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This  paper  discusses  the  representational  and 
algorithmic  power  of  the  conceptual  graph 
model  for  natural  language  semantics  and 
knowledge  processing. Also described  is  a 
Prolog-like  resolution  method  for  conceptual 
graphs,  which  allows  one  to  perform  deduction 
on very  large semantic  domains.  The  interpreter 
that  we  have  developed  is  similar  to  a  Prolog 
interpreter  in  which  the  terms are any 
conceptual  graphs  and  in  which  the  unification 
algorithm is  replaced by  a  specialized  algorithm 
for  conceptual  graphs. 

introduction 
The  conceptual graph  model  seems to be a very promising 
unified model because it generalizes many ideas contained in 
preceding  work on  natural language  semantics,  such as  that 
of  Fillmore [ 11, Schank [2], Montague [3], Wilks [4], and 
Kamp [SI, for  example. This  model is a general  framework 
for representing knowledge, and it can be used as  the core 
model of  future integrated knowledge systems. 
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The  conceptual graph  model was introduced by John 
Sowa in  his  book [6] in a rigorous and formal way. 

The first purpose  of this  paper is to emphasize the  main 
properties  of this model by comparing  them with the 
properties which are usually required  in any powerful model 
for natural language  semantics. The second  purpose is to 
describe the principle  of a Prolog-like deductive system 
based on  conceptual graphs that we have implemented. 

We present  in the first section the  conceptual graph 
model, and we discuss its  representational and algorithmic 
power in regard to  the Montague-semantics-based approach 
and  the  traditional logic-based approach. We discuss the 
properties  of the model itself but also its use for natural 
language understanding. 

We present  in the second  section a Prolog-like resolution 
method which allows us to express a large amount of 
background knowledge in terms of conceptual graphs and  to 
perform deduction  on very large linguistic and  semantic 
domains.  The  interpreter  that we have  developed is similar 
to a Prolog interpreter  in which the  terms  are  any  conceptual 
graphs and in which the unification  algorithm  is replaced by 
a specialized algorithm  for conceptual graphs. This 
conceptual  graph machinery has been implemented  in 
Prolog [7, 81. 

The  conceptual graph processor will be the  main 
component of a general system for knowledge acquisition 
from  texts that we are developing at  the IBM Paris Scientific 
Center [9].  70 
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Conceptual  graph  model and natural language 
semantics 

Concepts and conceptual relations 
Three types of  objects are introduced: 

Referents, which denote individuals, values, or sets 
explicitly mentioned in the world or in the universe of 
discourse. 
Example: ‘John’, 3.14159, and  (Paris,  Tokyo)  are 
referents. 
Concept types, denoted by a concept type label inside  a 
box (or between brackets  for  a more  convenient notation). 
Example: [PERSON], [COLOR], and [EAT] are concepts. 
Conceptual relations, denoted by a  relation label inside  a 
circle (or between parentheses  for  a more  convenient 
notation). 
Example: (LOC), (AGT), and (INST) denote  the 
conceptual relations  “localization,”  “agentive,” and 
“instrumental.” 

The set of  concept  types and  the set of  conceptual 
relations are assumed to be given (we return  to  this  point 
later because these sets are  not arbitrarily closed). 

introducing a referent. 
A  concept can be restricted to a  particular realization by 

Example: [PERSON:’Joe’], [CITY:(Paris, London)], 
[COLOR:’red’]. 

Concepts  can be linked by conceptual relations to form  a 
conceptual graph (see Figure 1). The  formation rules  are 
purely syntactic, and we assume  that all conceptual  relations 
are binary. At this level we do not  make  any  assumption 
regarding the validity of the  “meaning” of a conceptual 
graph. 

The concept type hierarchy 
Concept types can be merged in  a  lattice whose partial 
ordering  relation < can be interpreted  as  a categorical 
generalization  relation (in an Aristotelian perspective). 

Thus,  PERSON < ANIMATE and EAT < ACT can 
represent the facts that a  person is animate  and  that  to  eat is 
an action. The  top  and  the  bottom concept  types  of the 
lattice  are, respectively, UNIV  (the universal entity type) and 
ABSURD  (the  “absurd” entity type). 

In the preceding  example, we say that  the concept  type 
ACT can be restricted to  the concept  type EAT or that 
PERSON is  a restriction of ANIMATE. 

