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How to represent  knowledge is one  of  the  key 
questions in the  construction of expert  systems. 
Its solution  depends  on  a  number  of  factors,  the 
most  important  of  which  are  how  knowledge is 
to be acquired  and  how it is to be used.  Since 
we are  interested in the  use  of  natural  language 
for  communication  with  computers, we require 
from  a  formalism  suggested  for  knowledge 
representation  that it be suitable  as  a  target  for 
the  systematic  translation  from  natural  language 
expressions. We want to propose  a  theory, 
called  Discourse  Representation Theory  (DRT), 
which  was  originally  developed  by  Kamp to 
analyze  natural  language  discourse,  as  a  means 
to represent  knowledge in an expert  system. 
With  Discourse  Representation  Theory it has 
been  possible to solve  certain  cases of 
contextual  relations  which  have  puzzled 
linguists and  logicians  for  a long time. In this 
paper we give a  precise  definition  of DRT and 
describe  the  rules  used to translate  from  natural 
language to Discourse  Representation 
Structures (DRSs), the  central  notion of the 
theory. We show  how  the  notation  used in DRT 
relates to standard  predicate  logic  and  define its 
deductive  theory. We also  outline ways  of 
implementing DRT and  the  proof  procedures  we 
intend  to use. 
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Introduction 
How  to represent knowledge is one of the key questions  in 
the  construction of expert systems. It is  often  claimed that 
once this question  has  been  decided, the remaining  tasks are 
“easy” to  do.  The solution of this question  is dependent  on 
two  more problems,  namely, 

1. How is the knowledge acquired from  the expert? 
2. How can  the knowledge in  its  formal  representation be 

used to answer user questions? 

Basically, there  are two ways to solve the first problem: 

1. The expert communicates his or her knowledge to  the 
system through interaction with a “knowledge engineer,” 
who encodes  it directly in the representation  chosen. 

2. The expert communicates with the system directly, i.e. 
through statements in natural language, through a graphic 
interface, or  through a formal language he  or she is 
familiar with. 

Of  these possibilities, we are interested in  the  natural 
language communication of knowledge to  an expert system. 
This choice  imposes important restrictions on  the kinds  of 
formalisms which can serve to represent knowledge, as will 
become  clear below. 

Different schemes  for  representing knowledge have  been 
proposed,  most  of which originate from  the needs for natural 
language processing and have been used in prototype 
systems that process fragments of natural language. Among 
these  schemes are semantic nets, frames. scripts, production 
rules, conceptual graphs [I], so-called knowledge 
representation languages, such as KL-ONE [2]  or 
KRYPTON [3] and  others (cf.,  e.g., the  SIGART newsletter 
of February 1980 [4] for references). 
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We propose  Discourse  Representation Theory  (DRT), a 
theory originally described by Kamp [5] to study the 
meaning of natural language discourse, as a knowledge 
representation language. Formally, DRT  can be regarded as 
a variant  of  first-order logic; hence  it possesses a well-defined 
semantics  and  an equally well-defined deductive  theory, 
which distinguishes  it  from a number of other proposed 
knowledge representation languages whose semantics- 
inasmuch as  it cannot  be easily translated into  that of first- 
order logic (cf. Hayes [6])-remain unclear.  Similarly, as was 
shown by Brachman  and Levesque [7], it is quite uncertain 
that  alternate ways to represent knowledge allow for less 
complex  deductive  algorithms than those  proposed  for first- 
order logic. 

The work  reported here is being camed  out as a joint 
project  of the IBM  Heidelberg Scientific Center  and  the 
University of Tiibingen. The objectives of this project are  to 
develop a prototype system which is able to analyze natural 
language discourse, extract the  information conveyed by it, 
and  translate it into logical form  to  make it  available  for 
answering  questions. The texts  considered may describe 
singular facts, events, and states of affairs, but they may also 
express general rules. In a first application we want to apply 
this system to  German traffic law. In this  application the 
system is to  be used by a lawyer or  judge for consultation 
about a particular case description, about  the relevant 
paragraphs, interpretations of the paragraphs, and 
controversial issues. Thus  the lawyer or  judge will be able to 
get a better understanding of  complex cases, and  thus  to 
build up his or  her lines of argument  more effectively. The 
prototype system we are working on, consequently, processes 
the  German language. For ease of presentation, we only use 
English examples here, as no German-specific issues are 
discussed. The User Specialty Languages (USL) System 
which we are using as a base and which was originally 
developed  for natural language  interaction with databases 
[8-111 processes German, English, French,  Italian, and 
Spanish,  such that  the English examples given would 
actually be processed as described. 

knowledge representation languages. We do  this in terms  of 
the problems that have to be dealt with, most of which have 
been recognized in  the Artificial Intelligence literature,  as 
well as  in theoretical linguistics, logic, and philosophy of 
language. We emphasize, in accordance with many  other 
researchers in the field, that knowledge representation 
requires the well-established methods of logic to be 
successful, i.e., to pass from  an  art  to a theory. To make 
logic “work” on a machine, it is certainly necessary to 
provide  deductive strategies which have to be formulated  at 
a meta-level and  are needed to  supplement a purely 
descriptive  formalization  of a domain. It is our view that a 
clean  separation  of  descriptive and strategic knowledge is 
crucial  for a proper  understanding of the issues in knowledge 

In this paper we first discuss adequacy conditions for 

representation. We are  not very specific about issues of 
strategic knowledge, although we believe that  the deductive 
mechanism we propose  furnishes a good base. 

The main  part of this  paper is devoted to a presentation  of 
Discourse Representation Theory.  This presentation is based 
on several articles by Kamp [ 5 ,  12-14] and Partee [ 151. We 
present a linear syntax  for Discourse Representation 
Structures (DRSs) which consolidates the different versions 
presented  in the publications cited. Our  treatment of the 
formal semantics differs somewhat  from  Kamp’s 
presentation in  that partial structures  are used instead of 
models. The  semantics of DRSs is inductively defined. We 
then discuss how concepts expressed in  natural language can 
be mapped  to predicates. This discussion is a prerequisite  for 
the presentation of the  DRS  construction algorithms which 
follows. It is the task of this algorithm to perform the 
systematic  translation of natural language discourse into  the 
form of a DRS. 

Another novel feature in this  paper is the presentation of a 
deductive  theory  for DRSs. It is based on  the tableau 
calculus, which we  feel is  particularly well suited for 
computer applications  such as expert systems, since in 
addition  to finding the proof of a goal, counter-examples are 
found when the proof yields a contradiction.  This is much 
more helpful to a user than  the mere information  that a goal 
could or could not be proved. 

Discourse Representation Theory, which we did  not include 
before in order  not  to overload the first presentation with too 
many details and because some of these  extensions need 
more investigation before they can be adequately formalized 
and integrated. 

As an  appendix we present a somewhat  extended  example 
from  our application domain  to illustrate how the theory is 
put  to use. 

We end  the  paper with a discussion  of  extensions of 

Adequacy  conditions  for  knowledge 
representation  languages 
The question  of  what are  the adequacy conditions relative to 
which proposals  for knowledge representation languages are 
to be evaluated and  compared has rarely-if  ever-been 

40 
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systematically raised. 
On  the  one  hand,  there is a plethora of such so-called 

representation languages and,  on  the  other  hand,  there is at 
least the explicit claim that these languages should be used to 
manipulate  information. It is therefore  surprising that so 
little attention  has been paid to  the way we can evaluate 
specific proposals;  what are  the  minimal  requirements  that 
any knowledge representation  language  should  meet,  etc. On 
the  contrary, proposals  for knowledge representation 
schemes abound with remarks  about  notation  and 
implementation,  but  almost never with comments  about 
expressive power and interpretability in other languages, not 
to  mention  notions like truth,  theorems, or decidubilityl 



undecidability and  the like. In his position statement in the 
1980 SIGART Special Issue on Knowledge Representation 
[4] Robert Kowalski wrote the following lapidary  statement: 

“There is only one language suitable for representing 
information-whether declarative or  procedural-and that is 
first-order predicate logic. There  is only one inteljigent way to 
process information-and that is by applying deductive 
inference methods.” 

