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Shafer’s  theory  of  evidential  reasoning  has 
recently  received much attention as a  possible 
model for probabilistic  reasoning  in  expert 
system  applications.  This  paper  discusses  the 
particular  difficulties  of  implementing  Shafer’s 
belief functions  in  the  context  of  the  most 
common  form  of expert system, rule-based 
systems.  The  two  most  important  problems  are: 
the  representation of the  expert’s  subjective 
degrees of belief  corresponding  to  his 
expressed  rules,  and  the  computational 
complexity  of  the  inference  mechanism  for 
combining  evidence.  We  argue  that  a  potential 
approach  for  dealing  with  both  problems  is  given 
by  introducing  constraints  on  the  structure  of  the 
belief  functions.  These  constraints,  along  with 
the  expressed  rules  and  the  elicited  belief 
values,  form  the  expert’s  total  knowledge. 

1. Introduction 

Uncertainty in rule-based systems 
Rule-based expert systems are collections  of production rules 
which are linked or “chained”  together to  simulate a human 
expert’s reasoning process. (A production rule is a statement 
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of the form “If A then B,” where A and B are logical 
propositions.) There is currently  a great deal of interest in 
introducing  uncertainty  into  the reasoning used in such 
production systems. 

Probability  theory  has been used as  the basis for 
combining  numerical measures of uncertainty in several 
rule-based expert systems, for  example, the SRI system 
PROSPECTOR.  PROSPECTOR assigned independent 
expert-supplied conditional probabilities to propositions (see 
[ 1 I). Users were permitted  to  input  independent 
unconditional probabilities  corresponding to observed 
evidence. Bayes’ rule was used to  compute  the posterior 
probabilities. 

uncertainties  in rule-based expert systems. (Consider the 
MYCIN system for medical diagnosis described  in [2].) 
Unlike probabilities,  certainties are defined by and  combined 
through  an ad hoc set of rules. 

uncertainty into rule-based expert systems are reviewed more 
thoroughly in [3]. 

We can imagine at least two general methods for 
incorporating  uncertainty  into a rule-based expert system. In 
the first of these methods we suppose that  an expert’s 
opinions  are updated by a user’s opinions. We would expect 
the expert constructing  the system to have  a joint probability 
distribution on  the assignment  of truth values to  the 
propositions which are  consequents  of all the rules in the 
system. This  joint probability  distribution  would be 
conditional on  the assignment of truth values to those 
propositions  in the system which are  not  consequents of any 
rule (the  evidence nodes). Also, we would  expect the user of 

Certainty  factors are  an alternative  scheme  for  modeling 

These and  other  methods which attempt  to  introduce 



the system to have a joint probability distribution on the 
assignment of truth values to the evidence  nodes. 
Additionally, we would  expect the system to update the 
expert’s probability distribution with the user’s  probability 
distribution and then calculate the marginal  (joint) 
probability distribution on the assignment of truth values to 
the propositions which are not antecedents of any  rule (the 
goal  nodes). 

We  see a variety of difficulties  with this scheme: 

1. It is unreasonable to expect anyone, user or expert, to 
express a joint probability distribution on the assignment 
of truth values to a large  collection of propositions. This 
is because of 
a. The potential size  of such a collection. 
b. The  difficulty that most  people  have  expressing 

probabilities even on collections with  only one 
proposition. 

2. There is an inherent asymmetry in the nature and use  of 
the opinions supplied by the expert and the user. The 
user’s opinion is  used to update the expert’s. 

prohibit implementation for  systems  with  as few  as  fifty 
propositions. 

3. The  amount of calculation required is so large as to 

In the second of the two  general methods of incorporating 
uncertainty into a rule-based expert system, we suppose that 
a user’s opinions are pooled with an expert’s opinions. We 
expect the expert constructing the system to express 
uncertainty about the assignment of truth values to all the 
propositions in the system.  Equally, we expect the user to 
express uncertainty about the assignment of truth values to 
all the propositions in the system. The expert and the user 
each  express their uncertainty by a decomposition of their 
respective universal belief function; pieces  of the 
decomposition are attached to the rules by the expert and 
are attached to the evidence  nodes by the user. We  use  belief 
functions as a particular measure of uncertainty because of 
their intuitive appeal, but this general  scheme  allows the 
possibility of other measures. 

scheme: 
This scheme  overcomes some of the difficulties of the first 

I .  Neither expert nor user  must  express a “joint” opinion 
over the  truth values of all the propositions in the system 
but must only  express that portion of the opinion which 
is  associated  with a particular rule or evidence  node. 

