
Conceptual
graphs for

by Jean Fargues
Marie-Claude Landau
Anne Dugourd
Laurent Catach

semantics and
knowledge
processlng

This paper discusses the representational and
algorithmic power of the conceptual graph
model for natural language semantics and
knowledge processing. Also described is a
Prolog-like resolution method for conceptual
graphs, which allows one to perform deduction
on very large semantic domains. The interpreter
that we have developed is similar to a Prolog
interpreter in which the terms are any
conceptual graphs and in which the unification
algorithm is replaced by a specialized algorithm
for conceptual graphs.

introduction
The conceptual graph model seems to be a very promising
unified model because it generalizes many ideas contained in
preceding work on natural language semantics, such as that
of Fillmore [11, Schank [2], Montague [3], Wilks [4], and
Kamp [SI, for example. This model is a general framework
for representing knowledge, and it can be used as the core
model of future integrated knowledge systems.

"Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

The conceptual graph model was introduced by John
Sowa in his book [6] in a rigorous and formal way.

The first purpose of this paper is to emphasize the main
properties of this model by comparing them with the
properties which are usually required in any powerful model
for natural language semantics. The second purpose is to
describe the principle of a Prolog-like deductive system
based on conceptual graphs that we have implemented.

We present in the first section the conceptual graph
model, and we discuss its representational and algorithmic
power in regard to the Montague-semantics-based approach
and the traditional logic-based approach. We discuss the
properties of the model itself but also its use for natural
language understanding.

We present in the second section a Prolog-like resolution
method which allows us to express a large amount of
background knowledge in terms of conceptual graphs and to
perform deduction on very large linguistic and semantic
domains. The interpreter that we have developed is similar
to a Prolog interpreter in which the terms are any conceptual
graphs and in which the unification algorithm is replaced by
a specialized algorithm for conceptual graphs. This
conceptual graph machinery has been implemented in
Prolog [7, 81.

The conceptual graph processor will be the main
component of a general system for knowledge acquisition
from texts that we are developing at the IBM Paris Scientific
Center [9]. 70

JEAN FARGUES ET AL. IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

Conceptual graph model and natural language
semantics

Concepts and conceptual relations
Three types of objects are introduced:

Referents, which denote individuals, values, or sets
explicitly mentioned in the world or in the universe of
discourse.
Example: ‘John’, 3.14159, and (Paris, Tokyo) are
referents.
Concept types, denoted by a concept type label inside a
box (or between brackets for a more convenient notation).
Example: [PERSON], [COLOR], and [EAT] are concepts.
Conceptual relations, denoted by a relation label inside a
circle (or between parentheses for a more convenient
notation).
Example: (LOC), (AGT), and (INST) denote the
conceptual relations “localization,” “agentive,” and
“instrumental.”

The set of concept types and the set of conceptual
relations are assumed to be given (we return to this point
later because these sets are not arbitrarily closed).

introducing a referent.
A concept can be restricted to a particular realization by

Example: [PERSON:’Joe’], [CITY:(Paris, London)],
[COLOR:’red’].

Concepts can be linked by conceptual relations to form a
conceptual graph (see Figure 1). The formation rules are
purely syntactic, and we assume that all conceptual relations
are binary. At this level we do not make any assumption
regarding the validity of the “meaning” of a conceptual
graph.

The concept type hierarchy
Concept types can be merged in a lattice whose partial
ordering relation < can be interpreted as a categorical
generalization relation (in an Aristotelian perspective).

Thus, PERSON < ANIMATE and EAT < ACT can
represent the facts that a person is animate and that to eat is
an action. The top and the bottom concept types of the
lattice are, respectively, UNIV (the universal entity type) and
ABSURD (the “absurd” entity type).

In the preceding example, we say that the concept type
ACT can be restricted to the concept type EAT or that
PERSON is a restriction of ANIMATE.

The < relation can be extended to concepts having
referents, as suggested by the example

Example: [PERSON:’Joe’] < [PERSON] and therefore
[PERSON:’Joe’] < [ANIMATE].