In a way  we agree completely with him; obviously some 
qualifications are in  order, but  the general tenor of this 
remark  retains  its force. There is an interesting analogy to be 
drawn here between the many proposals in  the knowledge 
representation language field and  the  almost countless 
proposals for so-called “inference  engines”  in the expert 
systems field. Expert system designers like to speak of 
separating the “knowledge base” from  the “inference 
engine,” and they insist that  the latter  could be employed 
more or less “universally.” But every expert system comes 
with its  own  “inference  engine,” and each one of them is 
typically much less powerful, much less transportable,  etc., 
than even ordinary Prolog! If there is a  representation 
language and a way of manipulating  information  that is 
something like “universal,”  it is without doubt logic. Instead 
of pointing out  the  many applications logical techniques 
have  had  in the past, let us  simply  indicate  a few of the 
adequacy conditions  any logical representation language 
brings with it automatically, so to speak. From logical 
representation languages we  get the following advantages: 

Syntax: a clear notion of  what  constitutes  a well-formed 

Semantics:  a clear relation to  the  structure of the world. 
Inference theories: a variety of equivalent  alternatives. 
Notions  of correctness: nothing false can be derived or 

Notions of completeness: every truth is provable. 
Expressive capacity:  what can  and what cannot be 

Distinction between propositional logic, first-order logic, 

Other systems  such as lambda-calculus. 
Various other meta-logical notions concerning decidability 

expression at all levels of  syntactic  complexity. 

proved. 

expressed in  a  particular  system. 

and higher-order logic. 

complexity and  implementational complexity. 

No  other framework for knowledge representation really has 
these  properties, and the  problems that  are discussed in other 
frameworks (fuzziness, incomplete information, 
nonmonotonic reasoning, etc.) are  not adequately  dealt with 
in any of these  either. 

The success of logic programming languages like Prolog 
lies in the fact that they are  an  optimal  compromise between 
representational expressiveness, deductive  tractability, and 
efficient implementability. This constrasts with full first- 

order  predicate logic, which was not  developed for the needs 
of knowledge representation as it is understood here. It is too 
general both  from  a semantic point of view and a 
representational  point of view. 

We regard Discourse Representation Theory as  a  step 
which retains the advantages of predicate logic but is closer 
to  natural language and  to  natural reasoning. We should 
point  out though that semantically there  are still many open 
problems (mainly  appropriate  denotation types and  truth 
conditions for  a variety of expressions; cf. McCarthy [ 161 for 
a  short  survey): 

From a  reasoning point of view there are  some open 
problems  (beginning with the distinction between logical 
and  “commonsense” reasoning: There is at  the  moment 
no working system for nonmonotonic reasoning and not 
even for reasoning in partially defined situations). 
In any event,  in order  to develop more complicated 
systems which accommodate more  complex denotation 
types (e.g.. events, causality, and  the like), it is extremely 
important  to have a  clear  grasp of the properties of the 
underlying language. 

Basic  notions of Discourse Representation 
Theory 
Discourse Representation  Theory (DRT) is a  theory of 
meaning for natural languages which integrates  both 
semantic  and pragmatic  aspects of language within a single 
framework. It is designed to deal with multisentential 
discourse, which distinguishes  it  from  most  previous 
approaches  to  the study  of the semantics of natural 
languages. Aspects such as  pronominal reference, tense, and 
propositional attitudes  cannot be successfully dealt with 
when sentences are only  looked at in  isolation. The relation 
that a given sentence  has with its preceding discourse is 
crucial to  the understanding  of these phenomena. 

DRT defines as its  central  notion the Discourse 
Representation Structure (DRS), which is a  pair <U, C> 
where U is a set of reference markers (the universe) and C a 
set of conditions which are either atomic (Le., of the form 
f l u , ,  . . . , u,) or uI = u,) or complex (i.e., expressing 
negation,  implication, or disjunction). These conditions can 
be regarded as satisfaction conditions for  a  model.  When 
K, ,  K, are DRSs, then <-, K,>, <+, K,, K2>, and 
<V, K, ,  K2> are conditions.  DRSs  can thus be embedded 
into each other. 

We now define a few terms  that we need to describe 
DRSs. The  topmost  DRS is called the principal DRS.  A 
DRS K ,  is mbordinate to a DRS K2 if K,  is embedded in K, 
or if, for some K3 embedded in K,, K ,  is subordinate  to it. If 
K ,  is subordinate  to K,, then K, is superordinate to K,. A 
DRS K is called proper when every reference marker u which 
occurs  in an  atomic  condition of K or a DRS K’ subordinate 
to K is contained  in  the set of reference markers of K or K‘ 
or some  DRS  subordinate  to K and  superordinate  to K .  
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The analysis of a discourse  proceeds  sentence by sentence. 
First of all the principal DRS is generated, and all conditions 
stemming  from a  sentence are  embedded  in it or in a DRS 
subordinate  to  the principal DRS. How this is done is 
defined by the DRS construction algorithm, which we 
describe below after  having given a  formal  description of the 
syntax and  semantics of DRSs. 

Syntax ofDRSs 
In his original paper (51, Kamp  introduced a  graphic 
notation for DRSs in which every DRS is represented  as  a 
rectangular box. The  top  part of the box contains  an 
optional list of reference markers,  its  universe U. The rest of 
the box contains  the  conditions C of the DRS. As an 
example consider the sentence Each accident is  an event, 
which is represented  as in Figure 1. 

The principal DRS contains  just  one  condition,  the 
implicational condition used to represent every. Note  that 
the  sentence Ifsomething is an accident, then it is  an event 
would  have led to  the  same representation. (A few 
intermediate steps  would  have been required, though,  to get 
rid of the copulas and  the  two pronouns.)  While  Kamp’s 
notation is very well suited to display the logical structure of 
a discourse to a human reader,  it  is not  quite  as easy to 
manipulate  in a machine.  We have  therefore  developed the 
following linear notation, which also includes additions  to 
the  notation  that were introduced  in later  papers by Kamp 
and  others [S, 12- 151. We use a  Backus-Naur Form  to 
characterize the syntax of DRSs: 

< d m  ::= 
[ <reference-marker-list> : <conditions> ] I 
[ <conditions> ] I 
[ <reference-marker-list> ] 

<reference-marker> I 
<reference-marker> , <reference-marker-list> 

<object-marker> I 
<et-marker> 

<reference-marker-list> ::= 

<reference-marker> ::= 

<object-marker> ::= 
u<number> 42 
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<et-marker> ::= 
<event-marker> I 
<time-interval-marker> 

<event-marker> ::= 
e<number> 

<time-interval-marker> ::= 
t<number> 1 

n 
<conditions> ::= 

<condition> I 
<condition>.<conditions> 

<condition> ::= <atomic-condition> I 
<conditional-condition> I 
<disjunctive-condition> I 
<negative-condition> I 
<event-condition> 

<atomic-condition> ::= 
<predicator> ( <argument-list> ) I 
<predicator> I 
<term> = <term> I 
<et-marker> G <et-marker> I 
<et-marker> < <et-marker> I 
<et-marker> o <et-marker> 

<predicator> ::= 
<identifier> 

<argument-list> ::= 
<term> I 
<term> , <argument-list> 

<reference-marker> I 
<number> I 
<functor> ( <argument-list> ) 

<identifier> 

<term> ::= 

<functor> ::= 

<conditional-condition> ::= 
<drs> + <drs> 

<disjunctive-condition> ::= 

<negative-condition> ::= 

<event-condition> ::= 

<drs> V <drs> 

- <drs> 

<event-marker> : <drs> 

An identifier  may be any string of characters and digits, a 
number  any string of digits. 

like this: 

[[e:accident(e)] + [event(e)]] 

The example given above  in  graphic notation now looks 

Formal semantics of DRSs 
Before we formally define the  semantics for DRSs, let us first 
discuss what is at stake here. The  meaning of a DRS in the 
real world (whatever that means)  should be derivable from 
the  meaning of its atomic constituents. We  thus have to  start 
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by assigning meanings to  atomic DRSs. These  meanings 
should be unique. (It is one of the advantages  of  formal  over 
natural languages that we can achieve that.) A  consequence 
is that  any  atomic  formula  (without variables) is either true 
or false in a given situation (we do not  adopt  the  standpoint 
of intuitionistic logic here). Moreover, the meanings of the 
constituents of  a DRS should determine  the  meaning of the 
latter in a unique way. 

We investigate the  semantic properties of the language in 
terms of constructed artificial models, as it is in general 
impossible to specify the  semantics in terms of properties  of 
the real world. (Certain  similarities between DRT  and 
situation semantics [ 171 can easily be seen.) Clearly, these 
models and  the definition  of meaning in them should  have 
as many  properties  of the real world as necessary. The usual 
approach  taken  in mathematical logic restricts models to sets 
of  individuals. on which some relations and functions exist. 
All these are given extensionally; i.e., for any pair  (in case of 
a  binary  relation) of individuals it is specified whether or not 
the relation holds. (Possibly this question is recursively 
undecidable.) This  approach is well justified by 
mathematical practice; e.g., for the set of natural numbers, 
mathematicians try to find all true theorems. In  other words, 
extensional semantics mirrors the  attempt of mathematicians 
to know all properties of a  certain  relation, function, etc. 

This is rather different from  natural language discourse. 
To process the sentence Pedro owns a donkey, human beings 
need not know the  entire extension  of the relation own. It 
may well be that,  during  the discourse, we learn more  and 
more of what own means. In order  to model  such processes 
of learning by telling, we must be able to express partial 
knowledge. We do that in  such  a way that we can still rely, if 
necessary, on extensional mathematical semantics. 