The < relation can be extended to  concepts having 
referents, as suggested by the example 

Example: [PERSON:’Joe’] < [PERSON]  and therefore 
[PERSON:’Joe’] < [ANIMATE]. 
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We say in  this case that  the concept  ANIMATE can be 
restricted to  the concept [PERSON:’Joe’].  Two identical 
concepts  having different referents are  not comparable. 

Given  two comparable concept types, it is possible to 
exhibit  their “least common generalization” and by duality 
their  “greater common specialization.” When two  concepts 
are  not semantically  comparable,  their least common 
generalization is UNIV  and  their greater common 
specialization is ABSURD. 

Example: 

ANIMATE could be the least common generalization of 

SCIENCELFICTION-ROBOT  could be the greater 
ANIMAL and PERSON. 

common specialization of ARTIFACT  and PERSON. 

The definition of the relation 5 on  concepts  can be extended 
to a  partial  relation on  conceptual graphs: 

Let u and v be two conceptual graphs. Suppose that u 
contains a  subgraph u’ which is identical to v .  In this case, 
the graph IA is more “specialized” than  the graph v (Le., it 
expresses something  more detailed than v) .  We say that u 
5 v .  
By extension  of this first case, if there is a  subgraph u’ of u 
that is isomorphic  (modulo  the 5 relation on concepts) to 
V ,  then u 5 v .  By “isomorphic” we mean  that  the graph u’ 
can be obtained from v by restricting some of its  concepts. 

The  join and generalization algorithms 
It is possible to build new conceptual graphs from a set of 
existing conceptual graphs by applying the following 
formation rules [6]: 

Copy  a  graph. 
Restrict  a  graph by replacing some concepts by restricting 
these  concepts. 
Join two conceptual graphs,  as follows (see Figure 2): 

Form  the maximal common overlap from  the two 
graphs: This overlap is the  maximal  conceptual  graph, 
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which is the  common restriction  of  two  corresponding 
subgraphs  of the two  graphs. We require that  it  must be 
a  connected  graph. 
Attach the pending parts  remaining in the two  graphs to 
the  maximal  common overlap. 

Simplify a conceptual graph by suppressing the  redundant 
occurrences  of  identical edges in  a  graph. 

The notion  of “maximal  join”  can be introduced if we add 
to  the preceding  rules that  the maximal  overlap used to form 
the  join is maximal  in  two ways: It is maximal because it 
contains a maximal  number of edges obtained by restriction 
from the  two original  graphs,  but also because its  concepts 
are  the greater common specializations of the concepts 
coming from the original graphs. 

We say that  the  join of two graphs fails whenever the 
maximal overlap  degenerates into a single concept of type 
ABSURD  (no  comparable  concepts in the two graphs). 

The  “maximal  join” is not necessarily unique because it 
may  happen  that several maximal overlaps exist between the 
two graphs. Thus,  the extension of the relation I to 
conceptual  graphs does  not confer  a  lattice structure  on  the 

It  is possible to write an algorithm which gives the 
maximal joins of  two conceptual graphs. This algorithm is 
an extension of the unification  algorithm because it gives as 
result a  “greater common specialized graph,” which can be 
built from two  conceptual  graphs. 

It is possible to implement  this algorithm  in Prolog as  a 
predicate which gives all the possible maximal  joins using 
the backtracking facilities of this logic programming 
language [ lo]. 

Another interesting  algorithm is the generalization 
algorithm (see Figure 3). It gives as result the least common 

72 

JEAN FARGUES ET AL. IBM J .  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 

generalized conceptual  graph  obtained  from  two graphs. This 
least common generalized graph can be built by forming  a 
common overlap which contains  the least generalized 
concepts  obtained  from  couples  of  concepts  coming  from the 
two original graphs  (instead  of the greater common 
specialization of concepts  in  the case of join). We say that 
the generalization  algorithm fails when its result is the 
[UNIV] degenerated  graph. 

This algorithm is very useful for  acquiring general 
definitions  from  a set of particular  examples. It is one of the 
algorithms to be used in the learning component of a 
knowledge system based on  the  conceptual graph  model. 

The  maximal  join algorithm and  the generalization 
algorithm have been implemented  in Prolog [7]. 

The abstraction  operation and the conceptual  graph  model 
A typed formal  model must have an abstraction  operation to 
be a powerful candidate for  representing natural language 
semantics. This abstraction  operation allows one  to define 
new concepts or relations by composing existing concepts 
and relations. 

