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Shafer’s theory of evidential reasoning has
recently received much attention as a possible
model for probabilistic reasoning in expert
system applications. This paper discusses the
particular difficulties of implementing Shafer’s
belief functions in the context of the most
common form of expert system, rule-based
systems. The two most important problems are:
the representation of the expert’s subjective
degrees of belief corresponding to his
expressed rules, and the computational
complexity of the inference mechanism for
combining evidence. We argue that a potential
approach for dealing with both problems is given
by introducing constraints on the structure of the
belief functions. These constraints, along with
the expressed rules and the elicited belief
values, form the expert’s total knowledge.

1. Introduction

o Uncertainty in rule-based systems

Rule-based expert systems are collections of production rules
which are linked or “chained” together to simulate a human
expert’s reasoning process. (A production rule is a statement
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of the form “If A then B,” where A and B are logical
propositions.) There is currently a great deal of interest in
introducing uncertainty into the reasoning used in such
production systems.

Probability theory has been used as the basis for
combining numerical measures of uncertainty in several
rule-based expert systems, for example, the SRI system
PROSPECTOR. PROSPECTOR assigned independent
expert-supplied conditional probabilities to propositions (see
[1]). Users were permitted to input independent
unconditional probabilities corresponding to observed
evidence. Bayes’ rule was used to compute the posterior
probabilities.

Certainty factors are an alternative scheme for modeling
uncertainties in rule-based expert systems. (Consider the
MYCIN system for medical diagnosis described in [2].)
Unlike probabilities, certainties are defined by and combined
through an ad hoc set of rules.

These and other methods which attempt to introduce
uncertainty into rule-based expert systems are reviewed more
thoroughly in [3].

We can imagine at least two general methods for
incorporating uncertainty into a rule-based expert system. In
the first of these methods we suppose that an expert’s
opinions are updated by a user’s opinions. We would expect
the expert constructing the system to have a joint probability
distribution on the assignment of truth values to the
propositions which are consequents of all the rules in the
system. This joint probability distribution would be
conditional on the assignment of truth values to those '
propositions in the system which are not consequents of any
rule (the evidence nodes). Also, we would expect the user of
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the system to have a joint probability distribution on the
assignment of truth values to the evidence nodes.
Additionally, we would expect the system to update the
expert’s probability distribution with the user’s probability
distribution and then calculate the marginal (joint)
probability distribution on the assignment of truth values to
the propositions which are not antecedents of any rule (the
goal nodes).

We see a variety of difficulties with this scheme:

1. It is unreasonable to expect anyone, user or expert, to
express a joint probability distribution on the assignment
of truth values to a large collection of propositions. This
is because of
a. The potential size of such a collection.

b. The difficulty that most people have expressing
probabilities even on collections with only one
proposition.

2. There is an inherent asymmetry in the nature and use of
the opinions supplied by the expert and the user. The
user’s opinion is used to update the expert’s.

3. The amount of calculation required is so large as to
prohibit implementation for systems with as few as fifty
propositions.

In the second of the two general methods of incorporating
uncertainty into a rule-based expert system, we suppose that
a user’s opinions are pooled with an expert’s opinions. We
expect the expert constructing the system to express
uncertainty about the assignment of truth values to all the
propositions in the system. Equally, we expect the user to
express uncertainty about the assignment of truth values to
all the propositions in the system. The expert and the user
each express their uncertainty by a decomposition of their
respective universal belief function; pieces of the
decomposition are attached to the rules by the expert and
are attached to the evidence nodes by the user. We use belief
functions as a particular measure of uncertainty because of
their intuitive appeal, but this general scheme allows the
possibility of other measures.

This scheme overcomes some of the difficulties of the first
scheme:

1. Neither expert nor user must express a “joint” opinion
over the truth values of all the propositions in the system
but must only express that portion of the opinion which
is associated with a particular rule or evidence node.

2. The opinions of both expert and user are presumed to be
subjective and are treated symmetrically. In particular,
the roles of expert and user may be interchanged without
affecting the result.

This paper is an attempt to use the belief functions
described in [4] to overcome the difficulties of the first
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scheme and to achieve the goals of the second scheme.
Current applications of Shafer’s belief functions to rule-
based expert systems face at least two major obstacles. First,
in typical applications the set of epistemic possibilities
termed the frame of discernment has previously been
restricted to a mutually exclusive collection of propositions.
This implies a fairly simple rule structure for the
corresponding system. Second, there does not exist a
standard methodology for attaching an expert’s beliefs to the
rules. Consequently, previous applications of belief functions
to rule-based systems have been ad hoc.

This paper studies the consequences of the most common
frames, that is, those with some mutually supporting
propositions. We believe that it is more natural to base a
frame of discernment on the expert-supplied rules associated
with such mutually supporting propositions and that frames
which are based on mutually exclusive propositions are
artificially simple. We investigate how belief functions might
be applied to mutually supporting propositions and give an
example which demonstrates the construction of such a rule-
based frame.

The frame of discernment is the critical element in the
elicitation process. Rule-based expert systems imply
“hidden” structures in the set of all possible subsets of
propositions. Therefore, the expert only need express his
degree of belief over the “visible” elements of the set of
subsets. This can result in important computational savings
(compared with the set of all possible subsets). This paper
also demonstrates a decomposition of belief functions which
allows a user, at the time of consultation with the system, to
express his beliefs over the frame of discernment, which are
then combined with the expert’s expressed beliefs associated
with the rules.

o Belief functions in production systems
Let © be a set of mutually exclusive and exhaustive
propositions about a problem domain. The set © is called the
Sframe of discernment. Let 2° be the set of all subsets of ©;
elements of 2° may be interpreted as general propositions in
the problem domain.

A belief function Bel(-) is a function from 2° into {0, 1]
which satisfies

Bel(@) = 0,
Bel®) =1,
and

Bel (LnJ S,) z )

=1 Icl1,---,n]

(=1)"""*'Bel (ﬂ S,.),

1=

where || is the cardinality of the index set I. A basic
probability assignment m(-) is a function from 2° into (0, 1],
which satisfies
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m(D) =0,
Y m(S)=1.
Sce

There is a one-to-one correspondence between belief
functions and basic probability assignments given by

Bel(S) = ¥ m(T) for SCO,
Tcs

and

mS) =Y ()" Bel(T) forScCe.
s

The correspondence is easily seen by substituting one
equation into the other in either order. Dempster’s rule for
combining two belief functions is most easily given in terms
of the corresponding basic probability assignments. Let m,
and m, be two basic probability assignments on the same
frame, ©. Dempster’s rule defines their orthogonal sum

m,, = m, ® m, by

m (@) =0

and

mA)=K ¥ m(Sm(T) ford+#aQ,
SNT=A4

where

K'= 3 m(S)mT).

SNT#Z

The belief function m,, contains the combined evidence of
m, and m,.

Our proposed method addresses some of the difficulties of
the first scheme described in the section “Uncertainty in
rule-based systems” as follows. First, we substitute Shafer’s
belief functions for probabilities. This has several immediate
advantages:

1. An expert or user who finds it difficult to express opinions
in probabilities can more easily express opinions with
belief functions.

2. An expert or user who is unable (or unwilling) to use
general belief functions can always use the special belief
function which corresponds to “I don’t know” (or “I
won’t tell”).

3. An expert or user who wishes to use probabilities to
express an opinion has that option available, since
probabilities are a special case of belief functions.

The basic probability assignment corresponding to the
special belief function which expresses total ignorance has

m(S)=0 for S#6
and
m(0) = 1.
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The basic probability assignment corresponding to a
probability distribution has

m(S)=0 for SE 0.

Second, we allow the expert to express his opinion through
partial beliefs attached to each individual rule, rather than
requiring a joint belief in the assignment of truth values to
all the propositions. While this appears to be an assumption
of independence, we argue in the section “Dependence and
its implications for elicitation” that, in fact, there can still be
strong dependence in the expert-supplied beliefs.

Third, to reduce the amount of computation involved, we
eliminate from consideration certain possible assignments of
truth values to the propositions; our choice of which
assignments to eliminate is dictated by the expert-supplied
rules.

We imagine that the expert has a joint belief function on
the assignment of truth values to all the propositions in the
system but only expresses an opinion as partial belief
functions associated with individual rules. We also imagine
that the user has a joint belief function on the assignment of
truth values to all the propositions in the system but only
expresses an opinion as partial belief functions associated
with individual evidence nodes.

The system operates by chaining using Dempster’s rule of
combination as follows. As a rule is “fired,” the current
frame of discernment is refined to include the proposition(s)
implied by the rule. The belief function is extended to the
refined frame and combined with the expert-supplied belief
attached to the rule (after it has also been extended to the
same refined frame). Because of the commutativity of
Dempster’s rule, this process can be initiated with the user’s
belief associated with a single evidence node or with the
expert’s belief associated with an individual rule.

We emphasize that each person has a single universal
belief function and that a partial belief attached to a rule or a
node represents part of only one possible decomposition of
the universal belief. The symmetry inherent in the
combination rule suggests that the structure of both user and
expert beliefs should be the same.

The computational burden is the most significant
drawback to the use of belief functions in production
systems. If we have a collection of m general propositions,
then there are 2™ mutually exclusive possible propositions
within the system. Direct application of Shafer’s theory
requires that we consider the set of all subsets of this frame
of discernment, a collection of 2> general propositions.
Obviously, any reduction in the size of the exponent 2" is
highly desirable. Barnett [5] has studied this problem; by
breaking the frame into independent partitions (a very strong
assumption), Barnett reduces the computational complexity
from exponential to linear. Here, we are interested in
retaining the more natural possibility of dependence among
the propositions in the system. 95
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2. Mutually supporting propositions and rule-
implied structure

e Disjoint partitions
Shafer’s basic theory, presented in [4], requires that the
frame of discernment (i.e., the set of possibilities) be
composed of mutually exclusive propositions. This means
that only one proposition can be true. In nearly all real
situations, the propositions of concern are not mutually -
exclusive, and consequently direct application of Shafer’s
theory is impossible.

Let Q be a set of mutually supporting propositions; that is,
suppose that

Q={P, P, .- ,P,

By mutually supporting we merely mean that any
assignment of truth values to the propositions is possible.

Let 2" be a list of all the possible assignments of truth
values to the elements of Q. To simplify what follows, we use
the symbol 1 to stand for true, the symbol 0 to stand for
Jalse, and the symbol # to stand for unspecified. By using this
notation any assighment can be written as a string of n
symbols; for example, in a system Q with four propositions,
the string (*1+x) would indicate that P, is true and (+0=+)
would indicate that P, is false. As a more general example,
(110x) would indicate that P, is true and P, is true and P, is
faise. Our standard interpretation of a completely specified
string such as (1100) is the logical and of its components;
that is, P, is true and P, is true and P, is false and P, is false.
Our standard interpretation of a string such as (110+) is that
it represents the string (1100) or the string (1101).

Now, let £ be a set of rules; that is, suppose that

r= tRl,Rz, ’Rm}’
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where R, is of the form P, — P,. As an example, suppose we
consider # = {R,}, where R, is P, — P,. We interpret this to
mean that whenever P, 1s true, then P, must be true.
Consequently, for any , we have that in the presence of £,
the element (10+ - .. +) cannot occur. We write (11% -.. «)
= (1*+ - .- +). We could equivalently write the dual
equation (00« - .- x) = (x0+ ... x)_ This is simply a
shorthand for the rule R, : P, — P, and means that for every
belief function defined on 2° the corresponding basic
probability assignment m(-) assigns the value zero to
(10% ... »). Remembering that (10= - - . =) stands for a list
of strings, we see that the rule R, has hidden 2" elements of
2°. We use the term hidden to indicate that conceptually the
elements are present, but because every belief function
assigns them a basic probability number of zero, they do not
enter into any calculations. In practice, then, we take our list
of propositions 2" and use our list of rules £ to determine
which elements of 2° remain visible.

To clarify the ideas we consider a production system based
on the following six propositions:

Sleet is falling outside.

Harvey has mud on his shoes.

The door is unlocked.

Harvey’s footprints are in the house.
Harvey’s coat is in the house.
Harvey is in the house.

Qo wm
Il

We suppose also that the expert-supplied rules are the
following; the associated list of hidden elements is given with
each rule.

R: A—B (10%x2),
R,: B&C—oD  (x110xx),
R,: DG (xxx120),
R;: E—G (xx5+10).

Figure 1 gives a schematic representation of these rules in
the form of an AND/OR tree. We refer to this example in
Section 3.

e Naive approaches to selection of belief functions

There are several possible forms of belief functions which an
expert might attach to a rule, and there are several possible
forms of a belief function which a user might attach to
evidence. In this section, we consider some of the possible
forms of each in the context of a trivial system.

Let © = {4, B}, and let ¥ = {R}, where the rule Ris 4 —
B. One approach to selecting a belief function to attach to R
would argue that the only situation that is important occurs
when A is true and the rule R is correct. This leads to a
choice of the form
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m1‘<11>’=p]’
ml‘@}= l _pp

which can be interpreted as a belief p, that the proposition
AandB is true. A value of 1 — p, is assigned to © to reflect
the uncommitted belief,

One possible approach to selecting a belief function to
reflect evidence on A might choose

m, (1)} = p,,
mAI{G)} =1-p,.

This could be interpreted as a belief p, that the A is true and
a belief 1 — p, that is uncommitted. Applying Dempster’s
rule and letting Bel, | = Bel, ® Bel,, we find

Bel, ,1(x0)} = 0,

Bel, {(+1)} = py,

and Bel " is zero for all other propositions except (**). We
interpret the proposition (1) as “B is true,” and this
proposition has belief p,, which does nor depend on the
strength p, of our evidence on A. No matter what our belief
on A, the belief on B is the same. It appears then that at least
one of the two choices Bel, or Bel, is not sufficiently
general.

A different approach to selecting a belief to attach to the
rule R corresponds to a logical interpretation of the rule. If
the rule is correct, then any of the states (00), (O1), or (11)
is possible and the state (10) is impossible. This leads to the
choice

m,{(00) or (O1) or (11)} = p,,
m,{0} =1—p,.

This can be interpreted as a belief p, that the rule is correct
and a belief 1 — p, that is uncommitted. Combination of this
belief with the belief function m, given above to express
evidence on A yields Bel, , = Bel, & Bel,,

Bel, ,(+0)} = 0,
Be{,q,z‘(*l” = D40y,

and Bel, , is zero for all other propositions except (+*). In
this case, the proposition “B is true” has a belief which does
depend on p,. However, because of the structure of m, , the
additional evidence can only reduce the initial belief in B.
We again conclude that one of the two choices m, or m, has
a structure which is too limited to generate the kind of
behavior we seek. In the next section we suggest that, in fact,
all of Bel,, Bel,, and Bel, are too limited.

Our goal is to choose a structure for both rule beliefs and
user beliefs which will allow belief to shift from one set to
another as additional evidence is pooled.

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

o Attaching beliefs to rules

The forms of the belief functions considered in the previous
section are limited in their ability to represent expert
information about the rules and user information about the
evidence. We prefer the following form for expert-supplied

opinions:
m3{<ll>} =D,
m:;l(o*)} ={q;,

mzt@} =1- (pg + qa)

This is related to the conditional interpretation of the rule R.
We assign belief p, to the proposition AandB and belief ¢, to
the proposition notA.

We first note that because the element (10) is hidden, as
discussed in Section 2, we assign zero belief to it. We
interpret the value of p, as expressing the strength of the
necessity of the rule R. Similarly, we interpret g, as
expressing the strength of the sufficiency of the rule. We also
note that m, is a special case of m, letting g; = 0.
Additionally, m, can be thought of as a generalization of m,,
taking the belief p, and splitting it into the two components
pyand gq;.

Letting Bel, , = Bel, © Bel,, we get

Bel, ,{(x0)} = 0,

Bé’lAl3{(*l)} = p,/(1 — g,p,),

and Bel 413 is zero for all other propositions except (*+). In
this case, the proposition “B is true” has a belief which also
does depend on p,, but the belief can only increase with the
additional evidence introduced by p,. A more general
structure for m,, is necessary in order to permit the pooling
of both confirmatory and disconfirmatory evidence. We
prefer to let the evidence on 4 be represented by a belief
function that has structure identical to m,. In this way, both
user and expert opinions are treated symmetrically through
Dempster’s rule. We choose m,, as follows:

m (L)} =p,,
m, {(0=)} = q,,
m,qzl(')} =1- (pA + qA)

One should note that m ,, contains evidence about the
consequent B. This may give rise to the legitimate concern
that the user must somehow have knowledge of the
likelihood of B given 4. While this is a natural consequence
of m ,,» We note that the user may declare his ignorance by
choosing p, and ¢, small.

In our view each user (and expert) has a single universal
belief function over all the propositions in the system. We
cannot expect this universal belief to be expressed but can
rather expect expression of a partial belief function attached
to a small number of closely related propositions. This
partial belief is part of a (nonunique) decomposition of the 97

WILLIAM F. EDDY AND GABRIEL P. PEI




larger universal belief function. All belief functions
(including m, ) are already defined over the frame which
implicitly includes the proposition B. The belief function
m,, merely makes this explicit.

So that the evidence contained in m,, can be combined
with that contained in m,, it is necessary that

k=pg,+aqp, <l

This simply measures the weight of conflict between the two
beliefs. The weight of conflict can be determined during the
chaining process.

Combination of the expert-supplied belief 72, with the
user-supplied belief function m,, given above yields Bel, , =
Bel, ® Bel,:

Bel,,{(+0)} = 0,
Bel,,{(0n)} = 1 = (1 = g, X1 — g)/(1 = k),
Belyy{(s 1)} = 1= (1 = p,)X1 = p)/(1 = k),

and Bel 13 is zero for all other propositions except (##). It
can be shown that Be/ 13 has the desired property; i.e.,
Bel,,;{(+1)] will increase or decrease from Bel,{{=1)}
depending on the ratio p/q,,.

3. Refinement of frames and extension of
beliefs

e Refinement, extension, and compatibility
Let

Q ={P,P,, .-+, P}

be a collection of mutually supporting propositions, and let
0, be the frame of discernment related to Q, through the rule
base ¥ by the construction described in Section 2. Let

QZ={P19P2’ "'aPnaP,,H}:

include the additional proposition P,,,, and let ©, be the
related frame. Then O, is a coarsening of ©,, and 0, is a
refinement of ©,. Now let p, be the truth value of P;; that is,
let

1 if P, is true,

p,=< 0 if P, is false,

+ if P, is undetermined.

If we have a basic probability assignment m(-) on 2, then
the minimal extension, mg, of m to 2% s given by

mE(<p| M p,,*)) = m((pl M P,,))

Obviously, m is a marginal basic probability assignment of
mg.

More generally, Shafer defines an extension when there is
a compatibility relationship r between two frames 0, = {S}
and @, = [T} as follows:
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Bel(4) = K Bel{S;|S; v T, and T, € 4} for4 CO,,
where
K'= 3  msS)

SrTjand Tjce,

It should be noted that minimal extension and marginal are
not exact dual operations. The extension of the margin of a
belief function is not necessarily equal to the original belief
function. Nevertheless, the margin of the extension of a
belief function is always exactly equal to the original belief
function.

e Dependence and its implications for elicitation
The Dempster combination mechanism applies when two
independent bodies of evidence over a frame are combined.
It is important to notice that this is not necessarily an
assumption of statistical independence if the combined
beliefs are extended to a different but compatible frame of
reference.

Following an example of Shafer [7], we suppose there is a
frame O, = (4, B) and an assignment of belief

m((10)) = py,,
m(11)}) = p,,,
m((00)} = Py,
m((01)) = py,.

