshop ’83,
Universidade Nova de Lisboa, Portugal, June 1983, pp. 74-83.

14. D. H. D. Warren, “Implementing Prolog-Compiling Predicate
Logic Programs,” Research Reports 39 and 40, Department of
Artificial Intelligence, University of Edinburgh, Scotland, 1977.

Implementations, Logic Programming, K. L. Clark and S.-A.
Taernlund, Eds., Academic Press, Inc., New York, 1982, p. 83.

Interpreter,” Technical Report TR003, ICOT, Institute for New
Generation Computer Technology, Tokyo, Japan, 1984.

17. K. Clark and S. Gregory, “PARLOG: Parallel Programming in
Logic,” Research Report DOC 8414, Department of Computing,
Imperial College, London, April 1984.

International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, 1984, p. 47 I .

19. J. H. Chang and D. DeGroot, “AND-Parallelism of Logic
Programs Based on Static Data Dependency Analysis,”
Proceedings of AFCET Conference on Fifth Generation
Computer Systems (Agence de l’hformatique Centre National
#Etudes des Tdecommunications), Paris, 1985, p. 27 I .

20. J. S. Coney, “The AND/OR Model for Parallel Interpretation
of Logic Programs,’’ Ph.D. Thesis, University of California,
Imine, CA, 1983.

CS-81-135, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, 198 I .

Manual,” AI Memo 203, Massachusetts Institute of Technology,
Cambridge, MA, 1970.

Reference Manual,” AI Memo 259, Massachusetts Institute of
Technology, Cambridge, MA, 1972.

Alto Research Center, Palo Alto, CA, 1974.

15. M. Bruynooghe, The Memory Management of Prolog

16. E. Y. Shapiro, “A Subset of Concurrent Prolog and Its

18. D. DeGroot, “Restricted AND Parallelism,” Proceedings of the

2 I . C. L. Forgy, “OPS5 User’s Manual,” Technical Report CMU

22. G. J. Sussman and T. Winograd, “MicroPlanner Reference

23. D. V. McDermott and G. J. Sussman, “The CONNIVER

24. W. Teitelman, “INTERLISP Reference Manual,” XEROX Palo

Received March 5, 1985; revised August 8, 1985

Hans H. Diel IBM Germany, Boblingen, Federal Republic of
Germany. Mr. Diel is currently senior programmer in the Advanced
Technology Group in DSD Boblingen working on advanced system
structures. He studied mechanical engineering in Saarbriicken. Mr.
Diel joined IBM in 1965 and has worked in areas such as compiler
development, language design, performance analysis, and operating
system development.

Norbert G. Len2 IBM Germany, Boblingen. Federal Republic of
Germany. Dr. Lenz is a system development engineer in the
Advanced Technology Systems I Department working on advanced
system structures. He received his doctor’s degree in mathematics at
the University of Mainz, Federal Republic of Germany, in 1982 and
joined IBM the same year.

