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How to represent knowledge is one of the key
questions in the construction of expert systems.
Its solution depends on a number of factors, the
most important of which are how knowledge is
to be acquired and how it is to be used. Since
we are interested in the use of natural language
for communication with computers, we require
from a formalism suggested for knowledge
representation that it be suitable as a target for
the systematic translation from natural language
expressions. We want to propose a theory,
called Discourse Representation Theory (DRT),
which was originally developed by Kamp to
analyze natural language discourse, as a means
to represent knowledge in an expert system.
With Discourse Representation Theory it has
been possible to solve certain cases of
contextual relations which have puzzied
linguists and logicians for a long time. In this
paper we give a precise definition of DRT and
describe the rules used to translate from natural
language to Discourse Representation
Structures (DRSs), the central notion of the
theory. We show how the notation used in DRT
relates to standard predicate logic and define its
deductive theory. We also outline ways of
implementing DRT and the proof procedures we
intend to use.
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Introduction

How to represent knowledge is one of the key questions in
the construction of expert systems. It is often claimed that
once this question has been decided, the remaining tasks are
“easy” to do. The solution of this question is dependent on
two more problems, namely,

1. How is the knowledge acquired from the expert?
2. How can the knowledge in its formal representation be
used to answer user questions?

Basically, there are two ways to solve the first problem:

1. The expert communicates his or her knowledge to the
system through interaction with a “knowledge engineer,”
who encodes it directly in the representation chosen.

2. The expert communicates with the system directly, i.e.
through statements in natural language, through a graphic
interface, or through a formal language he or she is
familiar with.

Of these possibilities, we are interested in the natural
language communication of knowledge to an expert system.
This choice imposes important restrictions on the kinds of
formalisms which can serve to represent knowledge, as will
become clear below.

Different schemes for representing knowledge have been
proposed, most of which originate from the needs for natural
language processing and have been used in prototype
systems that process fragments of natural language. Among
these schemes are semantic nets, frames, scripts, production
rules, conceptual graphs [1], so-called knowledge
representation languages, such as KL-ONE [2] or
KRYPTON [3] and others (cf., e.g., the SIGART newsletter
of February 1980 [4] for references). 39
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We propose Discourse Representation Theory (DRT), a
theory originally described by Kamp [5] to study the
meaning of natural language discourse, as a knowledge
representation language. Formally, DRT can be regarded as
a variant of first-order logic; hence it possesses a well-defined
semantics and an equally well-defined deductive theory,
which distinguishes it from a number of other proposed
knowledge representation languages whose semantics—
inasmuch as it cannot be easily translated into that of first-
order logic (cf. Hayes [6])—remain unclear. Similarly, as was
shown by Brachman and Levesque [7], it is quite uncertain
that alternate ways to represent knowledge allow for less
complex deductive algorithms than those proposed for first-
order logic.

The work reported here is being carried out as a joint
project of the IBM Heidelberg Scientific Center and the
University of Tubingen. The objectives of this project are to
develop a prototype system which is able to analyze natural
language discourse, extract the information conveyed by it,
and translate it into logical form to make it available for
answering questions. The texts considered may describe
singular facts, events, and states of affairs, but they may also
express general rules. In a first application we want to apply
this system to German traffic law. In this application the
system is to be used by a lawyer or judge for consultation
about a particular case description, about the relevant
paragraphs, interpretations of the paragraphs, and
controversial issues. Thus the lawyer or judge will be able to
get a better understanding of complex cases, and thus to
build up his or her lines of argument more effectively. The
prototype system we are working on, consequently, processes
the German language. For ease of presentation, we only use
English examples here, as no German-specific issues are
discussed. The User Specialty Languages (USL) System
which we are using as a base and which was originally
developed for natural language interaction with databases
[8~11] processes German, English, French, Italian, and
Spanish, such that the English examples given would
actually be processed as described.

In this paper we first discuss adequacy conditions for
knowledge representation languages. We do this in terms of
the problems that have to be dealt with, most of which have
been recognized in the Artificial Intelligence literature, as
well as in theoretical linguistics, logic, and philosophy of
language. We emphasize, in accordance with many other
researchers in the field, that knowledge representation
requires the well-established methods of logic to be
successful, i.e., to pass from an art to a theory. To make
logic “work” on a machine, it is certainly necessary to
provide deductive strategies which have to be formulated at
a meta-level and are needed to supplement a purely
descriptive formalization of a domain. It is our view that a
clean separation of descriptive and strategic knowledge is
crucial for a proper understanding of the issues in knowledge
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representation. We are not very specific about issues of
strategic knowledge, although we believe that the deductive
mechanism we propose furnishes a good base.

The main part of this paper is devoted to a presentation of
Discourse Representation Theory. This presentation is based
on several articles by Kamp [5, 12-14] and Partee [15]. We
present a linear syntax for Discourse Representation
Structures (DRSs) which consolidates the different versions
presented in the publications cited. Our treatment of the
formal semantics differs somewhat from Kamp’s
presentation in that partial structures are used instead of
models. The semantics of DRSs is inductively defined. We
then discuss how concepts expressed in natural language can
be mapped to predicates. This discussion is a prerequisite for
the presentation of the DRS construction algorithms which
follows. It is the task of this algorithm to perform the
systematic translation of natural language discourse into the
form of a DRS.

Another novel feature in this paper is the presentation of a
deductive theory for DRSs. It is based on the tableau
calculus, which we feel is particularly well suited for
computer applications such as expert systems, since in
addition to finding the proof of a goal, counter-examples are
found when the proof yields a contradiction. This is much
more helpful to a user than the mere information that a goal
could or could not be proved.

We end the paper with a discussion of extensions of
Discourse Representation Theory, which we did not include
before in order not to overload the first presentation with too
many details and because some of these extensions need
more investigation before they can be adequately formalized
and integrated.

As an appendix we present a somewhat extended example
from our application domain to illustrate how the theory is
put to use.

Adequacy conditions for knowledge
representation languages

The question of what are the adequacy conditions relative to
which proposals for knowledge representation languages are
to be evaluated and compared has rarely—if ever—been
systematically raised.

On the one hand, there is a plethora of such so-called
representation languages and, on the other hand, there is at
least the explicit claim that these languages should be used to
manipulate information. It is therefore surprising that so
little attention has been paid to the way we can evaluate
specific proposals; what are the minimal requirements that
any knowledge representation language should meet, etc. On
the contrary, proposals for knowledge representation
schemes abound with remarks about notation and
implementation, but almost never with comments about
expressive power and interpretability in other languages, not
to mention notions like truth, theorems, or decidability/
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undecidability and the like. In his position statement in the
1980 SIGART Special Issue on Knowledge Representation
[4] Robert Kowalski wrote the following lapidary statement:

“There is only one language suitable for representing
information—whether declarative or procedural—and that is
Sfirst-order predicate logic. There is only one intelligent way to
process information—and that is by applying deductive
inference methods.”

In a way we agree completely with him; obviously some
qualifications are in order, but the general tenor of this
remark retains its force. There is an interesting analogy to be
drawn here between the many proposals in the knowledge
representation language field and the almost countless
proposals for so-called “inference engines” in the expert
systems field. Expert system designers like to speak of
separating the “knowledge base” from the “inference
engine,” and they insist that the latter could be employed
more or less “universally.” But every expert system comes
with its own “inference engine,” and each one of them is
typically much less powerful, much less transportable, etc.,
than even ordinary Prolog! If there is a representation
language and a way of manipulating information that is
something like “universal,” it is without doubt logic. Instead
of pointing out the many applications logical techniques
have had in the past, let us simply indicate a few of the
adequacy conditions any logical representation language
brings with it automatically, so to speak. From logical
representation languages we get the following advantages:

e Syntax: a clear notion of what constitutes a well-formed
expression at all levels of syntactic complexity.

