
Interfaces for by P. Hirsch
W. Katke

builders’ control
knowledge and
application-
specific
procedures

Expert System Environment/VM is an expert
system shell-a general-purpose system for
constructing and executing expert system
applications. An application expert has both
factual knowledge about an application and
knowledge about how that factual knowledge
should be organized and processed. In addition,
many applications require application-dependent
procedures to access databases or to do
specialized processing. An important and novel
part of Expert System Environment/VM is the
technique used to allow the expert or
knowledge-base builder to enter the control
knowledge and to interface with application-
dependent procedures. This paper discusses
these high-level interfaces for the knowledge-
base builder.

@Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

Introduction
Expert System Environment/VM is an expert system shell-
a general-purpose system for constructing and executing
expert system applications. It consists of two programs:
Expert System Development Environment/VM (ESDE/VM)
and Expert System Consultation EnvironmentIVM
(ESCE/VM). ESDE/VM provides the functions for the
development of a variety of specific expert system
applications. ESCE/VM is the consultation portion of the
Expert System Environment/VM and allows a user to
execute expert system applications on different processors.

arose from observing the difficulty with which expert system
applications are built-each is often one of a kind and
building it requires the skill of a person trained in the area of
Artificial Intelligence. There is need for a way to make
expert systems easy to build by experts or other people
having limited training in data processing, that can be used
in a variety of problem areas, and that can still produce
systems that run efficiently. Expert System Environment/
VM is such an expert system shell. An application expert has
both factual knowledge about an application and knowledge
about how that factual knowledge should be organized and
processed. In addition, many applications require

Motivation for designing Expert System Environment/VM

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 P. HIRSCH ET AL.

application-dependent procedures to access databases or to
do specialized processing. An important and novel part of
ESDE/VM is the technique used to allow the expert or
knowledge-base builder to enter the control knowledge and
to interface with application-dependent procedures. This
paper discusses these high-level interfaces for the knowledge-
base builder.

In this paper, we first present an overview of Expert
System Environment/VM. After a brief review of some
previous efforts at control, we show how ESDE/VM extends
this control work through the use of control language
primitives and control language strategies. Next we review
some of the applications that have used special-purpose
interfaces to application-specific data sources. We then show
how ESDE/VM improves on these approaches by providing
a generalized interface for builder procedures. In the last
section we give an example of an expert system that uses the
ESDE/VM general-purpose interfaces to produce written
documents, such as legal contracts.

Expert system environment overview
Three kinds of people may interact with an expert system
shell:

The client or end user of the application.
The expert.
The knowledge engineer, who helps the expert to encode
his knowledge.

ESDE/VM is designed to be used by knowledge-base
builders (experts or knowledge engineers) to build a variety
of expert system applications. The experts may be, for
example, insurance underwriters, lawyers, bankers, or
engineers. These experts may not have had previous
programming experience but have a requirement to build
applications based on their expertise. ESDE/VM was
designed to be easy to use, with a high-level English-like
interface, so that experts can easily build their applications.

The technology of expert systems allows the building of
the knowledge base of application facts and relationships to
be separated from the processing of the knowledge base.
Compared with the traditional application development
process of writing code for each application, expert systems
technology makes applications easier to build and maintain.
This is primarily due to the separation of the complex
processing of an application from the knowledge and
expertise about the application.

used to develop a variety of applications-it is an empty
system into which the knowledge-base builder inserts his
own rules (to define the "knowledge base") and chooses a
reasoning method (the "inference engine"). The result is a
specific expert system ready for the end user. ESDE/VM has

ESDE/VM incorporates a set of procedures that can be

builder to create the knowledge base in the form of English-
like rules, parameters, and controls. The editor verifies the
consistency of the knowledge by providing to the knowledge-
base builder immediate messages if there is a semantic or
syntactic error.

ESDE/VM also includes a set of basic inference-engine-
processing functions. Examples include backward chaining
(obtaining a value for a desired goal by working backward to
the given premises) and forward chaining (proceeding from
given data to make inferences and draw conclusions or carry
out actions). From these basic inferencing functions, the
systems control language permits the building of more
complex functions.

It is the application of these functions to the rules in the
knowledge base that determines the particular characteristics
of the expert system. In each system the base set of
knowledge-processing functions is the same; what differs is
the sequence and focus of their execution.