1BM J . RES. DEVELOP. VOL. 30 NO, I JANUARY 1986

We say in this case that the concept ANIMATE can be
restricted to the concept [PERSON:’Joe’]. Two identical
concepts having different referents are not comparable.

Given two comparable concept types, it is possible to
exhibit their “least common generalization” and by duality
their “greater common specialization.” When two concepts
are not semantically comparable, their least common
generalization is UNIV and their greater common
specialization is ABSURD.

Example:

ANIMATE could be the least common generalization of

SCIENCELFICTION-ROBOT could be the greater
ANIMAL and PERSON.

common specialization of ARTIFACT and PERSON.

The definition of the relation 5 on concepts can be extended
to a partial relation on conceptual graphs:

Let u and v be two conceptual graphs. Suppose that u
contains a subgraph u’ which is identical to v . In this case,
the graph IA is more “specialized” than the graph v (Le., it
expresses something more detailed than v) . We say that u
5 v .
By extension of this first case, if there is a subgraph u’ of u
that is isomorphic (modulo the 5 relation on concepts) to
V , then u 5 v . By “isomorphic” we mean that the graph u’
can be obtained from v by restricting some of its concepts.

The join and generalization algorithms
It is possible to build new conceptual graphs from a set of
existing conceptual graphs by applying the following
formation rules [6]:

Copy a graph.
Restrict a graph by replacing some concepts by restricting
these concepts.
Join two conceptual graphs, as follows (see Figure 2):

Form the maximal common overlap from the two
graphs: This overlap is the maximal conceptual graph,

JEAN FARGUES ET AL.

which is the common restriction of two corresponding
subgraphs of the two graphs. We require that it must be
a connected graph.
Attach the pending parts remaining in the two graphs to
the maximal common overlap.

Simplify a conceptual graph by suppressing the redundant
occurrences of identical edges in a graph.

The notion of “maximal join” can be introduced if we add
to the preceding rules that the maximal overlap used to form
the join is maximal in two ways: It is maximal because it
contains a maximal number of edges obtained by restriction
from the two original graphs, but also because its concepts
are the greater common specializations of the concepts
coming from the original graphs.

We say that the join of two graphs fails whenever the
maximal overlap degenerates into a single concept of type
ABSURD (no comparable concepts in the two graphs).

The “maximal join” is not necessarily unique because it
may happen that several maximal overlaps exist between the
two graphs. Thus, the extension of the relation I to
conceptual graphs does not confer a lattice structure on the

It is possible to write an algorithm which gives the
maximal joins of two conceptual graphs. This algorithm is
an extension of the unification algorithm because it gives as
result a “greater common specialized graph,” which can be
built from two conceptual graphs.

It is possible to implement this algorithm in Prolog as a
predicate which gives all the possible maximal joins using
the backtracking facilities of this logic programming
language [lo].

Another interesting algorithm is the generalization
algorithm (see Figure 3). It gives as result the least common

72

JEAN FARGUES ET AL. IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

generalized conceptual graph obtained from two graphs. This
least common generalized graph can be built by forming a
common overlap which contains the least generalized
concepts obtained from couples of concepts coming from the
two original graphs (instead of the greater common
specialization of concepts in the case of join). We say that
the generalization algorithm fails when its result is the
[UNIV] degenerated graph.

This algorithm is very useful for acquiring general
definitions from a set of particular examples. It is one of the
algorithms to be used in the learning component of a
knowledge system based on the conceptual graph model.

The maximal join algorithm and the generalization
algorithm have been implemented in Prolog [7].

The abstraction operation and the conceptual graph model
A typed formal model must have an abstraction operation to
be a powerful candidate for representing natural language
semantics. This abstraction operation allows one to define
new concepts or relations by composing existing concepts
and relations.

The second aspect of this abstraction principle is that it
must be possible to distinguish between the individuals
referenced in a particular discourse, the classes of
individuals, and the properties of these classes.

