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This  paper  describes  a practical approach  to 
storing  and  evaluating  Horn-clause  rules in a 
relational  database  system.  The  intention is to 
give a  complete  outline of what  needs to be 
added to an existing relational  database  system 
to allow it to support full logic programming 
functions.  Implementation  issues  for  each  new 
function  are  discussed. We show  how  Horn- 
clause  rules  can be translated into database 
commands  without  recourse to semantics  and 
how their  evaluation  can be performed in the 
database itself. This brings the  complete logic 
programming  environment  within  reach  of  the 
database  management  system,  allowing  data 
and rule sharing,  concurrency  control,  recovery 
procedures, etc., to be used.  New is that  the 
complete logic programming  environment is 
incorporated into the  database  system. IBM 
Business  System 12, extended in this way,  may 
be a  suitable  vehicle  for  expert  system 
applications. 
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Introduction 
As the  art of building  expert systems matures, more 
sophisticated  tools to hold their knowledge base and better 
means  to reason with this knowledge will be required. Large- 
scale, multi-user  expert  systems will benefit from 
functionality  which  has  been until now almost exclusively 
the  domain of database systems. This includes the primary 
database  functions,  such as storing large amounts of data 
and optimizing  relational  queries. Also, secondary  database 
functions will be necessary: data sharing, data integrity, 
authorization control, concurrency control, and 
backup and recovery procedures. Most of these are  not 
visible in a single-user environment  but  are indispensable 
for  proper  functioning of a database in a multi-user 
environment. 

Considerable effort is being directed  towards designing a 
system incorporating both logic programming functions to 
provide the inferencing  capabilities  for an expert system and 
the  traditional database functions  to be used for its 
knowledge base. As a short-term goal, a simple  interface 
could be made available between Prolog and  an existing 
relational  database system providing  tuple-at-a-time access. 
Such  interfaces  have been built. The  main problem with 
them is that  the  query  and  optimization facilities of the 
database cannot  be fully exploited. 

Research aimed  at using a database intelligently from a 
foreground (Prolog) interface was conducted by Chang [I], 
by Reiter [ 2 ] ,  and  more recently by Maier [3], Naqvi [4], 
Jarke et al. [ 5 ] ,  Ullman [ 6 ] ,  and Vassiliou et al. [7]. Their 
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purpose was to find preprocessing techniques for Prolog or 
other logic programs and translate them  into database 
programs  involving selects, projects, and  sometimes joins. 
This  approach  then led to  the problem of dealing with 
recursive Prolog rules, which goes beyond the relational 
database  framework. See Chang [8], Naqvi and Henschen 
[9], and  more recently Ullman [6], and also the 
interpretative approach in  Walker [ 10, 1 I]. 

Much of the work  reported in these  papers  has goals 
similar to ours. However, a disadvantage  of the preprocessor 
approach is that,  as long  as data  and rules are kept and 
managed at  the preprocessor side, the system must be 
regarded as a distributed  system,  requiring that secondary 
database facilities be implemented  at  both sides. 

Another issue is that in Prolog the capability exists of 
using structured or composite objects. Incorporating these 
into a relational  database  requires  extending  its  functionality. 
Lone  and Plouffe [ 121, Zaniolo [ 131, and  Tsur  and  Zaniolo 
[ 141 did similar work. However,  their  extensions  seem not  to 
have been considered with the  intent of supporting logic 
programming functions. 

What we describe in this paper is a new approach  to 
adapting a relational  database so as  to allow it to perform 
logic programming functions. Rather  than building  database 
facilities into a Prolog environment, a Prolog environment is 
constructed,  starting with an existing database  system. In this 
regard our  architecture resembles the  approach of [ 141, 
where a high-level database system is implemented  around 
an existing system. 

Our work combines  many of the ideas reported in  the 
references cited  above, giving an integrated  picture  of the 
functional  extensions  needed to provide a database with 
logic programming capabilities. Moreover, we introduce a 
new method for  handling  recursion  within the database. 

huge effort involved in developing the secondary  database 
functions is avoided. Since rules are also stored  in the 
database, rule sharing is now possible. All data, including 
rules, also become  subject to  concurrency  control  and 
recovery procedures.  And global optimization of queries is 
feasible, including recursive ones, taking  into  account 
knowledge which only  the database itself can have, such as 
table sizes, usage statistics, location of data, etc. In short, the 
full power  of the database management system becomes 
available in  the logic programming  environment. 

The project described in this paper originated from the 
observation that  the backtracking  performed by a Prolog 
interpreter when  calculating the  conjunction of two or more 
predicates is equivalent to a rather inefficient method of 
computing a join of two or more relations, at least in the 
simple situations used for explaining  this mechanism in 
introductory texts  such as [ 151. Clearly, this  observation is 
not new. The connection between logic programming  and 

Our approach  has several advantages: Duplication  of the 
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relational algebra is made self-evident when  relational 
databases are discussed from a purely algebraic perspective, 
such  as the cylindric algebras described in [ 161. It  is precisely 
this connection  on which the compiled approach in [ I ]  and 
[2] is based. See also the survey in [ 171. 

disadvantage: Due  to  the  architecture of  most  relational 
systems, in which the  order of result rows from a query is 
not predefined and is very much  dependent  on  the 
optimization  method chosen for that query by the database 
system, flow of control  through  the use of cur cannot be 
implemented in the  same way as  in  conventional Prolog. 

As a vehicle for  our extensions, we  use IBM Business 
System 12. Assuming that this system is not well known 
outside  Europe, we briefly describe available functions when 
needed.  Reference to possible future  enhancements of IBM 
Business System 12 must  not be construed to mean that 
IBM intends to implement these enhancements.  The ideas 
presented here are entirely the responsibility of the  authors 
and reflect their personal  opinions. 

There is also a point which some  may consider a 

Business  System 12 and the  relational model 
Business System 12 is a new relational  database  information 
system offered by IBM Information Network Services to 
time-sharing users, mainly  within  Europe. 