The ESDE/VM system runs on an IBM Systemf370 under
the VM/CMS operating system. A knowledge-base builder
can use the English-like rules and parameters to construct an
application more rapidly than with standard programming
techniques. A knowledge engineer can use either of two
standard inference techniques, backward or forward
chaining, and can control the inference process though a
control language. In addition, a knowledge engineer can
organize or group the knowledge base into hierarchical
structures, called Focus Control Blocks (FCBs). Each FCB
can have its own inference engine and its own control steps.
ESDE/VM also allows for knowledge-base builder
procedures to be easily attached to the system to provide
information to or use information from other programs,
files, or databases.

a particular application domain. This domain knowledge is
mainly in the form of knowledge-base objects:

Parameters-application facts and constraints.
Rules-relationships among parameters.
Focus Control Blocks-knowledge-base organization and

Groups-collections of rules, parameters, or focus control

Screens-client screens for asking questions or displaying

An ESDE/VM knowledge base contains knowledge about

control specifications.

blocks.

results.

Parameters A parameter has a name and various other
properties, such as type (number, boolean, alphanumeric
string, binary string, hexadecimal string). Parameters can be
single-valued or multivalued and may have a constraint
placed on their values as part of their definition. For
example, the constraint property of the parameter color
could be defined as

an intelligent editor program that allows a knowledge-base TAKEN FROM ('periwinkle','persimmon','peach')

P. HIRSCH ET AL. IBM I. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

which means that during a consultation color could only
have one of these three values.

Rules Rules specify relationships among parameters, and
it is the rules that contain the principal knowledge of a
knowledge base. A rule contains a premise part (IF. . . .) and
an action part (THEN. . . .), which causes an action to be
taken when the premise statement is TRUE.

knowledge base
For example, if there were three parameters in a

sky
wind
prediction

then there could be a rule

if sky is ‘gray’ and wind > 30 then prediction is ‘rain’

which means that if sky is equal to gray and wind is greater
than 30, then set the value of prediction equal to rain.

Focus Control Blocks Focus Control Blocks (FCBs) are the
primary building blocks for ESDE/VM control. Each control
block contains a collection of rules and parameters, and each
control block represents a single focus or unit of work to be
accomplished during a consultation. The control blocks are
related to each other through being in a hierarchy. For
example, in a computer fault diagnostic system, FCBs could
represent the CPU, disk drives, tape drives, and
communication channels. For an infectious disease system,
FCBs could represent the patient, cultures, organisms, and
therapies.

Each Focus Control Block can be replicated so that, for
example, a collection of rules could be replicated for each
culture that was taken for a given patient. The number of
instances can be controlled either statically in the control
block or dynamically through a rule.

Each FCB has a number of “properties,” which can be
specified to produce a desired control flow for that particular
unit of work. The control text is the major property in that
specification. An example of control text is

ASK (sky, wind);
DISCOVER;
DISPLAY prediction;

which would produce the following sequence of events. First,
the client would be asked for the values of sky and wind.
Next, the forward chainer would be invoked to find other
parameter values, and finally, the value found for prediction
would be shown to the client.

FCBs can be organized into a parent/child hierarchy. Also,
except for the root FCB, multiple copies (instances) of the
same FCB are allowed. An example of an FCB hierarchy is
illustrated in Figure 1.

Q FCB Dl

7 Root FCB

el FCB D4

I
FCB D2

I
FCB D3

A Focus Control Block hierarchy.

Groups Groups are named collections of similar ESDE/
VM objects (parameters, rules, and FCBs). The function of a
group is to facilitate reference to a number of similar
knowledge-base objects. For example, the names of several
parameters can be placed in a group so that they can be
referred to by a single name in a rule rather than by a list of
individual names.

Screens During a dialog with a client, ESCE/VM can
display questions and results of the consultation. The system
has built-in default screens. A knowledge-base builder can, in
addition, create his own screens of unique design and ask
one or more questions on a single screen. The screen is
designed with the aid of an interactive screen design editor.

Historical background: control
Some of the early rule-based expert systems, such as MYCIN
[11, had much of their control knowledge implicitly specified
in their rules. In effect, some of the rules were used as a type
of programming language. For these implicit control rules,
the premise clause order is very critical. In response to this
implicit control problem, Davis [2] proposed the use of
meta-rules which can contain strategy information as well as
control knowledge. In another approach, the program
Amord [3] reverts to a very primitive control mechanism
that has almost no built-in preconceptions.