2. The opinions of both expert and user are presumed to be 
subjective and are treated symmetrically.  In particular, 
the roles of expert and user  may  be  interchanged without 
affecting the result. 

This paper is an attempt to use the belief functions 
described in [4] to overcome the difficulties of the first 94 
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scheme and to achieve the goals  of the second  scheme. 
Current applications of  Shafer’s  belief functions to rule- 
based expert systems  face at least  two major obstacles.  First, 
in typical applications the set of epistemic possibilities 
termed the frame of discernment has previously  been 
restricted to a mutually exclusive  collection of propositions. 
This implies a fairly simple rule structure for the 
corresponding system.  Second, there does not exist a 
standard methodology  for attaching an expert’s  beliefs to the 
rules. Consequently, previous applications of  belief functions 
to rule-based  systems  have  been ad  hoc. 

This paper studies the consequences of the most common 
frames, that is,  those  with some mutually supporting 
propositions. We  believe that it is more natural to base a 
frame of discernment on the expert-supplied  rules  associated 
with such mutually supporting propositions and that frames 
which are based on mutually exclusive propositions are 
artificially simple. We investigate how  belief functions might 
be  applied to mutually supporting propositions and give an 
example  which demonstrates the construction of such a rule- 
based frame. 

The frame of discernment is the critical element in the 
elicitation process.  Rule-based expert systems  imply 
“hidden” structures in the set of  all  possible  subsets of 
propositions. Therefore, the expert  only  need  express  his 
degree  of  belief  over the “visible” elements of the set  of 
subsets. This can result  in important computational savings 
(compared with the set of all  possible  subsets). This paper 
also demonstrates a decomposition of  belief functions which 
allows a user, at the time of consultation with the system, to 
express  his  beliefs  over the frame of discernment, which are 
then combined with the expert’s  expressed  beliefs  associated 
with the rules. 

Belief functions in  production  systems 
Let 0 be a set of mutually exclusive and exhaustive 
propositions about a problem domain. The set 0 is called the 
frame of discernment. Let 2’ be the set of all subsets of 0; 
elements of 2e may be interpreted as general propositions in 
the problem domain. 

A belief function Bel( .) is a function from 2’ into [0, 11 
which  satisfies 

B 4 0 )  = 0, 

Bel(@) = I ,  

and 

Bel 

where 111 is the cardinality of the index  set I. A basic 
probability  assignment m( .) is a function from 2’ into [0, I], 
which  satisfies 

;ABRIEL P. PEI IBM I. RES. I IEVELOP. VOL. 30 NO. 1 JANUARY 1986 



m(0)  = 0, 

m(S)  = 1. 
sce 

There is a one-to-one  correspondence between belief 
functions  and basic probability  assignments given by 

Bel(S) = m( T )  for S C 0, 
TCS 

and 

m(S)  = (-l)’s-T’Bel(n for s c O. 
TCS 

The correspondence is easily seen by substituting one 
equation  into  the  other in either order. Dempster’s rule  for 
combining two belief functions is most easily given in  terms 
of the corresponding basic probability assignments. Let m, 
and m2 be two basic probability  assignments on  the  same 
frame, 0. Dempster’s rule defines their  orthogonal sum 
mI2 = r n ,  (33 m2 by 

m,2(0) = 0 

and 

m,,(A) = K 1 m,(S)m,(T) for A # 0, 
Sn T=A 

where 

K’ = ml(S)m2(T). 
SnTM 

The belief function mI2 contains  the  combined evidence  of 
m, and m2. 

the first scheme described in the section “Uncertainty  in 
rule-based systems” as follows. First, we substitute Shafer’s 
belief functions for probabilities. This  has several immediate 
advantages: 

Our proposed method addresses some of the difficulties of 

The basic probability  assignment  corresponding to a 
probability distribution has 

m ( S )  = 0 for S 4 0. 