The main design philosophy  behind the Business System 
12 implementation is that  the system be suitable for a time- 
sharing environment. High emphasis is given to  data 
security, data sharing control, database  integrity, recovery, 
etc., as well as  to  the need to prevent users from disturbing 
each other’s operations by, for  example,  locking important 
resources. This is necessary because customers using the 
same database  could be competitors. 

management system, as specified by Codd in [ 181. This 
implies that in Business System 12  we deal with objects such 
as relations, tuples, attributes, and domains. There  are 12 
relational  operators, which include the usual select, project, 
and join; further, we need union and calculate. 

describe briefly the Business System 12 relational  query 
evaluation function, with emphasis on  and restriction to 
what we need  for our logic programming  extension. A more 
comprehensive  description  of  this syntax and of the 
relational operators  can be found in [ 191. More  information 
about Business System 12 itself is available  in [20]. Our 
syntax is different from  the  actual Business System I2 
syntax, but it allows for a concise  description. The semantics 
remains unaffected by this  change of notation. 

domain A set of values. The user can specify 

Business System 12 is a full relational  database 

First we introduce  the syntax used in  our paper. Next, we 

subsets of  an underlying data type which 
can be character, numeric, name,  bit, or 
timestamp. 
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attribute 
tuple 

relation 

Project 

Select 

Union 

Join 

Calculate 

table 

rename 

A. A named  domain. 
u. A set of attribute values (ul,u2,. . .,uk) 
such that ui is in Ai. We  denote a tuple 
by [AI: u l , .  . .,An: un]. 
r. A set of  tuples  of  identical type. We 
denote a relation  together  with its set of 
attributes  as r(A1,. . .,An], where 
AI , .  . .,An are  the  names of the attributes. 
The set of attributes is denoted  as R(r). 

common attribute A common  attribute of  two  relations Y 

and s is an  attribute which belongs to 
both R(r) and R(s). 
PR  (r, Y )  is the restriction  of the relation r 
to the  attributes  in Y, where Y is a subset 
of R( r). 
SL (r,F) is the set of  tuples u of r for 
which F evaluates to true. The expression 
F has the  attributes of r as arguments. 
The  union r UN s is the set of  tuples 
which are  in r or s or both, projected to 
their set of common attributes. 
The  join  operator JN defined  in Business 
System I2 is generally known  as  the 
natural join. Tuples  from r are  combined 
with tuples  from s to form a tuple over 
the set of attributes R(r) U R(s) if their 
values are equal  for all common 
attributes of r and s. 
The calculate operator CL(r,X e F )  adds 
a new attribute X to r. For each  tuple in r 
the value of X is obtained by evaluation 
of the expression F. 
The instantiated  form  of a relation. It is 
stored in  the database.  Attributes and 
tuples  for  tables are sometimes called 
columns and rows. 
The rename operator in Business System 
12 is actually implemented  as part of 
project. RN(r,AI/A) changes the  name of 
attribute A in r to AI .  

Frequently we encounter expressions in which there is a 
combination of rename  and project; some  attributes  are 
renamed while others  are projected away. In these cases we 
use a shorter notation which is best explained by an 
example: Let r be a relation with attributes R(r) = {A,B,C,D]. 
Then we write PR(RN(r,Al/A,Cl/C),   {Al,B,CI)) as 
r{AIIA,B,CIICJ. 

Views 
In  the relational model it is evident  that  the result of a 
relational operation  on relation(s) is again a relation. In 
database  terminology this result  is called a view, and  the 
expression which led to this  result is called a relational 
expression or a view definition. 82 
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Many relational  DBMSs  have facilities to store view 
definitions and allow some usage of view names as if they 
were table names. In Business System 12, this is also 
possible. View definitions are stored in  data tables of a 
special type. This allows for easy updating or changing  of 
view definitions, and with some  additions (views can also be 
shared for execution  only,  for  example), the  same 
mechanism is used to control sharing and  authorization  as 
for ordinary  data tables. 

see, Horn-clause  rules are stored  as view definitions in 
Business System 12. Such rules can be very dynamic,  and 
many different rules may exist. Therefore,  it must be 
possible to quickly add, delete, or change view definitions 
without impacting  other users. This  can  indeed be done  in 
Business System 12, because view definitions are stored in 
tables, not in the catalog. Further, a global catalog does  not 
exist; rather, there is a separate one for  each user. When a 
user  asks  for access to a table or view owned by another 
user, the database management system looks  in the catalog 
of the  owner  to  determine whether the requested  type  of 
access is authorized  and where the  table  can be found. By 
using historical versions, the database management system is 
even  able to see the latest  consistent data while the  owner is 
updating his catalog through  adding or deleting tables. 

In  some relational database systems (we refer to DB2 by 
way of  example; see [2 I]), rule-to-view translation  would be 
more difficult due  to  more restrictive view handling. In DB2 
view definitions are  not allowed to  contain unions. But the 
capability  of  forming unions is essential for our translation 
of Prolog rules into view definitions. Also, in DB2 the 
catalog is global, and special authority  is needed to define or 
delete new database  objects,  leading to  the performance 
bottleneck mentioned above. 

This raises an  important performance  question. As we will 

A database example 
The example in Figure 1 is intended  to show  what a view 
definition  would  look like in a simple case and how one 
definition  could be used in another. Later, a second objective 
will become clear: It will be seen how close these “pure” 
database  queries are  to logic programming queries. The 
example involves family relations  in a traditional  Dutch 
environment (see [22]). We define three relations, person, 
children, and marriage, stored as tables in the database. 
Further,  some “rules” are defined using view definitions, 
indicating who  the females are  in  this small  world, and  who 
is a sister, a parent, or an aunt. 

Compiling,  optimizing, and executing queries 
To be able  to discuss implementation issues later, we need 
some knowledge of the  query execution process in Business 
System 12. We use the  above example to illustrate it. 
Suppose we would like to know who  the  aunts of ‘ruud’ are. 
This  query  can  be written as 
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SL(aunt,N=’ruud’) 

The Business System 12 relational  compiler  finds that aunt is 
the  name of a view definition and substitutes for aunt the 
relational expression it represents. This relational expression 
contains new view names, in  our case sister and parent. 
These are also  substituted until only the  names of base 
relations remain. 

At the  same  time  the compiler  forms an access tree  for the 
query. The root  of the tree  represents the  query result, the 
nodes are  the relational  operations, and  the leaves represent 
the base relations,  stored as tables in the database. For our 
example the tree  would look as  shown  in Figure 2. 