In ONCOCIN [4], control knowledge is separated from
domain knowledge by the use of control blocks. The need
for screening-type rules is eliminated by the use of
contextual information, which defines when a rule can be
applied.

In NEOMYCIN [5] , control knowledge is represented
abstractly, and separately, from domain facts and
relationships in basic operating units called tasks. These
tasks can form a hierarchical tree structure. 31

iL. IBM J RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 P. HIRSCH ET P

Name :
P r l n t name: (F C B name d i s p l a y e d t o c l i e n t)
D a t e : (s u p p l i e d b y system)
Author : (may be s u p p l i e d f r o m u s e r p r o f i l e)
Comments: (o p t i o n a l)
In i t ia l ins tance query : (opt iona l - -Yes /No response is expected)
Announce message: (o p t i o n a l)

Strucrure
Root :
(F C B name or NONE) (FCB name or NONE) (FCB names or NONE)

Goals: I I n i t i a l d e t a : I E x t e r n a l d a t a : I R e s u l t s :

~ ”” .
P a r e n t : Descendents:

Parameters: I Rules:

C o n t r o l t e x t : (p r i m i t i v e s and s t r a t e g i e s)

M u l t i p l e i n s t a n c e i n f o r m a t i o n
Maximum number o f i n s t a n c e s : (d e f a u l t i s 1)

Addi t iona l ins tance query : (opt iona l - -Yes /No response is expected)
D i s t i n g u i s h i n g f e a t u r e s : (a s k e d a t i n s t a n t i a t i o n)

f Some Focus Control Block properties.

CRYSALIS [6] is a three-level hierarchical system.
Control within this system proceeds from the top level down
using strategy rules, task rules, and application domain rules,
in that order.

Georgeff [7] proposes a different approach for the control
of a system for developing plans or a sequence of actions.
His concept is to activate only a subset of the total rule set at
any given time.

In a prototype system of Reinstein and Aikins [8], control
knowledge is represented as antecedent rules which operate
on an agenda of pending tasks. In this system, domain facts
and relationships are represented separately in frame
hierarchies.

called prototypes. Knowledge is represented as a
combination of these prototypes and rules. Control
knowledge is represented separately within each prototype,
which gives a context-specific control structure.

CENTAUR [9] is organized around frame-like objects

ESDE/VM control
ESDE/VM extends the control work done in the previously
mentioned systems by providing an explicit, separately
manipulable control language in which to express a search
strategy and a set of alternative strategies with which to
make modifications to the basic control scheme. ESDE/VM
Focus Control Blocks are used to organize this control
structure.

It is important to distinguish between the operation within
ESDE/VM Focus Control Blocks and the operation within
contexts, such as in EMYCIN [lo]. EMYCIN contexts
operate in an implicit, fixed, and prespecified manner. In
contrast, the control text in the ESDE/VM FCBs is
completely explicit and free-form. This text can be different
for each FCB, and it can combine forward chaining,
backward chaining, asking for data, displaying results, using
external data routines, and invoking other FCBs in any
combination, and as many times as desired. This difference 32

P. HlRSCH ET AL.

will become more apparent when we discuss the ESDE/VM
control components in more detail in the following sections.

Focus Control Blocks
FCBs provide an overall control structure for ESDE/VM.
Each FCB represents a subtask for a given application. In
this respect only, FCBs are analogous to the “contexts” of
ONCOCIN [4], the “hypotheses” of NEOMYCIN [5] , the
“prototypes” of CENTAUR [9], and the “processing states”
of the prototype system [8]. Each FCB has a number of
“properties,” which can be filled in to produce a desired
control flow for that particular unit of work. FCBs are
typically organized in a hierarchy as defined by the structural
properties (root, parent, and descendents) in each FCB. The
hierarchy of FCBs is used to resolve references to parameters
not associated with the current FCB. Parameters above the
current FCB in the FCB hierarchy are visible to that FCB.
Each FCB may incorporate groups of parameters defined as
goals, initial data, external data, and results, as well as
groups of rules. Each FCB also contains a set of control
language statements which are used to process the
parameters and rules associated with that FCB.

Just as EMYCIN allows multiple instances of its contexts,
ESDE/VM also allows. multiple instances of an FCB. ESDE/
VM extends the EMYCIN work by allowing a user to specify
how many instances will be allowed (a positive integer or
any number), to automatically stop invocation of instances,
and to specify which parameter or group of parameters
distinguish one instance from another (distinguishing
features). For example, in an infectious disease expert
system, there could be any number of culture FCBs, and
culture-site could be a distinguishing feature. Figure 2 shows
some of the FCB properties.