1. An expert or user who finds it difficult to express opinions 
in probabilities can  more easily express opinions with 
belief functions. 

2. An expert or user  who is unable  (or unwilling) to use 
general belief functions  can always use the special belief 
function which corresponds  to “I don’t  know” (or “I 
won’t tell”). 

3. An expert or user who wishes to use probabilities to 
express an  opinion has that  option available, since 
probabilities are a special case of belief functions. 

The basic probability  assignment  corresponding to  the 
special belief function which expresses total  ignorance  has 

m(S)  = 0 for S #  0 

and 

m(@) = 1. 

Second, we allow the expert to express his opinion  through 
partial beliefs attached to each individual rule, rather  than 
requiring a joint belief in  the assignment of truth values to 
all the propositions. While this appears  to be an  assumption 
of independence, we argue  in the section “Dependence  and 
its  implications  for  elicitation” that, in fact, there  can still be 
strong dependence in the expert-supplied beliefs. 

Third,  to reduce the  amount of computation involved, we 
eliminate  from  consideration  certain possible assignments of 
truth values to  the propositions; our choice  of which 
assignments to  eliminate is dictated by the expert-supplied 
rules. 

We imagine that  the expert  has a joint belief function  on 
the assignment of truth values to all the propositions in  the 
system but only expresses an  opinion  as partial belief 
functions associated with individual rules. We also imagine 
that  the user has a joint belief function  on  the assignment  of 
truth values to all the propositions in  the system but  only 
expresses an  opinion  as partial belief functions associated 
with individual  evidence nodes. 

The system operates by chaining using Dempster’s  rule of 
combination as follows. As a rule is “fired,” the  current 
frame  of discernment is refined to include the proposition(s) 
implied by the rule. The belief function is extended to  the 
refined frame  and  combined with the expert-supplied belief 
attached  to  the rule  (after  it  has also been  extended to  the 
same refined frame). Because of the  commutativity of 
Dempster’s rule, this process can be initiated with the user’s 
belief associated  with a single evidence node  or with the 
expert’s belief associated with an individual  rule. 

We emphasize that  each person  has a single universal 
belief function  and  that a partial belief attached to a rule or a 
node represents  part  of only  one possible decomposition of 
the universal belief. The  symmetry  inherent  in  the 
combination rule suggests that  the  structure of  both user and 
expert beliefs should be the same. 

The  computational  burden is the  most significant 
drawback to  the use of belief functions  in  production 
systems. If we have a collection of m general propositions, 
then  there  are 2” mutually exclusive possible propositions 
within the system. Direct  application  of Shafer’s theory 
requires that we consider the set of all  subsets  of  this frame 
of discernment, a collection  of 22m general propositions. 
Obviously, any reduction in  the size of the  exponent 2” is 
highly desirable. Barnett [ 5 ]  has studied this problem; by 
breaking the  frame  into  independent  partitions (a very strong 
assumption),  Barnett  reduces the  computational complexity 
from  exponential to linear.  Here, we are interested in 
retaining the  more  natural possibility of dependence  among 
the propositions in  the system. 95 
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where R, is of the form P, --* Pk. As an example,  suppose we 
consider M = { R l ) ,  where R ,  is PI --* P,. We interpret this  to 
mean  that whenever PI  is true,  then P2 must  be  true. 
Consequently, for any 0, we have that in the presence oft?, 
the  element ( IO* . . . * )  cannot occur. We write ( 1 1 * . . . * )  
= ( 1 * *  . . . e) .  We could  equivalently write the  dual 
equation (OO* . . . * )  = (*O* - .  . *). This is simply a 
shorthand for the rule R,  : PI  --* P2 and  means  that for every 
belief function defined on 2' the corresponding basic 
probability  assignment m( .) assigns the value zero to 
( IO* . . . *). Remembering  that ( IO* . . . * )  stands for a list 
of strings, we see that  the rule R,  has  hidden 2'"' elements of 
2'. We use the  term hidden to indicate that conceptually the 
elements  are present, but because every belief function 
assigns them a basic probability number of  zero,  they do  not 
enter  into  any calculations. In practice, then, we take  our list 
of propositions 2' and use our list of  rules M to  determine 
which elements of 2' remain visible. 