The result of a query is formed by so-called “pipelined” 
execution. The root node  starts asking  for rows from its 
subsidiaries; these  next  nodes do  the  same  until  the leaf 
nodes are reached, and respond by sending the rows up. 
Each parent  node performs  its designated operations,  such  as 
matching rows when  it is a join node. Rows not needed in 
the result are discarded on  their way up. The  actual rows are 
not formed at  intermediate nodes; the  complete row may 
not even be in storage yet. Only (parts of) rows which appear 
at  the  top  are  put  in  the  appropriate  data buffers and sent 
across the interface to  the requestor. This is a general 
description  of  tree  execution. In practice, there  may be 
intermediate results due  to  optimization, sorting,  etc. 

The access tree is optimized by Business System 12 both 
locally and globally. Locally it  might be done, for  example, 
by deciding to use an index or a spool file to hold an 
intermediate result; globally, by changing the  shape of the 
tree. This is very important when there is a select somewhere 
in  the tree. By moving the select down  in  the tree  as far as 
possible, the  number of rows moving up  during execution 
can  sometimes be limited  tremendously. In  the case of our 
example, the select on aunt is moved  down  to  the children 
tables at  the right-hand side of the tree. The paper by Blaauw 
et al. [ 191 contains a description of optimization 
methodology which transforms access trees into  the most 
cost-effective ones. Part of this  method is implemented in 
Business System 12. 

Logic  programming  in  Business  System 12 
We consider logic programs  consisting  of Horn-clauses: 

A :- B1, 82,  83, . . . Bn. 
A :- C1, C2, C3, . . . Cm. 

A is called a predicate or a goal. The propositions Bi and Cj 
are called subgoals. A is considered true if the conjunction of 
B1, 82, . . . Bn is true or if the conjunction of C1, C2, . . . 
Cm is  true. 

If there  are  no subgoals (n = 0), the left-hand  predicate is 
always true. Horn clauses of  this  shape are calledfacts. A 
fact is a simple fact if it contains  no variables as arguments. 

For instance, /ikes(john,mary). is a simple fact. Horn clauses 
with an  empty goal are called queries. 

0 Mapping of Horn-clause rules to relational algebra 
We proceed now by describing  in more detail the process of 
translating  Horn-clause  rules to relational algebra: 

A predicate P maps  to a relation r. 
If P has  arity n (i.e., n arguments), r has n attributes. 
Each  positional argument of P maps  to a distinct attribute 
of r (this is possible because all arguments  are assumed to 
be distinct). 
All rules Di for P map  to distinct  relations ri. 
r is the  union of the ri‘s. 

0 A Horn-clause  rule which is a simple fact maps  to a single 
row in a relation. The row contains in  its attribute fields 
constant values, which are identical to  the corresponding 
argument values of the simple fact. 

0 The  conjunction of  two  Horn-clause-rule subgoals maps  to 
the  join of the corresponding relations. Equal variables of 
different subgoals map  to  equal  attribute  names for the 
join. 
A (sub)goal S, with constant  arguments,  maps  to relation 
rs obtained  as follows: Let r be the relation  corresponding 
to  the predicate associated with S. Then rs is formed from 83 
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r by selecting only  those rows that  contain, in  their 
corresponding  attributes, the corresponding constant 
argument values. 
A Horn-clause  rule P is mapped  to a  relation r obtained as 
follows: Let P consist of head H and subgoal(s) S. Let rs be 
the relation  corresponding to S. Let c be a  relation 
consisting of one row, which contains  the  constant 
arguments of H that  do  not  occur in S. Let rc be the 
relation  formed by taking the Cartesian product of rs and 
c. Then r is formed by presenting only those attributes 
from rc that correspond to  the  arguments of H. 

This  mapping  does  not cover lists, structures, and  the Prolog 
cut operator. No distinction is made between built-in and 
user-defined predicates. 

To see how this translation  works in practice, we show 
in Figure 3 an example  similar to  one we used earlier to 
demonstrate  the view definition facilities of Business System 
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12 in  a Prolog version. The translation  of Prolog clauses 
to database views is obvious. Note: The Prolog syntax 
used in this paper is the Clocksin-Mellish syntax [ 151. 

The prototype interface 
As part of his Master’s thesis work [23], C. F. J. Doedens 
implemented a prototype for  a logic programming interface 
written  in PSC Prolog (a Prolog interpreter developed at  the 
IBM Scientific Center in Paris). The functionality of this 
prototype is limited,  partly because of the restricted scope  of 
his project,  partly because some new functions in Business 
System 12 are needed. Since Business System 12 is a 
commercial system, it is not possible to  add  functions  to it 
just for research purposes. 

In the Prolog subset supported by the prototype,  it is 
possible to define facts and rules and  to  make queries, but  no 
flow of control by means of  a cut operator is provided. In 
fact, the  prototype covers the  mapping defined  above,  except 
that recursive queries, which are nicely mapped by the 
prototype, cannot be executed in Business System 12 in that 
form. 

In addition  to translation of logic programming queries, 
the  prototype front end offers some user-friendly operational 
facilities, such as full-screen presentation  of results. It is 
possible to use relations which are created  outside the logic 
programming  environment in  a  query, and it is possible to 
access relations made by the prototype through  other 
Business System 12 interfaces  (PL/I,  APL,  conversational 
facilities). 

Due  to  the  administrative technicalities  involved,  such as 
ordering and  renaming attributes, the mechanical  translation 
done by the prototype is not so trivial. To give an idea  of the 
output  produced by the prototype,  a  translation of parent is 
printed  in Figure 4. We do  not explain  syntactical details. 

Although the  prototype interface  has  limited  function,  it 
gave us sufficient insight to enable us to  make a fairly 
detailed list of the  enhancements needed either  in the 
prototype  or in Business System 12 to  amve  at a full logic 
programming interface. The next sections are devoted to 
describing these enhancements. 