Control language
The ESDE/VM control language consists of seven control
primitives:

ACQUIRE-get external data.
ASK-ask user for data.
DETERMINE-invoke backward chainer.
DISCOVER-invoke forward chainer.
DISPLAY-display data to user.
ESTABLISH-initiate FCB processing.
PROCESS-put external data.

All of these primitives, except DISCOVER, can specify
groupsaf objects for their operands and, except for
PROCESS, the action specified in each primitive can be
modified by strategies. ACQUIRE obtains values from an
external data source, ASK interacts with a user to obtain
values, DETERMINE uses a backward chaining inference
engine plus information about the sources of new values
(i.e., from the user, from rules, from defaults, or from an

IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

external data source) to find parameter values, and
DISCOVER uses a forward chaining inference engine over a
set of rules to find parameter values. Thus the knowledge-
base builder can tell the system not only which objects need
values, but also what method to use to find those values. The
other control primitives show parameter values (DISPLAY),
initiate processing of other FCBs (ESTABLISH), and pass
control to external data routines (PROCESS).

The control primitives typically operate on parameters,
e.g., DETERMINE size, color, weight; but th!y can also
operate on various FCB properties, such as initial data,
external data, results, and goals. For example, the statement
DETERMINE goals causes the system to determine values
for all of the parameters listed in the goals property of the
FCB using the backward chaining inference technique. Other
examples of control language statements include

ASK initial data,
where initial data is an FCB property containing a list of
parameters the values of which will be asked of the user.

DISCOVER
(has no operand, only has strategy options).

DISPLAY results,
where results is an FCB property.

ESTABLISH limit,
where limit is the name of an FCB.

The ACQUIRE and PROCESS control primitives are
discussed further in the section on the ESDE/VM external
interface.

Strategies
ESDE/VM also contains a set of strategies which can be used
to modify statements in the control language:

DONT ACQUIRE-exclude object(s) from ACQUIRE or

DONT ASK-exclude object(s) from ASK or

DONT INFER-exclude object(s) from DETERMINE.
FOCUS ON-consider object(s) first in DETERMINE.
IGNORE-ignore object(s) during control action.
ORDER BY-consider object(s) in this order.
ORDER RULES BY-order rules by this criterion.
STOP ON-stop on this criterion in DISCOVER.
USE-use object(s) during control action.

These strategies allow expression of strategical variations on
the basic control language statements. There are strategies
that specify the order of groups of objects given to a control
language statement (FOCUS ON, IGNORE, ORDER BY,
and ORDER RULES BY). For example, following is the
control statement and associated strategy that will order the
group of rules used to find a value for the parameter fault,

DETERMINE.

DETERMINE.

IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

Sample FCB hierarchy for a fault detection problem.

putting those with the least number of unknown parameters
in their premise clauses first:

DETERMINE fault
"ORDER RULES BY Least Unknown Premises First.

Other strategies allow a user to alter the specified source of
an object during execution of a DETERMINE control
language statement (DONT ACQUIRE, DONT ASK, and
DONT INFER). As an example, the builder of an infectious
disease knowledge base could use the DETERMINE control
statement as shown below to find the identity of an
organism. If, in addition, one did not want the user of the
system to be asked the organism's morphology, one could
add a DONT ASK strategy. Finally, if one also felt that the
site of the culture was important enough to be found first
when there was a choice of parameters to determine, one
could add a FOCUS ON strategy:

DETERMINE organism-identity
" D O N T ASK morphology
-FOCUS ON culture-site.

The knowledge-base builder can specify a particular group
of rules, rather than all rules normally associated with an
FCB, to be used with a DISCOVER statement (the USE
strategy). In addition, one can define a stopping condition
for the DISCOVER statement (STOP ON). For example, if
one wanted to forward chain over a set of system-status
rules, stopping when the parameter speed became greater
than 200, the following control statement and strategies
could be used:

P. HIRSCH ET AL.

DISCOVER
-USE system-status rules
-STOP ON speed > 200.