The second  aspect  of this abstraction  principle is that it 
must be possible to distinguish between the individuals 
referenced in  a  particular discourse, the classes of 
individuals, and  the properties  of  these classes. 

This abstraction  principle is obviously needed if  we 
consider the definitions given in the dictionaries or the 
paraphrasing process that we can use to  make  the meaning 
of  a  discourse precise. 

abstraction operator was introduced as the  lambda 
abstraction operator because this semantic model is based on 
a  particular interpretation of the typed lambda calculus used 
to  denote  natural language semantics. Thus, a  particular 
“pen”  can be denoted by the 0-order expression h()[pen 1231, 
the class of all pens can be defined by the 1-order expression 
h(x)[pen(x)], and this class is a  particular subclass of the class 
noted by the second-order expression h(P)[writing- 
artifacts(P)], where the  functional variable P can be 
instantiated to  the class “pen.” 

play an  instrument y by a logical form  such  as 

In the Montague semantics-based approach [3], the 

It is also possible to define the class of all musicians  who 

set of all conceptual graphs. X(x,y)[person(x) A play(x,y) A music-instrument(y)] 



or by the functional expression 

X(x,y)[play(person(x),music-instrument(y))]. 

The  conceptual graph  model also allows us to define new 
concepts and new conceptual  relations using an abstraction 
operation. We give in Figure 4 an example of definition 
statements for a new concept and for  a new conceptual 
relation. 

Whenever  a  definition is given, the new concept is added 
to  the concept type lattice: In  the example following, ART- 
SPONSOR < PERSON will be stored  in the lattice. 

The contraction operation takes as  arguments a  conceptual 
graph and a  definition. It tries to replace a  subgraph of the 
given conceptual  graph by a single concept (or relation) 
using the definition  of  this  concept. This  contraction process 
also takes into  account  the restriction relation on  the 
concepts of the conceptual  graph  in which the substitution is 
applied (see Figure 5). 

The  contraction algorithm  applies  a  partial  substitution 
when the graph to be contracted is more restricted,  as  shown 
in Figure 6 .  Thus, we do  not lose the  information which was 
contained in the original graph. 

It is sometimes possible to perform several contractions  on 
the  same graph  when  this  graph contains multiple 
occurrences  of the definition  graph. In this case, the 
contraction algorithm  may be iterated on  the graph obtained 
at each step. 

Another useful algorithm is the expansion algorithm, 
which unfolds  a single concept (or relation) occumng in  a 
conceptual graph by replacing this occurrence with its 
definition  graph. 

From syntax  to semantics using conceptual graphs 
A classical property  of the formal  models  for natural 
language semantics used in AI is that they obey the 
compositionality  principle. It is usually assumed that a 
representation of the semantics  of an entire  sentence  can be 
built by combining  the  semantic representations associated 
with its components. 

syntactic  tree to build the  semantic representation of the 
sentence.  A semantic form is assumed to be given (or 
selected) for  each  word  in  a semantic lexicon. An operator is 
defined to build the  semantic  form attached to a parent node 
of the syntactic tree. This  operator takes  as arguments  the 
semantic forms  attached to  the son's nodes and gives as 
result  a more complex  composed semantic form. 

If we consider the  Montague  semantic  approach or related 
work such as [ 1 I ] ,  logical forms describing the semantics  of 
the words in the lexicon can be represented as expressions in 
the lambda-calculus  formalism. The  operator which 
combines  the logical forms to  obtain a semantic 
representation for a  sentence is in this case the lambda- 
evaluation operator (see Figure 7). The  lambda expression of 

A classical approach consists of  starting  from  a  traditional 
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CMAN:'Srnith'l+(AGNT)+CClVE1+(OBJ~+CMONEYI 
4 + 
4 + (ATTR)  (RCPT) 

C RICH 1 C ARTIST 1 

Using the ART-SPONSOR definition, the contraclion gives 

[ART-SPONSOR:'Smith'I+(AlTR)+CRICHl 

CMAN:'Smilh'I+(AGNT)+CGIVEI+(OBJ)+[MONEYI 
+ 4 

4 t 
(ATTR)  (RCPT) \ 

C RICH 1 C PA1NTER:'Jones' 3 

The partial contraclion gives 

CART_SPONSOR:'Srnith'l+(AGNT)+CGIVE3+(RCPT)-tl 
J. 