Towards  a full logic  programming interface 
Our objective was to have all rules  stored and evaluated 
inside the database. The preprocessor should  remain a 
“dumb” syntax  translation  program which has no knowledge 
of semantics. We found, however, that by making the 
preprocessor slightly more intelligent, we could use 
considerably more of the  functions available  in Business 
System 12, and in that way provide important functions, 
such as built-in predicates,  recursion, and arbitrary 
structures, while still maintaining  our  main objective. This 
enables  us to see how logic queries  behave in a  relational 
database and will allow us to build  a sizable application  in 
the future. At a  later stage, we can program more 
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understanding  of the syntax of logic queries into  the 
database itself, which will also allow for suitable 
optimization. 

In the next sections, we describe the proposed 
enhancements  to  the prototype and indicate where changes 
to Business System 12 are necessary or profitable. 

Predicates without arguments 
A naive understanding of our strategy tells us to translate 
facts without arguments  into a base relation with one row 
and  no attributes. An example is true. Such  a  construct is 
not externally  available in Business System 12. Therefore, we 
add  to all data relations  a 0th  attribute which need be only 
one bit wide. The question ?- true. will now indeed give a 
valid answer, and also joins with other relations will give the 
expected results. An additional advantage is that all relations 
now  have at least one  common  column,  and since this is 
already  a requirement for usingjoins in Business System 12, 
it facilitates translation. 

Multiple occurrences of a variable in a predicate 
In Prolog it is possible to have  multiple  occurrences of a 
single variable in different positions in a  predicate. The join 
operator, which enables  us to enforce  equality of attribute 
values named by equal variables that  occur in  distinct 
predicates, cannot be used. However, using a select provides 
a  suitable  alternative (compare [24, Section 5.31). The only 
requirement is that  the preprocessor recognize this case. 

Parallelism andjlow of control 
The result of a  relational  database  query is basically a set. 
This  means  that  the  order in which the tuples appear in the 
result relation is not predictable. (Of course, the user is given 
the  opportunity  to sort his rows if he wants to.) 

By contrast, in conventional Prolog, solutions to queries 
are formed through a  sequential search mechanism. Thus, 
the  order in which predicates, with or without  side effects, 
are executed is strictly determined. In Prolog there exists an 
operator called cut which influences  this flow of  control. 
When  a cut is encountered, all choices  after the parent goal 
is invoked  become committed  and  no  further solutions are 
attempted; Le., all variables are assigned their last found 
value, and  no  further backtracking is done. See [ 151. 

Something analogous can be implemented  in Business 
System 12  by introducing a new relational operator, which 
we call the  “breakpoint”  operator. In database terms  the 
function of a cut is equivalent to finding the first tuple of a 
view as defined by the rule(s) before the cut occurred. 
Inserting  a  breakpoint in the relational  compile  tree, which 
has the effect of realizing an  intermediate result, and  then 
taking  the first tuple of this result, provides the required 
facility. The difference from the traditional cut is that  the 
choice of  the first row of the solution to a  subquery is 

nondeterministic. Also, the use of a  breakpoint  operator 
inside the tree structure of a  relational expression allows 
greater  freedom  in  locating the  commits  than is permitted by 
the traditional cut operator, which is located  in  a 
sequentially  ordered rule. It is possible, for  example, to have 
two breakpoints located at  independent branches  in the tree, 
whereas two cuts inside  a single rule are always related in the 
sense that  one precedes the  other. As a  consequence, the 
semantics of the breakpoint operator will differ from the 
usual sequential interpretation, but  could be compared  to 
the guarded commands of  Dijkstra, which are also used in 
concurrent Prolog as designed by Shapiro  [25]. 

Not 
In the relational algebra, negation  corresponds to 
complementation. If a negated clause occurs  within  a 
conjunction with a positive one,  the  complementation  can 
be expressed by the relational dlference operator, which is 
available  in Business System 12. If a negated clause occurs  in 
isolation, its meaning  denotes  complementation with respect 
to  the universe, which leads to a possibly infinite  relation. 
Since this form of complementation is not available in 
Business System 12, we do  not  support this  type of negation, 
unless the  complementation is restricted to a finite domain 
or the negated predicate  has  a positive equivalent by 
definition. For example,  predicates expressing (in)equalities 
of arithmetic values can be negated. 

It is likely that  an  implementation based on  the difference 
operator in some circumstances will behave differently from 
the negation by failure implementation required by Prolog. 
It is unlikely that negation by failure is  a  reasonable aim for 
a  database-oriented parallel evaluator,  since  in Prolog it is 
highly intertwined with the sequential  evaluation strategy. 

Built-in predicates 
The predicates which are built into most Prolog interpreters 
can be divided into two categories: 

Predicates  causing  side effects, such as write and assert. 
Arithmetic predicates, such as sum or substring. 

Depending  on  the specific side effect under consideration, 
the  intended result of a built-in predicate  of the first type can 
be either innocent or highly detrimental  to  the  contents of a 
database.  Consequently,  a  uniform treatment of side effects 
does  not exist. For example,  it’seems  reasonable to  print 
values encountered,  but  the  order in which results will  be 
printed is unpredictable. In  the case of an assert or retract, 
the  intended  meaning is a  modification  of  a  database at  the 
very same  time this  database is queried.  Whether  this is 
possible is dependent  on  the relations affected. We abstain 
from further  comments  on this topic. 

In practice, arithmetic predicates  describe  a  functional 
dependency between attribute values in an already bound 
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domain. These  dependencies can conveniently be expressed 
in  the Business System 12 query language, using the 
calculate relational command. 

The unbounded view problem 
There is a class of rules which have no  obvious translation to 
Business System 12 query language,  such as 

are-the-same(X,X). 
dead(All) :- no-air-on-earth. 

These facts and rules introduce two  problems from  the 
perspective of our interface: 

The  data type of the values of the variables is unknown. 
The  intended relation  becomes  infinite in general. 

The first problem does  not arise  in Prolog, since that is an 
untyped language. But in Business System 12, all attributes 
are required to have an associated domain.  This  means  that 
we should specify somehow explicitly the  domains  for 
variables which occur  on  the left-hand but  not  on  the right- 
hand side  of a view definition. A natural place would be 
within the view definition, but  this is difficult in  the present 
Business System 12 syntax.  Instead, we can prevent the 
problem by always requiring the presence  of some predicate 
on  the right-hand  side whose only purpose is to specify the 
type of  those  variables which have no  other occurrences on 
the right-hand  side  of a view definition. For  this purpose we 
provide  in the  enhanced system  for every domain a 
corresponding  built-in  predicate with one  attribute whose 
name  equals  the  name of the corresponding domain. Its 
meaning is to  be  the characteristic  predicate  for  this domain. 
The  above two  rules are  now rewritten to 

are-the-same(X,X) :- integer()(). 
dead(All) :- human(All) , no-air-on-earth. 