Sample FCB hierarchy
The fictitious example shown in Figure 3 for three FCBs in a
fault detection problem illustrates some of the control
language features of ESDE/VM. The root of the hierarchy in
this example is the Focus Control Block machine. Two
components of the machine, its pump and its vacuum-
chamber, are also represented as Focus Control Blocks. Each
FCB has a set of parameters and a set of rules which are used
to infer conclusions about the location and cause of the
machine fault. Rules and parameters may be listed singly,
for example, the temperature parameter and the cable-check
rule. ESDE/VM also permits the knowledge-base builder to
refer to a group of parameters or rules, for example, initial-
symptoms and part-indictment rules. Only a few of the FCB
properties are illustrated. A sample of control language is
shown for each FCB.

The control interpreter
Operation of the control interpreter is fairly simple. The
knowledge-base builder specifies one FCB as the root FCB.
This root FCB is invoked (instantiated) at the start of a
consultation. Upon entering an FCB, the interpreter begins
executing the control language statements in the order
specified. Reference to an object not contained in the FCB
or any of its parents causes an immediate change in focus to
the FCB which contains that object. The interpreter
continues invoking FCBs and executing their control
language statements until it has completed all work
generated from the initial FCB.

Historical background: external data
The simplest example of a special-purpose interface is to
pass data by file transfer. The DENDRAL [1 11 and PUFF
[121 programs use this technique. The ONCOCIN [4] and
ACE [131 programs are examples of expert systems which
have special-purpose interfaces to interact with external
database information.

Some expert system applications require the use of sensor-
based data, and some of the newer systems are also moving
into the real-time domain, where large quantities of rapidly
changing data must be efficiently processed. The Serum
Protein Diagnostic Program [141 obtains its sensor-based
data directly from the scanning densitometer itself. VM [151
was specifically designed to interpret sensor-based data
obtained in an intensive care unit. PDS [161 is used for the
on-line diagnosis of a chemical process operation on a real-
time basis. NDS [171 is an expert system for fault isolation
in a nationwide communications network. YES/MVS [181 is
a continuous real-time expert system used to assist computer
operators in controlling an operating system.

P. HIRSCH ET AL.

An increasingly important expert system application area
involves the external interaction of a consultation or tutoring
system with a computer simulation model or a collection of
application programs.'SOPHIE [191 is used to teach
problem-solving skills in a simulated electronics laboratory
environment. REACTOR [20] is intended to assist plant
operators in handling nuclear reactor accidents. ELAS [21]
integrates a production rule advice system directly with pre-
existing AMOCO programs for well-log analysis and display.
STEAMER [22] is an intelligent computer-based training
system which serves as an assistant in naval propulsion
engineering instruction.

area of current interest in expert system research. HASP/
SIAP [23] is one of these programs; it is concerned with the
signal-to-symbol transformation problem. CRYSALIS [6]
automates the electron density map signal interpretation
process. LITHO [24] is a program for interpretation of oil-
well log data. The DIPMETER ADVISOR [25] is a
commercial expert system which is also a well-log
interpretation program.

The processing and interpretation of signal data is another

ESDE/VM external interface
All of the expert system programs mentioned in the previous
section used special-purpose interfaces for sourcing external
data. In contrast, ESDE/VM does not have this restriction
since it provides three generalized procedural escape options:
the external data sourcing sequence specification, and both
the ACQUIRE and the PROCESS control language
primitive commands. ESDE/VM also provides some
general-service routines for use in the knowledge-base
builder's application-specific procedures.

External data routines
An ESDE/VM parameter can obtain its value in several
ways. This sourcing sequence is specified at the time the
knowledge base is developed by the knowledge-base builder.
Any or all of the sources

rule consequent
user input
apply default
external data

can be specified in any order. Thus, the first method of
getting data from an external source is provided by the
sourcing sequence property of a parameter. When the
ESDE/VM backward chaining inference process encounters
this external data option during a consultation run, it tries to
obtain the parameter value by invoking a specified
procedure. This procedural escape entry point is specified in
the procedure name property of the given parameter. Any
additional information needed by the external data routine,
such as file name and file type, can be specified in the
procedure arguments property of that same parameter.

IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

35

IBM J . RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 P. HIRSCH ET AL.

Two of the control language primitives, ACQUIRE and
PROCESS, operate on external data and provide the second
and third external interfacing options for ESDE/VM.

The ACQUIRE control language primitive command is
used to acquire ESDE/VM parameter values from an
external data source. The form of this command is

ACQUIRE External-Data USING Procedure-Name

where Procedure-Name specifies the procedural escape entry
point. External-Data is an FCB component containing either
a parameter name or a list of parameter names whose values
are to be obtained from the specified external data source.
Again, additional information can be specified in the
procedure arguments property of a given parameter.