This abstraction principle is obviously needed if we
consider the definitions given in the dictionaries or the
paraphrasing process that we can use to make the meaning
of a discourse precise.

abstraction operator was introduced as the lambda
abstraction operator because this semantic model is based on
a particular interpretation of the typed lambda calculus used
to denote natural language semantics. Thus, a particular
“pen” can be denoted by the 0-order expression h()[pen 1231,
the class of all pens can be defined by the 1-order expression
h(x)[pen(x)], and this class is a particular subclass of the class
noted by the second-order expression h(P)[writing-
artifacts(P)], where the functional variable P can be
instantiated to the class “pen.”

play an instrument y by a logical form such as

In the Montague semantics-based approach [3], the

It is also possible to define the class of all musicians who

set of all conceptual graphs. X(x,y)[person(x) A play(x,y) A music-instrument(y)]

or by the functional expression

X(x,y)[play(person(x),music-instrument(y))].

The conceptual graph model also allows us to define new
concepts and new conceptual relations using an abstraction
operation. We give in Figure 4 an example of definition
statements for a new concept and for a new conceptual
relation.

Whenever a definition is given, the new concept is added
to the concept type lattice: In the example following, ART-
SPONSOR < PERSON will be stored in the lattice.

The contraction operation takes as arguments a conceptual
graph and a definition. It tries to replace a subgraph of the
given conceptual graph by a single concept (or relation)
using the definition of this concept. This contraction process
also takes into account the restriction relation on the
concepts of the conceptual graph in which the substitution is
applied (see Figure 5).

The contraction algorithm applies a partial substitution
when the graph to be contracted is more restricted, as shown
in Figure 6 . Thus, we do not lose the information which was
contained in the original graph.

It is sometimes possible to perform several contractions on
the same graph when this graph contains multiple
occurrences of the definition graph. In this case, the
contraction algorithm may be iterated on the graph obtained
at each step.

Another useful algorithm is the expansion algorithm,
which unfolds a single concept (or relation) occumng in a
conceptual graph by replacing this occurrence with its
definition graph.

From syntax to semantics using conceptual graphs
A classical property of the formal models for natural
language semantics used in AI is that they obey the
compositionality principle. It is usually assumed that a
representation of the semantics of an entire sentence can be
built by combining the semantic representations associated
with its components.

syntactic tree to build the semantic representation of the
sentence. A semantic form is assumed to be given (or
selected) for each word in a semantic lexicon. An operator is
defined to build the semantic form attached to a parent node
of the syntactic tree. This operator takes as arguments the
semantic forms attached to the son's nodes and gives as
result a more complex composed semantic form.

If we consider the Montague semantic approach or related
work such as [1 I] , logical forms describing the semantics of
the words in the lexicon can be represented as expressions in
the lambda-calculus formalism. The operator which
combines the logical forms to obtain a semantic
representation for a sentence is in this case the lambda-
evaluation operator (see Figure 7). The lambda expression of

A classical approach consists of starting from a traditional

73

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 JEAN FARGUES ET AL.

CMAN:'Srnith'l+(AGNT)+CClVE1+(OBJ~+CMONEYI
4 +
4 + (ATTR) (RCPT)

C RICH 1 C ARTIST 1

Using the ART-SPONSOR definition, the contraclion gives

[ART-SPONSOR:'Smith'I+(AlTR)+CRICHl

CMAN:'Smilh'I+(AGNT)+CGIVEI+(OBJ)+[MONEYI
+ 4

4 t
(ATTR) (RCPT) \

C RICH 1 C PA1NTER:'Jones' 3

The partial contraclion gives

CART_SPONSOR:'Srnith'l+(AGNT)+CGIVE3+(RCPT)-tl
J.