Obviously integer and human are  the  domains for X and All. 
The examples above suggest that this type of  rule  leading 

to  unbounded views has rather limited expressive power. 
Universally quantified  assertions can  be expressed, and it  is 
also possible to enforce some equalities  within  these 
universally quantified  assertions, as illustrated by the 
are-the-same example. 

possibly infinite  relations, is more interesting.  Infinite 
relations will result if we interpret  the built-in  predicates 
describing arithmetic relations as  ordinary database relations. 
In both cases the problem is not  that  the relational semantics 
is inadequate  to provide the  intended meaning, but  that  the 
database does not allow us to  store infinite  relations in 
tables. Database views traditionally are  composed  from a 
finite collection  of finite base relations. Even for an extended 
database  where recursive views are allowed, these recursive 
views are defined in  terms of  finite base relations. 

The second problem, which concerns having to deal with 

A relational expression which involves infinite arguments 
must produce a finite result to be meaningful as a query. 
When the result is finite, it should also be possible to execute 
the query, and  the check whether  this condition is fulfilled 
should be a syntactic one.  For example,  consider the 
following Prolog rules: 

eafnsless(X,Y) :- salafy(X,A),salary(Y,B), less(A,B) 
netincome(X,A) :- sa/ary(X,B), withholdings(X,C), 

sum(A,C,B) 

In both cases, the resulting join describes an  ordinary finite 
relation. In the first example, the less predicate is a 
restriction on  the  bounded  product of two copies  of the finite 
salary relations. In  the second  relation, one uses the fact that 
each  of the  three  argument positions in  the  sum predicate  is 
functionally dependent  on  the  other two. So, as soon as two 
arguments  are restricted to a finite domain,  the third 
argument is bounded  as well. And  in both cases, a relational 
query  producing the correct  answer can be constructed based 
on a select or calculate operator. 

These  examples  indicate that a system dealing with built- 
in predicates  of the above type  can indeed be designed. It 
will be based on a boundedness calculus, which will include 
among  others  the following rules: 

Base-relation attributes  are  bounded;  some  attributes in 
general facts and specific built-in predicates can become 
unbounded. 
An unbounded  attribute becomes bounded if joined with 
a bounded  attribute having the  same  name. 
An attribute  that is functionally dependent  on  bounded 
attributes is bounded. 

Justification is clear for the first rule, which describes the 
finiteness of the base relations. For  the second rule, we can 
specify an evaluation  strategy based on semi-joins, whereas 
for the final rule a strategy based on  the calculate operator 
will work. 

The result of a query  bounded in all attributes  on  the basis 
of these  rules is indeed finite, and  the rules also provide us 
with an evaluation strategy which does not require  infinite 
intermediate results. 

At this  point it  should be observed that  this problem is 
very similar to  the problem of how to plan  query  evaluations 
making optimal use of specified arguments, which was 
investigated by Ullman  in his capture rule work [6]. The 
difference is only  in the  interpretation of the words bounded 
andfree.  Ullman assumes that his  relations are safe [24], 
which means  that  our  unbounded view problem  does not 
arise. In his terminology, bounded denotes  bounded  to a 
single value,  whereas  for us it means  bounded  to a finite 
domain.  We observe that  the  type of rules  described by 
Ullman for obtaining efficient evaluation strategies can  be 
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used in the extension of our system for  checking 
boundedness. 

In the full logic programming interface, the compiler will 
test the  query  submitted  to  the system for formal 
boundedness. If the query is found  to  be  bounded  on  the 
basis of the rules of the calculus defined above, the system 
will produce  an evaluation strategy at  the  same  time. If not, 
the user will get an  error message informing him of the 
source of the problem. 

We will not require our system to be omniscient. For 
example, our system will not know the difference between a 
function such as  the cosine and a  nontrivial  polynomial, 
which is expressed by the  mathematical result that  the 
polynomial  has only finitely many real zeros, whereas the 
cosine  has an infinite number of them. Neither  has  it the 
mathematical knowledge needed  for  building equation 
solvers. For example,  in the first rule below, the boundedness 
of X and Y can  be inferred, given that A and B are  bounded, 
while this is impossible  in the second rule because 
boundedness  here is not based on  functional dependencies 
but  on linear algebra: 

?- Sum(A,B,X), Sum(A,Y,B) 
?- S U ~ ( X ,  Y,A), sum(X,B,Y) 

It should be clear that handling unboundedness requires an 
intelligent  preprocessor/compiler, which must have access to 
semantical information on built-in  predicates  (boundedness 
and functional  dependencies). 

Arbitrary structures 
In Prolog it  is possible to  instantiate variables, not only to 
constant values as  in  the relational  model, but also to tree- 
or list-like structures. 

To map these  structures onto  the database, we are forced 
to  depart  from  the relational  model  in which nonatomic 
attribute values are  not allowed. In return, however, we  will 
be able to describe hierarchies, apart  from providing 
functional  capabilities  similar to those in Prolog. To many, 
the impossibility of  dealing  with  hierarchies is felt to be a 
severe functional  restriction in relational  databases  today, 
preventing  engineering and expert system applications. 

The  mapping we use is based on  the foreign key concept 
and  an extension  of the  prototype  mapping described  in the 
subsection “Mapping of Horn-clause  rules to relational 
algebra.” A foreign key is a set of attribute values which 
occur  as key attribute values in  another  or  the  same relation. 

We want to stress that  the  mapping we are going to 
describe is a conceptual solution. It  can be used in a 
prototype  implementation, using current database facilities, 
to check its functionality and performance. A more practical 
and less storage-consuming implementation will require 
database changes to  make what we describe transparent  to a 
user or preprocessor, but  that  does  not change the 
applicability and feasibility of  what we propose. 

Consider the example 

owns(john,tab/e). 
owns(john,book(odyssey,homer)). 