To define the semantics  of DRSs, we proceed inductively, 
as usual. For the sake of readability, the definition is split 
into several parts. Let us start with that part which 
corresponds to  the language of classical first-order predicate 
logic. 

A literal is a DRS of the form a or -a where a is an 
atomic  condition. A ground literal is a literal without 
reference markers. A set of ground literals is consistent if it 
contains  no  complementary pair a, -a. A partial structure 
is an ordered  pair (A,  L )  where L is a  consistent set of 
ground literals and A a set of terms such that, for any  term a 
occumng in L, a E A .  (We  assume  that we have  a complete 
denotation system for the set of individuals we have in 
mind.) 

language-they can be read off L. Moreover, we need not 
require that A be functionally closed. 

Let ul,  . . . , un:a be a DRS, and a,, . . . , a, a list of  terms. 
By a(ul /a ,  . . . un/a,) we denote  the result of  substituting a, 
for ~ r i  in a. Clearly, if the reference marker list is empty, i.e., 
n = 0, then a remains unchanged.  Note that a(ul/a,  . . . 

Note: We need not specify the nonlogical symbols of the 
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un/u,,) is of the  same syntactic category as a. Furthermore, 
note that a term a denoting  an event is substituted for all 
occurrences of an event marker so that they may  only occur 
in the form a:a. 

Dejnition Let S = ( A ,  L )  be a  partial  structure. For  any 
syntactic  construct a containing  no free occurrences of 
reference markers,* the trurh value of. in S [in symbols: 
vs(a)] is inductively defined as follows: 

For any  atomic  condition a, 
v,(a)  = true if a E L, 
v S ( a )  =false if -a E L, 
else vS(a)  = undeJ 

For any DRSs a, @, 
v,(a v P )  = or(v,(a), v,(P)). 

v,(-a) = not(v,(a)). 
For any  condition a and  any  conditions P, vs(a.P) = 

For any reference markers u l ,  . . . , un and  any  conditions 

vS( [u l ,  . . . , u n ~ ~ ] )  = max IvJa (u l la ,  . . . un/a,,)) I a,, 

0 For any DRS of the form [ul,  . . ., zrn:a] ( n  2 0) and  any 

and(v,(4,v,(P)). 

01 containing  at most u l ,  . . . , un unbound, 

. . .) a, E A ] .  

DRS P, 
( [u l ,  . . ., rm:a] 4 P )  = min  lseq(v,(a(ul/a, . . . 
un/a,,)), v,(p(zrl/a, . . un/a,)))Ia,, . . ., a,, E AI. 

0 The case a = emply, i.e., v,([zrl, . . -, unl 4 P), is  defined 
appropriately. 

Here we assume that  the  three  truth values are ordered: 
true < undef < false. For any  truth values x, y let 

or (x,.v) = max {s,yl, 
and(s,y) = min {x,.v], 
not(true) =.false. not(unde0 = zmdeJ; not(fa1se) = true, 
seq(x,.v) = or(not (x),y). 

Note that we do not  require that  the predicators =, <, and G 
have any special semantics.  Instead, we assume  that their 
properties are specified by meaning rules or, possibly, 
schemata  for  such rules as done in mathematical logic for 
the equality =. For the case of  a  conditional condition,  note 
that  the reference markers  occuning in the list at  the  top of 
the premise should be seen as universally quantified and, 
furthermore, have their  scope  extended to  the whole of the 
conditional  condition. 

To handle  event  markers, we define an operation which 
reduces DRSs with event markers  to those  without.  Suppose 
that we know for each  predicator P in a DRS a whether  it is 
event-dependent or not. Furthermore, suppose that event 
markers have to  stand in the first argument position (if they 

We assume that the pnncipal DRS has this properly and  formulate our definition in  such a 
way  that  it  remains  true for all induction steps. 43 
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occur at all)  in any  atomic  condition.  For  any  term a and 
any DRS a, we define the reduction a(/a)  (we might also call 
it full parameterization) inductively. 

If a is atomic with an event-independent  predicator, then 
a(/a)  = 01. 

If, for an event-dependent  predicator P, a = P(b, c, . . . , c,), 
where b is an event term or a = P(c, . . . , e,,), then 
&a) = P(a, c,, . . ., cn). 

The  other cases are similar. 

Dejinition (continued) 
For  any event term a and  any DRS a, 

u,(a:a) = ~ , ( ~ ( / 4 ) .  

Other kinds of modifiers, such  as the time-interval- 
marker,  are  handled in the  same way. 

Representation of concepts underlying natural language 
expressions 
When a body  of knowledge is to be formalized,  it  has to be 
determined first of  all  what the relevant  concepts are  and 
what  kinds of terms or predicates are suitable to represent 
them.  (This problem is hardly  ever discussed in the literature 
on knowledge representation, one exception  being  Woods 
[2], who briefly mentions it.) When  one deals with the 
manifestation  of  such concepts in natural language 
expressions, certain  guidelines are furnished by the 
conditions of  occurrence  of  such linguistic expressions in 
larger contexts. Thus  one  can achieve modular 
formalizations where only  those  concepts  particular to a 
given domain  are specifically defined for it,  and all the  more 
general concepts  are defined with the  appropriate generality. 
(This is probably  achieved at  the cost of some efficiency.) 

The second step  in  the formalization is to establish the 
relations  holding among  the  concepts relevant for the given 
domain.  This is the  most difficult part of the formalization 
process. The  statqments used to express such  relations we 
call meaning rules. The  argument brought up by some 
proponents of knowledge representation languages that 
meaning rules are  inadequate  and  that they would lead to 
horrible  performance stems  from a confusion  of 
representation and  implementation. We want to clarify the 
logical properties  of our representation before we explore the 
most sensible implementation. 

In  the following two sections, we discuss methods for 
choosing  predicates and  then  methods for finding meaning 
rules. We argue that looking at how the world is 

complements  are  to be represented,  as argument places or as 
some kind of operators,  it is hard  to find agreement. We 
restrict ourselves here to a few comments  on each  of the 
categories mentioned, since  it  would be far  beyond the scope 
of this  paper  to list all the relevant  criteria. 

For predicates with more  than  one  argument place, one 
has to define how complements  are  mapped  to  argument 
places. This is conveniently done by defining roles as, for 
instance,  in the USL system (cf. Zoeppritz [ 1 I]), in some 
versions of semantic networks, and also in database  theory. 

Verbs The  complements of verbs have been classified in a 
number of different ways by different linguistic schools. 
Often used are  the  traditional categories intransitive, 
transitive, and di-transitive for English. The corresponding 
verbs are  then represented by 1 -place, 2-place, and 3-place 
predicates, respectively. This leaves open how verbs taking 
prepositional  objects are  to be treated  (provided  it  has been 
determined which prepositional  phrases play the role of 
objects and which the role of adverbials). Valency  theory has 
brought some  advance in  this regard, and a few dictionaries 
have been compiled (in particular,  for German)  that specify 
the valencies of  substantial sets of verbs. A disadvantage  of 
valency theory is, however, that  the criteria used to establish 
valencies are  not  made sufficiently explicit, with the result 
that conflicting classifications are proposed. 

complements which builds upon Fillmore's case grammar 
has  become very popular  in  the AI community  and has led 
to  the  introduction of caseframes or templates. When deep 
cases as suggested by Fillmore are used, two  problems  arise 
and have to  be solved in a systematic way: (1) the  mapping 
of deep  to surface cases has  to be defined for each verb, and 
(2) criteria  have to be defined that allow the classification of 
verbs  according to  the  deep cases they govern.  Problem (1) 
implies that  the  same kind of analysis has to be performed 
which is necessary for valency theory. 

Our own  approach uses surface cases and prepositional 
objects and is thus close to valency theory  in some respects. 
(A detailed  description can be found in  Zoeppritz [ 1 11.) We 
are currently  extending  this classification to include 
restrictions on adverbials which can modify a given verb. It 
is part of our expert systems project to classify the verbs in 
the most common 20 000 words found in  juridical texts. 

From a semantic  point of view it is quite  important  to 
classify verbs as static verbs and event verbs. This is 
necessary to  determine when a new sentence  advances the 
point of reference in a discourse. Compare 

A quite different approach  to classifying verb 

conceptualized  in natural language helps  in  both of these e I : the car ran off the road. 
tasks. e2: it hit a lamp post. 

44 

I 

Predicates and their arguments and 
Verbs, common  nouns,  and adjectives are often  treated as 
predicates. When  it  has to be decided how their respective e2': it was fast. 
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While e2 advances the discourse, e2'  does  not. So we could 
stipulate conditions e 1 < e2 (e 1 before e2) and e I o e2' (e 1 
overlaps e2'), respectively. 