: PAINTER'Jones'l

74

[Example of schematic cluster for the word ‘ key ’

a parent node in the syntactic tree is obtained by evaluating
a lambda expression of a son node with the other son
expression as argument (the direction of this evaluation is
indicated by t and .--, on the figure). The logical form for
this sentence could be made closer to predicate logic by
rewriting it as

(Fl): exists(v) [love(John,v) A girl(v)]

but it is possible to obtain something like

(F2): exists(e), exists(v) [agt(John,e) A obj(v,e) A girl(v) A
love(e)]

where e is introduced as an “event” variable.
These variants depend on the complexity of the lambda

expressions associated with the words in the semantic
lexicon, but the compositionality principle taken into
account by the lambda evaluation remains the same.

semantic constraints in the lexicon.
The important point now is that it is necessary to express

For example, we would like to specify that the agent of “to
think” must be a person. We would like also to define
semantic contexts in order to handle more complex
polysemic cases (example: “to run” in “John runs a mile”
and in “the program is running very well”).

The logical form approach is generally well based
theoretically, but this approach makes it difficult to represent
semantic constraints. These constraints are generally
specified in the grammar rules by tests on semantic markers
(such as “human” or “not human”). Thus, these tests appear
as extraneous ad hoc specifications outside the lambda
calculus or the predicate logic formulation for the semantics.

Another problem is the lack of flexibility stemming from
the fixed arity assigned to the predicate symbols introduced
in these models.

It is usual to introduce a predicate symbol to denote the
semantics of a verb. The fixed arity of the chosen predicate
symbol makes it difficult to represent multiple complement
structures [leave(x,y) in “John left Chicago,” but what is the
predicate arity for “leave” in “John left Boston with Mary
for New York by the highway”?].

Sowa, following Fillmore, introduces a set of semantic
case relations such as agentive, object, instrumental, and so
on. If we look at the logical formalism, it is also possible to
introduce these case relations (such as in the F2 logical form
given before), but special variable types must be introduced
to represent events or possible worlds [5 , 121.

Now, what about these problems using the conceptual
graph model?

We can associate with a word a concept type and its place
in the type lattice.

The semantic constraints can be associated with the words
in a semantic lexicon by using what are called canonical
graphs.

Example: With the verb “to think” one can associate the
canonical graph

[PERSON]t(AGT)c[THINK]+(OBJ)+[PROPOSITION]

The possible semantic contexts are introduced by schemata
which are also conceptual graphs. Thus, the “meaning by
use” for a word can be represented by a set of schemata.
This set is called a schematic cluster (see Figure 8).

Building a conceptual graph as a semantic representation
of the meaning of a sentence obeys the compositionality
principle as described for the logical form approach. Starting
from a syntactic tree, the operator to be applied at a parent
node of the tree is now the maximal join of the conceptual
graphs associated with the son nodes [131. Thus the join
operation plays the same role as the lambda evaluation used
in the logical form approach.

The initially selected graphs for the words of the sentence
are either their canonical graphs or some schemata of their
schematic cluster. We have assumed here for simplicity that
there is a one-to-one mapping from the words to the concept
types. We make this point more precise later in our
discussion of the semantic lexicon.

Suppose that the concept type OPEN is associated with
the verb “to open” and that the canonical graph for this verb
is

(cl): [PERSON]t(AGT)c[OPEN]+(OBJ)+[PHYSICAL-
OBJECT]

Then, the conceptual graph for the sentence “John opens the
door with a key” will be

[PERSON:’John‘]+(AGT)c[OPEN]+(OBJ)+[DOOR]

This graph is obtained by joining the canonical graph for “to
open” and the (S I) schemata for “key” in Fig. 8.

Two important points must be emphasized.
The first one is that the join operator has taken into

account the basic semantic constraints expressed by

JEAN FARGUES ET AL IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

canonical graphs. In the example given before, the canonical
graph for “to open” encoded this kind of constraint.

The second one is that the preference semantic principle
(as described by Wilks) is implicitly used by joining the
schemata. In the given example this principle is applied by
the selection of the (S I) schemata for “key.” This selection is
achieved in a natural way because of the mapping of the
schemata with the current semantic context.

The problem of the arity of the predicate symbols has
disappeared because we handle graphs instead of fixed-arity
logical forms.

In the preceding example, a crucial point is the selection
process of the right conceptual graphs in order to build a
correct graph for the sentence. It may happen that a join
fails in this process, either because the sentence is
semantically not well founded or because a polysemic word
occurs in this sentence. In the latter case, another choice can
be made for the canonical graph or the schemata
corresponding to the suspected polysemic word of the
sentence. So, the process can backtrack.