Our translation  algorithm suggests that  this  be  put  in  the 
database  in  a  relation owns(AI,A2] as 

[AI: john,A2: table] E owns. 
[AI: john,A2:  book(odyssey,homer)] E owns. 

The  attribute A2 now contains  the  nonatomic value 
book(odyssey,homer) in one of its tuples. In itself this item 
suggests translation to a relation book{ BI,  B2) as 

[BI: odyssey,B2: homer] E book. 

This changes the book structure  into a tuple with nice 
atomic values, but how can we find the row for  this book 
back in the owns relation? Let us assume  that we assign an 
identification hl to  the tuple 

[BI: odyssey,B2: homer] E book. 

Such  a unique identifier can always be found, using 
common practice  hashing  techniques. We now  change the 
owns table to 

[AI: john,A2: table] E owns. 
[AI: john,A2: refto(h1,book)l E owns. 

The value of refto(h1,book) can  be  made  atomic by using 
two  separate attributes  to store hl in the first, and a unique 
identification of the relation to which it belongs in  the 
second. 

In general, if 

p(AI,A2,. . .,An). 

maps  to 

p,(AI,AZ,. . .,An), 

in the  prototype translation, then we  will extend the 
mapping  to 

p{H,RI,TI,Al,R2,TZ,A2,. . .,Rn,Tn,An], 

where 

H contains a unique identifier (a key in database  terms)  for 

Ri contains an identifier for  a  relation. 
Ti contains a foreign key value to a  relation whose name is 

Ti and Ri provide  together the refto function as described 

If Ri and Ti do  not  contain identifiers (but zeros or blanks 
instead), then Ai contains  an  atomic value for that tuple. 

The translation of conjunctions  to  joins  and multiple rules 
for the  same predicate into  unions carries through 
unchanged  for the new mapping.  Instead of single attributes, 

each  tuple, as described above. 

in Ri. 

above. 

IBM J.  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 GHlCA van EMDE BOAS AND PETER van EMDE BOAS 



triplets of attributes have to be taken care  of now. That  may 
be cumbersome  to  humans,  but it  should not be to a 
mechanical preprocessor. 

Note: In Business System 12, there actually are already H 
attributes present  for every relation,  hidden from  the user. 
Therefore,  it will be easier to  implement a user-hidden  triplet 
structure  than  the above  description  might suggest. 

As an example,  consider the question 

?- owns(john,book(X,homer)). 

In  our  implementation, this  query will  be translated into 

SL(owns,OAl='john' & ORZ='book') JN 
SL (book{OTZ/H,. . . ],BAZ='homer'). 

(We made  attribute  names  unique by prefixing them with 
the first letter  of the table name; OT2 is the  common 
attribute  on which the  join is performed.) Before being 
shown to  the user, the  remaining references should be 
transformed into  the corresponding rows. The process 
function, a user-definable database procedure operating on 
every row in a table or view, can perform this task in a 
convenient way. Note  that inside a query, references need 
not be expanded  to  do  conjunctions (joins), because equality 
of a reference is sufficient. 

We still have to answer some questions: 

1. Can we indeed represent  arbitrarily  complex  structures? 
2. Does  unification work as  it should? 
3. How does  this proposal compare with other  approaches 

to  composite objects? 

With respect to  the first question, we observe that  the 
problem of aliasing (having two different access paths  to a 
single structure)  does  not arise. By definition  of the foreign 
key concept,  it  is  impossible  for  two references with different 
values to refer to  the  same row in  some table. Thus, if John 
and Mary  have the  same  book, they will have the  same 
reference to it. This suffices to prove by induction  that two 
structures  are equal if and only if their  representations  as 
proposed are equal. 

implements  too  many structures; a foreign key can refer 
directly or indirectly to  the row in which it is stored. Prolog 
does  not  support such infinite recursive structures. 

Regarding the second question, if we restrict ourselves to 
considering  only  those structures  that  are also supported by 
Prolog, the  structures  are equivalent to general directed 
acyclic graphs. This is exactly the  domain  in which the 
unification  algorithm  proceeds (see, for  example, [26]). 

to  the proposals  in [ 121 and [ 131. In Zaniolo's  proposal, a 
reference is bounded  to a single table  only. This makes  it 
impossible  for John  to own both books and cars, if both 
books and  cars  are  structured objects. In his semantics, the 

There is a problem  in the sense that  our proposal 

Concerning  the  third  question, we compare  our  approach 

value of a reference is simply the value of the tuple  it refers 
to.  This has the required  uniqueness  property but will 
probably  never be implemented in  this way. Thus  the 
question  of  whether  two different references can refer to  the 
same row returns  to  the  implementation. Moreover,  this 
semantics precludes  circular  structures.  Finally,  in  Zaniolo's 
proposal,  it is not clear whether a join  can be performed on 
a reference column. References cannot be listed or shown to 
the user; whether they can be tested  for  equality is not clear. 
The proposal also supports sets as  attribute values; it  is not 
clear  whether  this has any usefulness for our logic 
programming interface. 

The proposal  of Lone  and Plouffe seems to provide the 
required flexibility; references can refer to different tables, 
but in  this case John  cannot  both own books  and chairs 
when a chair is a plain attribute value. In their semantics, 
references are keylike identifiers. No two different identifiers 
can refer to  the  same row. References can be tested for 
equality and for membership in some particular table. Cyclic 
structures are possible; updating is very restricted. 

The  mapping we propose  is  simple but effective, and we 
see no  impact  on performance of the evaluation of queries. 
Structures  can be unified (or joined  in database  terms) by 
using only  their references. 

Lists 
Lists are a specific form  of a structure.  Therefore, we can 
translate lists by using their  structural form. 

A more  convenient  approach is to use a different but 
similar  mapping.  Instead of referencing a row, reference is 
made  to a serial table. A serial table is an  ordinary  data  table 
in Business System 12; however, rows are kept  in  arrival 
order, not randomly. Elements of the list will be stored  as 
rows in the serial table. Since  each element of a list can be a 
structured item,  another list, or just a value, further 
referencing can  occur in any row of the serial table. 

This  construction  may lead to a large number of tables, 
one for  each list. Although Business System 12 can create 
these  dynamically, as described  earlier, it  may still provide 
performance  problems. This seems not  to  be a severe 
difficulty, because in  database  programming lists are  not 
used as  often  as  they  seem to be in logic programming. The 
reason is that in a database sets are  more readily available. 
Set operators  could easily be provided to  the Prolog 
programmer by implementing  some built-in predicates. 

For serial tables, head and tail operations  can be 
implemented in a simple way. Curiously enough,  the head 
operator is very similar to breakpoint, the database 
equivalent  of cut. 

Recursive views 
It is well known that recursive queries can be replaced by an 
iteration of nonrecursive queries. With some restrictions, the 
results of  these  queries  increase  monotonically,  tending to a 
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fixed point.  Theoretical  background  can be found in  books 
by de Bakker [27] or Manna (281. 

A scheme to  implement iteration within a database could 
be as follows. Let 

a : -  . . .  
a :- . . ., a ,  . . . 

be a recursive Prolog query. We translate  this into a database 
query: 

a(n) t . . . UN . . . JNa(n-I)   JN . . . 
a(0) t empty (contains no rows) 

where a(n) is a base table with the  same set of attributes as 
the recursive view. To find the result of the recursive query 
a, we successively execute the queries a(O), . . . ,a(n). The 
result of query a(n-I) is stored  as a base table and used as 
such to execute query a(n). If the result of a(n) is equal to 
the result of a(n-I), the  iteration is finished, and we have 
found  the result of the recursive query a. 

the final result, no  data  must pass the interface, which is 
usually a slow performer. Compare routines,  etc.,  requiring 
knowledge of the internal data  structure  in  the database, do 
not have to be implemented  in  the foreground processor. 
Some  communication is nevertheless necessary, because the 
foreground processor needs to be able to restrict the size of 
the result in case it  is very large or infinite. 

a single recursive view, which occurs  only once  in its 
recursive definition, we need to  store as the result of a(n) 
only  the tuples which are not  in a(0) UN a(1) UN . . . UN 
a(n-I). When  no new tuples  result  for an iteration, we are 
finished. The total result is now the union of the results of all 
executed  iterations. 

All processing can be done  at  the database side; except for 

There is also room for optimization.  In  the simple case of 

Further  optimization  can be achieved by keeping 
intermediate results  of the nonrecursive parts of the query 
(when  they are  not in the  same  branch of the tree). 

Note that  it is not sufficient to keep intermediate results 
for the whole query. If the recursive view is not also the goal 
of the  query or if there is more  than  one recursive view 
involved, then it  is necessary to keep an  intermediate result 
at  the root  of  each recursive view invocation  in the relational 
access tree. 

It was found by Naqvi and Henschen [9] that  this 
approach  to recursion can become quite inefficient if the 
recursive query is subjected to  some selection elsewhere in 
the expression,  since it is not possible in  many cases to 
propagate knowledge about specified argument values into 
the fixed-point iteration results. These optimization 
problems are also investigated in  recent  work of Ullman [6]. 

Let us clarify this with the ancestor  example. In Prolog, it 
is represented by 

ancestor(X, Y )  ;- parent(X, Y )  
ancestor(X, V )  :- parent(X,Z), ancestor(Z, Y )  
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This translates into  the following recursive view definition: 

ancestor(X, r) +- (parenfix, u) UN(parent{X,Z/u  JN 
ancestor( Z/X, r))  

For example, one might ask who  the  ancestors  of Mary are: 

+SL(ancestor, Y=’Mary’) 

In this case, it is possible to push the select down in the 
relational  tree, a common  optimization  technique in 
relational  databases. However, when it is asked to whom 
Mary is an ancestor, 

+- SL(ancestor,X=’Mary’) 

this optimization is not allowed because the  attribute X is 
renamed before the recursive invocation of the view. See also 
[ 5 ] ,  where the  same problem is observed. It is even more 
difficult to  determine when optimization is allowed when the 
restriction is in the  form of another query,  such as “Provide 
the ancestors  of all speed-skating world champions of the last 
five years.” 

Iterative compilation of recursive views 
As a step towards solving the performance  problems 
mentioned, we introduce a new, more general approach  to 
optimizing recursive relational  queries. We refer to it as  the 
iterative compile approach,  as opposed to  the iteration on 
results approach described in the previous  section. It is based 
on  the following unfolding method. Let a be a recursive 
query  as before. Its  translation to  an iterative  query is also 
syntactically the  same  as before. The basic difference is that 
instead  of using the result of the previous  iteration, the 
dejnition of the previous  iteration is used to find the 
dqfinition of the next iteration. Each successive query  has to 
be compiled,  optimized, and executed, and its result is saved. 
The results are  compared  at each  step.  When the results are 
equal, we are ready. 

The  important advantage  of  this approach is that a 
recursive query is reduced to stepwise queries, which a 
relational database can handle as effectively as it is capable 
of: In many cases, separate  steps of the  iteration  can be 
optimized effectively, whereas this was impossible with the 
iteration on results method.  The same generation query 
which we describe  later is a good  example. 

In simple cases where stepwise compilation does not 
provide additional  optimization,  the iterative  compile 
approach  does  not necessarily perform worse than  the 
iteration on results method. Both methods have some 
overhead between steps to  compare results and  to readjust 
access trees. There is a slight increase in the  amount of main 
storage required  for the compiled method  due  to  the larger 
access trees; however, the most storage is usually required to 
keep information  about stored tables, and their number does 
not increase  after the first step. 

keeping a copy of the tree  for the compile  step  of a( I ) .  
The next  iteration  step can be compiled effectively by 
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Replacing a(0) with a copy  of the  tree for a( 1) in  the tree  of 
the nth  step  (after column  renaming, if necessary), the 
(n+l)th step  is easily obtained. In Business System 12, the 
output of the  compiler is executable, and  the  optimizer 
transforms  an executable access tree into  another executable 
access tree;  therefore, we can re-apply the  optimization 
process to  the compile  tree  for the  (n+l)th step, which we 
obtained in the way just described. 

Further  performance  improvements  are left as a future 
research topic. We note: 

There is no reason to use the compile  steps of 1. In cases 
where the recursion depth  can  be estimated, as may be 
possible in a database  environment where queries are often 
of a repetitive nature, larger step sizes can be used and 
initially more steps can be compiled. This results in a 
significant reduction  in the  number of  iteration  steps 
required. 
It may be possible to find subexpressions which do  not 
change between iteration steps. These  can be kept as 
intermediate results, avoiding recomputation  at each  step. 
It seems that  the execution  iteration is jusr an optimized 
special case of the compiled  iteration,  considering the 
previous  point. We do  not discuss  this  further. 

We clarify the iterative compilation  method  and its 
advantage using a more involved  example (due  to  Ullman). 
Assume that we would like to determine people who belong 
to  the  same generation  in a family  database,  as expressed by 
this Prolog query: 

Sg(A, B )  :- A == B. 
sg(A,B)  :-par(A,AX) , par(B,BX) , sg(AX,BX). 

We translate these rules, using our abstract  relational 
database syntax. The child-parent  relation is defined as 
par(P,N). The  database view is defined as 

sg(A,Bl +- 
CL(par(B/PJ ,AcB)  UN (par(A/N,AX/P) 
JN par(  BIN,  BXIP) JN sg(AX/A,  BXIB)) 90 
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The first clause, A == 8, is  translated using a calculate 
relational  operator.  See Figure 5 for a pictorial 
representation  of an expansion up  to  the  third  iteration for 
this recursive view. 

Notice that  the  order of the  arguments  for  some  joins  and 
unions is reversed and  that  the select is pushed  down  in  the 
tree (which was not possible for the iteration on results case). 
This  optimization is done automatically by the database 
query optimizer. 

Keeping  in mind  the pipelined  execution method 
described under “Compiling,  optimizing, and executing 
queries,” we see that  the  query executor  indexes itself 
through the relational access tree, accessing only  those rows 
from  the par table which are necessary to  form  the result. 
Only generally applicable optimization  methods  are used to 
achieve this. A requirement is that indexes be available on 
both N a n d  P attributes, which certainly will be  true for 
larger database  applications; otherwise, the  optimizer will 
most likely decide to  make  them anyway. 

dependent  on  the  number of recursion steps required, the 
complexity  of the query itself, and  the size of the result, but 
not on the size of the tables  involved. 

Currently,  queries can be executed  in Business System 12 

As a consequence, the execution time will only be 

in the way described above. This  can be done by using a 
database  procedure and a view definition which accept 
arguments  to  control  the recursion depth  and  the necessary 
column renaming. The  contents of the view definition and 
the procedure are shown in Figure 6, just  to give an idea 
what this might  look like. We do not explain the syntax  in 
more detail. 

SGO is a predefined empty table  (it contains  no rows). The 
query can be executed by typing run samegen(’Mary’). The 
result can  be  found in either  TTABI or TTAB2. These  can 
be used in further queries or  can be displayed with display 
ttabl. 

Because it is not yet possible to define  indexes on  both 
columns  in  the pur table in Business System 12, performance 
is not as  good as theory suggests. 

Using the same generation query, we did  some  crude 
performance  measurements. We used a parent table with a 
small set of rows in Business System 12 and a set of the 
same facts in Prolog. Next we added a variable number n of 
noise rows, with n ranging between 100 and 1000. These 
rows contained  data which did  not  contribute  to  the result in 
any way. We also added  the equivalent facts in Prolog. In 
both cases, we put  the relevant data somewhere  in the 
middle. For Business System 12, we used the code  shown 
above, which is not  optimal because the  query  must be 
completely  recompiled at each step. For Prolog, we added a 
rule  to  obtain all results. 

For both  experiments we observed a running  time of 
polynomial order  in n with exponent approximately 2 for 
Prolog and  exponent approximately 1.5 for Business System 
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12. We are aware  of the fact that in  this experiment  the 
performance of Business System 12 is suboptimal; much of 
the observed growth can be avoided when the optimizer 
becomes  capable  of  better  indexing support. 

Summary  and  conclusions 
As a  main  topic,  this  paper  has described how today’s 
relational  database management systems can be made  more 
intelligent. Combining ideas put forward by other 
researchers in the database and logic programming fields, we 
have  outlined an integrated approach  to arrive at a logic 
programming system, beginning with a state-of-the-art 
relational  database, Business System 12. For each function 
which requires  changes to  the database, we have described 
how it could be implemented  and, if appropriate, how others 
viewed the problems. 

Currently, we have  only implemented a restricted 
prototype. We have shown, however, using examples  of 
queries which are executable  now in Business System 12, 
how the prototype can be made  more intelligent and  that it 
can  support most logic programming functions. Support for 
structures, the iterative  compile approach  to recursion, the 
arithmetic built-in predicates, and  some  minor  points such 
as a 0th  column  can simply be added.  Meanwhile, we have 
kept our objective that all inferencing  should be done by the 
database  manager. 

We have also indicated  how at a  later stage Business 
System 12 could be improved  in  a few areas,  such that a 
logic programming interface  could be supported in  a  more 
transparent  manner  and performance  could be enhanced. 
This included  a review of the features just  mentioned for the 
prototype, support for which should then  be removed. Also 
included are  the breakpoint operator, built-in functions 
causing  side effects if appropriate,  iteration by execution of 
recursive queries, and  optimizations for the compiled 
iteration. 

New in our  approach  are  that  the whole logic 
programming  environment  (both rules and facts) is stored 
inside the  database  and  that all inferencing  is done inside. 
Apart from  showing that  and how it is possible, we have 
argued  these advantages: 

All database  functions,  including sharing, authorization, 
concurrency control, etc., become  available to  the logic 
programmer, while avoiding the huge duplicated 
implementation effort of  these functions which is 
inevitable in  any distributed  setup. 

and global approach  to  optimization of  queries is possible. 
As a  consequence, we were able to show a new method of 
evaluating recursive queries, the iterative compile 
approach, which gave promising  performance 
measurement results. We pointed out several open 
problems in  this  area towards which future research can  be 
directed. 

Since whole queries are inside the database, a generalized 

The database-logic programming interface will have 
semantics which are different from conventional Prolog to 
allow for  database parallelism, but it will adhere  to  the 
declarative  features of pure Prolog. 

We feel that  the described additions  to a  relational 
database are a  prerequisite to enable the development  of 
larger, more complicated, and multi-user  interactive  expert 
systems. 
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