¢ Semantics: a clear relation to the structure of the world.

o Inference theories: a vaniety of equivalent alternatives.

Notions of correctness: nothing false can be derived or

proved.

Notions of completeness: every truth is provable.

o Expressive capacity: what can and what cannot be

expressed in a particular system.

Distinction between propositional logic, first-order logic,

and higher-order logic.

Other systems such as lambda-calculus.

Various other meta-logical notions concerning decidability

complexity and implementational complexity.

No other framework for knowledge representation really has
these properties, and the problems that are discussed in other
frameworks (fuzziness, incomplete information,
nonmonotonic reasoning, etc.) are not adequately dealt with
in any of these either.

The success of logic programming languages like Prolog
lies in the fact that they are an optimal compromise between
representational expressiveness, deductive tractability, and
efficient implementability. This constrasts with full first-
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order predicate logic, which was not developed for the needs
of knowledge representation as it is understood here. It is too
general both from a semantic point of view and a
representational point of view.

We regard Discourse Representation Theory as a step
which retains the advantages of predicate logic but is closer
to natural language and to natural reasoning. We should
point out though that semantically there are still many open
problems (mainly appropriate denotation types and truth
conditions for a variety of expressions; cf. McCarthy [16] for
a short survey):

e From a reasoning point of view there are some open
problems (beginning with the distinction between logical
and “commonsense” reasoning: There is at the moment
no working system for nonmonotonic reasoning and not
even for reasoning in partially defined situations).

In any event, in order to develop more complicated
systems which accommodate more complex denotation
types (e.g., events, causality, and the like), it is extremely
important to have a clear grasp of the properties of the
underlying language.

Basic notions of Discourse Representation
Theory

Discourse Representation Theory (DRT) is a theory of
meaning for natural languages which integrates both
semantic and pragmatic aspects of language within a single
framework. It is designed to deal with multisentential
discourse, which distinguishes it from most previous
approaches to the study of the semantics of natural
languages. Aspects such as pronominal reference, tense, and
propositional attitudes cannot be successfully dealt with
when sentences are only looked at in isolation. The relation
that a given sentence has with its preceding discourse is
crucial to the understanding of these phenomena.

DRT defines as its central notion the Discourse
Representation Structure (DRS), which is a pair <U, C>
where U is a set of reference markers (the universe) and C a
set of conditions which are either atomic (i.e., of the form
P(u,, - -+, u,) or u, = u,) or complex (i.e., expressing
negation, implication, or disjunction). These conditions can
be regarded as satisfaction conditions for a model. When
K., K, are DRSs, then <—, K>, <—, K|, K,>, and
<V, K|, K,> are conditions. DRSs can thus be embedded
into each other.

We now define a few terms that we need to describe
DRSs. The topmost DRS is called the principal DRS. A
DRS K, is subordinate to a DRS K, if K| is embedded in K,
or if, for some K, embedded in K,, K| is subordinate to it. If
K, is subordinate to K, then K, is superordinate to K. A
DRS K is called proper when every reference marker u which
occurs in an atomic condition of K or a DRS K’ subordinate
to K is contained in the set of reference markers of K or K’
or some DRS subordinate to K and superordinate to K. 41
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The analysis of a discourse proceeds sentence by sentence.
First of all the principal DRS is generated, and all conditions
stemming from a sentence are embedded in it or in a DRS
subordinate to the principal DRS. How this is done is
defined by the DRS construction algorithm, which we
describe below after having given a formal description of the
syntax and semantics of DRSs.

o Syntax of DRSs

In his original paper {5], Kamp introduced a graphic
notation for DRSs in which every DRS is represented as a
rectangular box. The top part of the box contains an
optional list of reference markers, its universe U. The rest of
the box contains the conditions C of the DRS. As an
example consider the sentence Each accident is an event,
which is represented as in Figure 1.

The principal DRS contains just one condition, the
implicational condition used to represent every. Note that
the sentence If something is an accident, then it is an event
would have led to the same representation. (A few
intermediate steps would have been required, though, to get
rid of the copulas and the two pronouns.) While Kamp’s
notation is very well suited to display the logical structure of
a discourse to a human reader, it is not quite as easy to
manipulate in a machine. We have therefore developed the
following linear notation, which also includes additions to
the notation that were introduced in later papers by Kamp
and others [5, 12-15]. We use a Backus-Naur Form to
characterize the syntax of DRSs:

<drs> ;=

[ <reference-marker-list> : <conditions> ] |

[ <conditions> ] }

[ <reference-marker-list> ]
<reference-marker-list> ::=

<reference-marker> |

<reference-marker> , <reference-marker-list>
<reference-marker> ::=

<object-marker> |

<et-marker>
<object-marker> ;=

u<number>
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<et-marker> ::=
<event-marker> |
<time-interval-marker>
<event-marker> ;=
e<number>
<time-interval-marker> ;=
t<number> |
n
<conditions> ;=
<condition> |
<condition>.<conditions>
<condition> ::= <atomic-condition> |
<conditional-condition> |
<disjunctive-condition> |
<negative-condition> |
<event-condition>
<atomic-condition> ::=
<predicator> ( <argument-list>) |
<predicator> |
<term> = <term> |
<et-marker> C <et-marker> |
<et-marker> < <et-marker> |
<et-marker> o <et-marker>
<predicator> ::=
<identifier>
<argument-list> ;=
<term> |

<term> , <argument-list>
<term> .=

<reference-marker> |

<number> |

<functor> ( <argument-list> )
<functor> ::=

<identifier>
<conditional-condition> ::=

<drs> — <drs>
<disjunctive-condition> ::=

<drs> V <drs>
<negative-condition> ::=

— <drs>
<event-condition> ::=

<event-marker> ; <drs>

An identifier may be any string of characters and digits, a
number any string of digits.

The example given above in graphic notation now looks
like this:

[[e:accident(e)] — [event(e)]]

e Formal semantics of DRSs

Before we formally define the semantics for DRSs, let us first
discuss what is at stake here. The meaning of a DRS in the
real world (whatever that means) should be derivable from
the meaning of its atomic constituents. We thus have to start
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by assigning meanings to atomic DRSs. These meanings
should be unique. (It is one of the advantages of formal over
natural languages that we can achieve that.) A consequence
is that any atomic formula (without variables) is either true
or false in a given situation (we do not adopt the standpoint
of intuitionistic logic here). Moreover, the meanings of the
constituents of a DRS should determine the meaning of the
latter in a unique way.

We investigate the semantic properties of the language in
terms of constructed artificial models, as it is in general
impossible to specify the semantics in terms of properties of
the real world. (Certain similarities between DRT and
situation semantics [17] can easily be seen.) Clearly, these
models and the definition of meaning in them should have
as many properties of the real world as necessary. The usual
approach taken in mathematical logic restricts models to sets
of individuals, on which some relations and functions exist.
All these are given extensionally; i.e., for any pair (in case of
a binary relation) of individuals it is specified whether or not
the relation holds. (Possibly this question is recursively
undecidable.) This approach is well justified by
mathematical practice; e.g., for the set of natural numbers,
mathematicians try to find all true theorems. In other words,
extensional semantics mirrors the attempt of mathematicians
to know all properties of a certain relation, function, etc.

This is rather different from natural language discourse.
To process the sentence Pedro owns a donkey, human beings
need not know the entire extension of the relation own. It
may well be that, during the discourse, we learn more and
more of what own means. In order to model such processes
of learning by telling, we must be able to express partial
knowledge. We do that in such a way that we can still rely, if
necessary, on extensional mathematical semantics.

To define the semantics of DRSs, we proceed inductively,
as usual. For the sake of readability, the definition is split
into several parts. Let us start with that part which
corresponds to the language of classical first-order predicate
logic.

A literal is a DRS of the form « or —a where « is an
atomic condition. A ground literal is a literal without
reference markers. A set of ground literals is consistent if it
contains no complementary pair «, —a. A partial structure
is an ordered pair (4, L) where L is a consistent set of
ground literals and A a set of terms such that, for any term g
occurring in L, a € A. (We assume that we have a complete
denotation system for the set of individuals we have in
mind.)

Note: We need not specify the nonlogical symbols of the
language—they can be read off L. Moreover, we need not
require that 4 be functionally closed.

Letul, --.,un.a bea DRS,and g, - -+, a, a list of terms.
By o(ul/a, -- - unj/a,) we denote the result of substituting g,
for ui in a. Clearly, if the reference marker list is empty, i.c.,
n = 0, then « remains unchanged. Note that a(ul/a, - --
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un/a,) is of the same syntactic category as «. Furthermore,
note that a term « denoting an event is substituted for all
occurrences of an event marker so that they may only occur
in the form a.«.

Definition  Let S = (A4, L) be a partial structure. For any
syntactic construct « containing no free occurrences of
reference markers,* the truth value of « in S [in symbols:
vg(a)] is inductively defined as foliows:

e For any atomic condition «,
va)=trueifa € L,
vi(a) = false if —a € L,
else v (a) = undef.
e For any DRSs «, £,
vg(a V B) = orvg(a). v5(B)).
vg(—a) = not(vg(a)).
e For any condition « and any conditions 8, vg(a.8) =

and(v(a)viB)).
o For any reference markers 1, - - -, un and any conditions
« containing at most ul, - - -, un unbound,
vel[ul, - - -, un:al) = max {vg(a (ul/a, - - unfa,)) | a,,
.., a, € A}
e For any DRS of the form [u], - - -, un:a] (n = 0) and any
DRS 3,
vg ([ul, -+ -, un.a] — B) = min {seq(vge(ul/a, - --
unfa)), v(Bul/a, --- unfa)la, ---, a, € A}.
e The case « = emply, i.e., vg([ul, - - -, un] — B), is defined

appropriately.

Here we assume that the three truth values are ordered:
true < undef < false. For any truth values x, y let

or (x,)) = max {x,J},

and(x,y) = min {x,y},

not(true) = false, not(undef) = undef, not(false) = true,
seq(x,y) = or(not (x),y).

Note that we do not require that the predicators =, <, and C
have any special semantics. Instead, we assume that their
properties are specified by meaning rules or, possibly,
schemata for such rules as done in mathematical logic for
the equality =. For the case of a conditional condition, note
that the reference markers occurring in the list at the top of
the premise should be seen as universally quantified and,
furthermore, have their scope extended to the whole of the
conditional condition.

To handle event markers, we define an operation which
reduces DRSs with event markers to those without. Suppose
that we know for each predicator P in a DRS « whether it is
event-dependent or not. Furthermore, suppose that event
markers have to stand in the first argument position (if they

® We assume that the principal DRS has this property and formulate our definition in such a
way that it remains true for all induction steps. 43
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occur at all) in any atomic condition. For any term a and
any DRS «, we define the reduction a(/a) (we might also call
1t full parameterization) inductively.

If o is atomic with an event-independent predicator, then
of/a) = a.

If, for an event-dependent predicator P, « = P(b, ¢, ---, ¢,),
where b is an event term or a = P(c, - - -, ¢,), then
al/a) = P(a, c,, - --, C,).

The other cases are similar.

Definition (continued)
e For any event term ¢ and any DRS «,
vg(a:a) = vy(al/a)).

Other kinds of modifiers, such as the time-interval-
marker, are handied in the same way.

o Representation of concepts underlying natural language
expressions

When a body of knowledge is to be formalized, it has to be
determined first of all what the relevant concepts are and
what kinds of terms or predicates are suitable to represent
them. (This problem is hardly ever discussed in the literature
on knowledge representation, one exception being Woods
[2], who briefly mentions it.) When one deals with the
manifestation of such concepts in natural language
expressions, certain guidelines are furnished by the
conditions of occurrence of such linguistic expressions in
larger contexts. Thus one can achieve modular
formalizations where only those concepts particular to a
given domain are specifically defined for it, and all the more
general concepts are defined with the appropriate generality.
(This is probably achieved at the cost of some efficiency.)

The second step in the formalization is to establish the
relations holding among the concepts relevant for the given
domain. This is the most difficult part of the formalization
process. The statements used to express such relations we
call meaning rules. The argument brought up by some
proponents of knowledge representation languages that
meaning rules are inadequate and that they would lead to
horrible performance stems from a confusion of
representation and implementation. We want to clarify the
logical properties of our representation before we explore the
most sensible implementation.

In the following two sections, we discuss methods for
choosing predicates and then methods for finding meaning
rules. We argue that looking at how the world is
conceptualized in natural language helps in both of these
tasks.

Predicates and their arguments

Verbs, common nouns, and adjectives are often treated as
predicates. When it has to be decided how their respective
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complements are to be represented, as argument places or as
some kind of operators, it is hard to find agreement. We
restrict ourselves here to a few comments on each of the
categories mentioned, since it would be far beyond the scope
of this paper to list all the relevant criteria.

For predicates with more than one argument place, one
has to define how complements are mapped to argument
places. This is conveniently done by defining roles as, for
instance, in the USL system (cf. Zoeppritz [11]), in some
versions of semantic networks, and also in database theory.

Verbs The complements of verbs have been classified in a
number of different ways by different linguistic schools.
Often used are the traditional categories intransitive,
transitive, and di-transitive for English. The corresponding
verbs are then represented by 1-place, 2-place, and 3-place
predicates, respectively. This leaves open how verbs taking
prepositional objects are to be treated (provided it has been
determined which prepositional phrases play the role of
objects and which the role of adverbials). Valency theory has
brought some advance in this regard, and a few dictionaries
have been compiled (in particular, for German) that specify
the valencies of substantial sets of verbs. A disadvantage of
valency theory is, however, that the criteria used to establish
valencies are not made sufficiently explicit, with the result
that conflicting classifications are proposed.

A quite different approach to classifying verb
complements which builds upon Fillmore’s case grammar
has become very popular in the AI community and has led
to the introduction of case frames or templates. When deep
cases as suggested by Fillmore are used, two problems arise
and have to be solved in a systematic way: (1) the mapping
of deep to surface cases has to be defined for each verb, and
(2) criteria have to be defined that allow the classification of
verbs according to the deep cases they govern. Problem (1)
implies that the same kind of analysis has to be performed
which is necessary for valency theory.

Our own approach uses surface cases and prepositional
objects and is thus close to valency theory in some respects.
(A detailed description can be found in Zoeppritz [11].) We
are currently extending this classification to include
restrictions on adverbials which can modify a given verb. It
is part of our expert systems project to classify the verbs in
the most common 20 000 words found in juridical texts.

From a semantic point of view it is quite important to
classify verbs as static verbs and event verbs. This is
necessary to determine when a new sentence advances the
point of reference in a discourse. Compare

el: the car ran off the road.
e2: it hit a lamp post.

and

e2’: it was fast.
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While e2 advances the discourse, €2’ does not. So we could
stipulate conditions el < e2 (el before e2) and el o0 €2’ (el
overlaps e2’), respectively.

Common nouns  The logical form of common nouns is
even less agreed upon than that of verbs. Since nouns often
occur by themselves (i.e., without a complement), it is
tempting to represent them as unary predicates. Where
genitive attributes—which are virtually always possible—are
encountered, a functional representation is often suggested.
This leads to multiple representations for each noun, which
we believe is inadequate. In our opinion there is nothing
wrong with supplying nouns with valencies similar to verbs
(as has been sometimes suggested). This leads to the
definition of predicates whose degree corresponds to the
valency found for the noun. If certain arguments are not
specified in a given sentence, we think it best to produce the
desired form by A-abstraction. (We have not yet included A-
abstraction in the formal description of DRT given above,
but the extension is straightforward.)

Genitive attributes express a variety of different relations,
not all of which should in fact be represented as argument
places of the predicate denoted by the governing noun. Thus
owner of a car is represented as owner(x,y).car(y) (one might
even reduce the noun owner to the verb own if desired), but
wheel of a car is represented as wheel(x).car(y).part(x,y)
based on a rule schema

[genatt(wheel(x), car(y))] — [wheel(x).car(x).part(x, y)]

where genatt signifies the relationship expressed by the
genitive attribute. It is a matter of vocabulary definition to
characterize nouns such as owner and part as relational,
whereas for other nouns meaning rules have to be defined,
such as the one given above. (More on relations expressed by
genitive attributes can be found in Wirth [18].)

Adjectives Kamp briefly discusses the semantics of
adjectives in [14]. Intersecting adjectives can be treated as
unary predicates, as long as they do not take complements.
Adjectives such as dependent on, relative to, eager to, easy to
that do take complements have to be treated in much the
same fashion as verbs and nouns. Nonintersecting adjectives
can for practical purposes be represented by compound
predicates, e.g., for alleged damage one would introduce
alleged-damage. Such a treatment is not completely general,
as can be seen from the example: Not just anything can be
alleged to be damage, but probably only results of events
(i.e., the genus proximum of damage), such that one could
define alleged damage as the result of an event which has
been alleged to be damage. Thus the rule schema for alleged
N would be the genus proximum(N) which has been alleged
to be N. If such rule schemata could be found for all
nonintersecting adjectives, then the representation of
adjectives as functions on nouns as suggested by Montague
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could be used: The functions would essentially be the rule
schemata sketched here.

Meaning rules

What we discuss here as meaning rules makes up the content
of semantic nets, frames, conceptual graphs, and similar
schemes for representing knowledge (including thesauri as
they are used in information retrieval). There are few
relations among concepts that account for the bulk of the
information contained in actually worked-out knowledge
bases. These are

1. Generalization (the famous IS-A of semantic networks
and the BT/NT of thesauri).

2. Type restrictions (or selection restrictions) on
complements.

3. Part/whole.

(For a discussion of IS-A, cf. Brachman [19]; for the
generality relation itself, cf. Woods [2].) These are in fact the
relations that are most needed to disambiguate sentences and
to resolve contextual references; hence it is justified to use
specialized representations and algorithms for them (as, e.g.,
proposed by Schubert, Papalaskaris, and Taugher [20]).
These relations, as important as they may be for the
processing of language, actually represent very little of the
knowledge in a given domain. To find out whether someone
has violated a paragraph of the law, one needs a formal
representation of that paragraph, and then one can check
whether what he or she has done can be subsumed under it.
Such formal representations we want to call meaning rules as
well, realizing that we might end up calling every universally
quantified statement a meaning rule.

The meaning rules we discussed first are very numerous,
and it is an interesting question whether they can be
somehow automatically or at least semi-automatically
derived. Wirth [18] proposed a procedure for the semi-
automatic extension of a thesaurus already containing the
three relations mentioned above for part of the vocabulary.
His program analyzes sentences where for some concepts at
Ieast one of these relations is known, and he makes a
proposal to the user, which in most instances is sensible and
which the user can accept or reject. To make this procedure
fully automatic would imply that new relations are
inductively derived, but this might be feasible, provided one
could find an appropriate verification scheme for inductively
derived relations.

The second, logically more complex, type of meaning
rules appears in many different forms, only some of which
are linguistic—most of our knowledge on space, time,
events, and actions is never verbalized. When such
knowledge is verbalized, however, it takes the form of
definitions, theorems, statutes, etc. The problem we raised in
the introduction, of the expert imparting his knowledge to a
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system in the form of a natural language discourse, is the
problem of generating meaning rules through systematic
translation of linguistic expressions. We have coded legal
knowledge in the form of Discourse Representation
Structures, so we know it can be done, but we realize that
there are still many problems in the systematic translation,
in the proper axiomatization of general knowledge which is
prerequisite to understanding domain-specific rules, and in
specialized deductive strategies. It is the objective of the
research in which we are presently engaged to contribute to a
better understanding of these issues.

% DRS construction algorithm
It is the task of the DRS construction algorithm to build a
DRS from a given discourse D = <s, - - - 5,>, where the s,
are the sentences of a natural language discourse. It is not
the objective of this paper to spell out all the details
(different versions of the algorithm are found in Kamp [5,
12, 14]). We are relatively informal in the description, as in
the present context it is mainly important to show that the
relationship between natural language expressions and DRSs
is indeed systematic.

The DRS construction algorithm includes

1. Syntax analysis of sentences.

2. Rules to translate expressions into reference markers and
conditions.

3. Rules to establish contextual references.

To perform syntactic analysis, several approaches have been
tried in connection with DRT:

¢ The User Specialty Languages (USL) System (Lehmann
[8, 10], Zoeppritz [11]) uses a parser for general Phrase
Structure Grammars. (The parsing system itself is called
User Language Generator (ULG) and is described in [21].)
The parse trees it generates are translated into so-called
Intermediate Structures [similar to F-structures in Lexical
Functional Grammar (LFG)]. A program [22] was written
to generate DRSs from Intermediate Structures covering
the fragment described in Kamp [5].

o Frey and Reyle [23] use Lexical Functional Grammar to
analyze a fragment of French and translate the resulting F-
structures into DRSs.

o Karttunen uses Unification Grammar (Kay [24]) to
generate DRSs from so-called functional structures (again
similar to the F-structures of LFG).

Rules for generating reference markers and conditions

Our DRS construction rules differ somewhat from the ones
given by Kamp in [5] and [14] in that Kamp assumes a
parallel operation of syntax analysis and application of DRS
construction rules, whereas we assume that USL
Intermediate Structures have been generated before DRS
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construction rules are applied. Our approach has the
advantage that (1) the complexity of syntactic structures is
reduced; e.g., passive is eliminated before DRSs are
generated, (2) scope problems of negation, quantifiers, and
coordination can be dealt with more easily, and (3) forward
(kataphoric) references and references involving deductive
processes can be resolved in a more straightforward manner.
Syntax analysis and generation of Intermediate Structures
has been described in Ott and Zoeppritz [9] and in
Guenthner and Lehmann {22] for the fragment of Kamp {5}
and are not repeated here, although the present fragment is
more extended. A few words on Intermediate Structures are
necessary, however, to understand how our DRS
construction rules operate. An Intermediate Structure is a
tree consisting of different types of nodes:

RELATION nodes (R-nodes) consisting of a predicator and
a list of ARGUMENT nodes.

ARGUMENT nodes (A-nodes) consisting of a role name
and a node of type NOMSTR or VERBSTR.

NOMSTR nodes, which list features of nouns (including
quantification and negation) and an R-node or a constant.

VERBSTR nodes, which list features of verbs (including
verb negation) and an R-node.

Intermediate Structures can be built up recursively, and they
are also recursively processed to generate DRSs. The
Intermediate Structure of the sentence every accident is an
event thus looks like

V(
R(is,
(A(NOM,N(every,R(accident,nil))),
A(NOM,N(a,R(event,nil))}))))

where NOM is the role name indicating nominative.
Processing always starts with the verb at the top node, but to
actually write down the condition expressed by the verb, all
its arguments must have been processed, so the construction
algorithm goes to the next level of recursion at the next R-
node, which in the example would be accident. accident is
universally quantified, which will cause introduction of a
complex condition in the principal DRS (which we assume
to have been empty):

[lel:accident(el)} — [¥]],

where v has to be replaced by the conditions generated by
the verb is and its second argument. The indefinite NP an
event leads to the introduction of a new reference marker e2
in the consequent DRS and the condition event(e2). The
processing of is picks up the reference markers introduced
by its arguments and produces the equation e/ = e2, so we
get

[[el.accident(el)] — [e2:event(e2).el = e2]].
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1t is the matter of a further processing step which we do not
regard as part of DRS construction proper to replace 2 by
el and eliminate the now redundant equation e/ = el.

Individuals, proper names, definite and indefinite
descriptions In [5] Kamp treated proper names as
individual constants. The occurrence of a proper name in a
discourse would introduce a new reference marker in the
principal DRS and generate an equation of the form

<represention of proper name> = <reference marker>

in the principal DRS. This approach was felt to be
inadequate, as the same proper name may be used to refer to
different individuals. Now proper names are represented by
unary predicates [“the person named Peter” or Peter(u,)],
where u, is anchored to some element a € 4 via an equation
u; = a. The unary predicate is always added to the principal
DRS.

Common noun phrases are treated in the present fragment
only if they are singular and used nongenerically. For each
common noun phrase, a new reference marker v, is inserted
into the reference marker list of the current DRS, and a
predicate P representing the governing noun in the NP is
appended to the list of conditions in the current DRS. If P is
unary, then ¥, is inserted in the argument place of P.
Otherwise 1, is inserted at the argument place representing
the domain of P, and the remaining argument places have to
be filled after the (then existing) noun complements have
been processed. When the noun phrase is indefinite and no
further complements remain to be processed, this is all that
has to be done.

Definite singular NPs can be used in a number of different
ways. We single out two of these uses: the anaphoric and the
unique reference use. Our strategy is to always assume that
the definite NP is used anaphorically and generate an
equation of the form u, = x, where x is the reference marker
of the antecedent NP. It is the task of that part of the
construction algorithm which applies rules of contextual
reference to substitute for x the actual reference marker u; of
the antecedent NP. To find a proper referent is in principle a
deductive process (which may be short-circuited in many
instances). If an appropriate antecedent for u, cannot be
found in the discourse, the unique reference use of the
definite NP is assumed, and the equation u, = x is
eliminated.

Relative clauses  The intermediate structure of a relative
clause has the form
V(
R(verb,
A(role, relative pronoun),
Sfurther arguments))

The reference marker used for the relative pronoun is
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identical to the one introduced for the domain of the
governing noun. The verb and all its other arguments are
processed as usual.

Verbs A verb v introduces in the current DRS an event
condition of the form

e vy, u,)]

together with condition(s) representing the tense
information, e.g., ¢, < n (where n is a distinguished marker
indicating now) when the verb was in past tense.

Every A noun phrase of the form every N introduces a
complex condition K; — K, with a new reference marker ,
in K, and the condition(s) generated by N. K, contains the
remaining conditions generated by the R-node dominating
N.

Conditional clauses  The Intermediate Structure for a
conditional clause has the general form

V(
R(COND,
A(IF ,antecedent),
A(THEN,consequent)))

Processing of a conditional clause introduces a complex
condition of the form

lantecedent] — [consequent]

in the current DRS, where antecedent and consequent stand
for clauses which are processed in the usual way.

Contextual relations

One of the main motivations for Discourse Representation
Theory was the aim to provide a better treatment for
contextual relations, above all pronominal reference and
reference through definite noun phrases. The theory says
that reference within a sentence and between different
sentences should be treated in a uniform way, which
distinguishes it from most previous attempts at
pronominalization. The reference of pronouns is governed
by five types of criteria:

. Morphological: gender and number.

. Syntactic: e.g., disjoint reference.

. Configurational: accessibility of reference markers.
. Semantic: e.g., type restrictions.

. Pragmatic: e.g., topic, mutual knowledge.

I P S

These criteria have been discussed in some detail in
Guenthner and Lehmann [25] (cf. also the references given
there for further work on pronominalization). We do not
repeat these criteria here in detail, but we discuss the
configurational criterion described by DRT.
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t  Tableau T(al V a2).
¢

Before we define the accessibility relation, let us consider a
few examples:

John hit every car. It was green.

There is no way that if could refer to car. Note that in the
corresponding DRS the reference marker for car is more
deeply imbedded than that for i,

[l u3.el:John(ul).[u2.car(u2) 1 — [el [hiKul,u2)]]
green(u3)]

and this would be the only morphologically acceptable
referent. Another example along these lines is

The accident was not observed by anyone. His car was
parked.

Again, there is no way the pronoun his could refer to anyone
whose reference marker is introduced in a more deeply
embedded DRS than the reference marker for Ais:

lel, u2, ul:accident(el).
—[ul:observe(ul, el)].
genatt(car(u2),person(u3)).parked(u2)]

When we now define that a reference marker u is
accessible for a reference marker v iff both « and v belong to
the universe of the same DRS or u belongs to the universe of
a DRS which is superordinate to the DRS to whose universe
v belongs, we get the desired effect for the examples given,
i.e., the reference markers for car and for anyone become
inaccessible.

The morphological and syntactic criteria require that some
information be held available that comes from syntax
analysis. This is gender, number, and the relative position of
an NP in a syntax tree. The last is the most complicated of
all and is needed to deal with disjoint reference, i.e.,
sentences such as

John hit him.
He hit John’s car.

In both examples there is no way in which the pronoun
could refer to John. We keep this information along with the
list of reference markers.
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Deductive theory

Suppose that we have a knowledge base T consisting of a
collection of DRSs and a goal « and we want to know
whether « logically follows from I'. We do not present here a
proof system by formalizing this notion of consequence
literally. This means that we do not develop a Hilbert-style
deductive theory. Instead, we take the tableau approach [26]
since it fulfills the needs of computer implementation in a
much better way. The central idea is that we should
formalize not consequence but construction of
counterexamples. The main advantage is that completeness
comes in very naturally: The logical rules can be seen as a
means to construct counterexamples. And this is essential
for proof search procedures implemented on a machine. We
pose a question to the computer since we ourselves do not
know the answer. The computer can indicate the answer no
(which is at least as probable as yes) only by giving some
hints on counterexamples. This is the reason why we believe
that deduction mechanisms based on resolution calculus [27]
are not appropriate for processing knowledge.

To be more precise, we say “«o follows from I'” (in
symbols: I' = «) if for any partial structure S such that v((T")
= (rue (where vg(I') = min {vg(y) | v € T'}) and vg(a) is
defined, we have vg(a) = true. Consequently, I' = « does not
hold if there is a partial structure S such that v(T") = frue
and vg(a) = false. The latter is equivalent to
v¢(T' U {—a}) = true or, in yet another terminology, to S is
a model of T U {—a}. The idea of rableau calculus is to
systematically construct models for I' U {—e«f in such a way
that, if there is none, this shows up after finitely many steps.
Correctness means that if we conclude within the calculus
that there is no model, then there is indeed none.
Completeness, on the other hand, is just the reverse
implication; i.e., if we cannot conclude that there is no
model, then there is indeed one.

Completeness is proved in the following way. We define a
procedure which performs in some systematic way all
possible applications of rules for generating a model. Then
we inspect its behavior. If all possibilities (cases) lead to a
contradiction, then it stops and outputs “There is no model.”
The trace of all steps done so far is a formal proof for the
inconsistency of I' U {—aj}. If it does not stop with this
result, then there may be two cases:

1. It stops since no rule is applicable, but some case is not
contradictory.
2. It runs on infinitely.

It remains to prove that, in both cases, a model is generated.
Clearly, (2) results in an infinite model whereas, in case (1),
all models are finite. We would like to stress the fact that this
model generation capability is that property of a deductive
theory which is of highest importance in computer
applications.
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e Propositional DRSs

Let us start with the case where there are no reference
markers in the DRSs. This corresponds just to propositional
logic. For the sake of simplicity, we furthermore assume that
all DRSs are given in negation normal form, i.e., are
composed only by the logical connectives ., V, — and
contain — only immediately before atomic DRSs. To
achieve this we have to apply de Morgan'’s rules. In the
general case we have to build just these rules into our
deduction mechanism, which is rather easy.

Let « be such a DRS. As explained above, we have to
specify a procedure which finds out whether there are partial
structures S such that vg(a) = true.

The central idea is to read the definition of semantics
backwards. For example, in order to make vg(a.8) = true, we
have to make vg(a) = true and v((8) = true. These two
subtasks can be pursued one after another (if not in parallel).
On the other hand, to satisfy o V 8 we have the choice of
satisfying « or . A tree-like organization of the resulting
cases (and sub-- . .-sub-cases if Vs are nested) is convenient.

Our definition below is slightly different from Smullyan’s:
We insert into the tableau only the final formulas, i.e.,
atomic or negated atomic formulas. No intermediate results
are stored; they may be seen as “pushed onto a stack.”
Smullyan, probably not knowing the stack mechanism,
keeps all subformulas arising from any rule application in
the tableau. This has the advantage that the tableau contains
a full trace of the search process. On the other hand, the final
results, 1.e., the counterexamples, cannot be read off easily.

Definition For any DRS g, the tableau for a [symbol T{«)]
is a tree the nodes of which are labeled by ground literals, by
contr (for contradiction), or by the connector V. Branching
nodes are labeled by V, whereas contr labels leaves ending
inconsistent branches as soon as this inconsistency arises.
[This means that a contr-leaf occurs exactly as (the single)
son of the second item of a complementary pair of literals
contained in some branch.] 7{«) is inductively defined as
follows:

e For any atomic condition or negated atomic condition «,
T{(«a) is the one-element tree the node of which is labeled
by a.

¢ For any condition «/ and any conditions a2, T{al V «a2)
is the tree composed of T{al) and T(«2), joined by a new
node labeled by V. (See Figure 2.)

e For any DRSs «/ and o2, T(al.a2) is constructed in the
following way: In T(al), append to each leaf not labeled
by contr a copy of T{«2), as in Figure 3.

T(«) is a proof for the unsatisfiability of a DRS « if all its
branches are closed by contr.

For example, consider the DRS o = ([—[r]l.—[s]] V [s]) .
([r.—=[s]] V [—lrl.s]) . —[r]. Its tableau is shown in Figure 4.
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Note that it is no proof. From its rightmost branch, we may
read the partial structure S = {s, —r}. We have vg(a) = true.
The process of generating a tableau can be better
understood by looking at a DRS as a logic diagram: We
connect atomic and negated atomic conditions by edges in
such a way that those conditions are connected paths which
must be simultaneously satisfied. Then we have to find a
thread of truth along which we can go and make all
occurring conditions true in order to satisfy the whole DRS.
(Compare this with the well-known flow diagram
representation of programs: Execution of a program can be
visualized by pursuing a thread of control through the flow
diagram.) The logic diagram for the DRS given above is
shown in Figure 5. It is not difficult to make this notion
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Logic diagram of the DRS in Fig. 4.

ST

Preferred ordering tor I

precise, but we do not work it out. It seems that it is an
interesting alternative to the usual and-or graphs since it
makes the difference between “and” and “or” visible. Logic
diagrams were introduced, in a slightly different way, in [28]
but seem to have been known to logicians for a much longer
time.
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Let us recall the main property of logic diagrams: A
(propositional) DRS is satisfiable iff its logic diagram
contains at least one consistent path from top to bottom. If,
when going along a path, we arrive at a branching node,
then the two beginning subpaths correspond to sub-DRSs
connected by a V. We can choose one of them to be made
true. On the other hand, if a subpath is concatenated to
another one, then the corresponding sub-DRSs are
connected by a period. We have no choice and have to
satisfy both. Now note that, for any DRS, its tableau is just
the unfolding of its logic diagram, with inconsistent branches
cut off as soon as the inconsistency arises. Hence, checking
whether there is a consistent path through a DRS can be
done by checking whether there is a consistent branch in its
tableau. Altogether, this means that tableau calculus (for
propositional DRSs) is correct and complete.

We now consider the case of a set of propositional DRSs.
For example, the DRS given above can be split into the set T’
consisting of the DRSs

[—[r]—[s11 V [s),
[r.—IsT1 V [[r].s],
—{r].

Clearly, the tableau for the set T may be defined as the
tableau of a conjunction of all its elements (e.g., the original
DRS of this example). But this is not a good choice: When
humans perform deductions, they carefully choose the order
in which single parts of their knowledge are applied. This
reduces complexity. So, for the above example, a much
better ordering of T exists, as shown in Figure 6. Note that
this tableau is significantly smaller than the original one.

Let us sketch how to proceed in the general case of a set T’
of DRSs. We start by choosing a v € T and generate its
tableau (in case we check I' U {—a}, we clearly choose —a).
Now suppose that the tableau for I' has been generated to a
certain extent. Choose a branch B which is (so far) consistent
and a ¥ € T such that no literal on B stems from .
Generate its tableau and append it to B. Then check the
resulting branches for consistency.

The conditions for choosing the next formula guarantee
that each DRS is treated exactly once on each consistent
branch. This has two consequences: First, no loops can arise.
Second, the partial structure determined by a consistent
branch satisfies all ¥ € T and, hence, is a model of T'. This
means completeness of tableau calculus for sets of DRSs.
How to formulate good strategies to generate small tableaux
cannot be described here. But it is one of the central
problems of knowledge processing.

o Arbitrary DRSS

Suppose now that a set " of arbitrary DRSs is given. We
reduce this to the propositional case. Note that there are two
kinds of reference markers: those which are interpreted as
existentially quantified (the normal case) and those which
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are universally quantified (since they occur in the antecedent
of a conditional).

Let us start with the first case, i.e., suppose that a DRS
[ul, - - -, un:a] chosen from I' has to be analyzed. For each /
=1, --., nand each occurrence of ui in «, substitute a new
individual constant, say a,. Then go on as in the
propositional case.

Now suppose that we have a DRS [ul, - - -, un:a} — 8.
Recall that the ui must be interpreted universally. Hence,
any term occurring in the tableau constructed so far has to
be substituted. More precisely, let a,, - - -, a, be any
sequence of terms with the following properties:

e Each g, occurs somewhere in the tableau constructed so
far.

® g, ---, a, was not yet substituted in o — g for ul,
un.
Then, fori =1, .-, n, substitute a, for all occurrences of u/

in a and 3. Then go on for « — 8 as in the propositional
case.

In both cases, if the resulting DRS is not propositional,
then the above process has to be iterated. Note that
substituting all occurring terms for all occurrences (level
saturation) is very inefficient. There are better strategies, as
shown by Bowen [29] for the sequent calculus (which is
quite close to tableau calculus). His central idea is to
perform only those substitutions which result in at least one
complementary pair of literals. Additionally, recall that, even
in the pure propositional case, the order in which we choose
the next DRS affects the amount of search space.

For illustration, let us give an example (taken from [30]).
LetI'={vy,|i=1,2,3,4}, goal v, and v, = VxPx, v, =
VzoA—PzV (QzV R2)), v, =Vy(—=QyV Sy, v,=—(Ra V
Sfa). See Figure 7.

In this tableau, we have indicated the origin of any literal.
Furthermore, we have eliminated V-nodes to make the
diagram more readable. Note that it is no proof; a model of
T is given by the branch with leaf Sa.

To sum up, there are two kinds of choices which have to
be performed carefully:

o Which DRS v € T'is to be handled next?
¢ If the chosen « is universal, which substitution is to be
performed next?

As we have stated previously, it is one of the central
problems of knowledge processing to find good strategies to
make the choices. This will influence efficiency much more
than using other rule sets or even other knowledge
representation languages. The question of tractability is a
matter of expressiveness, and not of the particular description
language [7).
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Extensions to the basic theory

One of the novel features of DRT is the uniform
representation of old and new knowledge; in fact, the entire
process of changing a knowledge base, i.c., of informing, can
be regarded as consisting in the incorporation of new

conditions into an already existing DRS.

o General treatment of information and linguistic meaning
In Discourse Representation Theory we speak of the
incorporation of the DRS of a discourse into an already
established DRS. This process can also be regarded as the
extension of an existing DRS. From a model-theoretic point
of view, what this means is that the class of models of the
latter is narrowed down to a smaller class as a result of the
new information brought in by the discourse. More
generally, however, we may speak of the “linguistic
meaning” of a sentence or discourse as a function on the
DRSs which it induces. In particular, the meaning of a DRS
is a function which maps DRSs into DRSs. (Various
properties of such functions are spelled out in detail in [31].)
And from this function we may reconstruct in a systematic
way the derivative notions of truth in a model and
proposition. This is to be contrasted to the way one attempts
to deal with these notions in standard model-theoretic
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semantics, where one starts from extensions in models (or
possible worlds) and then goes on to reconstruct intensions
in terms of these. In DRT we start with linguistic meaning (a
level which allows much finer distinctions between meanings
than intensions) and reconstruct intensional semantic values
as well as extensions from it. Thus it may very well turn out
that, for instance, logically equivalent sentences (i.e.,
intension-equivalent sentences) do not have the same
“linguistic meaning.” Consider, for instance, this example
(due to Barbara Partee):

One of the ten balls is not in the bag. It is under the table.
Nine of the ten balls are in the bag. It is under the table.

As this example makes clear, logically equivalent sentences
may behave very differently in discourse, i.e., establish
different DRSs, and should thus be considered as having
different linguistic meanings.

We speak of extending a given DRS with the DRS of a
given discourse. This concept gives rise to a rather novel
distinction between two kinds of semantic relations
(discussed below). But in addition to the notion of extending
a DRS with new conditions, we should also allow a further
way of operating on a DRS. Whenever a given DRS is
extended on the basis of new incoming information, another
process typically takes place, namely, a completion of the
new DRS. This completion in general involves certain
concepts associated (sometimes only in a loose way) with the
properties introduced into the DRS. It is here that a number
of well-known problems involving stereotypes (cf. Dahlgren
[32]) and the default assumptions should be dealt with. We
do not deal with these issues in detail here; it is sufficient to
point out that this notion of a completion needs to be
distinguished from the more “logical” process of building up
a DRS from natural language input.

o Treatment of ambiguity and presupposition

From a linguistic point of view the analysis of how DRSs are
constructed in a systematic way from natural language input
has always faced the problem of how to deal with the
ambiguity as well as the presuppositions of natural language
utterances. In the past little clarity has been shed on these
issues, and in fact these concepts have often been confused
with a variety of other notions (ambiguity, for example, with
the concept of vagueness, etc.).

Within DRT we are able to distinguish two kinds of
semantic relations in a systematic manner: Let us consider
an arbitrary DRS K. On the one hand we can characterize
the relations between K and the class of its intended models,
i.e., the models that represent the situations the discourse
from which K results or “talks about.” Let us call these
relations truth relations. Given K we can, for example, ask
whether K is true in a particular model M, or we can ask
whether K has a model, i.e., whether or not K is consistent.
Or we can ask sow (for instance, relative to which criterion
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of the application of predicates) we can determine whether
M is a model of K (it is here that issues of vagueness are to
be resolved). Notice that such problems have nothing
whatsoever to do with questions of ambiguity or
presupposition.

But given a DRS K we can also consider relations of a
quite different kind. The most interesting question here is
the determination of the possible extensions of K given a
discourse D. The semantic relations we want to define here
concern the background DRS K and the incorporation of the
DRS K’ of the discourse to be processed in the context K.
There are many semantic properties of natural languages
which should be regarded as pertaining to relations of this
type, which we call discourse relations. Two of the most
well-known relations that belong here are ambiguity and
presupposition. We say that a sentence S is ambiguous if
there is a DRS K such that the DRS K{(S) associated with S
can be incorporated into K in at least two different ways. For
instance, let K be the empty DRS; then it is clear that a
sentence like

John saw Mary with the telescope.

will give rise to two distinct extensions of K. But in ordinary
discourse the background DRS into which the content of a
sentence is to be incorporated is, of course, never empty. In
fact, it is the presence of the background DRS which governs
our choice of words so that ambiguities of the above kind
never arise in a problematic way.

In order for a sentence like the above to remain
systematically ambiguous, the hearer should be acquainted
with but the barest information concerning the individuals
involved and also concerning the communicative intention
underlying the utterance of the sentence. This is indeed quite
uncommon. On the contrary, whenever such utterances
occur, the DRS into which their content is to be
incorporated contains quite a lot of information which will
force the disambiguation right away. For example, the use of
the definite article requires an appropriate linking between
the discourse referent associated with the telescope and a
discourse referent in the background DRS. In most cases the
latter will be related to either one of John and Mary, and
this will resolve the ambiguity in the resulting representation.
The sentence itself—given the informal definition above—
remains ambiguous. How such ambiguities are
systematically resolved is in general a quite complicated
matter, for not all cases are structurally as simple as the case
of the modification in the example above.

The case of presupposition also concerns a similar
question: namely, the question into which DRSs X a given
DRS K’ can be incorporated. Informally, we say that with
each DRS K we associate a set K of presupposed DRSs, those
which K can in principle extend. In many cases (though
certainly not always) it is possible to characterize this set via
sentences in the language, and we can therefore speak of the
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presupposition of a sentence as being another sentence.
Among the many interesting consequences of regarding
presupposition as a relation between DRSs, we mention only
the fact that (i) on this account presupposition is not
primarily defined in terms of ¢ruth (as is done in just about
every other account), and (ii) many problematic cases having
to do with the “projection” of presuppositions can be dealt
with in a straightforward way once we look into a
presupposition in the manner discussed here.

e Contextual reference and complex anaphora

The fact that in DRT the meaning of a sentence (or
discourse) is taken to be a function which maps DRSs into
DRSs (and that DRSs are systematically constructed from
sentences together with the current background DRS) allows
a sophisticated treatment of various phenomena of
contextual reference and anaphora. In particular, personal
and temporal anaphora can be dealt with a novel way. In a
similar vein certain types of contextual reference can now be
accommodated in a uniform way, given the fact that we
have a representation of the linguistic context as well as of
the more general situational context in which utterances
occur. So, for instance, the treatment of anaphoric uses of
the definite articles boils down to being able to link the
discourse referent introduced for the definite noun phrase
with another discourse referent from which it follows (in the
logical sense) that it has the property expressed by the noun
phrase. Since this linking takes place within the DRS and
not within the world, we can have uniqueness in the former
whereas, of course, no such uniqueness will in general obtain
in the world. The notion of presupposition in the sense
hinted at above will also play an important role here; for the
use of the definite article will be characterized in terms of the
extension of DRSs which satisfy the presupposition of the
definite phrases.

o Plural

It is clear that DRSs can be many-sorted; in addition to
“temporal” individuals (e.g., times, events, intervals, etc.) we
can also—much as in the case of higher-order logic—
introduce reference markers that are sezs. In this way a very
natural treatment of various kinds of plural expressions can
be formulated both at the level of the DRS construction
algonthm and at the level of the DRS semantics. For
instance, simple plural phrases like John and Mary would
introduce a set discourse reference marker X with the
conditions that John and Mary are elements of X.
Depending then on the verb phrase following the NP John
and Mary, the property predicated of X will either hold for X
or for the members of X. A similar account can be given for
generalized quantifiers like most girls; an account along these
lines would allow a very straightforward explanation of why
most plural noun phrases allow anaphoric chains (e.g., Most
girls arrived late. They . . .), whereas related singular noun
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phrases do not (e.g., every girl arrived late. *She . . .). Thus
both syntactic and semantic properties of plural expressions
can be dealt with in a fruitful manner in the DRS
framework. In particular, it seems likely that similar
restrictions about the nature of the set discourse referent
markers as in so-called “weak second-order logic” (where
quantification over only finite sets is allowed) can be made
here as well. This would constitute a reasonable way of
extending first-order logic to deal with set-denoting
expressions.

o Vagueness and nonmonotonic inferences

In many ways DRT can be considered a more adequate
alternative than standard formulations of first-order logic for
the representation of linguistically expressed knowledge. It is
closer to the form of natural language discourse and allows a
more transparent representational format than standard
logic. In addition, it is provided with both a precise
semantics and deductive theory, which makes it a more
attractive candidate than most other systems of knowledge
representation. But, as in standard logic, quite a few
problems remain which do not have an automatic solution
in DRT either and which are of importance for any attempts
to use such a system in a computational setting. Among
these problems are the many forms of vagueness and
nonmonotonic inferences.

As we said earlier, vagueness concerns the way a
representation can be related to the world, i.e., under which
conditions predicates may be said to hold for individuals. At
the very simple level of adjectives and adverbs, we already
run into such problems continually. It comes as no surprise,
therefore, that even within model-theoretic semantics (e.g.,
of the relational database form) no really convincing
proposals for representation and truth have been devised, let
alone implemented. There are some quite sophisticated
proposals in the literature, but they do not lend themselves
easily to implementation. Something quite similar could be
said of nonmonotonic inference. There are several ways of
pursuing issues having to do with nonmonotonic reasoning.
We feel that one of the most fruitful approaches is via the
notion of “partial information” and various kinds of
completions of partial information. DRT, in a sense, has a
built-in concept of “partial information,” as every DRS is in
a sense a partial specification of the way the world is. There
is both an underlying logic for this notion of a partial model
(which is nevertheless essentially classical logic) and a
number of possibilities of how to formulate types of
reasonings in such a setting. We hope to concentrate on
these matters in our future research.

Conclusions

In this paper we have presented a theory for representing

knowledge mediated through natural language. This theory

has on the one hand a firm basis in logic, and on the other 53
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hand it provides for a systematic translation of natural
language discourse to logical form. While the fragment of
natural language which has been formally described in the
theory is still rather limited, we are able to handle with it a
variety of phenomena which have puzzled theoretical
linguists, logicians, and philosophers of language for a long
time. A number of extensions have been worked on that
could not be fully discussed in the framework of this paper,
but they strengthen our belief in the theoretical fruitfulness
of Discourse Representation Theory. At the same time, we
as well as other groups are working on computer
implementations which also look quite promising. But it will
have to be left to some other occasion to discuss these
implementations in detail.

Quite a number of problems still wait for an adequate
solution, and we mention three areas here:

1. Problems of adequate semantic representation of
phenomena, such as causality, ability, etc.

2. Problems of discourse pragmatics, on which depend the
proper treatment of contextual references, appropriate
system reactions in a dialog with a user, and probably
other things which in conventional computer applications
are addressed under the label of user friendliness.

3. Problems of deductive strategies, which have often been
addressed in the Artificial Intelligence literature, but in
our view still need much further investigation.

We hope to be able to extend Discourse Representation
Theory to deal with many of these problems, at least to the
extent required for the expert system project we are engaged
in. Discourse Representation Theory in our view provides a
very good basis for attacking problems in discourse
pragmatics and also for some of the issues in deductive
strategies.
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Appendix: An example

To show how the analysis and representation of a discourse
can be done, we present here an extended example from our
application domain, the German traffic law. The example is
the description of an accident, where the accused, T, violated
his duty to wait for a “sufficiently long” period for someone
to record T’s identity:

T ran off the road and hit a lamp post.

Damage of S00 DM resulted.

The accident occurred at midnight.

It was not observed by anyone.

T waited for 20 minutes.

He left the scene of accident, and he left his car behind.

For the first sentence of this text we show a parse tree in
Figure 8 as it is produced by the USL system. The category
labels used are SC for clause, VC for verb complex, NP for
noun phrase, PP for prepositional phrase, N for noun, V for
verb, Prep for preposition, Qu for quantifier or determiner,
and Conj for conjunction. We have omitted all syntactic
features used to control the application of rules (cf.
Zoeppritz [11] for more detail on the syntax).

Each node of the parse tree is associated with the name of
an interpretation routine. After parsing, these routines are
executed to produce the Intermediate Structure
corresponding to the sentence:

V(
R(nil,
A(NOM,N(nil,T),
K(and,
V(
R(run off the road,nil))
V(
Ri(hit,
A(ACC,N(a,R(lamp post,nil))))))))

We use a dummy verb at the top of the Intermediate
Structure to be able to distinguish the common subject from
other arguments that individually belong to the conjoined
verbs. run off the road is treated as a phrasal verb (this is not
discovered during parsing but while constructing the
Intermediate Structure).

From the Intermediate Structures the following DRS is
built up (references not yet resolved):

[ ul, u2, u3, ud, us, u7, us, u9, ull, ull,
el, e2, €3, ed, e5, eb, e7, €8, €9, t1, 12:
T(ul).
el: [ run off the road(ul) ].
lamp post(u2).
e2: [ hit(ul, u2) }.
el <n.
e2 <n.
el <e2.
damage(u3, u4).
u4 = 500 DM
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e3: result(u3).
accident(e4).
e3<n.
e2 <el.

e5: { occur(ed) ].
midnight(tl).
eSotl.
e5<n
— [ u6: eb: [ observe(u6,us)]].
T(u7).

e7: [ wait(u7,t2) ]
duration(t2) = 20 min.
e7<n
scene of accident(u9).

e8: [ leave(u8,u9) ]
genatt(car(ul0),ull).
e <n.
e7 <e8.

€9: [ leave behind(u9,u10) ]
e9<n]

After the resolution of contextual references, which also
requires application of meaning rules, and after elimination
of redundant conditions, the following DRS is obtained:

The following meaning rules and rule schemata have been
used:

1. [e:[ verb]— [ event(e) ]
2. [el,e2:el: [occur(e2) ] ] > [ el =e2]
3. [ e: accident(e) ] — [ event(e) ]
4. [ ul, u2: genatt(car(ul),person(u2)) ] -
[ car(ul). [ owner(ul,u2) ] V [ driver(ul,u2) I]

One problem still remains: The representation of the second
sentence still is not linked to the rest of the discourse.
Intuitively, the linking is achieved through the elliptic
occurrence of the verb resudt. To fill the gap, one would have
to stipulate something like resulted from this, in which case
the linking would have been explicit. In addition one needs a
meaning rule (which has to be part of the definition of
accident anyway) that says: If there is an accident, then there
is damage caused by the accident.
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