This problem is closely related to the structure of the
semantic lexicon: One polysemic word may correspond to a
single concept type (as in the “key” example). In this case,
the polysemy can be encoded as distinct graphs in the
schematic cluster. It can happen also that a word
corresponds to distinct concept types. For example, the verb
“to open” could point to the concept type BEGIN and could
have as a second canonical graph

(c2): [PERSON]t(AGT)c[BEGIN]~(OBJ)+
[COMMUNICATION-PROCESS]

If we consider a sentence such as “John opens the session by
pressing the enter key” the process suggested above will give
as result
[PERSON:’John’]t(AGT)c[BEGIN]+(OBJ)+[SESSION]

1

1
(SRCE)

[PROPOSITION:

[PERSON:’John’]t(AGT)c[PRESS]+(OBJ)+[KEY:’enter’]
1

.1
(PART)

[KEYBOARD]]
We d o not give all the details about this example, but the
background information used in the underlying join process
would be the fact that SESSION < COMMUNICATION-
PROCESS (assumed to be stored in the concept hierarchy)
and the conceptual graphs (c2) and (s2).

In the case of second-order sentence structures (such as
subordinate or completive constructions), we can use the
concept type PROPOSITION, whose referent may be a
conceptual graph. A set of unary conceptual relations on
PROPOSITION concepts can be introduced too (see Figure
9).

IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

The conceptual graph model allows us to handle almost
all of the traditional particular representation problems
(tense, modalities, quantification, . . .). Some of these
problems are discussed in Sowa’s book [6].

Thus, it is possible to express a large quantity of
information in the semantic lexicon in a flexible way. Of
course, all the information describing a sample world must
also be expressed as “pragmatic assertions or inferences” in a
more complex formalism. We describe in the next section
how to specify this knowledge using a Prolog-like formalism
(i.e., a “Prolog” whose terms are any conceptual graphs).

Prolog-like deduction on conceptual graphs

Conceptual graphs and logic
Before introducing the notion of deduction on conceptual
graphs, we make more precise some points about the logical
interpretation of a conceptual graph considered as an
assertion.

As mentioned in the preceding paragraphs, the conceptual
graph model is able to represent high-order logical relations
which are difficult to represent in a simple first-order logical
formalism.

If we consider only conceptual graphs without
PROPOSITION concepts and without complex set referents,
it is possible to associate a first-order logic formula @u with a
conceptual graph u as follows [6]:

A unary predicate is associated with each concept ci of u.
The name of this predicate is the type label of the concept.
The argument of this predicate is a variable symbol xi if
the concept has no specified referent and the referent itself
if it is a constant. The argument of the predicate is called
the identifier of the concept ci.

conceptual relation r of u. The arguments of this predicate
are the identifiers of the concepts linked by r in u.

An n-ary predicate is associated with each n-ary

The logic formula associated with the graph u is

@u = exist@ 1, . . . , xn) f:

JEAN FARGUES ET AL.

e proJectlon operation.

The existentially quantified x i variables correspond to the
concepts having no specified referents. The formulafis the
conjunction of the predicates associated with the concepts
and with the conceptual relations of u.

An example is given in Figure 10.
Sowa has extended this mapping into logic for higher-

order conceptual relations on propositional concepts, for
universal quantification, and for coreference problems. He
uses an extension of Pierce’s logical system adapted to
conceptual graphs and gives the inference rules to perform
deduction in Pierce’s formalism. We do not use the same
approach because the given set of inference rules, even if it is
applicable by hand on little examples, seems too
combinatorial to be used in practical systems. Therefore, we
have studied the deduction method described in the last part
of this section. This deduction method is based on the
matching algorithm on conceptual graphs. The matching
that we use is based on the projection operation which has
been used by Sowa to formalize the join and the contraction
operations. We now review this projection operation.

The projection algorithm
The projection operation is closely related to the basic
operation needed to introduce our Prolog-like deduction
method for conceptual graphs. 76

JEAN FARGUES ET P

The projection is defined as follows:
Let u and v be two conceptual graphs.
If I I 5 v , there exists a subgraph u’ of u isomorphic

(modulo the restriction relation) to the graph v . The graph u
can be viewed as the graph u’ joined with some additional
edges. The induced graph u’ = v + u is called the projection
of v in u. A graph v may have several distinct projections in
the same given graph u, as shown in Figure 11.

remaining part of u as the graph obtained by suppressing in
u all the edges of u’.

The projection operation of v in u consists in exhibiting a
subgraph u’ of u which satisfies the following conditions:

If u’ = v -+ u is a projection of v in u, we define the

1. The conceptual relations in u’ and v are identical.
2. The concepts c l , . . . , cn of u‘ are some restrictions of the

3. If a relation r links two concepts di and dj in v , then it
corresponding concepts d l , . . . , dn of v .

also links the concepts ci and cj in u’.

Thus, we can define the substitution associated with the
projection as the composition of the restrictions on the
respective concepts of the two graphs. We note it by

8 = [(dl/cl), . . ., (dn/cn)].

The structure of the implemented algorithm is given in
Figure 12.

As mentioned, there are often many possible projections
of a graph in another one, and the connectivity checking of
the resulting graph is not included in Part 1 of the algorithm.
In fact, we have implemented this algorithm as a
nondeterministic Prolog predicate: If the obtained graph is
not connected, a fail forces Prolog to backtrack inside the
algorithm to find another solution.

The resolution principle for conceptual graphs
We assume that we have

A set of clausal conceptual assertions of the form

G+-GI,G2, ..., Gn.,whereG,GI, ..., Gnare
conceptual graphs.

This clause can be interpreted as “to prove the assertion G,
then try to prove the assertions GI, G2, . . . , Gn.”. If n =
0, the clause “Gc.” is a simple factual assertion.
A “goal” clause of the form

c Al, A2, . . . , An., where AI, . . . , An are conceptual
graphs.

This goal clause will be interpreted as “prove A 1 and A2
and . . . An.”

The resolution mechanism is based on the following
theorem, given in [6] :

LL. IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

If u and v are two conceptual graphs such that u I v , then
@ u 3 @I. (@u and @v are the logic formulas associated with u
and v; 3 is the logical implication.)

This result can be compared to the following implication
of classical logic:

f l u) A Q 3 exist (W ’ o) l ,

where a is a particular constant. In our case, u is more
specialized than the graph v . The graph u may contain more
edges than v. Informally speaking, the subgraph u’ of u,
which is isomorphic (modulo restrictions on concepts) to v ,
plays the role of P(a) in our analogy. The additional edges
play the role of the other formulas Q included in the
conjunction. Another point concerns the fact that the
concepts of v will have more variables as referents than in
the subgraph u’. Thus, informally, the logic formula
corresponding to the graph v will be more “existentially
quantified” than u. The preceding result depends also on the
I relation, which takes into account the lattice on the
concept types.

Now, let us suppose that we have

a clause : G + GI, G2, . . . , Gn
a goal : t A
a projection p of A in G.

Then G I A, and therefore @G 3 @A. This allows us to
“erase” the goal A and to replace it with the subgoals

+GI , G2, . . . , Gn.

The projection operation seems to be the basic algorithm to
use in our deductive machinery. In fact, the operation that
we need must be extended for the following reasons:

A Prolog goal +Ox). is not really interpreted as “prove
the logical formula exist(x)[flx)]” but is only a term to be
instantiated by the solution for x found by the Prolog
machinery. In the same way, we interpret a goal +-A. in our
system as “try to find A or to exhibit a restriction of the
graph A by deriving it from the set of the given assertions.”

In other words, the concept types play the role of variables
and the I restriction relation between them plays the role of
the instantiation. Thus, an instantiated solution of a “goal
graph” in our system will be obtained via some restrictions
on its concepts.

Suppose that a goal contains [PERSON:’John’] and that a
clause head contains [BOY:*x].