: PAINTER'Jones'l 
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[ Example of schematic cluster for the word ‘ key ’ 

a parent  node in the syntactic  tree is obtained by evaluating 
a lambda expression  of a son  node with the  other  son 
expression  as argument  (the direction  of this evaluation is 
indicated by t and .--, on  the figure). The logical form for 
this sentence  could be  made closer to predicate logic by 
rewriting it  as 

(Fl): exists(v) [love(John,v) A girl(v)] 

but it  is possible to  obtain  something like 

(F2): exists(e), exists(v) [agt(John,e) A obj(v,e) A girl(v) A 
love(e)] 

where  e is introduced as an “event” variable. 
These  variants depend  on  the complexity of the  lambda 

expressions associated with the words  in the  semantic 
lexicon, but  the compositionality  principle  taken into 
account by the  lambda evaluation remains  the same. 

semantic constraints in  the lexicon. 
The  important  point now is that it is necessary to express 

For example, we would like to specify that  the agent  of “to 
think”  must be a person. We would like also to define 
semantic  contexts in  order  to  handle  more complex 
polysemic cases (example: “to  run”  in  “John  runs a mile” 
and  in  “the program is running very well”). 

The logical form  approach is generally well based 
theoretically, but  this  approach makes  it difficult to represent 
semantic constraints. These  constraints  are generally 
specified in the  grammar rules by tests on  semantic  markers 
(such  as “human”  or  “not  human”).  Thus, these  tests appear 
as  extraneous  ad  hoc specifications outside the  lambda 
calculus or  the predicate logic formulation for the semantics. 

Another problem is the lack of flexibility stemming  from 
the fixed arity assigned to  the predicate  symbols introduced 
in these models. 

It is usual to  introduce a  predicate  symbol to  denote  the 
semantics of  a verb. The fixed arity  of the chosen  predicate 
symbol  makes it difficult to represent  multiple complement 
structures [leave(x,y) in  “John left Chicago,” but what is the 
predicate arity  for “leave” in  “John left Boston with Mary 
for New York by the highway”?]. 

Sowa, following Fillmore, introduces a set of semantic 
case relations  such as agentive, object, instrumental,  and so 
on. If  we look at  the logical formalism, it is also possible to 
introduce these case relations  (such as in the F2 logical form 
given before), but special variable types must be introduced 
to represent  events or possible worlds [ 5 ,  121. 

Now,  what about these  problems  using the  conceptual 
graph  model? 

We can associate with a  word  a  concept  type and its place 
in  the type lattice. 

The  semantic  constraints  can be associated with the words 
in  a semantic lexicon by using what are called canonical 
graphs. 

Example: With  the verb “to  think”  one  can associate the 
canonical  graph 

[PERSON]t(AGT)c[THINK]+(OBJ)+[PROPOSITION] 

The possible semantic  contexts  are  introduced by schemata 
which are also conceptual graphs. Thus,  the  “meaning by 
use” for  a  word can be represented by a set of  schemata. 
This set is called a schematic cluster (see Figure 8). 

Building a  conceptual  graph as a semantic representation 
of the  meaning of  a  sentence obeys the compositionality 
principle as described for the logical form  approach. Starting 
from a syntactic  tree, the  operator  to be applied at a parent 
node of the tree is now the maximal join of the conceptual 
graphs associated with the son  nodes [ 131. Thus  the  join 
operation plays the  same role as  the  lambda evaluation used 
in the logical form  approach. 

The initially selected graphs  for the words  of the sentence 
are either  their  canonical  graphs or  some  schemata of their 
schematic cluster. We have  assumed here for simplicity that 
there is a one-to-one  mapping from the words to  the concept 
types. We make this point  more precise later in  our 
discussion of the  semantic lexicon. 

Suppose that  the  concept type OPEN is  associated  with 
the verb “to  open”  and  that  the canonical  graph for this verb 
is 

(cl): [PERSON]t(AGT)c[OPEN]+(OBJ)+[PHYSICAL- 
OBJECT] 

Then,  the  conceptual graph  for the sentence “John  opens  the 
door with a key” will be 

[PERSON:’John‘]+(AGT)c[OPEN]+(OBJ)+[DOOR] 

This graph is obtained by joining  the canonical  graph  for “to 
open”  and  the ( S I )  schemata for  “key”  in Fig. 8. 

Two  important  points  must be emphasized. 
The first one is that  the  join  operator has taken  into 

account  the basic semantic  constraints expressed by 
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canonical  graphs. In the example given before, the canonical 
graph  for “to  open” encoded this kind of constraint. 

The second one is that  the preference semantic principle 
(as described by Wilks) is  implicitly used by joining  the 
schemata. In  the given example this principle  is  applied by 
the selection of the ( S I )  schemata for  “key.” This selection is 
achieved  in a natural way because of the  mapping of the 
schemata with the  current  semantic context. 

The problem  of the arity  of the predicate  symbols  has 
disappeared  because we handle graphs  instead of fixed-arity 
logical forms. 

In  the preceding  example, a crucial point is the selection 
process of the right conceptual  graphs  in  order  to build a 
correct  graph  for the sentence. It  may  happen  that a join 
fails in  this process, either because the sentence  is 
semantically not well founded or because a polysemic word 
occurs  in this sentence. In  the  latter case, another choice can 
be made for the canonical  graph or  the  schemata 
corresponding to  the suspected polysemic word  of the 
sentence. So, the process can backtrack. 

This problem  is closely related to  the  structure of the 
semantic lexicon: One polysemic word may correspond to a 
single concept type (as  in the “key” example). In  this case, 
the polysemy can  be encoded  as  distinct  graphs  in the 
schematic cluster. It can  happen also that a word 
corresponds to  distinct concept types. For example, the verb 
“to  open”  could  point  to  the concept  type  BEGIN and could 
have as a second  canonical  graph 

(c2): [PERSON]t(AGT)c[BEGIN]~(OBJ)+ 
[COMMUNICATION-PROCESS] 

If  we consider a sentence  such as  “John  opens  the session by 
pressing the  enter key” the process suggested above will give 
as result 
[PERSON:’John’]t(AGT)c[BEGIN]+(OBJ)+[SESSION] 

1 

1 
(SRCE) 

[PROPOSITION: 

[PERSON:’John’]t(AGT)c[PRESS]+(OBJ)+[KEY:’enter’] 
1 

.1 
(PART) 

[KEYBOARD]] 
We d o  not give all the details about this  example, but  the 
background information used  in the underlying join process 
would be the fact that SESSION < COMMUNICATION- 
PROCESS  (assumed to  be stored in  the concept  hierarchy) 
and  the  conceptual graphs (c2) and (s2). 

In the case of  second-order  sentence structures (such as 
subordinate  or completive  constructions), we can use the 
concept type  PROPOSITION, whose referent may be a 
conceptual  graph. A set of unary  conceptual relations on 
PROPOSITION  concepts  can be introduced  too (see Figure 
9). 
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The  conceptual graph  model allows us to handle almost 
all of the  traditional  particular representation  problems 
(tense,  modalities,  quantification, . . .). Some of  these 
problems are discussed in Sowa’s book [6]. 

Thus, it  is possible to express a large quantity  of 
information  in  the  semantic lexicon in a flexible way. Of 
course, all the  information describing a sample world must 
also be expressed as  “pragmatic assertions or inferences”  in a 
more complex  formalism. We describe in the next section 
how to specify this knowledge using a Prolog-like formalism 
(i.e., a “Prolog” whose terms  are  any  conceptual graphs). 

Prolog-like  deduction on conceptual  graphs 

Conceptual graphs and logic 
Before introducing  the  notion of deduction  on conceptual 
graphs, we make  more precise some points about  the logical 
interpretation of a conceptual graph  considered  as an 
assertion. 

As mentioned in the preceding  paragraphs, the conceptual 
graph model is able to represent high-order logical relations 
which are difficult to represent in a simple first-order logical 
formalism. 

If  we consider  only conceptual graphs  without 
PROPOSITION  concepts  and without  complex set referents, 
it  is possible to associate a first-order logic formula @u with a 
conceptual graph u as follows [6]: 

A unary  predicate is associated with each concept ci of u. 
The  name of  this  predicate  is the type label of the concept. 
The  argument of this predicate is a variable symbol xi if 
the concept has  no specified referent and  the referent itself 
if it  is a constant.  The  argument of the predicate is called 
the identifier of the concept ci. 

conceptual  relation r of u. The  arguments of  this  predicate 
are  the identifiers of the  concepts linked by r in u. 

An n-ary predicate is associated with each n-ary 

The logic formula associated with the graph u is 

@u = exist@ 1, . . . , xn) f: 

JEAN FARGUES ET AL. 



e proJectlon operation. 

The existentially quantified x i  variables correspond to  the 
concepts having no specified referents. The  formulafis  the 
conjunction of the predicates associated with the  concepts 
and with the  conceptual relations  of u. 

An example is given in Figure 10. 
Sowa has extended this  mapping  into logic for higher- 

order conceptual  relations on propositional  concepts,  for 
universal quantification, and for  coreference  problems. He 
uses an extension  of Pierce’s logical system adapted  to 
conceptual  graphs  and gives the inference  rules to perform 
deduction in Pierce’s formalism. We do  not use the  same 
approach because the given set of  inference rules, even if it is 
applicable by hand  on little  examples,  seems too 
combinatorial  to  be used in practical systems. Therefore, we 
have  studied the  deduction  method described in the last part 
of this section. This  deduction  method is based on  the 
matching algorithm on  conceptual graphs. The  matching 
that we use is based on  the projection  operation which has 
been used by Sowa to formalize the  join  and  the  contraction 
operations. We now review this projection  operation. 

The projection algorithm 
The projection operation is closely related to  the basic 
operation needed to  introduce  our Prolog-like deduction 
method for conceptual graphs. 76 
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The projection is defined as follows: 
Let u and v be two conceptual graphs. 
If I I  5 v ,  there exists a  subgraph u’ of u isomorphic 

(modulo  the restriction relation) to  the graph v .  The graph u 
can be viewed as the graph u’ joined with some additional 
edges. The induced  graph u’ = v + u is called the projection 
of v in u. A graph v may have several distinct  projections  in 
the  same given graph u, as  shown  in Figure 11. 

remaining  part of u as  the graph obtained by suppressing in 
u all the edges of u’. 

The projection  operation of v in u consists  in  exhibiting  a 
subgraph u’ of u which satisfies the following conditions: 

If u’ = v -+ u is a  projection  of v in u, we define the 

1. The  conceptual relations  in u’ and v are identical. 
2. The  concepts c l ,  . . . , cn of u‘ are  some restrictions of the 

3. If a  relation r links  two concepts di and dj in v ,  then it 
corresponding  concepts d l ,  . . . , dn of v .  

also links the  concepts ci and cj in u’. 

Thus, we can define the substitution associated with the 
projection  as the  composition of the restrictions on  the 
respective concepts of the  two graphs. We  note it by 

8 = [(dl/cl), . . ., (dn/cn)]. 

The  structure of the  implemented algorithm is given in 
Figure 12. 

As mentioned,  there  are often many possible projections 
of a  graph  in another one, and  the connectivity  checking  of 
the resulting graph is not included  in Part 1 of the algorithm. 
In fact, we have implemented this  algorithm as a 
nondeterministic Prolog predicate: If the  obtained graph is 
not  connected, a fail forces Prolog to backtrack  inside the 
algorithm to find another solution. 

The resolution principle for conceptual graphs 
We  assume  that we have 

A set of clausal conceptual assertions of the form 

G+-GI,G2, ..., Gn.,whereG,GI,  ..., Gnare  
conceptual  graphs. 

This clause can be interpreted  as “to prove the assertion G, 
then try to prove the assertions GI,  G2, . . . , Gn.”. If n = 
0, the clause “Gc.”  is a  simple  factual  assertion. 
A “goal” clause  of the form 

c Al, A2, . . . , An., where AI, . . . , An are  conceptual 
graphs. 

This goal clause will be interpreted  as  “prove  A 1 and A2 
and . . . An.” 

The resolution  mechanism is based on  the following 
theorem, given in [ 6 ] :  
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If u and v are two  conceptual  graphs  such that u I v ,  then 
@ u  3 @I. (@u and @v are  the logic formulas associated with u 
and v;  3 is the logical implication.) 

This result can  be  compared  to  the following implication 
of classical logic: 

f l u )  A Q 3 exist ( W ’ o ) l ,  

where a is a  particular  constant. In our case, u is more 
specialized than  the graph v .  The graph u may  contain more 
edges than v.  Informally  speaking, the subgraph u’ of u, 
which is isomorphic  (modulo restrictions on concepts) to v ,  
plays the role of P(a) in our analogy. The  additional edges 
play the role of  the  other  formulas Q included  in the 
conjunction.  Another  point  concerns  the fact that  the 
concepts of v will have more variables as  referents than in 
the subgraph u’. Thus, informally, the logic formula 
corresponding to  the graph v will be more “existentially 
quantified” than u. The preceding result depends also on  the 
I relation, which takes into  account  the lattice on  the 
concept types. 

Now, let us  suppose that we have 

a  clause : G + GI, G2, . . . , Gn 
a goal : t A 
a  projection p of  A in G. 

Then G I A, and therefore @G 3 @A. This allows us to 
“erase” the goal A and  to replace it with the subgoals 

+GI ,  G2, . . . , Gn. 

The projection  operation  seems to be the basic algorithm to 
use in our deductive  machinery. In fact, the operation that 
we need  must be extended  for the following reasons: 

A Prolog goal +Ox). is not really interpreted  as  “prove 
the logical formula exist(x)[flx)]” but is only a term  to be 
instantiated by the solution for x found by the Prolog 
machinery. In the  same way, we interpret  a goal +-A. in our 
system as  “try to find A or to exhibit  a restriction of the 
graph  A by deriving  it  from the set of the given assertions.” 

In other words, the concept  types play the role of variables 
and  the I restriction relation between them plays the role of 
the  instantiation.  Thus,  an instantiated  solution of a “goal 
graph” in our system will be obtained via some restrictions 
on its  concepts. 

Suppose that a goal contains  [PERSON:’John’]  and  that a 
clause head contains [BOY:*x]. 

The projection is too restrictive an operation because we 
would like to “unify” [PERSON:’John’]  and [BOY: *x] in 
order  to  obtain  [BOY:’John’]. But these two  concepts are 
not  comparable by I because of their referents, and 
therefore the definition of the projection cannot be applied. 

To  introduce a more general matching operation, we say 
that  two concepts cl and c2 are compatible if there exists a 
maximal  nondegenerated common restriction c3 of cl and 
c2 (i.e.,  c3 I cl, c3 I c2, and  type(c3)fABSURD). 

This matching operation is defined as follows: 
We say that a  graph v can  be matched to a graph u if  there 

exists a  subgraph u’ of u such that 

The  conceptual relations are  the  same in v and u’. 
If the  concepts ci and CJ (respectively, di and dl) are linked 
by the  conceptual relation r in u (respectively in v ) ,  then, 
in  the  pairs (ci, di) and (cj, 4) the first and  the second 
concepts  must be compatible. 

Using this  definition, and if ei is the maximal restriction of 
ci and di, we obtain two  substitutions on  the graphs u and v :  

81 = [(cl/el), . . ., (cn/en)] on  the graph u, 
0 2  = [(dl/el), . . ., (dnlen)] on  the graph v .  

Thus, a  projection operation is a matching operation, but it 
is possible to match  two  graphs even if there is no projection 
between them, as in 

[PERSON: ‘John’]t(AGNT)+[LIKE]+(OBJ)+ 
[ELEPHANT]+(COLR)+[GRAY] 

and 

[BOY: *x]+(AGNT)c[LIKE]-+(OBJ)-, 
[ANIMAL: ‘Jumbo’] 

This matching operation  can be viewed as the operation 
used in the  maximal  join  to build  the common specialized 
overlap of two  graphs, with the  additional  constraints  that all 
the edges of the first graph must be included (modulo a 
restriction)  in  this  overlap and  that all joined concepts  must 
be compatible. 
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This  matching  operation plays the role of unification in a 
Prolog interpreter. 

A “top-down’’ resolution  algorithm for conceptual  graphs 
The preceding  paragraphs allow us to define  for the 
conceptual  graph  model  a “top-down’’ linear  resolution 
mechanism very similar to  the Prolog mechanism (see 
Figure 13). 

resolution method. We chose this “Oz” example because 
Sowa applied  his set of  inference  rules to  it in  his  book. 

We give in Figure 14 an  example of deduction using our 

Conclusion 
We had  the feeling that  the conceptual  graph  model  could be 
a very powerful candidate  as a  core  model  of future systems 
integrating knowledge processing and  natural language 
processing. Our practical experiments  on  the 
implementation of this  model confirm this first feeling. The 
conceptual graph  model is a general framework for 
expressing natural language semantics and designing very 
large semantic lexicons, but also  a  practical way to express a 
large amount of pragmatic information by assertions and 
clauses. All the algorithms are  domain-independent  and, 
unlike  special-purpose knowledge models, the description  of 
a semantic  domain  can  be  made  through a purely declarative 
set of conceptual graphs. 
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