The PROCESS control language primitive command is
used to pass control to an external routine. This option
provides a way for an external routine to access ESDE/VM
results during or after a consultation session. The form of
this command is

PROCESS ESDE/VM-Results USING Procedure-Name

As before, Procedure-Name specifies the procedural escape
entry point. ESDE/VM-Results represents either a parameter
or a list of parameters whose values are to be made available
to the external routine.

External data services
ESDE/VM provides a set of general-service routines which
can be used in the external data procedures to obtain and
assign ESDE/VM parameter values and to perform other
utility functions. The functions of these routines are as
follows:

Utility services
0 Get the name of a parameter that is the subject of either

the backward chaining facility or the ACQUIRE
command.

0 Get the number of arguments being passed to the routine.
0 Get the name of a parameter that is an argument.
0 Get the argument data type (string, number, etc.).

Get the number of values of an argument.
Put a message into the trace file.

Services that obtain an argument value
Get an alphanumeric string value.
Get a number value.
Get the certainty value of a boolean parameter.
Get a hexadecimal string value.
Get a binary string value.

Services that assign a valid value
0 Set an alphanumeric string parameter value.

Set a number parameter value.
Set a boolean parameter certainty.

0 Set a hexadecimal string parameter value.
Set a binary string parameter value.

Individual get/set commands were used, rather than a simple
generic get/set call, because of the strong data typing
characteristic of Pascal and the desire to avoid the use of
complex data structures. Also, it should be noted that this
general-service routine approach means that users do not
have to know ESDE/VM internal data structures, pointers,
etc., in order to write an external data program.

0 Installing knowledge-base builder procedures
Knowledge-base builder application-specific procedures can
be written in any language that can be called from Pascal/
VS. Such languages include Pascal, PL/I, FORTRAN,
COBOL, and assembler. ESDE/VM has an external data
segment which contains a series of skeleton Pascal
procedures (Le., procedures that contain no Pascal code) into
which user-written external procedures can be placed.

ESDE/VM also provides two EXECs and a macro to help
integrate the knowledge-base builder procedures with the
knowledge base. One EXEC is used to compile the external
data segment, and the other one is used for linking the
segment to ESDE/VM. The macro contains the library
routines needed when compiling the segment.

These user-written routines can call other subroutines
available to the user which are not in ESDE/VM. These
routines can also exit to user EXECs which contain simple
lists of commands that could, for example, be used to make
database inquiries.

0 Knowledge-base builder procedures: an example
A knowledge base has been developed to produce legal
contraFts for joint study activities with IBM customers, such
as universities and research organizations. Each such legal
contract is based both on some prepared sections of text that
are of a general nature and on some text based on the
particular circumstances for that customer contract.

To achieve this text integration, it is necessary to use
procedures that are specifically written for this contract
application to provide the output of the expert system to
IBM's word processor, Documentation Composition Facility
(DCF).

follows:
Typical rules for such a legal contract system are as

IF output-owner is 'IBM'
THEN there is strong evidence that copyright is 'IBM
owns'

IF joint-effort is 'Jointly defined only'
and copyright is 'IBM owns'
and delivered-software is 'Marketable software'
and underlying-assumptions is true
and patents is 'Customer owns'
and patents is 'IBM has an unrestricted free license'

THEN there is strong evidence that contract-type is
'Jointly Defined, Software produced, IBM owns'

The English-like syntax of these rules allows a Contract
relations person to build and maintain the application
knowledge base.

A typical end-user screen is shown in Figure 4.
The end user would then answer this and the subsequent

The dialog and system processing are driven by the ESDE/
consultation questions to produce the final contract.

VM Focus Control Blocks. These FCBs were developed by
the knowledge-base builder to process the rules and
parameters specified in the knowledge base. The statements
in this particular control text were as follows:

ASK initial data;

DETERMINE goals;

DISPLAY (contract-typejnitial data,
royalties,third-party,customer-confidential,
pre-existing-work,sponsor,
academic-institution,copyright,patents,
joint-effort,delivered-software,
subsidiaries,goals);