Common nouns The logical form of common  nouns is 
even less agreed upon  than  that  of verbs. Since nouns often 
occur by themselves (i.e., without a complement), it is 
tempting  to represent them as unary predicates. Where 
genitive attributes-which are virtually always possible-are 
encountered, a functional representation is often suggested. 
This leads to multiple  representations for each noun, which 
we believe is inadequate. In our  opinion  there is nothing 
wrong with supplying nouns with valencies similar to verbs 
(as has been sometimes suggested). This leads to  the 
definition  of  predicates whose degree  corresponds to  the 
valency found for the  noun. If certain arguments  are  not 
specified in  a given sentence, we think it best to produce the 
desired form by X-abstraction. (We have not yet included X- 
abstraction  in the formal  description of DRT given above, 
but  the extension is straightforward.) 

Genitive attributes express a variety of different relations, 
not all of which should in fact be represented  as argument 
places of the predicate denoted by the governing noun.  Thus 
owner of a car is represented  as owner(x,y).car(y) (one might 
even reduce the  noun owner to  the verb own if desired), but 
wheel ofa car is represented as wheel(x).car(y).part(x,y) 
based on a  rule schema 

[genatt(wheel(x), car(y))] + [wheel(x).car(x).part(x, y)] 

where genatt signifies the relationship expressed by the 
genitive attribute. It is a matter of  vocabulary  definition to 
characterize nouns such as owner and part as relational, 
whereas  for other  nouns  meaning rules  have to  be defined, 
such  as the  one given above. (More  on relations expressed by 
genitive attributes  can be found in Wirth [ 181.) 

Adjectives Kamp briefly discusses the  semantics of 
adjectives in [ 141. Intersecting  adjectives can be treated  as 
unary predicates, as long  as  they do  not  take complements. 
Adjectives such as dependent on, relative to, eager to, easy to 
that  do  take  complements have to be treated  in much  the 
same fashion as verbs and  nouns. Nonintersecting adjectives 
can for  practical  purposes be represented by compound 
predicates, e.g., for alleged damage one would introduce 
alleged-damage. Such a treatment is not completely general, 
as  can be seen from  the example: Not  just  anything  can be 
alleged to be damage, but probably  only results of events 
(i.e., the genus proximum of damage), such that  one could 
define alleged damage as the result of an event  which has 
been alleged to  be  damage. Thus  the rule schema for alleged 
N would be the genus  proximum(N) which has been alleged 
to be N .  If such rule schemata could be found for all 
nonintersecting adjectives, then  the representation of 
adjectives  as functions on nouns as suggested by Montague 

could be used: The  functions would essentially be the rule 
schemata sketched here. 

Meaning rules 
What we discuss here as meaning rules makes up  the  content 
of  semantic nets, frames,  conceptual  graphs, and similar 
schemes  for  representing knowledge (including  thesauri as 
they are used in information retrieval). There  are few 
relations among  concepts  that  account for the bulk of the 
information  contained  in actually  worked-out knowledge 
bases. These are 

1 .  Generalization (the  famous IS-A of  semantic networks 

2. Type  restrictions (or selection restrictions) on 

3. Parttwhole. 

and  the  BT/NT of thesauri). 

complements. 

(For a discussion of IS-A, cf. Brachman [ 191; for the 
generality relation itself, cf. Woods [ 2 ] . )  These are in fact the 
relations that  are most  needed to disambiguate  sentences and 
to resolve contextual references; hence  it  is justified to use 
specialized representations and algorithms  for them (as, e.g., 
proposed by Schubert, Papalaskaris, and  Taugher [20]). 
These  relations,  as important  as they may  be  for  the 
processing of language, actually  represent very little of the 
knowledge in  a given domain. To find out whether someone 
has violated a  paragraph  of the law, one needs  a  formal 
representation  of that paragraph, and  then  one  can check 
whether  what  he or she  has done  can be subsumed under it. 
Such  formal  representations we want to call meaning rules as 
well, realizing that we might end  up calling every universally 
quantified statement a meaning rule. 

The  meaning rules we discussed first are very numerous, 
and it is an interesting  question  whether they can be 
somehow  automatically or  at least semi-automatically 
derived. Wirth [ 181 proposed  a  procedure  for the semi- 
automatic extension  of  a thesaurus already containing  the 
three relations mentioned  above for part of the vocabulary. 
His  program  analyzes  sentences where for some concepts at 
least one of  these  relations is known, and he  makes  a 
proposal to  the user, which in most  instances is sensible and 
which the user can accept or reject. To make this  procedure 
fully automatic would  imply that new relations  are 
inductively derived, but this  might be feasible, provided one 
could find an  appropriate verification scheme  for  inductively 
derived  relations. 

The second, logically more complex,  type  of meaning 
rules appears in many different forms,  only some of which 
are linguistic-most of our knowledge on space, time, 
events, and  actions is never verbalized. When such 
knowledge is verbalized, however, it takes the form of 
definitions,  theorems,  statutes, etc. The problem we raised in 
the  introduction, of the expert imparting his knowledge to a 
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system in the  form of  a natural language discourse, is the 
problem of generating meaning rules through systematic 
translation of linguistic expressions. We have  coded legal 
knowledge in the  form of Discourse  Representation 
Structures, so we know  it can be done,  but we realize that 
there  are still many problems in  the systematic translation, 
in  the  proper  axiomatization of general knowledge which is 
prerequisite to  understanding domain-specific rules, and  in 
specialized deductive strategies. It is the objective of the 
research in which we are presently engaged to  contribute  to a 
better  understanding of these issues. 

DRS construction algorithm 
It is the task  of the  DRS  construction algorithm to build  a 
DRS  from a given discourse D = <s, . . . s,>, where the s, 
are  the sentences  of a natural language  discourse. It is not 
the objective of  this paper  to spell out all the details 
(different versions of the algorithm are  found  in  Kamp [ 5 ,  
12, 141). We are relatively informal in the description, as in 
the present context  it is mainly important  to show that  the 
relationship between natural language  expressions and  DRSs 
is  indeed  systematic. 

The  DRS  construction algorithm  includes 

1. Syntax analysis of  sentences. 
2. Rules to translate expressions into reference markers  and 

3. Rules to establish contextual references. 

To perform  syntactic analysis, several approaches have been 
tried  in connection with DRT: 

conditions. 

The User Specialty Languages  (USL) System (Lehmann 
[8, I O ] ,  Zoeppritz [ 1 I ] )  uses a  parser for general Phrase 
Structure  Grammars.  (The parsing system itself is called 
User Language Generator  (ULG)  and is described in [21] . )  
The parse trees  it  generates are translated into so-called 
Intermediate Structures  [similar to F-structures in Lexical 
Functional  Grammar  (LFG)]. A  program [22] was written 
to generate DRSs  from  Intermediate  Structures covering 
the fragment described in Kamp [ 5 ] .  
Frey and Reyle [23] use Lexical Functional  Grammar  to 
analyze  a  fragment  of  French and translate the resulting F- 
structures  into DRSs. 
Karttunen uses Unification Grammar  (Kay [24])  to 
generate  DRSs from so-called functional structures (again 
similar to  the F-structures  of  LFG). 

Rules for generating reference markers and conditions 
Our DRS  construction rules differ somewhat from  the  ones 
given by Kamp in [ 5 ]  and [ 141 in that  Kamp assumes  a 
parallel operation  of  syntax  analysis and application  of DRS 
construction rules, whereas we assume  that USL 
Intermediate Structures  have  been  generated before DRS 

construction rules are applied. Our  approach  has  the 
advantage that ( 1 )  the complexity  of  syntactic structures is 
reduced; e.g., passive is eliminated before DRSs  are 
generated, ( 2 )  scope problems of negation,  quantifiers, and 
coordination  can be dealt with more easily, and ( 3 )  forward 
(kataphoric) references and references involving  deductive 
processes can be resolved in  a more straightforward manner. 
Syntax  analysis and generation  of Intermediate  Structures 
has been described  in Ott  and Zoeppritz [9]  and  in 
Guenthner  and  Lehmann [22] for the fragment of Kamp [ 5 ]  
and  are  not repeated here, although the present  fragment is 
more  extended. A few words on  Intermediate Structures are 
necessary, however, to  understand how our DRS 
construction rules operate. An Intermediate  Structure is a 
tree  consisting  of different types of nodes: 

RELATION nodes  (R-nodes)  consisting  of a predicator and 

ARGUMENT nodes  (A-nodes)  consisting of a role name 

NOMSTR nodes, which list features  of nouns (including 

VERBSTR nodes, which list features  of  verbs  (including 

a list of ARGUMENT nodes. 

and a node of type NOMSTR or VERBSTR. 

quantification and negation) and  an  R-node or a constant. 

verb  negation) and  an R-node. 

Intermediate  Structures  can be built up recursively, and they 
are also recursively processed to generate DRSs. The 
Intermediate  Structure of the sentence every accident is an 
event thus looks like 

V( 
R(is, 

(A(NOM,N(every,R(accident,nil))), 
A(NOM,N(a,R(event,nil)))))) 

where NOM is the role name indicating nominative. 
Processing always starts with the verb at  the  top node, but  to 
actually write down  the  condition expressed by the verb, all 
its arguments  must have been processed, so the  construction 
algorithm goes to  the next level of recursion at  the next R- 
node, which in the example would be accident. accident is 
universally quantified, which will cause introduction of  a 
complex condition in the principal DRS (which we assume 
to have been  empty): 

[[el:accident(el)] --* [ T I ] ,  

where y has to be replaced by the  conditions generated by 
the verb is and its  second argument.  The indefinite NP an 
event leads to  the  introduction of  a new reference marker e2 
in the  consequent  DRS  and  the  condition event(e2). The 
processing of is picks up  the reference markers introduced 
by its arguments  and produces the  equation el  = e2, so we 
get 

[[el;accident(el)] -+ [e2;event(e2).el = e2]] .  
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It is the  matter of a further processing step which we do  not 
regard as  part  of DRS  construction proper to replace e2 by 
e l  and eliminate the now redundant  equation e l  = el.  

Individuals, proper names, definite  and  indefinite 
descriptions In [ 51 Kamp treated  proper names as 
individual constants.  The occurrence of a  proper name in  a 
discourse  would introduce a new reference marker in the 
principal DRS  and generate an  equation of the  form 

<represention of proper name> = <reference marker> 

in the principal  DRS. This  approach was felt to be 
inadequate,  as  the  same proper name may be used to refer to 
different individuals. Now proper names  are represented by 
unary  predicates [“the person named Peter” or Peter(u,)], 
where u, is anchored to  some  element a E A via an  equation 
u, = a. The unary  predicate is always added  to  the principal 
DRS. 

Common  noun phrases are treated  in the present  fragment 
only if they are singular and used nongenerically. For each 
common  noun phrase, a new reference marker u, is inserted 
into  the reference marker list of the current DRS, and a 
predicate P representing the governing noun in the NP is 
appended  to  the list of conditions in the  current DRS. If P is 
unary,  then u, is inserted  in the  argument place of P. 
Otherwise u, is inserted  at the  argument place representing 
the  domain of P, and  the  remaining  argument places have to 
be filled after the  (then existing) noun  complements have 
been processed. When  the  noun phrase is indefinite and  no 
further  complements remain to be processed, this is all that 
has to be done. 

Definite  singular NPs  can be used in  a number of different 
ways. We single out two  of  these uses: the anaphoric and  the 
unique reference use. Our strategy is to always assume  that 
the definite NP is used anaphorically and generate an 
equation of the  form u, = x,  where x is the reference marker 
of the  antecedent NP. It is the task of that part of the 
construction algorithm which applies  rules of contextual 
reference to  substitute for x the  actual reference marker u, of 
the  antecedent NP. To find a proper referent is in  principle  a 
deductive process (which may be short-circuited  in many 
instances). If an  appropriate  antecedent for u, cannot be 
found in the discourse, the  unique reference use of the 
definite NP is assumed, and  the  equation u, = x is 
eliminated. 

Relative clauses The  intermediate  structure  of a relative 
clause  has the form 

V( 
R( verb, 

A(role, relative pronoun), 
,further arguments)) 

The reference marker used for the relative pronoun is 

identical to  the  one introduced  for the  domain  of the 
governing noun.  The verb and all its other  arguments  are 
processed as  usual. 

L’erhs A verb v introduces in the  current  DRS  an event 
condition of the form 

e,:[u(u, .  . . u,)] 

together with condition(s) representing  the  tense 
information, e.g., e, < n  (where  n is a  distinguished marker 
indicating now) when the verb was in past tense. 

Every A noun phrase of the form every N introduces a 
complex condition K! + K, with a new reference marker u, 
in K, and  the  condition(s) generated by N. 5 contains  the 
remaining  conditions generated by the  R-node  dominating 
N. 

Conditional clauses The  Intermediate  Structure for a 
conditional  clause  has the general form 

V( 
R(COND, 

A(IF,antecedent), 
A(THEN,consequent))) 

Processing of a  conditional  clause introduces a  complex 
condition of the  form 

[antecedent] -+ [consequent] 

in the  current DRS, where antecedent and consequent stand 
for clauses which are processed in the usual way. 

Contextual relations 
One of the main motivations for Discourse Representation 
Theory was the  aim  to provide  a  better treatment for 
contextual  relations,  above all pronominal reference and 
reference through definite noun phrases. The theory says 
that reference within  a  sentence and between different 
sentences  should be treated  in  a  uniform way, which 
distinguishes it from  most  previous attempts  at 
pronominalization.  The reference of pronouns is governed 
by  five types  of criteria: 

1. Morphological:  gender and  number. 
2. Syntactic: e.g., disjoint reference. 
3. Configurational: accessibility of reference markers. 
4. Semantic: e.g., type restrictions. 
5. Pragmatic: e.g., topic, mutual knowledge. 

These  criteria have been discussed in some detail  in 
Guenthner  and  Lehmann [25] (cf. also the references given 
there for further work on  pronominalization). We do not 
repeat  these  criteria here in  detail,  but we discuss the 
configurational  criterion  described by DRT. 47 
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Before we define the accessibility relation, let us consider  a 
few examples: 

John hit every car. It was green. 

There is no way that it could refer to car. Note  that in the 
corresponding DRS  the reference marker for car is more 
deeply imbedded  than  that for it, 

[ul,u3,el:John(ul).[u2;car(u2) ] + [el:[hit(uI,u2)]] 
.green( u3)] 

and  this would be the only morphologically acceptable 
referent. Another example  along  these  lines  is 

The accident was not observed by anyone. His car was 
parked. 

Again, there is no way the  pronoun his could refer to anyone 
whose reference marker is introduced in  a more deeply 
embedded  DRS  than  the reference marker for his: 

[el ,  112, u3:accident(el). 
-[ul:observe(ul, e l ) ] .  
genatt(car(u2),person(u3)).parked(u2)] 

When we now  define that a reference marker u is 
accessible for  a reference marker iff both u and v belong to 
the universe of the  same  DRS or u belongs to  the universe of 
a DRS which is superordinate  to  the  DRS  to whose universe 
v belongs, we get the desired effect for the examples given, 
i.e., the reference markers for car and for anyone become 
inaccessible. 

The morphological and syntactic  criteria  require that  some 
information be held available that  comes  from syntax 
analysis. This is gender, number,  and  the relative position of 
an  NP in  a  syntax tree. The last is the most  complicated  of 
all and is needed to deal with disjoint reference, i.e., 
sentences  such  as 

John hit him. 
He hit John’s  car. 

In  both examples there is no way in which the  pronoun 
could refer to John. We keep this information along with the 
list of reference markers. 

Deductive  theory 
Suppose that we have a knowledge base r consisting of a 
collection of DRSs  and a goal 01 and we want to know 
whether N logically follows from r. We do not present here a 
proof system by formalizing  this notion of consequence 
literally. This means that we do  not develop  a Hilbert-style 
deductive  theory.  Instead, we take  the tableau  approach [26] 
since it fulfills the needs of computer  implementation in  a 
much  better way. The central idea is that we should 
formalize not consequence but construction of 
counterexurnples. The main  advantage is that completeness 
comes in very naturally: The logical rules can be seen as  a 
means to construct  counterexamples.  And this is essential 
for proof search procedures implemented  on a  machine. We 
pose a question to  the  computer since we ourselves do  not 
know the answer. The  computer can  indicate the answer no 
(which is at least as  probable  as yes) only by giving some 
hints  on counterexamples. This is the reason why  we believe 
that deduction  mechanisms based on resolution  calculus [27] 
are not  appropriate for processing knowledge. 

To be more precise, we say “01 follows from I”’ (in 
symbols: r k a )  if for any partial structure S such that v , ( r )  
= true (where v,(I’) = min {us (y )  I y E r}) and U,(CY)  is 
defined, we have v S ( a )  = true. Consequently, r k N does  not 
hold if there is a  partial structure S such that vS(T)  = true 
and v S ( a )  =false. The latter is equivalent to 
v,y( r  U {-a{) = true or, in yet another terminology, to S is 
a model oj‘r U {-a). The idea of tableau calculus is to 
systematically construct  models for r U {--.I) in  such  a way 
that, if there is none,  this shows up after finitely many steps. 
Correctness means  that if  we conclude  within the calculus 
that there is no model, then  there is indeed  none. 
Completeness, on  the  other  hand, is just  the reverse 
implication; i.e.,  if  we cannot conclude that  there is no 
model, then there is indeed  one. 

procedure which performs in  some systematic way all 
possible applications  of rules for  generating  a  model. Then 
we inspect its behavior. If all possibilities (cases) lead to a 
contradiction,  then it stops and  outputs “There is no model. ” 
The trace of all steps done so far is a  formal  proof for the 
inconsistency of r U {-CY). If it does  not  stop with this 
result, then there may be two cases: 

Completeness is proved in the following way. We define  a 

1 .  It stops  since no rule is applicable, but  some case is not 
contradictory. 

2. It runs on infinitely. 

It remains  to prove that, in both cases, a  model is generated. 
Clearly, (2) results in an infinite model whereas, in case ( I ) ,  
all models are finite. We would like to stress the fact that this 
model  generation  capability is that property  of  a  deductive 
theory which is of highest importance in computer 
applications. 
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Propositional DRSs 
Let us  start with the case where there  are  no reference 
markers in the DRSs. This corresponds just  to propositional 
logic. For  the sake of simplicity, we furthermore  assume  that 
all DRSs are given in negation normul form, i.e., are 
composed  only by the logical connectives ., V, - and 
contain only  immediately before atomic DRSs. To 
achieve  this we have to apply de Morgan's rules. In the 
general case we have to build just these  rules into  our 
deduction  mechanism, which is rather easy. 

specify a  procedure which finds out whether  there are partial 
structures S such that us(.) = true. 

backwaras. For example,  in order  to  make u,(a.p) = true, we 
have to  make u J a )  = true  and us(@) = true. These  two 
subtasks  can be pursued one after another (if not in parallel). 
On  the  other  hand,  to satisfy a V p we have the choice of 
satisfying 01 or p. A tree-like organization  of the resulting 
cases (and  sub-. . .-sub-cases if Vs are nested) is convenient. 

Our definition below is slightly different from Smullyan's: 
We insert into  the tableau only  the final formulas, i.e., 
atomic  or negated atomic formulas. No  intermediate results 
are stored;  they  may be seen as "pushed onto a stack." 
Smullyan, probably not knowing the stack  mechanism, 
keeps all subformulas arising from  any rule application  in 
the tableau. This has the advantage that  the tableau contains 
a full trace of the search process. On  the  other  hand,  the final 
results, i.e., the counterexamples, cannot be read off easily. 

Let CY be such  a DRS. As explained  above, we have to 

The central  idea is to read the definition  of  semantics 

Definition For  any DRS a, the tableau for a [symbol  T(a)] 
is a tree  the nodes of which are labeled by ground literals, by 
contr  (for contradiction),  or by the  connector V. Branching 
nodes are labeled by V, whereas contr labels leaves ending 
inconsistent  branches as  soon as this inconsistency arises. 
[This  means  that a contr-leaf occurs exactly as  (the single) 
son  of the second  item of a complementary pair of literals 
contained in some branch.] T(a) is  inductively  defined  as 
follows: 

For  any  atomic  condition  or negated atomic  condition a, 
T(a) is the one-element  tree the  node of which is labeled 
by a. 

0 For  any  condition 011 and  any  conditions a2, T(a1 V 012) 
is the tree  composed of T(a1) and T(a2), joined by a new 
node labeled by V. (See Figure 2.) 
For  any DRSs a1 and 012, T(al.a2) is constructed  in the 
following way: In T(al),  append  to each leaf not labeled 
by contra copy  of T(012), as  in Figure 3. 

T(a) is a  prooffor the unsatisfiability of a DRS 01 if all its 
branches are closed by contr. 

For example,  consider the DRS a = (["[r].l[s]] V [SI) . 
([r."[s]] V ["[r].~]) . "[r]. Its  tableau is shown in Figure 4. 
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Note  that it is no proof. From its  rightmost  branch, we may 
read the partial structure S = {s, lr]. We have v s ( a )  = true. 

understood by looking at a DRS as a logic diagram: We 
connect  atomic  and negated atomic  conditions by edges in 
such  a way that those conditions  are  connected  paths which 
must be simultaneously satisfied. Then we have to find a 
thread of truth  along which we can go and  make all 
occurring conditions  true  in  order  to satisfy the whole DRS. 
(Compare this with the well-known flow diagram 
representation of programs: Execution  of  a  program can be 
visualized by pursuing  a thread of control through  the flow 
diagram.) The logic diagram  for the DRS given above is 
shown  in Figure 5. It is not difficult to  make  this notion 

The process of generating a tableau can  be better 
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precise, but we do  not work  it out.  It seems that it is an 
interesting  alternative to  the usual and-or graphs since it 
makes the difference between “and” and “or” visible. Logic 
diagrams were introduced,  in a slightly different way, in [28]  
but seem to have  been known  to logicians  for a much longer 
time. 

Let us recall the main  property of logic diagrams:  A 
(propositional) DRS is satisfiable iff its logic diagram 
contains  at least one consistent  path  from top  to  bottom. If, 
when going along  a path, we amve  at a  branching  node, 
then  the two  beginning subpaths correspond to sub-DRSs 
connected by a V. We can choose one of them  to be made 
true.  On  the  other  hand, if a subpath is concatenated to 
another one, then  the corresponding  sub-DRSs are 
connected by a  period. We have no choice and have to 
satisfy both.  Now note  that, for any DRS,  its  tableau is just 
the unfolding of  its logic diagram, with inconsistent  branches 
cut off as  soon  as the inconsistency arises. Hence,  checking 
whether there is a  consistent path through  a DRS  can be 
done by checking  whether there is a  consistent branch in its 
tableau. Altogether, this means  that tableau  calculus (for 
propositional  DRSs) is correct and complete. 

We now  consider the case of a set of  propositional DRSs. 
For example, the  DRS given above can be split into  the set r 
consisting of the DRSs 

Clearly, the tableau for the set r may be defined  as the 
tableau  of  a conjunction of all its elements (e.g., the original 
DRS of this  example). But this is not a  good choice: When 
humans perform  deductions, they carefully choose the  order 
in which single parts of their knowledge are  applied. This 
reduces  complexity. So, for the above  example,  a much 
better  ordering of I? exists, as  shown in Figure 6. Note that 
this  tableau is significantly smaller than  the original one. 

Let us  sketch  how to proceed  in the general case of a set I’ 
of DRSs. We start by choosing  a y E r and generate  its 
tableau (in case we check r U {-a), we clearly choose -a). 
Now suppose that  the tableau  for r has been generated to a 
certain  extent.  Choose  a branch B which is (so far)  consistent 
and a y E r such that  no literal on B stems  from y. 
Generate its tableau and  append it to B. Then check the 
resulting branches  for  consistency. 

The  conditions for choosing the next formula  guarantee 
that each DRS is treated exactly once  on each  consistent 
branch.  This has  two  consequences:  First, no loops can arise. 
Second, the partial structure  determined by a  consistent 
branch satisfies all y E r and, hence, is a  model of r. This 
means completeness  of  tableau  calculus  for  sets of DRSs. 
How to  formulate good strategies to generate  small  tableaux 
cannot be described here.  But  it is one of the  central 
problems  of knowledge processing. 

Arbitrary DRSs 
Suppose  now that a set r of arbitrary  DRSs is given. We 
reduce this  to  the propositional case. Note  that  there  are two 
kinds of reference markers: those which are interpreted  as 
existentially quantified (the  normal case) and those which 



are universally quantified  (since they occur  in the  antecedent 
of  a  conditional). 

Let us start with the first case, Le., suppose that a DRS 
[u l ,  . . ., u n ; ~ ~ ]  chosen  from r has to be analyzed. For each i 
= I ,  . . . , n and each  occurrence of ui in CY, substitute  a new 
individual constant, say a,. Then go on as  in the 
propositional case. 

Now  suppose that we have a DRS [u l ,  . . . , un;a] -+ p. 
Recall that  the ui must be interpreted universally. Hence, 
any  term  occumng  in the  tableau  constructed so far  has to 
be substituted. More precisely, let a, ,  . . . , a, be any 
sequence of terms with the following properties: 

Each a, occurs  somewhere  in the tableau  constructed so 

a, ,  . . ., a, was not yet substituted  in CY -+ 0 for u l ,  . . ., 
far. 

un. 

Then, for i = 1, . . . , n, substitute a, for all occurrences of ui 
in CY and p. Then go on for CY -+ p as in  the propositional 
case. 

In both cases, if the resulting DRS is not propositional, 
then  the above process has to be iterated. Note  that 
substituting all occumng  terms for all occurrences (level 
saturation) is very inefficient. There  are better strategies, as 
shown by Bowen [29] for the sequent  calculus (which is 
quite close to tableau calculus). His  central  idea is to 
perform  only  those  substitutions which result in at least one 
complementary pair  of literals. Additionally, recall that, even 
in the pure  propositional case, the  order in which we choose 
the next DRS affects the  amount of search space. 

For illustration, let us give an example (taken from [30]). 
Let r = {y, I i = I ,  2, 3 , 4 ) ,  goal y4, and y ,  = VxPx, y2 = 

Vz(,Pz V (Qz V Rz)), y3 = Vy(-Qy V Sy), y4 = -(Ra V 
Sfa). See Figure 7. 

In this tableau, we have indicated the origin of any literal. 
Furthermore, we have  eliminated V-nodes to  make  the 
diagram more readable.  Note that it is no proof; a model of 
r is given by the  branch with leaf Sa. 

To  sum up, there  are two kinds  of choices which have to 
be performed carefully: 

Which DRS y E r is to be handled next? 
0 If the chosen y is universal, which substitution is to be 

performed next? 

As we have  stated previously, it is one of the  central 
problems  of knowledge processing to find good strategies to 
make  the choices. This will influence efficiency much more 
than using other rule sets or even other knowledge 
representation languages. The question of tractability is a 
matter of expressiveness, and not of the particular description 
language [ 71. 
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Extensions to the basic theory 
One of the novel features of DRT is the uniform 
representation of old and new knowledge; in fact, the  entire 
process of  changing  a knowledge base, i.e., of informing, can 
be regarded as  consisting  in the  incorporation of new 
conditions  into  an already existing DRS. 

General treatment of information and linguistic meaning 
In Discourse Representation Theory we speak of the 
incorporation of the  DRS of a  discourse into  an already 
established DRS. This process can also be regarded as  the 
extension of an existing DRS. From a  model-theoretic  point 
of view, what  this means is that  the class of  models of the 
latter is narrowed down  to a smaller class as a result of the 
new information brought  in by the discourse. More 
generally, however, we may speak of the “linguistic 
meaning” of a  sentence or discourse  as  a function  on  the 
DRSs which it  induces. In particular, the meaning of a DRS 
is a function which maps DRSs into DRSs. (Various 
properties of such functions  are spelled out in  detail  in [3 I ] . )  
And  from  this  function we may  reconstruct in a  systematic 
way the derivative notions of truth in  a  model and 
proposition. This is to be contrasted to  the way one  attempts 
to deal with these notions in standard model-theoretic 
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semantics,  where one starts from extensions  in  models (or 
possible worlds) and  then goes on  to reconstruct  intensions 
in  terms of these. In DRT we start with linguistic meaning (a 
level which allows much finer distinctions between meanings 
than intensions) and reconstruct  intensional semantic values 
as well as extensions from it. Thus it  may very well turn  out 
that, for  instance, logically equivalent  sentences (i.e., 
intension-equivalent  sentences) do not have the  same 
“linguistic  meaning.”  Consider,  for  instance, this example 
(due  to Barbara Partee): 

One of the ten balls is not in the bag. It is under  the table. 
Nine of the  ten balls are  in  the bag. It is under  the table. 

As this example  makes clear, logically equivalent  sentences 
may behave very differently in  discourse, Le., establish 
different DRSs, and should thus be considered  as  having 
different linguistic meanings. 

We speak  of  extending  a given DRS with the  DRS of a 
given discourse. This concept gives rise to a rather novel 
distinction between two kinds of semantic relations 
(discussed below). But in  addition  to  the  notion of  extending 
a DRS with new conditions, we should also allow a further 
way of  operating on a  DRS.  Whenever  a given DRS is 
extended on  the basis of new incoming  information,  another 
process typically takes place, namely,  a completion of the 
new DRS.  This  completion  in general involves certain 
concepts associated  (sometimes  only in a loose way) with the 
properties introduced  into  the DRS. It is here that a number 
of well-known problems  involving  stereotypes (cf. Dahlgren 
[32]) and  the default assumptions should be dealt with. We 
do  not deal with these issues in  detail  here;  it is sufficient to 
point  out  that  this  notion of a completion needs to be 
distinguished from  the  more “logical” process of building up 
a DRS  from  natural language input. 

Treatment of ambiguity and presupposition 
From a linguistic point of view the analysis of how DRSs  are 
constructed in a  systematic way from  natural language input 
has always faced the problem  of  how to deal with the 
ambiguity as well as  the presuppositions of natural language 
utterances. In  the past  little clarity has been shed on these 
issues, and in fact these concepts have often been confused 
with a variety of other  notions (ambiguity,  for  example, with 
the concept  of vagueness, etc.). 

Within DRT we are able to distinguish two kinds of 
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semantic relations  in  a  systematic manner: Let us  consider 
an  arbitrary  DRS K. On  the  one  hand we can characterize 
the relations between K and  the class of its intended models, 
i.e., the models that represent the  situations  the discourse 
from which K results or “talks about.” Let us call these 
relations truth relations. Given K we can, for  example,  ask 
whether  K  is true in  a  particular  model M ,  or we can ask 
whether  K  has  a  model, i.e., whether or not K is consistent. 
Or we can ask how (for instance, relative to which criterion 

of the application of predicates) we can  determine whether 
M is a  model of K (it is here that issues of vagueness are  to 
be resolved). Notice that  such problems  have  nothing 
whatsoever to  do with questions of  ambiguity or 
presupposition. 

But given a DRS K we can also consider  relations  of  a 
quite different kind.  The most  interesting  question  here is 
the  determination of the possible extensions of K given a 
discourse D. The  semantic relations we want to define here 
concern  the background DRS K and  the  incorporation of the 
DRS K‘ of the discourse to be processed in  the context K. 
There  are  many  semantic properties  of natural languages 
which should be regarded as pertaining to relations of this 
type, which we call discourse relations. Two of the most 
well-known relations that belong here are ambiguity and 
presupposition. We say that a  sentence S is ambiguous if 
there is a DRS K  such that  the  DRS K(S) associated with S 
can be incorporated  into K i n  at least two different ways. For 
instance, let K be the  empty  DRS;  then it  is clear that a 
sentence like 

John saw Mary with the telescope. 

will give rise to two  distinct  extensions  of K. But in ordinary 
discourse the background DRS  into which the  content of  a 
sentence is to be incorporated is, of course, never empty. In 
fact, it is the presence of the background DRS which governs 
our choice  of  words so that ambiguities of the above  kind 
never arise in a  problematic way. 

systematically ambiguous, the hearer  should be  acquainted 
with but  the barest information concerning the individuals 
involved and also concerning the  communicative  intention 
underlying the utterance  of the sentence. This is indeed quite 
uncommon.  On  the  contrary, whenever  such  utterances 
occur, the  DRS  into which their content is to be 
incorporated contains  quite a lot of information which will 
force the disambiguation right away. For example, the use of 
the definite article  requires an  appropriate linking between 
the discourse referent associated with the telescope and a 
discourse referent in the background DRS.  In most cases the 
latter will be related to either one of John  and Mary, and 
this will resolve the ambiguity in  the resulting representation. 
The sentence itself-given the  informal definition above- 
remains ambiguous. How such  ambiguities are 
systematically resolved is in general a quite complicated 
matter, for not all cases are structurally as simple  as the case 
of the modification  in the example  above. 

question:  namely, the question into which DRSs K a given 
DRS K can be incorporated.  Informally, we say that with 
each DRS K we associate  a set K of presupposed DRSs, those 
which K can in  principle  extend. In  many cases (though 
certainly not always) it is possible to characterize  this set via 
sentences  in the language, and we can  therefore speak of the 

In  order for  a  sentence like the above to  remain 

The case of presupposition  also concerns a  similar 

‘RANZ GUENTHNER,  HUBERT  LEHMANN,  AND WOLFGANG  SCHONFELD IBM J .  RES. DEVELOP. \. ‘OL. 30 NO 1 JANUARY 1986 



presupposition  of  a  sentence as being another sentence. 
Among  the  many interesting  consequences of regarding 
presupposition as a  relation between DRSs, we mention only 
the fact that (i) on  this  account presupposition is not 
primarily  defined in  terms of truth (as is done in just  about 
every other  account),  and (ii) many problematic cases having 
to   do with the “projection” of presuppositions can be dealt 
with in  a  straightforward way once we look into a 
presupposition in  the  manner discussed here. 

Contextual rejerence and complex anaphora 
The fact that in DRT  the  meaning of  a  sentence (or 
discourse) is taken  to  be a function which maps  DRSs  into 
DRSs  (and  that  DRSs  are systematically constructed  from 
sentences  together with the  current background  DRS) allows 
a  sophisticated treatment of various phenomena of 
contextual reference and  anaphora.  In particular,  personal 
and  temporal  anaphora  can be dealt with a novel way. In a 
similar vein certain types of contextual reference can now be 
accommodated  in a uniform way, given the fact that we 
have a representation of the linguistic context  as well as  of 
the  more general  situational context  in which utterances 
occur. So, for  instance, the  treatment of anaphoric uses of 
the definite  articles boils down  to being able  to link the 
discourse  referent introduced for the definite noun phrase 
with another discourse referent from which it follows (in the 
logical sense) that it has  the property expressed by the  noun 
phrase. Since this linking takes place within the  DRS  and 
not within the world, we can have  uniqueness in  the  former 
whereas, of  course, no such uniqueness will in general obtain 
in  the world. The  notion of  presupposition in  the sense 
hinted  at above will also play an  important role here;  for the 
use of the definite  article will be characterized in  terms of the 
extension of DRSs which satisfy the presupposition  of the 
definite phrases. 

Plural 
It is clear that  DRSs  can be many-sorted;  in addition  to 
“temporal” individuals (e.g., times,  events,  intervals, etc.) we 
can also-much as  in  the case of higher-order logic- 
introduce reference markers  that  are sets. In this way a very 
natural  treatment of  various  kinds  of  plural expressions can 
be formulated  both  at  the level of the  DRS  construction 
algorithm and  at  the level of the  DRS semantics. For 
instance,  simple  plural  phrases like John and Mary would 
introduce a set discourse reference marker X with the 
conditions  that  John  and  Mary  are  elements of X .  
Depending  then  on  the verb phrase following the NP John 
and Mary, the property  predicated of X will either  hold  for X 
or  for  the  members of X .  A  similar account  can be given for 
generalized quantifiers like most girls; an  account along  these 
lines  would allow a very straightforward  explanation of why 
most  plural noun phrases  allow anaphoric  chains (e.g., Most 
girls arrived late. They . . .), whereas  related  singular noun 

phrases do  not (e.g., every girl arrived late.  *She . . .). Thus 
both  syntactic and  semantic properties of plural expressions 
can be dealt with in  a  fruitful manner in the  DRS 
framework. In particular,  it  seems likely that similar 
restrictions about  the  nature of the set discourse referent 
markers as  in so-called “weak second-order logic” (where 
quantification  over only finite sets is allowed) can be made 
here  as well. This would constitute a  reasonable way of 
extending first-order logic to deal with set-denoting 
expressions. 

Vagueness and nonmonotonic  inferences 
In  many ways DRT  can be considered  a more  adequate 
alternative than  standard  formulations of first-order logic for 
the representation  of linguistically expressed knowledge. It is 
closer to  the  form of natural language discourse and allows a 
more  transparent representational format  than  standard 
logic. In addition, it is provided with both a precise 
semantics  and deductive  theory, which makes it  a more 
attractive candidate  than most other systems  of knowledge 
representation.  But, as  in  standard logic, quite a few 
problems  remain which do  not have an  automatic solution 
in  DRT  either  and which are of importance for any  attempts 
to use such a system in a computational setting. Among 
these  problems are  the  many  forms of vagueness and 
nonmonotonic inferences. 

As we said  earlier, vagueness concerns  the way a 
representation can be related to  the world, i.e., under which 
conditions predicates may be said to hold  for  individuals. At 
the very simple level of  adjectives and adverbs, we already 
run  into such  problems  continually. It comes as no surprise, 
therefore, that even  within  model-theoretic semantics (e.g., 
of the relational  database form)  no really convincing 
proposals  for  representation and  truth have been devised, let 
alone  implemented.  There  are  some  quite sophisticated 
proposals  in the literature, but they do not lend  themselves 
easily to  implementation.  Something  quite similar could be 
said of nonmonotonic inference. There  are several ways of 
pursuing issues having to  do with nonmonotonic reasoning. 
We feel that  one of the most  fruitful approaches is via the 
notion of  “partial information”  and various  kinds  of 
completions of  partial information.  DRT, in  a sense, has  a 
built-in  concept  of  “partial information,”  as every DRS is in 
a sense a partial specification of the way the world is. There 
is  both an underlying logic for this notion of  a  partial  model 
(which is nevertheless essentially classical logic) and a 
number of possibilities of how to  formulate types of 
reasonings  in  such a setting. We hope to  concentrate  on 
these matters in our  future research. 

Conclusions 
In  this  paper we have  presented  a  theory  for  representing 
knowledge mediated through  natural language. This theory 
has on  the  one  hand a firm basis in logic, and  on  the  other 53 
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hand it  provides  for a systematic translation of natural 
language  discourse to logical form. While the fragment of 
natural language  which has been  formally  described in the 
theory is  still rather limited, we are able to handle with it a 
variety of phenomena which  have  puzzled theoretical 
linguists,  logicians, and philosophers of language for a long 
time. A number of extensions have  been  worked on that 
could not be  fully  discussed in the framework of this paper, 
but they strengthen our belief in the theoretical fruitfulness 
of Discourse Representation Theory. At the same time, we 
as well as other groups are working on computer 
implementations which also look quite promising.  But it will 
have to be  left to some other occasion to discuss  these 
implementations in detail. 

solution, and we mention three areas here: 
Quite a number of problems still  wait for an adequate 

1. Problems of adequate semantic representation of 
phenomena, such as causality, ability, etc. 

2. Problems of discourse  pragmatics, on which depend the 
proper treatment of contextual references, appropriate 
system reactions in a dialog  with a user, and probably 
other things which in conventional computer applications 
are addressed under the label of userfriendliness. 

addressed in the Artificial  Intelligence literature, but in 
our view still  need much further investigation. 

3. Problems of deductive strategies,  which  have often been 

We hope to be able to extend Discourse Representation 
Theory to deal  with many of these problems, at least to the 
extent required for the expert system  project we are engaged 
in. Discourse Representation Theory in our view provides a 
very  good  basis  for attacking problems in discourse 
pragmatics and also for some of the issues in deductive 
strategies. 
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Appendix:  An  example 
To show  how the analysis and representation of a discourse 
can be done, we present  here an extended example from our 
application domain, the German traffic  law. The example is 
the description of an accident, where the accused, T, violated 
his duty to wait for a “sufficiently  long”  period  for someone 
to record T’s identity: 
T ran off the road and hit a lamp post. 
Damage of 500 DM  resulted. 
The accident occurred at midnight. 
It was not observed by anyone. 
T waited  for 20 minutes. 
He left the scene of accident, and he  left  his  car behind. 
For the first sentence of this text we  show a parse  tree  in 
Figure 8 as it is produced by the USL system. The category 
labels  used are SC for clause, VC for  verb  complex, NP for 
noun phrase, PP for prepositional phrase, N for noun, V for 
verb, Prep for preposition, Qu for quantifier or determiner, 
and Conj for conjunction. We  have omitted all  syntactic 
features used to control the application of rules  (cf. 
Zoeppritz [ 1 11 for more detail on the syntax). 

an interpretation routine. After  parsing,  these routines are 
executed to produce the Intermediate Structure 
corresponding to the sentence: 

Each node of the parse  tree  is  associated  with the name of 

V( 
R(ni1, 

A(NOM,N(nil,T), 
K(and, 

V( 

V( 
R(run off the road,nil)) 

R(hit, 
A(ACC,N(a,R(lamp post,nil))N)))) 

We  use a dummy verb at the top of the Intermediate 
Structure to be able to distinguish the common subject from 
other arguments that individually belong to the conjoined 
verbs. run ofthe road is treated as a phrasal  verb (this is not 
discovered during parsing but while constructing the 
Intermediate Structure). 

built up (references not yet  resolved): 
From the Intermediate Structures the following DRS is 

[ u l ,  u2, u3, u4, u5,  u7, u8, u9, u10, U l l ,  
el,  e2, e3, e4, e5,  e6, e7, e8, e9, t l ,  t2: 

T(u1). 
el: [ run off the road(u1) 1. 

lamp post(u2). 
e2: [ hit(u1, u2) 1. 

el  < n. 
e2 < n. 
el < e2. 
damage(u3, u4). 
u4 = 500 DM 
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e3: result(u3). 
accident(e4). 
e3 < n. 
e2 < e3. 

e5: [ occur(e4) 1. 
midnight(t 1). 
e5 o t l .  
e5 < n - [ u6: e6: [ observe(u6,u5) I]. 
T(u7). 

duration(t2) = 20  min. 
e7 < n 
scene of accident(u9). 

genatt(car(ulO),ull). 
e8 < n. 
e7 < e8. 

e7: [ wait(u7~2) 1. 

e8: [ leave(uS,u9) ] 

e9: [ leave behind(u9,ulO)  ] 
e 9 < n ]  

After the resolution  of  contextual references, which also 
requires  application  of meaning rules, and after elimination 
of redundant  conditions,  the following DRS is obtained: 

used: 
The following meaning rules and rule schemata have been 

I .  [ e: [ verb ] -+ [ event(e)  ] 
2. [el ,e2:el:[occur(e2)]]+[el  = e 2 1  
3. [ e: accident(e)  ] -+ [ event(e)  ] 
4. [ u l ,  u2: genatt(car(ul),person(u2)) ] + 

[ car(u1). [ owner(ul,u2) ] V [ driver(ul,u2) I] 

One problem still remains: The representation  of the second 
sentence still is not linked to  the rest of the discourse. 
Intuitively, the linking is achieved through  the elliptic 
occurrence of the verb result. To fill the gap, one would have 
to stipulate something like resultedfrom  this, in which case 
the linking  would  have  been explicit. In  addition  one needs  a 
meaning rule (which has to be part of the definition of 
accident anyway) that says: If there is an accident, then  there 
is damage caused by the accident. 
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