The projection is too restrictive an operation because we
would like to “unify” [PERSON:’John’] and [BOY: *x] in
order to obtain [BOY:’John’]. But these two concepts are
not comparable by I because of their referents, and
therefore the definition of the projection cannot be applied.

To introduce a more general matching operation, we say
that two concepts cl and c2 are compatible if there exists a
maximal nondegenerated common restriction c3 of cl and
c2 (i.e., c3 I cl, c3 I c2, and type(c3)fABSURD).

This matching operation is defined as follows:
We say that a graph v can be matched to a graph u if there

exists a subgraph u’ of u such that

The conceptual relations are the same in v and u’.
If the concepts ci and CJ (respectively, di and dl) are linked
by the conceptual relation r in u (respectively in v) , then,
in the pairs (ci, di) and (cj, 4) the first and the second
concepts must be compatible.

Using this definition, and if ei is the maximal restriction of
ci and di, we obtain two substitutions on the graphs u and v :

81 = [(cl/el), . . ., (cn/en)] on the graph u,
0 2 = [(dl/el), . . ., (dnlen)] on the graph v .

Thus, a projection operation is a matching operation, but it
is possible to match two graphs even if there is no projection
between them, as in

[PERSON: ‘John’]t(AGNT)+[LIKE]+(OBJ)+
[ELEPHANT]+(COLR)+[GRAY]

and

[BOY: *x]+(AGNT)c[LIKE]-+(OBJ)-,
[ANIMAL: ‘Jumbo’]

This matching operation can be viewed as the operation
used in the maximal join to build the common specialized
overlap of two graphs, with the additional constraints that all
the edges of the first graph must be included (modulo a
restriction) in this overlap and that all joined concepts must
be compatible.

IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 JEAN FARGUES ET AL.

78

This matching operation plays the role of unification in a
Prolog interpreter.

A “top-down’’ resolution algorithm for conceptual graphs
The preceding paragraphs allow us to define for the
conceptual graph model a “top-down’’ linear resolution
mechanism very similar to the Prolog mechanism (see
Figure 13).

resolution method. We chose this “Oz” example because
Sowa applied his set of inference rules to it in his book.

We give in Figure 14 an example of deduction using our

Conclusion
We had the feeling that the conceptual graph model could be
a very powerful candidate as a core model of future systems
integrating knowledge processing and natural language
processing. Our practical experiments on the
implementation of this model confirm this first feeling. The
conceptual graph model is a general framework for
expressing natural language semantics and designing very
large semantic lexicons, but also a practical way to express a
large amount of pragmatic information by assertions and
clauses. All the algorithms are domain-independent and,
unlike special-purpose knowledge models, the description of
a semantic domain can be made through a purely declarative
set of conceptual graphs.

Acknowledgment
We would like to thank John Sowa (IBM Systems Research
Institute) for the fruitful contacts that we have had with him
since we started to work on the conceptual graph model.

References
1. Charles J. Fillmore, “The Case for Case,” Universals in

Linguistic Theory, E. Bach and R. T. Harms, Eds., Holt,
Rinehart &Winston, New York, 1968, pp. 1-88.

2. Conceptual Information Processing, Roger C. Schank, Ed.,
North-Holland Publishing Co., Amsterdam, 1975.

3. David R. Dowty, Robert E. Wall, and Stanley Peters,
Introduction to Montague Semantics, D. Reidel Publishing Co.,
Dordrecht, the Netherlands, 198 1.

4. Yorick A. Wilks, “Making Preferences More Active,” Artif:
Intell. 11, 197-224 (1978).

5. Hans Kamp, “Events, Discourse Representations, and Temporal
Reference,” Langages 64, 39-64 (1 98 I).

6. John F. Sowa, Conceptual Structures: Information Processing in
Mind and Machine, Addison-Wesley Publishing Co., Reading,
MA, 1984.

7. VMIProgramming in Logic (VMIProlog), Order No. PO 5785-
ABH, available through IBM branch offices.

8. Laurent Catach and Jean Fargues, “Deduction and Operations
on the Conceptual Graph Model,” Research Report F087 (in
French), IBM Pans Scientific Center, 1985.

General Overview,” Internal Research Report F074, IBM Pans
Scientific Center, 1984.

9. Jean Pierre Adam and Jean Fargues, “Project KALIPSOS,

10. Alain Colmerauer, “Prolog in Ten Figures,’’ Proc. IJCAI-83, pp.

I I. Michael C. McCord, “Using Slots and Modifiers in Logic
487-499 (1 983).

Grammars for Natural Language,” Artif: Intel/. 18, 327-367
(1982).

12. Robert C. Moore, “Problems in Logical Forms,” Technical Note
241, SRI International, Menlo Park, CA, April 1981.

13. John F. Sowa, “Using a Lexicon of Canonical Graphs in a
Conceptual Parser,” Workshop on the Lexicon, Parsing, and
Semantic Interpretation, CUNY Graduate Center, New York,
January 1985. To be published.

Received July 25, 1985; revised August 9, 1985

JEAN FARGUES ET AL. IBM J . RES. DEVELOP. VOL. 30 NO, 1 JANUARY 1986

Laurent Catach Paris VI University, Artificial Intelligence
Department, Paris, France. Mr. Catach worked for IBM in 1985 as a
visiting university student in the artificial intelligence group at the
IBM Paris Scientific Center. He is a doctorate student at the
Artificial Intelligence Department of the Paris VI University. Mr.
Catach obtained his MS. and his “Agregation,” both in
mathematics, from the Ecole Normale Suplrieure.

Anne Elisabeth Dugourd IBM France, Scientific Center, 36,
Avenue Raymond Poincare, 75116 Paris, France. Ms. Dugourd is an
engineer at the IBM Paris Scientific Center, where she has worked
since joining IBM in 1982. She was a student of the Ecole Normale
Sugrieure, where she obtained her MS. degree and her
“Agregation,” both in physics. She worked on the French Thesaurus
linguistics project of the IBM Paris Scientific Center until 1984. Ms.
Dugourd joined the artificial intelligence group at the beginning of
1985: she is working on the computational linguistics project of this
group.

Jean Fargues IBM France, Scientific Center, 36, Avenue
Raymond Poincare, 75116 Paris, France. Dr. Fargues is a research
engineer in the artificial intelligence group at the IBM Paris Scientific
Center, where he has worked since joining IBM in 1983. He received
the “Ingenieur” diploma from the I.D.N. French Engineering School
in 1975, beginning work that same year in artificial intelligence as a
research student at the Paris VI University. He obtained a thesis in
1978 for his work on the automatic synthesis of LISP recursive
functions from examples. Dr. Fargues is “Docteur Es Science” in
mathematics for his work on logic and deduction, defended as a
doctoral thesis at the Paris VI University in 1983, supported by an
IBM France research fellowship. His present interests include logic
and computational linguistics, in connection with a project of the
artificial intelligence group.

Marie-Claude Landau IBM France, Scientific Center, 36,
Avenue Raymond Poincare, 75116 Paris, France. Ms. Landau is an
engineer in the artificial intelligence group at the IBM Paris Scientific
Center. She joined IBM France in 1974. Ms. Landau received her
degree of engineering from the Ecole Centrale des Arts et
Manufactures, Paris, France, in 1970. From 1970 to 1974 she was
employed by the Honeywell-Bull Company as an engineer in the
systems architecture group in Paris. From 1974 to 1978 she worked
at the IBM Development Laboratory, Essonnes, France, in the
center of competence for VLSI design aids. Ms. Landau joined the
Scientific Center in 1979. From 1979 to 1984 she worked in the
image processing group, where she contributed to the IBM High-
Level Image Processing System Program Offering (a software
package to do image processing on an IBM 7350). Since 1984, she
has worked in the artificial intelligence group at the Paris Scientific
Center, where she contributed to the VM/Programming in Logic
Program Offering. Ms. Landau is currently working on the
computational linguistics project of the artificial intelligence group.

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

79

JEAN FARGUES ET AL.