PROCESS (fname,ftype,script_id,output2) USING writefile

The control text above provides the mechanism and
sequence of events for ESCE/VM to process the knowledge
that it has in its knowledge base as well as the knowledge
that it acquires from the client. The first statement, ASK
initial data, asks the user about parameters such as the name
of the customer, the customer address, or the starting date of
the contract. The second statement, DETERMINE goals,
indicates to ESCE/VM that the second order of business is
to use the backward chaining inference engine to obtain the
necessary goals, such as the type of contract or who should
own the patent rights. The third statement in the control text
is to DISPLAY (contract-type . . .); which will display to the
user the results of the consultation for review. The last 36

P. HIRSCH ET AL.

statement of the control text is where the external procedure
comes into play. The control text is PROCESS (argument
list) USING writefile. In this statement, the results of the
consultation contained in the parameter output2 are
processed and written to a file using a special external
procedure called writefile. The program writefile was written
in PASCAL specifically for this application. This is the
mechanism that Expert System Environment/VM employs
to tie together the results of the dialog with the word
processing system.

The resulting file has the following form:

.se compamt = '$500,000'

Amount Payment Date

m o o September 1 , 1985
$125,000
$175,000

nay 1 , 1986
August 3 1 , 1986

2 . 2

2.3

IBM J . RES. DEVELOP. VOL. 30 NO. I JANlJARY I 986

.se comdate3 =

.se compamt3 =

.se compitem =

.se comdatel =

.se compamtl =

.se comdate2 =

.se compamt2 =

.cs 2 include

.cs 5 ignore

‘August 3 I , 1986’
‘$175,000’
‘travel, salaries, computer time’
‘September I , 1985’

‘May I , 1986’
‘$l25,000‘

‘$200,000’

The statements are in the form required by the word
processing system, DCF, and indicate that the variable
“compamt” (compensation amount) should be set to
$500,000 and that Section 2 should be included, but Section
5 should not be included.

The word processing system uses these statements along
with the standard text to meld together a contract, a portion
of which is shown in Figure 5. Notice that the type of
contract has been correctly selected, Section 2.2 on travel has
been included, and variable names such as compensation
amount have been substituted appropriately in the text.

Although this is a fictitious contract with a fictitious
customer, AITECH, the language is similar to the actual
language contained in many IBM joint study contracts. By
employing this type of system, an end user can provide a
finished contract to a customer in a shorter period of time
with the correct terms and conditions. The ability of these
expert systems to integrate easily with existing computer
systems adds additional power to a useful technology.

Other Expert System Environment/VM applications have
made use of general-purpose graphics procedures, large real-
time data bases, and system hardware modeling programs.

Summary
ESDE/VM’s explicit representation of control knowledge in
Focus Control Blocks allows the knowledge-base builder to
separate an expert system application into discrete units of
work, each with its own set of objects and control language
statements. In addition, strategy options allow the
specification of variations on the control language
statements. This explicit representation makes the expert
system design more transparent and facilitates easy
modification of the control strategy.

external procedures provides an effective way to use already
available computer data and to send ESDE/VM results to
other external routines. For this purpose, ESDE/VM
provides three options: the parameter sourcing sequence
specification, the ACQUIRE control language primitive
command, and the PROCESS control language primitive
command. ESDE/VM also provides a set of general-service
routines which can be used by the external procedures to
access ESDE/VM data and to perform various utility
functions.

ESDE/VM’s general technique for interfacing with

IBM J . RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

Acknowledgments
Jan Aikins and Harry Reinstein helped to develop ESDE/
VM’s control architecture, and Mary Degener provided the
contract example.

References
1 . E. H. Shortliffe. Computer-Based Medical Consultations:

2. R. Davis. “Meta-Rules: Reasoning About Control,” Art$ Intell.

3. J . de Kleer, J. Doyle, G. L. Steele, Jr., and G. J. Sussman,

MYCIN, American Elsevier, New York, 1976.

15, 179-222 (1980).

“AMORD: Explicit Control of Reasoning,” SIGPLANISIGART
Speciallssue, pp. 116-125 (August 1977).

4. E. H. Shortliffe, A. C. Scott, M. B. Bischoff, A. B. Campbell, W.
van Melle, and C. D. Jacobs, “ONCOCIN: An Expert System
for Oncology Protocol Management,” Proc. IJCAI-81, pp. 876-
881 (1981).

5. W. J . Clancey, “The Advantages of Abstract Control Knowledge
in Expert System Design,” Proc. AAAI-83, pp. 74-78 (1983).

6. A. Terry, “The CRYSALIS Project: Hierarchical Control of
Production Systems,” Heuristic Programming Project Report
No. HPP-83-19, Computer Science Department, