80

Storing and
evaluating
Horn-clause rules
In a relational
database

by Ghica van Emde Boas
Peter van Emde Boas

This paper describes a practical approach to
storing and evaluating Horn-clause rules in a
relational database system. The intention is to
give a complete outline of what needs to be
added to an existing relational database system
to allow it to support full logic programming
functions. Implementation issues for each new
function are discussed. We show how Horn-
clause rules can be translated into database
commands without recourse to semantics and
how their evaluation can be performed in the
database itself. This brings the complete logic
programming environment within reach of the
database management system, allowing data
and rule sharing, concurrency control, recovery
procedures, etc., to be used. New is that the
complete logic programming environment is
incorporated into the database system. IBM
Business System 12, extended in this way, may
be a suitable vehicle for expert system
applications.

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

GHICA van EMDE BOAS AND PETER van EMDE BOAS

Introduction

As the art of building expert systems matures, more
sophisticated tools to hold their knowledge base and better
means to reason with this knowledge will be required. Large-
scale, multi-user expert systems will benefit from
functionality which has been until now almost exclusively
the domain of database systems. This includes the primary
database functions, such as storing large amounts of data
and optimizing relational queries. Also, secondary database
functions will be necessary: data sharing, data integrity,
authorization control, concurrency control, and

backup and recovery procedures. Most of these are not
visible in a single-user environment but are indispensable
for proper functioning of a database in a multi-user
environment.

Considerable effort is being directed towards designing a
system incorporating both logic programming functions to
provide the inferencing capabilities for an expert system and
the traditional database functions to be used for its
knowledge base. As a short-term goal, a simple interface
could be made available between Prolog and an existing
relational database system providing tuple-at-a-time access.
Such interfaces have been built. The main problem with
them is that the query and optimization facilities of the
database cannot be fully exploited.

Research aimed at using a database intelligently from a
foreground (Prolog) interface was conducted by Chang [1],
by Reiter [2], and more recently by Maier [3], Naqvi [4],
Jarke et al. [5], Ullman [6], and Vassiliou et al. [7]. Their

1BM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

purpose was to find preprocessing techniques for Prolog or
other logic programs and translate them into database
programs involving selects, projects, and sometimes joins.
This approach then led to the problem of dealing with
recursive Prolog rules, which goes beyond the relational
database framework. See Chang (8], Nagvi and Henschen
[9], and more recently Ullman [6], and also the
interpretative approach in Walker [10, 11},

Much of the work reported in these papers has goals
similar to ours. However, a disadvantage of the preprocessor
approach is that, as long as data and rules are kept and
managed at the preprocessor side, the system must be
regarded as a distributed system, requiring that secondary
database facilities be implemented at both sides.

Another issue is that in Prolog the capability exists of
using structured or composite objects. Incorporating these
into a relational database requires extending its functionality.
Lorie and Plouffe [12], Zaniolo [13], and Tsur and Zaniolo
[14] did similar work. However, their extensions seem not to
have been considered with the intent of supporting logic
programming functions.

What we describe in this paper is a new approach to
adapting a relational database so as to allow it to perform
logic programming functions. Rather than building database
facilities into a Prolog environment, a Prolog environment is
constructed, starting with an existing database system. In this
regard our architecture resembles the approach of [14],
where a high-level database system is implemented around
an existing system.

Our work combines many of the ideas reported in the
references cited above, giving an integrated picture of the
functional extensions needed to provide a database with
logic programming capabilities. Moreover, we introduce a
new method for handling recursion within the database.

Our approach has several advantages: Duplication of the
huge effort involved in developing the secondary database
functions is avoided. Since rules are also stored in the
database, rule sharing is now possible. All data, including
rules, also become subject to concurrency control and
recovery procedures. And global optimization of queries is
feasible, including recursive ones, taking into account
knowledge which only the database itself can have, such as
table sizes, usage statistics, location of data, etc. In short, the
full power of the database management system becomes
available in the logic programming environment.

The project described in this paper originated from the
observation that the backtracking performed by a Prolog
interpreter when calculating the conjunction of two or more
predicates is equivalent to a rather inefficient method of
computing a join of two or more relations, at least in the
simple situations used for explaining this mechanism in
introductory texts such as [15]. Clearly, this observation is
not new. The connection between logic programming and

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

relational algebra is made self-evident when relational
databases are discussed from a purely algebraic perspective,
such as the cylindric algebras described in [16]. It is precisely
this connection on which the compiled approach in [1] and
[2] is based. See also the survey in [17].

There is also a point which some may consider a
disadvantage: Due to the architecture of most relational
systems, in which the order of result rows from a query is
not predefined and is very much dependent on the
optimization method chosen for that query by the database
system, flow of control through the use of cut cannot be
implemented in the same way as in conventional Prolog.

As a vehicle for our extensions, we use IBM Business
System 12. Assuming that this system is not well known
outside Europe, we briefly describe available functions when
needed. Reference to possible future enhancements of IBM
Business System 12 must not be construed to mean that
IBM intends to implement these enhancements. The ideas
presented here are entirely the responsibility of the authors
and reflect their personal opinions.

Business System 12 and the relational model
Business System 12 is a new relational database information
system offered by IBM Information Network Services to
time-sharing users, mainly within Europe.

The main design philosophy behind the Business System
12 implementation is that the system be suitable for a time-
sharing environment. High emphasis is given to data
security, data sharing control, database integrity, recovery,
etc., as well as to the need to prevent users from disturbing
each other’s operations by, for example, locking important
resources. This is necessary because customers using the
same database could be competitors.

Business System 12 is a full relational database
management system, as specified by Codd in [18]. This
implies that in Business System 12 we deal with objects such
as relations, tuples, attributes, and domains. There are 12
relational operators, which include the usual select, project,
and join; further, we need union and calculate.

First we introduce the syntax used in our paper. Next, we
describe briefly the Business System 12 relational query
evaluation function, with emphasis on and restriction to
what we need for our logic programming extension. A more
comprehensive description of this syntax and of the
relational operators can be found in [19]. More information
about Business System 12 itself is available in [20]. Our
syntax is different from the actual Business System 12
syntax, but it allows for a concise description. The semantics
remains unaffected by this change of notation.

A set of values. The user can specify

subsets of an underlying data type which

can be character, numeric, name, bit, or

timestamp. 81

domain

GHICA van EMDE BOAS AND PETER van EMDE BOAS

82

attribute A. A named domain.

tuple u. A set of attribute values (ul,u2,. - -, uk)

such that ui is in 4i. We denote a tuple

by [A1:ul,. .-, An: un).

r. A set of tuples of identical type. We

denote a relation together with its set of

attributes as r{A41,. - -,An}, where

Al,- .., An are the names of the attributes.

The set of attributes is denoted as R(r).

common attribute A common attribute of two relations r
and s is an attribute which belongs to
both R(r) and R(s).

relation

Project PR (r,Y) is the restriction of the relation r
to the attributes in Y, where Y is a subset
of R(r).

Select SL (r,F) is the set of tuples u of r for

which F evaluates to true. The expression
F has the attributes of r as arguments.
Union The union r UN s is the set of tuples
which are in r or s or both, projected to
their set of common attributes.
Join The join operator JN defined in Business
System 12 is generally known as the
natural join. Tuples from r are combined
with tuples from s to form a tuple over
the set of attributes R(r) U R(s) if their
values are equal for all common
attributes of and s.
The calculate operator CL(r,. X « F) adds
a new attribute X to r. For each tuple in r
the value of X is obtained by evaluation
of the expression F.
table The instantiated form of a relation. It is
stored in the database. Attributes and
tuples for tables are sometimes called
columns and rows.
The rename operator in Business System
12 is actually implemented as part of
project. RN(r,A1/A4) changes the name of
attribute 4 in rto A1.

Calculate

rename

Frequently we encounter expressions in which there is a
combination of rename and project; some attributes are
renamed while others are projected away. In these cases we
use a shorter notation which is best explained by an
example: Let r be a relation with attributes R(r) = {4,B,C,Dj.
Then we write PR(RN(r,A1/4,C1/C), {A1,B,C1}) as
r{A1/A,B,C1/C}.

o Views

In the relational model it is evident that the result of a
relational operation on relation(s) is again a relation. In
database terminology this result is called a view, and the
expression which led to this result is called a relational
expression or a view definition.

GHICA van EMDE BOAS AND PETER van EMDE BOAS

Many relational DBMSs have facilities to store view
definitions and allow some usage of view names as if they
were table names. In Business System 12, this is also
possible. View definitions are stored in data tables of a
special type. This allows for easy updating or changing of
view definitions, and with some additions {views can also be
shared for execution only, for example), the same
mechanism is used to control sharing and authorization as
for ordinary data tables.

This raises an important performance question. As we will
see, Horn-clause rules are stored as view definitions in
Business System 12. Such rules can be very dynamic, and
many different rules may exist. Therefore, it must be
possible to quickly add, delete, or change view definitions
without impacting other users. This can indeed be done in
Business System 12, because view definitions are stored in
tables, not in the catalog. Further, a global catalog does not
exist; rather, there is a separate one for each user. When a
user asks for access to a table or view owned by another
user, the database management system 1ooks in the catalog
of the owner to determine whether the requested type of
access is authorized and where the table can be found. By
using historical versions, the database management system is
even able to see the latest consistent data while the owner is
updating his catalog through adding or deleting tables.

In some relational database systems {we refer to DB2 by
way of example; see [21]), rule-to-view translation would be
more difficult due to more restrictive view handling. In DB2
view definitions are not allowed to contain unions. But the
capability of forming unions is essential for our translation
of Prolog rules into view definitions. Also, in DB2 the
catalog is global, and special authority is needed to define or
delete new database objects, leading to the performance
bottleneck mentioned above.

o A database example

The example in Figure 1 is intended to show what a view
definition would look like in a simple case and how one
definition could be used in another. Later, a second objective
will become clear: It will be seen how close these “pure”
database queries are to logic programming queries. The
example involves family relations in a traditional Dutch
environment (see [22]). We define three relations, person,
children, and marriage, stored as tables in the database.
Further, some “rules” are defined using view definitions,
indicating who the females are in this small world, and who
is a sister, a parent, or an aunt.

o Compiling, optimizing, and executing queries

To be able to discuss implementation issues later, we need
some knowledge of the query execution process in Business
System 12. We use the above example to illustrate it.
Suppose we would like to know who the aunts of 'ruud' are.
This query can be written as

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

SL(aunt, N="ruud')

The Business System 12 relational compiler finds that aunt is
the name of a view definition and substitutes for aunt the
relational expression it represents. This relational expression
contains new view names, in our case sister and parent.
These are also substituted until only the names of base
relations remain.

At the same time the compiler forms an access tree for the
query. The root of the tree represents the query result, the
nodes are the relational operations, and the leaves represent
the base relations, stored as tables in the database. For our
example the tree would look as shown in Figure 2.

The result of a query is formed by so-called “pipelined”
execution. The root node starts asking for rows from its
subsidiaries; these next nodes do the same until the leaf
nodes are reached, and respond by sending the rows up.
Each parent node performs its designated operations, such as
matching rows when it is a join node. Rows not needed in
the result are discarded on their way up. The actual rows are
not formed at intermediate nodes; the complete row may
not even be in storage yet. Only (parts of) rows which appear
at the top are put in the appropriate data buffers and sent
across the interface to the requestor. This is a general
description of tree execution. In practice, there may be
intermediate results due to optimization, sorting, etc.

The access tree is optimized by Business System 12 both
locally and globally. Locally it might be done, for example,
by deciding to use an index or a spool file to hold an
intermediate result; globally, by changing the shape of the
tree. This is very important when there is a select somewhere
in the tree. By moving the select down in the tree as far as
possible, the number of rows moving up during execution
can sometimes be limited tremendously. In the case of our
example, the select on qunt is moved down to the children
tables at the right-hand side of the tree. The paper by Blaauw
et al. [19] contains a description of optimization
methodology which transforms access trees into the most
cost-effective ones. Part of this method is implemented in
Business System 12.

Logic programming in Business System 12
We consider logic programs consisting of Horn-clauses:

A:-B1,B2,B3, --. Bn
A:-C1,C2,C3, -.-Cm

A is called a predicate or a goal. The propositions Bi and Cf
are called subgoals. A is considered true if the conjunction of
B1, B2, ... Bnis true or if the conjunction of C1, C2, - -.
Cm is true.

If there are no subgoals (n = 0), the left-hand predicate is
always true. Horn clauses of this shape are called facts. A
fact is a simple fact if it contains no variables as arguments.

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

nmm of persons topeher with thelr sex and birth e : :
nawies of children belonging Yo the same famity, indicated by a famity i in mﬂbma "o
marrkpeHLEALDE & Tamily id, husband and wits togsther with thelr marriage date. (!srmuu 10 wbich

ki “children inahe: pzwadm:ubl&bﬂum
SonsfeiNL - SEiperson, S femole’):

s [AN - i Rt ZINY AN duhlmli}{,ﬂ) JN (SEL porsoniZ) IN femaleI N} o4 2 BN)
parestlENY - { miarriage H B/MY IN ehildren VU NE:) UN [marricge{HLEIEY IN clnkimvfﬂ N}
AN - srerlZY/NY N poremilY/EN)

g Family relation database views.

—

St i roud)
.nm{n,m
B
yiia)
A
i;u.r(z,vm PArEATIYIP N
0% £
LN 2N,
£ anidrantin ey
¥
J‘I ot F LW €N A x

3z
- £ el arenti)N
il(‘,!*'.lﬂ Ertidrent Ny p

LN
i marrtagedH, 8 MY enT 1dranit, Ny
AR TR, m.:rn(ﬂ)

SElparsnn e remale't

Access tree for query: SL(aunt,N="ruud").

For instance, likes(john,mary). is a simple fact. Horn clauses
with an empty goal are called queries.

o Mapping of Horn-clause rules to relational algebra
We proceed now by describing in more detail the process of
translating Horn-clause rules to relational algebra:

& A predicate P maps to a relation r.

o If P has arity # (i.e., n arguments), r has #n attributes.

o Each positional argument of P maps to a distinct attribute
of r (this is possible because all arguments are assumed to
be distinct).

o All rules Di for P map to distinct relations ri.

e ris the union of the /’s.

e A Horn-clause rule which is a simple fact maps to a single
row in a relation. The row contains in its attribute fields
constant values, which are identical to the corresponding
argument values of the simple fact.

e The conjunction of two Horn-clause-rule subgoals maps to
the join of the corresponding relations. Equal variables of
different subgoals map to equal attribute names for the
join.

s A (sub)goal S, with constant arguments, maps to relation
rs obtained as follows: Let r be the relation corresponding
to the predicate associated with S. Then rs is formed from

GHICA van EMDE BOAS AND PETER van EMDE BOAS

83

84

i MM) WMMG)G-m

oersnt pininale 2305 18),

pbrson(ita female 9230323}, . o mfms X B8 gumn(x
perianifiermans. g ale a240687). it or,)mmmm X5

. W(; Anwﬂuunx.,__)nmww)
hitdrendh1 berimam:: "'""\‘A merag X enasenci)

ehidron At angelieX);
enigran(higantie),

marriage(ht, fan NEs g0 !5!} i
marcage 2 hermeny g, maawaXJS)
martagerh3, ohInoes Diighonidiw, dnam 38),

The persons database in Prolog.

Tagte s DRRIRTT O u«(nmlrz i '

LINE[TR

YU RERINE T A mm»&

2FDERINE T SN TR #Mtuumiz 1
b3 fBEFINE A URTORT S, PARENTARZED)

Table & BARENTHESL
LR K2

Tabile RERINITIONG PARENTIR (47 ’)

Cingjreny :
DECINE 41 & PRESENT.Y mmmmmmmt e)a£~
WBREL K2.60L5) REM(K1 ﬁﬂté 3 RGHMH K4

(A e
o:;ms ;\: = mts:m i cmmelu«EW(K :m e
it

DEFmE V3 ok sk n (w.kewﬁt m.s.m ¥ Au)

DEFINE. VA PRESERT (V3 IRENBNEY EOLS 0D TACLY
DEFINE VS, = PRESENT Va1 SRENHEL cm;tm Fisik)
DEFINEVE = J0INL VSN). i

BEFINE. 4 PRESERT(NhLINCLUBE L Ky,lz M

B R e

Table = OEF NITIONT PARENTRAZAZ Y

LiNE
ﬂEF!Nﬁ W RESERT T mutmﬂ#k asmu K tnc& } REY
nw}(KZJLOLS. JURENANEL 1, €0C6 FiRERBREL Koy

?c VW msm 8 cmt.mnkm!lwmu KEy cm.! HRE:
2,6009.1). .

DEFTNE 3 = PRI u ,kemtﬂ £014) m) ALLI

- OEFNE Wk ¥ Mzsm‘(t V2 RENAMEL EOLYKD VALY
PRESENT v; mmnﬁ Eou,cms MLL?
DEFINE V8 ¥ Joml V5 v

§§

e S ey e g T

1 o DERINE S S BRESENTL Ve, mcumtljm.n 18

r by selecting only those rows that contain, in their
corresponding attributes, the corresponding constant
argument values.

A Horn-clause rule P is mapped to a relation r obtained as
follows: Let P consist of head H and subgoal(s) S. Let rs be
the relation corresponding to S. Let ¢ be a relation
consisting of one row, which contains the constant
arguments of H that do not occur in S. Let rc be the
relation formed by taking the Cartesian product of rs and
¢. Then r is formed by presenting only those attributes
from rc that correspond to the arguments of H.

This mapping does not cover /lists, structures, and the Prolog
cut operator. No distinction is made between built-in and
user-defined predicates.

To see how this translation works in practice, we show
in Figure 3 an example similar to one we used earlier to
demonstrate the view definition facilities of Business System

GHICA van EMDE BOAS AND PETER van EMDE BOAS

12 in a Prolog version. The translation of Prolog clauses
to database views is obvious. Note: The Prolog syntax
used in this paper is the Clocksin-Mellish syntax [15].

e The prototype interface

As part of his Master’s thesis work [23], C. F. J. Doedens
implemented a prototype for a logic programming interface
written in PSC Prolog (a Prolog interpreter developed at the
IBM Scientific Center in Paris). The functionality of this
prototype 1s limited, partly because of the restricted scope of
his project, partly because some new functions in Business
System 12 are needed. Since Business System 12 is a
commercial system, it is not possible to add functions to it
just for research purposes.

In the Prolog subset supported by the prototype, it is
possible to define facts and rules and to make queries, but no
flow of control by means of a cut operator is provided. In
fact, the prototype covers the mapping defined above, except
that recursive queries, which are nicely mapped by the
prototype, cannot be executed in Business System 12 in that
form.

In addition to translation of logic programming queries,
the prototype front end offers some user-friendly operational
facilities, such as full-screen presentation of results. It is
possible to use relations which are created outside the logic
programming environment in a query, and it is possible to
access relations made by the prototype through other
Business System 12 interfaces (PL/I, APL, conversational
facilities).

Due to the administrative technicalities involved, such as
ordering and renaming attributes, the mechanical translation
done by the prototype is not so trivial. To give an idea of the
output produced by the prototype, a translation of parent is
printed in Figure 4. We do not explain syntactical details.

Although the prototype interface has limited function, it
gave us sufficient insight to enable us to make a fairly
detailed list of the enhancements needed either in the
prototype or in Business System 12 to arrive at a full logic
programming interface. The next sections are devoted to
describing these enhancements.

Towards a full logic programming interface
Our objective was to have all rules stored and evaluated
inside the database. The preprocessor should remain a
“dumb” syntax translation program which has no knowledge
of semantics. We found, however, that by making the
preprocessor slightly more intelligent, we could use
considerably more of the functions available in Business
System 12, and in that way provide important functions,
such as built-in predicates, recursion, and arbitrary
structures, while still maintaining our main objective. This
enables us to see how logic queries behave in a relational
database and will allow us to build a sizable application in
the future. At a later stage, we can program more

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

understanding of the syntax of logic queries into the
database itself, which will also allow for suitable
optimization.

In the next sections, we describe the proposed
enhancements to the prototype and indicate where changes
to Business System 12 are necessary or profitable.

o Predicates without arguments

A naive understanding of our strategy tells us to translate
facts without arguments into a base relation with one row
and no attributes. An example is true. Such a construct is
not externally available in Business System 12. Therefore, we
add to all data relations a Oth attribute which need be only
one bit wide. The question ?- true. will now indeed give a
valid answer, and also joins with other relations will give the
expected results. An additional advantage is that all relations
now have at least one common column, and since this is
already a requirement for using joins in Business System 12,
it facilitates translation.

e Multiple occurrences of a variable in a predicate

In Prolog it is possible to have multiple occurrences of a
single variable in different positions in a predicate. The join
operator, which enables us to enforce equality of attribute
values named by equal variables that occur in distinct
predicates, cannot be used. However, using a select provides
a suitable alternative (compare [24, Section 5.3]). The only
requirement is that the preprocessor recognize this case.

e Parallelism and flow of conirol

The result of a relational database query is basically a set.
This means that the order in which the tuples appear in the
result relation is not predictable. (Of course, the user is given
the opportunity to sort his rows if he wants to.)

By contrast, in conventional Prolog, solutions to queries
are formed through a sequential search mechanism. Thus,
the order in which predicates, with or without side effects,
are executed is strictly determined. In Prolog there exists an
operator called cut which influences this flow of control.
When a cut is encountered, all choices after the parent goal
is invoked become committed and no further solutions are
attempted; i.c., all variables are assigned their last found
value, and no further backtracking is done. See [15].

Something analogous can be implemented in Business
System 12 by introducing a new relational operator, which
we call the “breakpoint” operator. In database terms the
function of a cut is equivalent to finding the first tuple of a
view as defined by the rule(s) before the cut occurred.
Inserting a breakpoint in the relational compile tree, which
has the effect of realizing an intermediate result, and then
taking the first tuple of this result, provides the required
facility. The difference from the traditional cut is that the
choice of the first row of the solution to a subquery is

IBM). RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

nondeterministic. Also, the use of a breakpoint operator
inside the tree structure of a relational expression allows
greater freedom in locating the commits than is permitted by
the traditional cut operator, which is located in a
sequentially ordered rule. It is possible, for example, to have
two breakpoints located at independent branches in the tree,
whereas two cuts inside a single rule are always related in the
sense that one precedes the other. As a consequence, the
semantics of the breakpoint operator will differ from the
usual sequential interpretation, but could be compared to
the guarded commands of Dijkstra, which are also used in
concurrent Prolog as designed by Shapiro [25].

* Not

In the relational algebra, negation corresponds to
complementation. If a negated clause occurs within a
conjunction with a positive one, the complementation can
be expressed by the relational difference operator, which is
available in Business System 12. If a negated clause occurs in
isolation, its meaning denotes complementation with respect
to the universe, which leads to a possibly infinite relation.
Since this form of complementation is not available in
Business System 12, we do not support this type of negation,
unless the complementation is restricted to a finite domain
or the negated predicate has a positive equivalent by
definition. For example, predicates expressing (in)equalities
of arithmetic values can be negated.

It is likely that an implementation based on the difference
operator in some circumstances will behave differently from
the negation by failure implementation required by Prolog.
It is unlikely that negation by failure is a reasonable aim for
a database-oriented parallel evaluator, since in Prolog it is
highly intertwined with the sequential evaluation strategy.

o Built-in predicates
The predicates which are built into most Prolog interpreters
can be divided into two categories:

o Predicates causing side effects, such as write and assert.
o Arithmetic predicates, such as sum or substring.

Depending on the specific side effect under consideration,
the intended result of a built-in predicate of the first type can
be either innocent or highly detrimental to the contents of a
database. Consequently, a uniform treatment of side effects
does not exist. For example, it seems reasonable to print
values encountered, but the order in which results will be
printed is unpredictable. In the case of an assert or retract,
the intended meaning is a modification of a database at the
very same time this database is queried. Whether this is
possible is dependent on the relations affected. We abstain
from further comments on this topic.

In practice, arithmetic predicates describe a functional
dependency between attribute values in an already bound 85

GHICA van EMDE BOAS AND PETER van EMDE BOAS

domain. These dependencies can conveniently be expressed
in the Business System 12 query language, using the
calculate relational command.

o The unbounded view problem
There is a class of rules which have no obvious translation to
Business System 12 query language, such as

are_the_same(X,X).
dead(All) :- no_.air__on_earth.

These facts and rules introduce two problems from the
perspective of our interface:

o The data type of the values of the variables is unknown.
o The intended relation becomes infinite in general.

The first problem does not arise in Prolog, since that is an
untyped language. But in Business System 12, all attributes
are required to have an associated domain. This means that
we should specify somehow explicitly the domains for
variables which occur on the left-hand but not on the right-
hand side of a view definition. A natural place would be
within the view definition, but this is difficult in the present
Business System 12 syntax. Instead, we can prevent the
problem by always requiring the presence of some predicate
on the right-hand side whose only purpose is to specify the
type of those variables which have no other occurrences on
the right-hand side of a view definition. For this purpose we
provide in the enhanced system for every domain a
corresponding built-in predicate with one attribute whose
name equals the name of the corresponding domain. Its
meaning is to be the characteristic predicate for this domain.
The above two rules are now rewritten to

are_the_same(X,X) :- integer (X).
dead(All) :- human(All), no_air_on._earth.

Obviously integer and human are the domains for X and A/l.

The examples above suggest that this type of rule leading
to unbounded views has rather limited expressive power.
Universally quantified assertions can be expressed, and it is
also possible to enforce some equalities within these
universally quantified assertions, as illustrated by the
are_the_same example.

The second problem, which concerns having to deal with
possibly infinite relations, is more interesting. Infinite
relations will result if we interpret the built-in predicates
describing arithmetic relations as ordinary database relations.
In both cases the problem is not that the relational semantics
is inadequate to provide the intended meaning, but that the
database does not allow us to store infinite relations in
tables. Database views traditionally are composed from a
finite collection of finite base relations. Even for an extended
database where recursive views are allowed, these recursive
views are defined in terms of finite base relations.

GHICA van EMDE BOAS AND PETER van EMDE BOAS

A relational expression which involves infinite arguments
must produce a finite result to be meaningful as a query.
When the result is finite, it should also be possible to execute
the query, and the check whether this condition is fulfilled
should be a syntactic one. For example, consider the
following Prolog rules:

earnsless(X,Y) :- salary (X,A),salary(Y,B), less(A,B)
netincome(X,A) :- salary (X,B), withholdings(X,C),
sum(A,C,B)

In both cases, the resulting join describes an ordinary finite
relation. In the first example, the /ess predicate is a
restriction on the bounded product of two copies of the finite
salary relations. In the second relation, one uses the fact that
each of the three argument positions in the sum predicate is
functionally dependent on the other two. So, as soon as two
arguments are restricted to a finite domain, the third
argument is bounded as well. And in both cases, a relational
query producing the correct answer can be constructed based
on a select or calculate operator.

These examples indicate that a system dealing with built-
in predicates of the above type can indeed be designed. It
will be based on a boundedness calculus, which will include
among others the following rules:

1. Base-relation attributes are bounded; some attributes in
general facts and specific built-in predicates can become
unbounded.

2. An unbounded attribute becomes bounded if joined with
a bounded attribute having the same name.

3. An attribute that is functionally dependent on bounded
attributes is bounded.

Justification is clear for the first rule, which describes the
finiteness of the base relations. For the second rule, we can
specify an evaluation strategy based on semi-joins, whereas
for the final rule a strategy based on the calculate operator
will work.

The result of a query bounded in all attributes on the basis
of these rules is indeed finite, and the rules also provide us
with an evaluation strategy which does not require infinite
intermediate results.

At this point it should be observed that this problem is
very similar to the problem of how to plan query evaluations
making optimal use of specified arguments, which was
investigated by Ullman in his capture rule work [6]. The
difference is only in the interpretation of the words bounded
and free. Ullman assumes that his relations are safe [24],
which means that our unbounded view problem does not
arise. In his terminology, bounded denotes bounded to a
single value, whereas for us it means bounded to a finite
domain. We observe that the type of rules described by
Ullman for obtaining efficient evaluation strategies can be

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

used in the extension of our system for checking
boundedness.

In the full logic programming interface, the compiler will
test the query submitted to the system for formal
boundedness. If the query is found to be bounded on the
basis of the rules of the calculus defined above, the system
will produce an evaluation strategy at the same time. If not,
the user will get an error message informing him of the
source of the problem.

We will not require our system to be omniscient. For
example, our system will not know the difference between a
function such as the cosine and a nontrivial polynomial,
which is expressed by the mathematical result that the
polynomial has only finitely many real zeros, whereas the
cosine has an infinite number of them. Neither has it the
mathematical knowledge needed for building equation
solvers. For example, in the first rule below, the boundedness
of X and Y can be inferred, given that A and B are bounded,
while this is impossible in the second rule because
boundedness here is not based on functional dependencies
but on linear algebra:

?- sum(A,B,X), sum(A,Y,B)
?- sum(X,Y,A), sum(X,B,Y)

It should be clear that handling unboundedness requires an
intelligent preprocessor/compiler, which must have access to
semantical information on built-in predicates (boundedness
and functional dependencies).

o Arbitrary structures
In Prolog it is possible to instantiate variables, not only to
constant values as in the relational model, but also to tree-
or list-like structures.

To map these structures onto the database, we are forced
to depart from the relational model in which nonatomic
attribute values are not allowed. In return, however, we will
be able to describe hierarchies, apart from providing
functional capabilities similar to those in Prolog. To many,
the impossibility of dealing with hierarchies is felt to be a
severe functional restriction in relational databases today,
preventing engineering and expert system applications.

The mapping we use is based on the foreign key concept
and an extension of the prototype mapping described in the
subsection “Mapping of Horn-clause rules to relational
algebra.” A foreign key is a set of attribute values which
occur as key attribute values in another or the same relation.

We want to stress that the mapping we are going to
describe is a conceptual solution. It can be used in a
prototype implementation, using current database facilities,
to check its functionality and performance. A more practical
and less storage-consuming implementation will require
database changes to make what we describe transparent to a
user or preprocessor, but that does not change the
applicability and feasibility of what we propose.

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

Consider the example

owns(john,table).
owns(john,book(odyssey,homer)).

Our translation algorithm suggests that this be put in the
database in a relation owns{41,42} as

[41: john,A2: table] € owns.
[A1: john,A2: book(odyssey,homer)] € owns.

The attribute 42 now contains the nonatomic value
book(odyssey,homer) in one of its tuples. In itself this item
suggests translation to a relation book{B1 B2} as

[BI: odyssey,B2: homer] € book.

This changes the book structure into a tuple with nice
atomic values, but how can we find the row for this book
back in the owns relation? Let us assume that we assign an
identification 41 to the tuple

[BI: odyssey,B2: homer] € book.

Such a unique identifier can always be found, using
common practice hashing techniques. We now change the
owns table to

[A1: john,A2: table] € owns.
[A1: john,A2: refto(hl,book)] € owns.

The value of refio(hl,book) can be made atomic by using
two separate attributes to store A/ in the first, and a unique
identification of the relation to which it belongs in the
second.

In general, if

HALA2,. . . An).
maps to
PALA2, . .. An},

in the prototype translation, then we will extend the
mapping to

p{H,R1,T1,A1,R2,T2,A2,..-,Rn,Tn An},
where

H contains a unique identifier (a key in database terms) for
each tuple, as described above.

Ri contains an identifier for a relation.

Ti contains a foreign key value to a relation whose name is
in Ri.

Ti and Ri provide together the refto function as described
above.

If Ri and T/ do not contain identifiers (but zeros or blanks
instead), then A4/ contains an atomic value for that tuple.

The translation of conjunctions to joins and multiple rules
for the same predicate into unions carries through
unchanged for the new mapping. Instead of single attributes, 87

GHICA van EMDE BOAS AND PETER van EMDE BOAS

triplets of attributes have to be taken care of now. That may
be cumbersome to humans, but it should not be to a
mechanical preprocessor.

Note: In Business System 12, there actually are already H
attributes present for every relation, hidden from the user.
Therefore, it will be easier to implement a user-hidden triplet
structure than the above description might suggest.

As an example, consider the question

?- owns(john,book(X,homer)).
In our implementation, this query will be translated into

SL(owns,0AI="john' & OR2="book") JN
SL (book{OT2/H,. . -},BA2="homer").

(We made attribute names unique by prefixing them with
the first letter of the table name; OT2 is the common
attribute on which the join is performed.) Before being
shown to the user, the remaining references should be
transformed into the corresponding rows. The process
function, a user-definable database procedure operating on
every row in a table or view, can perform this task in a
convenient way. Note that inside a query, references need
not be expanded to do conjunctions (joins), because equality
of a reference is sufficient.

We still have to answer some questions:

1. Can we indeed represent arbitrarily complex structures?

2. Does unification work as it should?

3. How does this proposal compare with other approaches
to composite objects?

With respect to the first question, we observe that the
problem of aliasing (having two different access paths to a
single structure) does not arise. By definition of the foreign
key concept, it is impossible for two references with different
values to refer to the same row in some table. Thus, if John
and Mary have the same book, they will have the same
reference to it. This suffices to prove by induction that two
structures are equal if and only if their representations as
proposed are equal.

There is a problem in the sense that our proposal
implements too many structures; a foreign key can refer
directly or indirectly to the row in which it is stored. Prolog
does not support such infinite recursive structures.

Regarding the second question, if we restrict ourselves to
considering only those structures that are also supported by
Prolog, the structures are equivalent to general directed
acyclic graphs. This is exactly the domain in which the
unification algorithm proceeds (see, for example, [26]).

Concerning the third question, we compare our approach
to the proposals in [12] and [13]. In Zaniolo’s proposal, a
reference is bounded to a single table only. This makes it
impossible for John to own both books and cars, if both
books and cars are structured objects. In his semantics, the

GHICA van EMDE BOAS AND PETER van EMDE BOAS

value of a reference is simply the value of the tuple it refers
to. This has the required uniqueness property but will
probably never be implemented in this way. Thus the
question of whether two different references can refer to the
same row returns to the implementation. Moreover, this
semantics precludes circular structures. Finally, in Zaniolo’s
proposal, it is not clear whether a join can be performed on
a reference column. References cannot be listed or shown to
the user; whether they can be tested for equality is not clear.
The proposal also supports sets as attribute values; it is not
clear whether this has any usefulness for our logic
programming interface.

The proposal of Lorie and Plouffe seems to provide the
required flexibility; references can refer to different tables,
but in this case John cannot both own books and chairs
when a chair is a plain attribute value. In their semantics,
references are keylike identifiers. No two different identifiers
can refer to the same row. References can be tested for
equality and for membership in some particular table. Cyclic
structures are possible; updating is very restricted.

The mapping we propose is simple but effective, and we
see no impact on performance of the evaluation of queries.
Structures can be unified (or joined in database terms) by
using only their references.

o Lists
Lists are a specific form of a structure. Therefore, we can
translate lists by using their structural form.

A more convenient approach is to use a different but
similar mapping. Instead of referencing a row, reference is
made to a serial table. A serial table is an ordinary data table
in Business System 12; however, rows are kept in arrival
order, not randomly. Elements of the list will be stored as
rows in the serial table. Since each element of a list can be a
structured item, another list, or just a value, further
referencing can occur in any row of the senal table.

This construction may lead to a large number of tables,
one for each list. Although Business System 12 can create
these dynamically, as described earlier, it may still provide
performance problems. This seems not to be a severe
difficulty, because in database programming lists are not
used as often as they seem 1o be in logic programming. The
reason is that in a database sets are more readily available.
Set operators could easily be provided to the Prolog
programmer by implementing some built-in predicates.

For serial tables, head and tail operations can be
implemented in a simple way. Curiously enough, the head
operator is very similar to breakpoint, the database
equivalent of cut.

® Recursive views

It is well known that recursive queries can be replaced by an
iteration of nonrecursive queries. With some restrictions, the
results of these queries increase monotonically, tending to a

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

fixed point. Theoretical background can be found in books
by de Bakker [27] or Manna [28].

A scheme to implement iteration within a database could
be as follows. Let

be a recursive Prolog query. We translate this into a database
query:

a(n)e .-- UN ... JNa(n—1)JN ...
a(() «— empty (contains no rows)

where a(n) is a base table with the same set of attributes as
the recursive view. To find the result of the recursive query
a, we successively execute the queries a(0), - - -,a(n). The
result of query a(n—1) is stored as a base table and used as
such to execute query a(n). If the result of a(n) is equal to
the result of a(n—1), the iteration is finished, and we have
found the result of the recursive query a.

All processing can be done at the database side; except for
the final result, no data must pass the interface, which is
usually a slow performer. Compare routines, etc., requiring
knowledge of the internal data structure in the database, do
not have to be implemented in the foreground processor.
Some communication is nevertheless necessary, because the
foreground processor needs to be able to restrict the size of
the result in case it is very large or infinite.

There is also room for optimization. In the simple case of
a single recursive view, which occurs only once in its
recursive definition, we need to store as the result of a(#n)
only the tuples which are not in a(0) UN a(I) UN - .- UN
a(n—1). When no new tuples result for an iteration, we are
finished. The total result is now the union of the results of all
executed iterations.

Further optimization can be achieved by keeping
intermediate results of the nonrecursive parts of the query
(when they are not in the same branch of the tree).

Note that it is not sufficient to keep intermediate results
for the whole query. If the recursive view is not also the goal
of the query or if there is more than one recursive view
involved, then it is necessary to keep an intermediate result
at the root of each recursive view invocation in the relational
access tree.

It was found by Naqvi and Henschen [9] that this
approach to recursion can become quite inefficient if the
recursive query is subjected to some selection elsewhere in
the expression, since it is not possible in many cases to
propagate knowiedge about specified argument values into
the fixed-point iteration results. These optimization
problems are also investigated in recent work of Ullman [6].

Let us clarify this with the ancestor example. In Prolog, it
is represented by

ancestor(X,Y) :- parent(X,Y)
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y)

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

This translates into the following recursive view definition:

ancestor{X, Y} « (parent{X,Y}) UN(parent{X,Z/Y} JN
ancestor{Z/X, Y})

For example, one might ask who the ancestors of Mary are:
—SL(ancestor,Y="Mary")

In this case, it is possible to push the select down in the
relational tree, a common optimization technique in
relational databases. However, when it is asked to whom
Mary is an ancestor,

« SL(ancestor,.X="Mary')

this optimization is not allowed because the attribute X is
renamed before the recursive invocation of the view. See also
[5], where the same problem is observed. It is even more
difficult to determine when optimization is allowed when the
restriction is in the form of another query, such as “Provide
the ancestors of all speed-skating world champions of the last
five years.”

o [Iterative compilation of recursive views

As a step towards solving the performance problems
mentioned, we introduce a new, more general approach to
optimizing recursive relational queries. We refer to it as the
iterative compile approach, as opposed to the iteration on
results approach described in the previous section. It is based
on the following unfolding method. Let a be a recursive
query as before. Its translation to an iterative query is also
syntactically the same as before. The basic difference is that
instead of using the result of the previous iteration, the
definition of the previous iteration is used to find the
definition of the next iteration. Each successive query has to
be compiled, optimized, and executed, and its result is saved.
The results are compared at each step. When the results are
equal, we are ready.

The important advantage of this approach is that a
recursive query is reduced to stepwise queries, which a
relational database can handle as effectively as it is capable
of- In many cases, separate steps of the iteration can be
optimized effectively, whereas this was impossible with the
iteration on results method. The same generation query
which we describe later is a good example.

In simple cases where stepwise compilation does not
provide additional optimization, the iterative compile
approach does not necessarily perform worse than the
iteration on results method. Both methods have some
overhead between steps to compare results and to readjust
access trees. There is a slight increase in the amount of main
storage required for the compiled method due to the larger
access trees; however, the most storage is usually required to
keep information about stored tables, and their number does
not increase after the first step.

The next iteration step can be compiled effectively by
keeping a copy of the tree for the compile step of a(/).

GHICA van EMDE BOAS AND PETER van EMDE BOAS

90

ooy
W s

Fox -
] parian oty

Access tree for query. SL(sg,N="'Mary')—three levels deep.

Replacing a(0) with a copy of the tree for a(/) in the tree of
the nth step (after column renamings, if necessary), the
(n+1)th step is easily obtained. In Business System 12, the
output of the compiler is executable, and the optimizer
transforms an executable access tree into another executable
access tree; therefore, we can re-apply the optimization
process to the compile tree for the (n+17)th step, which we
obtained in the way just described.

Further performance improvements are left as a future
research topic. We note:

e There is no reason to use the compile steps of 1. In cases
where the recursion depth can be estimated, as may be
possible in a database environment where queries are often
of a repetitive nature, larger step sizes can be used and
initially more steps can be compiled. This results in a
significant reduction in the number of iteration steps
required.

¢ It may be possible to find subexpressions which do not
change between iteration steps. These can be kept as
intermediate results, avoiding recomputation at cach step.

¢ It scems that the execution iteration is just an optimized
special case of the compiled iteration, considering the
previous point. We do not discuss this further.

We clarify the iterative compilation method and its
advantage using a more involved example (due to Ullman).
Assume that we would like to determine people who belong
to the same generation in a family database, as expressed by
this Prolog query:

5g(A,B) - A == B,
58(A,B) - par(4,AX), par(B,BX), sg(AX,BX).

We translate these rules, using our abstract relational
database syntax. The child-parent relation is defined as
par{P,N}. The database view is defined as

$giA, B} «—

CL(par{B/P},A—B) UN (par{A/N . AX/P}
JN par{B/N,BX/P} JN sg{AX/A,BX/B})

GHICA van EMDE BOAS AND PETER van EMDE BOAS

. ”’EZ?” "
i

AR

The first clause, A == B, is translated using a calculate
relational operator. See Figure 5 for a pictorial
representation of an expansion up to the third iteration for
this recursive view.

Notice that the order of the arguments for some joins and
unions is reversed and that the select is pushed down in the
tree (which was not possible for the iteration on results case).
This optimization is done automatically by the database
query optimizer.

Keeping in mind the pipelined execution method
described under “Compiling, optimizing, and executing
queries,” we see that the query executor indexes itself
through the relational access tree, accessing only those rows
from the par table which are necessary to form the result.
Only generally applicable optimization methods are used to
achieve this. A requirement is that indexes be available on
both N and P attributes, which certainly will be true for
larger database applications; otherwise, the optimizer will
most likely decide to make them anyway.

As a consequence, the execution time will only be
dependent on the number of recursion steps required, the
complexity of the query itself, and the size of the result, but
not on the size of the tables involved.

Currently, queries can be executed in Business System 12
in the way described above. This can be done by using a
database procedure and a view definition which accept
arguments to control the recursion depth and the necessary
column renaming. The contents of the view definition and
the procedure are shown in Figure 6, just to give an idea
what this might look like. We do not explain the syntax in
more detail.

SGO is a predefined empty table (it contains no rows). The
query can be executed by typing run samegen('Mary'). The
result can be found in either TTAB1 or TTAB2. These can
be used in further queries or can be displayed with display
ttab?.

Because it is not yet possible to define indexes on both
columns in the par table in Business System {2, performance
is not as good as theory suggests.

Using the same generation query, we did some crude
performance measurements. We used a parent table with a
small set of rows in Business System 12 and a set of the
same facts in Prolog. Next we added a variable number » of
noise rows, with » ranging between 100 and 1000. These
rows contained data which did not contribute to the result in
any way. We also added the equivalent facts in Prolog. In
both cases, we put the relevant data somewhere in the
middle. For Business System 12, we used the code shown
above, which is not optimal because the query must be
completely recompiled at each step. For Prolog, we added a
rule to obtain all results.

For both experiments we observed a running time of
polynomial order in n with exponent approximately 2 for
Prolog and exponent approximately 1.5 for Business System

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

12. We are aware of the fact that in this experiment the
performance of Business System 12 is suboptimal; much of
the observed growth can be avoided when the optimizer
becomes capable of better indexing support.

Summary and conclusions

As a main topic, this paper has described how today’s
relational database management systems can be made more
intelligent. Combining ideas put forward by other
researchers in the database and logic programming fields, we
have outlined an integrated approach to arrive at a logic
programming system, beginning with a state-of-the-art
relational database, Business System 12. For each function
which requires changes to the database, we have described
how it could be implemented and, if appropriate, how others
viewed the problems.

Currently, we have only implemented a restricted
prototype. We have shown, however, using examples of
queries which are executable now in Business System 12,
how the prototype can be made more intelligent and that it
can support most logic programming functions. Support for
structures, the iterative compile approach to recursion, the
arithmetic built-in predicates, and some minor points such
as a Oth column can simply be added. Meanwhile, we have
kept our objective that all inferencing should be done by the
database manager.

We have also indicated how at a later stage Business
System 12 could be improved in a few areas, such that a
logic programming interface could be supported in a more
transparent manner and performance could be enhanced.
This included a review of the features just mentioned for the
prototype, support for which should then be removed. Also
included are the breakpoint operator, built-in functions
causing side effects if appropriate, iteration by execution of
recursive queries, and optimizations for the compiled
iteration.

New in our approach are that the whole logic
programming environment (both rules and facts) is stored
inside the database and that all inferencing is done inside.
Apart from showing that and how it is possible, we have
argued these advantages:

o All database functions, including sharing, authorization,
concurrency control, etc., become available to the logic
programmer, while avoiding the huge duplicated
implementation effort of these functions which is
inevitable in any distributed setup.

o Since whole queries are inside the database, a generalized
and global approach to optimization of queries is possible.
As a consequence, we were able to show a new method of
evaluating recursive queries, the iterative compile
approach, which gave promising performance
measurement results. We pointed out several open
problems in this area towards which future research can be
directed.

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

m‘- 5
; natm.mmm H},lﬁﬁﬂ.’ﬂ) :

1

e WHC&D‘QE&‘H& NEJNW AR faeiad i

% BILPRETRAR, ‘kﬂ'{? 1 Xt},!ﬁml HH L
AGLOPRETRAR RENLS, {ﬁ&l}.lﬂ‘ i} H)), o

ARTIERE LN, B Y

el m wxm

;m N‘T m‘NL Eﬂﬁ'ﬁ"&!ﬂf“ﬂ) ’(7“1)“!
T aoBuLe el i
b mn STORE. Sﬂuﬁlﬁ‘ 62,8, 'I‘Ihu-!\l,

TIRS L AEPLACE:
ELSE Stoe iﬂ(ﬁﬁ§6| ﬁf Vélﬁ?ﬁi“ih

ENBLOBY
RemRE:

The same generation query translated to Business System 12 pro-
cedure and view definition langauge.

The database-logic programming interface will have
semantics which are different from conventional Prolog to
allow for database parallelism, but it will adhere to the
declarative features of pure Prolog.

We feel that the described additions to a relational
database are a prerequisite to enable the development of
larger, more complicated, and multi-user interactive expert
systems.

Acknowledgments

This work would not have been possible without the
continuing, enthusiastic, and inspiring support of A. J. du
Croix, Business System 12 development manager. Also, we
appreciate the excellent contribution of C. F. J. Doedens for
the purpose of his Master’s thesis study. He designed and
implemented the prototype interface and pointed out many
problems. We are grateful for the opportunities we had
during our stay at the IBM Research Center in San Jose,
California, to work further on our project and to discuss it
with various people in IBM Research and at universities.
Finally, we acknowledge the anonymous referees for the
additional background references and the suggestions they
provided in their reports.

References

1. C. L. Chang, “DEDUCE 2: Further Investigations of Deduction
in Relational Databases,” Logic and Databases, H. Gallaire and
J. Minker, Eds., Plenum Press, New York, 1978, pp. 201-236.

. R. Retter, “Deductive Question-Answering on Relational
Databases,” Logic and Databases, H. Gallaire and J. Minker,
Eds., Plenum Press, New York, 1978, pp. 149-177.

3. D. Maier, “Is Prolog a Database Language?”, Oregon Graduate

Center (Draft, 1983).

4. S. A. Naqvi, “Prolog and Relational Databases: A Road to Data
Intensive Expert Systems,” Bell Laboratories, Murray Hill, NJ,
1983.

5. M. Jarke, J. Clifford, and Y. Vassiliou, “An Optimizing Prolog
Front-End to a Relational Query System,” Proceedings of
SIGMOD’84, ACM SIGMOD Rec. 14, No. 2, 296-306 (1984).

6. J. D. Ullman, “Implementation of Logical Query Languages for
Databases,” ACM Trans. Database Syst. 10, No. 3, 289-321
(1985).

e

GHICA van EMDE BOAS AND PETER van EMDE BOAS

91

7. Y. Vassiliou, J. Clifford, and M. Jarke, “How Does an Expert
System Get Its Data?” Report No. CRIS#50, GBA#83-26(CR),
New York University, New York, 1983.

8. C. L. Chang, “On Evaluation of Queries Containing Derived
Relations in a Relational Database,” Advances in Database
Theory, Vol. 1, H. Gallaire and J. Minker, Eds., Plenum Press,
New York, 1981, pp. 201-236.

9. S. A. Nagvi and L. J. Henschen, “On Compiling Queries in
Recursive First-Order Databases,” J. ACM 31, No. 1, 47-85
(1984).

10. A. Walker, “Syllog: An Approach to Prolog for Non-
Programmers,” Research Report RJ-3950, IBM Research
Laboratory, San Jose, California, 1983.

11. A. Walker, “Syllog: A Knowledge-Based Data Management
System,” Report No. 34, Department of Computer Science, New
York University, New York, 1981.

12. R. Lorie and W. Plouffe, “Complex Objects and Their Use in
Design Transactions,” Proceedings of IEEE Database Week,
ACM SIGMOD Rec. 13, No. 4, 115-121 (1983).

13. C. Zaniolo, “The Database Language GEM,” Proceedings of
IEEE Database Week, SIGMOD Record 13, No. 4, 207-218
(1983).

14. S. Tsur and C. Zaniolo, “An Implementation of GEM—
Supporting a Semantic Data Model on a Relational Back-End,”
Proceedings of SIGMOD’84, ACM SIGMOD Rec. 14, No. 2,
286-295 (1984).

15. W. F. Clocksin and C. S. Mellish, Programming in Prolog,
Springer-Verlag New York, 1981.

16. T. Imielinski and W, Lipski, Jr., “The Relational Model of Data
and Cylindric Algebras,” J. Comput. Syst. Sci. 28, 80-102
(1984).

17. H. Gallaire, J. Minker, and J.-M. Nicolas, “Logic and
Databases: A Deductive Approach,” Comput. Surv. 16, No. 2,
153-185 (1984).

18. E. F. Codd, “Extending the Database Relational Model to
Capture More Meaning,” ACM Trans. Database Syst. 4, No. 4,
397-434 (1979).

19. G. A. Blaauw, A. J. W. Duijvestijn, and R. A. M. Hartmann,
“Relational Expression Optimisation,” Report No. TR 13.190,
IBM INS-DC Uithoorn, the Netherlands; “Optimization of
Relational Expressions Using a Logical Analagon,” IBM J. Res.
Develop. 27, No. 5, 497-519 (1983).

20. Business System 12 User’s Guide, Order No. SH19-6364,
available through IBM branch offices.

21. C. J. Date, A Guide to DB2, Addison-Wesley Publishing Co.,
Reading, MA, 1984.

22. R. P. van de Riet, “Knowledge Bases” (de databanken van de
toekomst), INFORMATIE 25, 16-23 (1983).

23. C. F.J. Doedens, “Logic Programming and Business System
12,” Report No. TR 13.198, IBM INS-DC Uithoorn, the
Netherlands, December 1984.

24. J. D. Ullman, Principles of Database Systems, 2nd ed.,
Computer Sciences Press, Rockville, MD, 1982.

25. E. Y. Shapiro, “A Subset of Concurrent Prolog and Its
Interpreter,” Report No. TR-003, Weizmann Institute of
Science, Israel, February 1983.

26. Cynthia Dwork, Paris C. Kanellakis, and John C. Mitchell, “On
the Sequential Nature of Unification,” J. Logic Program. 1, 35—
50 (1984).

27.). W. de Bakker, Mathematical Theory of Program Correctness,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

28. Z. Manna, Mathematical Theory of Computation, Computer
Science Series, McGraw-Hill Book Co., Inc., New York, 1974,

Received June 14, 1985, revised August 8, 1985

GHICA van EMDE BOAS AND PETER van EMDE BOAS

Ghica van Emde Boas-Lubsen BAM Information Network
Services Support Center, P.O. Box 24, 1420 AA Uithoorn, the
Netherlands. Mrs. van Emde Boas received a B.S. in mathematics
from the University of Amsterdam, the Netherlands, in 1968. Since
joining IBM in 1969, she has worked at the laboratory in Uithoorn.
For several years she participated in testing various releases of the
DOS/VS operating system, receiving an Outstanding Contribution
Award related to this work. For the last six years she.has been part of
the Business System 12 development team, involved primarnily in
relational query compilation, locking, and transaction management.
Mrs. van Emde Boas spent the first eight months of 1985 at the IBM
Research laboratory in San Jose, California.

Peter van Emde Boas Departments of Mathematics and
Computer Sciences, University of Amsterdam, Roetersstraat 15, 1018
WB Amsterdam, the Netherlands. Prof. Dr. van Emde Boas has been
head of the theoretical computer science group at the University of
Amsterdam since its creation in 1983, Since 1977 he has been a
professor in the field of mathematical computer science. He received
an M.S. in mathematics in 1969 and a Ph.D. in sciences in 1974,
both from the University of Amsterdam. Between 1964 and 1977 he
was a member of the Department of Pure Mathematics of the
Mathematical Center in Amsterdam, and since 1969 also of the
Mathematics Department of the University. In the fall of 1974 he
was a research associate in the Department of Computer Science of
Cornell University, Ithaca, New York, and he spent the first eight
months of 1985 as a visiting scientist at the IBM Research laboratory
in San Jose. His current research interests are computation theory,
semantics, and database theory.

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