Now suppose we are told that an event X, which is
impossible if the true state is (11), occurs. Then our revised
assignment of belief (conditional on X) becomes

m({11)) = 0,

m((10)} = pyo/(P1o + Doy + Poo)s
m((01)) = p,/(Pro + Do1 + Poo),
m({00)) = Poo/(D1o + Poy + Poo)-

Finally, suppose that 8, is a compatible frame which
concerns the event X; in the notation of Section 3, 0, r 9,,
so that

m((11)) = m,(D),

m,((10)) = my(X),

m((01)) = my(Not X),

m ((00)) = m,(Either X or not X).

It can be shown that there are an infinite number of
probability assignments m, and m,, so that we can write
mz = m* @ ms*

and m, over 0, is compatible with m, over ©,.
This provides a basis for eliciting expert opinions. Suppose
we wish to obtain a consensus opinion m, over 0, from a
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pair of experts. We assume that one expert has an opinion
over the frame 0, and the other has an opinion over a
compatible frame 0, , which is more complicated because
this expert has observed an event X. We assume that it is
possible to compute certain elements for the frame 0, given
the event X; for example, we suppose that it is possible to
compute m,({10)) in the example. We elicit an opinion m,
from the first expert. Then we elicit the opinion m,, with
respect to the frame @, from the second expert who has
observed the event X. We then compute m, = m, ® m, ,
and compare the compatible elements from 0, with those
“computable” elements of ©,. This provides a check on the
internal consistency of the experts.

We should also point out that the particular form of belief
m, that we have chosen in Section 2 to represent the expert-
supplied opinion allows a particularly simple method of
elicitation. We merely ask the expert to supply r, the ratio of
belief that the rule is correct to belief that the rule is
incorrect. We also need to know u, the expert’s total amount
of uncertainty. Then the system can solve the two
simultaneous equations to determine

py=r(l —w)/(1 +7)
and

g =00 —-uw/l+r).

o Chaining of beliefs

The basic mechanisms for propagating beliefs through a
system are extension of the belief function to the refined
frame and Dempster’s rule of combination. In summary, as
each rule is fired two events occur:

1. The current frame is refined, the visible elements are
identified (remembering that the rule base has increased),
and the current belief is extended to the visible elements.

2. Dempster’s rule is used to combine the extension of the
current belief with the extension of the expert-supplied
belief attached to the rule.

Let Q be a collection of propositions, and let ® = 2" be the
corresponding frame of discernment prior to the firing of a
rule. We further assume that every rule exists as a
conjunctive normal form. That is,

R=(P, A--- AP )—P.

If a possible rule has a disjunctive antecedent, we merely
split the rule into two or more rules with single (or possibly
conjunctive) antecedents and the same consequent. If a
possible rule has a conjunctive consequent, we merely split
the rule into two or more rules with single (or possibly
disjunctive) consequents and the same antecedent. We note
that this assumption implies that the underlying graph is a
Chow tree [8]. A Chow tree is a directed (and connected)
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graph with the property that there are no cycles in the
corresponding undirected graph.
Suppose the rule R is fired. Let

Q*=QUP U...UP, UP,,

and let @* be the corresponding frame. The rule R
determines a list of hidden elements according to the
method described in Section 2 and hence a reduced frame of
visible elements ©**. Before the firing of the rule R, current
beliefs are represented by the basic probability assignment m
on 0. We construct the minimal extension of m to * and
the margin of this extension on ©**, In each case we denote
the basic probability assignment m. This should engender no
confusion since the same beliefs are represented by m in
each case; the beliefs are referred to different frames. Finally,
let m,, stand for the basic probability assignment attached to
the rule R. The effect of R can be written as

R: (2,0, m) — (Q*, 0%, m @ my,).

This notation is intended to describe the refinement and
subsequent coarsening of the frame implied by the rule R
and the simultaneous updating (by Dempster’s rule) of m to
the combination of m and m.

Recall now the example introduced in Section 2. First, we
note that the four rules do in fact form a Chow tree as
depicted in Fig. 1 using standard AND/OR notation. To
begin the actual propagation of evidence through the
network in the example, suppose the user supplies evidence
on A. Then R, fires and the beliefs represented by m, are
extended to the smallest common refinement with the
expert-supplied belief m7, attached to the rule, namely the
frame (A4, B). Next, the frame is coarsened because of the
one hidden element described by (10). Then m, and m, are
combined to get m,,. In the notation of the previous
paragraph,

R,: (9,0, m,) — (25,05, m, =m, ®&m,.

Suppose now the user supplies evidence on C; then R,
fires. The beliefs represented by m,, and m,. are extended to
their smallest common refinement with the expert-supplied
belief m, attached to the rule, namely (4, B, C, D) with the
hidden elements (10=+) and (+110); there are six hidden
elements and ten visible. All three of m,,,, m_, and m, are
combined by Dempster’s rule to yield m,,,. In the notation
above,

Ry (R, 0,,my,)
nd (lecz’ Gjrcz’ My = My & me & m,).

Figure 2 shows the state of the system at this point. The
equation determining the hidden elements associated with
each rule is displayed next to the rule. The ten visible
elements are indicated by the Venn diagram.
Continuing the chaining process, R, fires and m,, -, and
m, are extended to the frame based on (4, B, C, D, G) with 99
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Rule 3. . .

IF.0) THEN(G)

Rue2 . ¢
IF (ANDHE ©)) THEN(D)]
Broep

GLLrm=(e 0L,

i
i
g hidden elements are summarized below each corresponding rule.

The Venn diagram indicates the visiblc elements.

b

the hidden elements (10=xx), (x110=), and (*x=10); there
are sixteen hidden elements and sixteen visible elements.
The beliefs are combined to yield m,,.,,. We write

R3: (QA1C29 OAICZ’ mAlCZ)
- (Q:wzs, @:;cza» Myicon = My, ® my).

If the user does not supply evidence on E, then the system
will provide the marginal belief 7, on the coarsened frame
(G). On the other hand, suppose the user does supply
evidence on E. The beliefs represented by m,,,,, m;, and
m, will be extended to the common refinement based on
(4, B, C, D, E, G) with hidden elements (10«#»x),
(*110%*), (x+x1+0), and (***%10). There will be a total of
40 hidden elements and 24 visible ones. The beliefs m ,, .,,,
my, and m, will be combined to yield »1,,,,,. That is,

R4: (QAIC23’ 0A1C23’ mAlCZJ)
* ok
= (i3m0 Ouicazses Marcases = Myicas ® My © my).
Finally, the system computes the marginal belief on the
coarsened frame (G). There are no hidden elements in this
final coarsened frame, and in general applications there are
no hidden elements in the final marginal frame on the goal
nodes.
Suppose that an additional rule is appended to the
previous system:

Ry: A — B

It should be noted that there are no hidden elements for the
frame © = (4, B). If the network “fans out” in this manner,
there can be no computational savings. On the other hand, if
the system instead contains the additional rule

WILLIAM F. EDDY AND GABRIEL P. PEI

R,: B E,

our methods will not work. If the system does not represent
a Chow tree, then we have difficulty interpreting hidden and
visible elements. We mention this to point out that if the
network “fans in,” then one must be particularly careful in
applying our scheme.

There are two essential aspects of the system we have
described here. First, we interpret Dempster’s rule as a
pooling mechanism. It is not an updating mechanism such
as Bayes’ rule. This world view of a belief function is
essentially static. We assume the existence of an underlying
universal frame of discernment with all epistemic
possibilities contained in it. We are allowed to contemplate
coarser versions of this frame and refinements of these
coarsenings, but we are not allowed to augment the frame.
Dempster’s rule shifts belief over the different members of
the power set of the frame.

Second, we believe that the propositions contained in the
rules define the frame. However, the rules identify certain
elements which must be structural zeros in the expert’s
opinion. Of course, the expert may assign general values to
all the other elements. The expert’s total belief may be
decomposed in an infinite number of possible sums. We
have proposed one such decomposition which is tractable to
compute and can be interpreted in correspondence with the
expert’s rules.
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