8 AND/OR representation of a small  production system. 

To clarify the ideas we consider a production system based 
on  the following six propositions: 

2. Mutually  supporting  propositions  and  rule- 
implied  structure 

Disjoint partitions 
Shafer's basic theory,  presented in [4], requires that  the 
frame of discernment (i.e., the set of possibilities) be 
composed of  mutually exclusive propositions. This  means 
that only one proposition can be true. In nearly all real 
situations, the propositions  of concern  are  not mutually 3 

exclusive, and consequently  direct  application of Shafer's 
theory  is impossible. 

suppose  that 
Let Q be a set of mutually supporting propositions; that is, 

a = { P I ,  P2 ,  . . . , P,). 
By mutually supporting we merely mean  that  any 
assignment of truth values to the propositions  is possible. 

Let 2* be a list of all the possible assignments of truth 

A = Sleet is falling outside. 
B = Harvey  has mud  on his shoes. 
C = The  door is  unlocked. 
D = Harvey's footprints  are  in  the house. 
E = Harvey's coat is in  the house. 
G = Harvey is in  the house. 

We suppose also that  the expert-supplied  rules are  the 
following; the associated list of  hidden elements is given with 
each rule. 

R , :  A - B  ( IO****) ,  

R,: B & C + D  (*110**), 

R,: D-* G (***1*0), 

R,: E-+ G (****IO) .  

values to  the  elements of a. To simplify what follows, we use 
the symbol 1 to  stand for true, the symbol 0 to  stand for 
false, and  the symbol * to  stand for unspecified. By using this ~ - - * ~ - -  , 

Figure 1 gives a schematic representation of these rules in 
the form of an  AND/OR tree. We refer to  this example  in 

notation  any assignment can be written as a string  of n 3CLLIUII J .  

symbols;  for  example,  in a system a with four propositions, 
the string ( * I * * )  would indicate  that P, is true  and (SO**) 
would  indicate that P, is false. As a more general example, 
( 1 IO*) would  indicate that P, is true and P, is true and P, is 
false. Our  standard  interpretation of a completely specified 
string  such as ( 1 100) is the logical and of its components; 
that is, P, is true  and P2 is true  and P, is false and P4 is false. 
Our  standard  interpretation of a string  such as ( 1 10%) is that 
it represents the string ( 1 100) or the string ( 1 10 1 ) . 

Now, let Mbe a set of rules; that is, suppose that 

M =  IR,, R2, . ' .  ,R,,,I, 

WILLIAM F. EDDY  AND GABRIEL P. PEI 

Naive  approaches  to  selection  of  belief  functions 
There  are several possible forms of belief functions which an 
expert  might attach  to a rule, and  there  are several possible 
forms of a belief function which a user might attach  to 
evidence. In this section, we consider some of the possible 
forms  of  each  in the  context of a trivial system. 

Let 0 = (A,  BJ ,  and let M = {R), where the rule R is A -* 
B. One  approach  to selecting a belief function  to  attach  to R 
would argue that  the only  situation that is important occurs 
when A is true and the rule R is correct. This leads to a 
choice of the form 
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m , l ( l l ) l  = P I ,  

m ,  IO1 = 1 - P,, 

which can be interpreted  as a belief p ,  that  the proposition 
AandB is true. A value of 1 - pI is assigned to 8 to reflect 
the  uncommitted belief. 

One possible approach  to selecting a belief function to 
reflect evidence on A might  choose 

This could be interpreted  as a belief pa that  the A is true  and 
a belief 1 - pa that is uncommitted. Applying Dempster’s 
rule and letting BelAl , = BelAl @ Bel, , we find 

and Bel,,, is zero  for all other propositions  except ( * * ) .  We 
interpret the proposition (: I ) as “B is true,”  and this 
proposition  has belief pI,  which does not depend  on  the 
strength pa of our evidence on A.  No matter what our belief 
on A ,  the belief on B is the same. It appears  then  that  at least 
one of the two  choices Bel, or BelAl is not sufficiently 
general. 

A different approach  to selecting a belief to  attach  to  the 
rule R corresponds to a logical interpretation of the rule. If 
the rule is correct, then  any of the states (OO), (0 1 ), or ( 1 1 ) 
is possible and  the state ( IO)  is impossible. This leads to  the 
choice 

m,1(00) or (01) or ( 1 1 ) )  =p, ,  

m,{O) = 1 - p 2 .  

This  can  be  interpreted as a belief p2 that  the rule is correct 
and a belief I - p ,  that is uncommitted.  Combination of this 
belief with the belief function mAl given above to express 
evidence on A yields BelAl2 = BelAl 63 Bel,, 

B e l ~ ~ , I ( * o ) l  = 0, 

I ( * ) 1 = P A P 2  > 

and BelAl, is zero  for all other propositions  except (::). In 
this case, the proposition “B is true” has a belief which does 
depend  on p a .  However, because of the  structure of m A l ,  the 
additional evidence can only  reduce the initial belief in B. 
We again conclude  that  one of the  two choices m, or m,, has 
a structure which is too limited to generate the kind of 
behavior we seek. In the next  section we suggest that, in fact, 
all of Bel,,  Bel,, and BelAl are  too limited. 

user beliefs which will allow belief to shift from  one set to 
another as additional evidence is pooled. 

Our goal is to choose a structure for both  rule beliefs and 
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Attaching beliefi to rules 
The forms of the belief functions considered  in the previous 
section are limited in their ability to represent  expert 
information  about  the rules and user information  about  the 
evidence. We prefer the following form  for expert-supplied 
opinions: 

m , l ( l I ) l  =P3> 

m,I(O*)I = q 3 ,  

m,l@l = 1 - ( P ,  + q 3 ) .  

This is related to  the conditional interpretation of the rule R. 
We assign belief p ,  to  the proposition AandB and belief q, to 
the proposition notA. 

We first note  that because the  element ( 10) is hidden,  as 
discussed in Section 2, we assign zero belief to it. We 
interpret the value of p ,  as expressing the strength  of the 
necessity of the rule R. Similarly, we interpret q, as 
expressing the strength  of the sufficiency of the rule. We also 
note  that m ,  is a special case of m, letting q, = 0. 
Additionally, m, can be thought of as a generalization of m,, 
taking the belief p,  and splitting  it into  the two components 
P3 and q, . 

Letting BelAl, = BelAl 63 Bel,, we get 

and BelAl3 is zero  for all other propositions  except (::). In 
this case, the proposition “ B  is true” has a belief which also 
does  depend  on p a ,  but  the belief can only  increase with the 
additional evidence introduced by pA . A more general 
structure for m, is necessary in order  to  permit  the pooling 
of both  confirmatory and disconfirmatory evidence. We 
prefer to let the evidence on A be represented by a belief 
function  that has structure identical to m,. In this way, both 
user and expert opinions  are treated  symmetrically  through 
Dempster’s rule. We choose mA2 as follows: 

m A 2 1 ( 1 1 ) I  = P A ,  

One should note  that mA2 contains evidence about  the 
consequent B. This  may give rise to  the legitimate concern 
that  the user must  somehow have knowledge of the 
likelihood of B given A. While this is a natural consequence 
of mA2, we note  that  the user may declare  his  ignorance by 
choosing pa and qA small. 

In our view each user (and expert)  has a single universal 
belief function over all the propositions  in the system. We 
cannot expect this universal belief to be expressed but  can 
rather expect expression of a partial belief function attached 
to a small number of closely related propositions. This 
partial belief is part of a (nonunique) decomposition  of the 
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larger universal belief function. All belief functions 
(including m,,) are already defined  over the frame which 
implicitly includes the proposition B. The belief function 
mA2 merely makes this explicit. 

with that contained in m,,  it is  necessary that 
So that  the evidence contained in mA2 can be combined 

= p3 qA + q3pA 1. 

This simply measures the weight of conflict between the two 
beliefs. The weight  of  conflict can be determined during the 
chaining process. 

Combination of the expert-supplied belief m3 with the 
user-supplied  belief function mA2 given above yields BelAz3 = 
Bel,, @ Bel, : 

B e / ~ , , ( ( * o ) )  = 0, 

'"A,,I(O*)I = I - ( l  - q,)(l - q3)/(I - k) ,  

BelAZ3((*1)I = 1 - (1 - ~ , ) ( l  - P3) / (1  - k ) ,  

and Bel,, is zero for  all other propositions except (**). It 
can be shown that Bel,,, has the desired property; i.e., 
BelAz3 { ( * 1 ) ) will increase or decrease from Bel, ( ( * 1 ) ) 
depending on  the ratio p,/q, . 

3. Refinement of frames  and  extension  of 
beliefs 

Refinement, extension,  and  compatibility 
Let 

Q ,  = V I ,  P2, ... 3 P"l 

be a collection of mutually supporting propositions, and let 
0, be the frame of discernment related to Q ,  through the rule 
base M by the construction described in Section 2. Let 

Q, = V I ,  p2, . . . 2 pn9 Pn+,L 
include the additional proposition P,+,, and let 0, be the 
related frame. Then 0, is a coarsening of a,, and 0, is a 
refinement of 0,. Now let p ,  be the  truth value  of Pi; that is, 
let 

{ 
1 if Pi is true, 

p ,  = 0 if P, is  false, 

* if Pi is undetermined. 

If  we have a basic probability assignment m( . ) on 2e', then 
the minimal  extension, m E ,  of m to 2e2 is given  by 

m,((p,  . . . P , * ) )  = m ( ( p ,  . . . PJ). 
Obviously, m is a marginal basic probability assignment of 
mE. 

More generally, Shafer defines an extension when there is 
a compatibility relationship r between two frames 0, = {Si) 
and 0, = I T , )  as  follows: 

BelE@) = K Bel{SiIS, r T, and T, E A ]  for A C a,, 
where 

K '  = m(S,) .  
Str7;and7;ce~  

It should be noted that minimal extension and marginal are 
not exact dual operations. The extension of the margin  of a 
belief function is not necessarily equal to  the original belief 
function. Nevertheless, the margin  of the extension of a 
belief function is  always  exactly equal to the original  belief 
function. 

Dependence and its implications for elicitation 
The Dempster combination mechanism applies when  two 
independent bodies of evidence over a frame are combined. 
It  is important to notice that this is not necessarily an 
assumption of statistical independence if the combined 
beliefs are extended to a different but compatible frame of 
reference. 

frame 0, = (A,   B)  and an assignment of belief 
Following an example of  Shafer [7], we suppose there is a 

m((  10)) = PI03 

m ( ( l l ) )  = P I , ,  

m((O0))  = P,, 

m ( ( 0 1 ) )  = POI. 

Now suppose we are told that  an event X ,  which  is 
impossible if the true state is ( I 1 ), occurs. Then our revised 
assignment of  belief (conditional on X )  becomes 

m,(( 1 1  )) = 0, 

m,(( 10)) = Plo/(PlO + Po, + P,), 

m,((Ol))  = POl/(PlO + POI + P,), 

m,((OO)) = P d ( P l 0  + Po, + P,). 

Finally, suppose that 0, is a compatible frame which 
concerns the event X, in the notation of Section 3 , 0 ,  r a,, 
so that 

m,(( 1 1 )) = m , ( a  

m,((  10)) = m,(X), 

m, ( (Ol) )  = m,(Not x), 

m J ( 0 0 ) )  = m,(Either X or not X ) .  

It can be  shown that there are an infinite number of 
probability assignments m ,  and m , ,  so that we can write 

m2 = m ,  @ m,,  

and m, over 0, is compatible with m, over 0,. 

we  wish to obtain a consensus opinion m, over 0, from a 
This provides a basis  for  eliciting expert opinions. Suppose 
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pair  of experts. We assume  that  one expert  has an  opinion 
over the  frame 0, and  the  other has an  opinion over  a 
compatible  frame 0, , which is more complicated because 
this expert  has  observed an  event X .  We assume  that it is 
possible to  compute certain elements for the  frame 0, given 
the  event x. for  example, we suppose that it  is possible to 
compute m,( ( I O ) )  in  the example. We elicit an  opinion m, 
from  the first expert. Then we elicit the  opinion m,, with 
respect to  the  frame 0, from the second  expert who has 
observed the event X .  We then  compute m2 = m, @ m,, 
and  compare  the  compatible  elements from 0, with those 
“computable”  elements of 0,. This provides  a  check on  the 
internal consistency  of the experts. 

We should also point  out  that  the particular form of belief 
m3 that we have  chosen  in  Section 2 to represent the expert- 
supplied opinion allows a  particularly  simple method of 
elicitation. We merely ask the expert to supply r, the ratio  of 
belief that  the rule is correct to belief that  the rule is 
incorrect. We also need to know u, the expert’s total  amount 
of  uncertainty. Then  the system can solve the  two 
simultaneous  equations  to  determine 

p3 = r( 1 - u)/ (  1 + r )  

and 

q,= ( 1  - u ) / ( l  + r ) .  

Chaining of beliefs 
The basic mechanisms for propagating beliefs through  a 
system are extension  of the belief function  to  the refined 
frame  and Dempster’s rule of combination.  In  summary, as 
each  rule is fired two events  occur: 

I .  The  current  frame is refined, the visible elements  are 
identified (remembering  that  the rule base has increased), 
and  the  current belief is extended  to  the visible elements. 

2 .  Dempster’s rule is used to  combine  the extension of the 
current belief with the extension  of the expert-supplied 
belief attached to  the rule. 

Let R be a  collection of propositions, and let 0 = 2” be the 
corresponding  frame  of discernment  prior  to  the firing of a 
rule. We  further  assume  that every rule exists as a 
conjunctive  normal form. That is, 

R = (Pi] A . . . A Pi,) + PC. 

If a possible rule has a  disjunctive antecedent, we merely 
split the rule into  two  or  more rules with single (or possibly 
conjunctive) antecedents  and  the  same consequent. If a 
possible rule has a conjunctive consequent, we merely split 
the rule into  two or more rules with single (or possibly 
disjunctive) consequents  and  the  same antecedent. We note 
that  this  assumption implies that  the underlying  graph is a 
Chow  tree [8]. A Chow tree  is  a  directed (and connected) 

graph with the property that  there  are  no cycles in the 
corresponding  undirected  graph. 

Suppose the rule R is fired. Let 

n* = n u P,, u . . ‘ u P,, u PC, 
and let 0* be the corresponding  frame. The rule R 
determines a list of hidden elements according to  the 
method described in  Section 2 and hence  a reduced frame  of 
visible elements e**. Before the firing of the rule R, current 
beliefs are represented by the basic probability  assignment m 
on 0. We construct  the  minimal extension  of m to 0* and 
the margin  of this extension on e**. In each case we denote 
the basic probability  assignment m. This should  engender no 
confusion  since the  same beliefs are represented by m in 
each case; the beliefs are referred to different frames. Finally, 
let mR stand for the basic probability  assignment attached  to 
the rule R.  The effect of R can be written  as 

R: (a, 0, m )  + (n*, 0**, m @ mR). 

This  notation is intended  to describe the refinement and 
subsequent  coarsening  of the  frame implied by the rule R 
and  the  simultaneous  updating (by Dempster’s rule)  of m to 
the  combination of m and mR. 

Recall now the example introduced in  Section 2. First, we 
note  that  the  four rules do in fact form a  Chow  tree  as 
depicted in Fig. I using standard  AND/OR  notation. To 
begin the  actual propagation of evidence through  the 
network  in the example,  suppose the user  supplies  evidence 
on A .  Then R,  fires and  the beliefs represented by m, are 
extended to  the smallest common refinement with the 
expert-supplied belief m, attached  to  the rule, namely the 
frame ( A ,  B). Next, the  frame is  coarsened because of the 
one hidden element described by ( IO) .  Then m, and m, are 
combined  to get m,, . In the  notation of the previous 
paragraph, 

Suppose now the user supplies  evidence on C; then R, 
fires. The beliefs represented by m,, and m, are extended to 
their smallest common refinement with the expert-supplied 
belief m, attached  to  the rule, namely (A, B, C, D) with the 
hidden elements ( IO**) and ( * 1 IO) ;  there  are six hidden 
elements  and ten visible. All three of m,, , m,, and m, are 
combined by Dempster’s rule to yield m,,,,. In  the  notation 
above, 

(Ra*lC2> @AlC2> mAIC2 = mAl @ mC @ m 2 ) .  
** 

Figure 2 shows the state of the system at this  point. The 
equation  determining  the hidden elements associated with 
each rule is displayed next to  the rule. The  ten visible 
elements  are indicated by the Venn  diagram. 

Continuing  the chaining process, R, fires and m,,,, and 
m, are extended to  the frame based on ( A ,  B, C, D, G) with 99 
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hidden elements are summarized below cach corrcsponding rule. 1 The  Venn  diagram  indicates  the visible elements. 

the  hidden  elements ( IO***) ,  (*110*), and (***lo); there 
are sixteen hidden elements  and sixteen visible elements. 
The beliefs are  combined  to yield mAIC2,. We write 

R 3 :  ( ‘ A l C 2 ,   ‘ A l C 2 9   m A l C 2 )  

+ (‘,*lC23,  ‘A2C233  mAIC23 = mAIC2 @ m 3 ) ’  
** 

If the user does  not supply  evidence on E, then  the system 
will provide the marginal belief mG on  the coarsened frame 
(G). On  the  other  hand,  suppose  the user does supply 
evidence on E. The beliefs represented by mAIC2,, mE, and 
rn4 will be extended to  the  common refinement based on 
(A,  B, C, D, E, G) with hidden  elements ( IO* * **), 
(*110**),(r**1~0),and(****10).Therewillbeatotalof 
40 hidden elements  and 24 visible ones. The beliefs mAlc23, 
mE, and m4 will be combined  to yield mAIC2,E4. That is, 

R4: ( ‘AIC233  @AIC23>  mA1C23) 

** 
( ‘ , * IC23€4~  ‘A IC23E49  mAlC23E4 - mA1C23 @ mE @ m4)’ - 

Finally, the system computes  the marginal belief on  the 
coarsened frame (G). There  are  no  hidden  elements  in this 
final coarsened  frame, and  in general  applications there  are 
no hidden elements  in  the final marginal frame  on  the goal 
nodes. 

Suppose that  an  additional rule is appended  to  the 
previous system: 

R,: A + BC. 

It should be noted  that  there  are  no  hidden  elements for the 
frame 0 = (A, B ) .  If the network  “fans out” in  this manner, 
there  can be no  computational savings. On  the  other  hand, if 
the system instead contains  the  additional rule 

R,: B + E, 

our methods will not work. If the system does  not represent 
a Chow  tree, then we have difficulty interpreting  hidden and 
visible elements. We mention this to  point  out  that if the 
network “fans in,” then  one  must be particularly  careful  in 
applying our scheme. 

There  are two essential aspects of the system we have 
described here. First, we interpret Dempster’s  rule as a 
pooling  mechanism. It is not  an  updating  mechanism such 
as Bayes’ rule. This world view of a belief function is 
essentially static. We  assume  the existence  of an underlying 
universal frame of discernment with all epistemic 
possibilities contained  in  it. We are allowed to  contemplate 
coarser versions of this  frame  and refinements  of  these 
coarsenings, but we are  not allowed to  augment  the frame. 
Dempster’s  rule shifts belief over the different members of 
the power set of the frame. 

rules  define the frame.  However, the rules identify certain 
elements which must be structural zeros in  the expert’s 
opinion. Of  course, the expert may assign general values to 
all the  other elements. The expert’s total belief may be 
decomposed  in an infinite number of possible sums. We 
have  proposed one such decomposition which is tractable to 
compute  and  can be interpreted  in correspondence with the 
expert’s rules. 
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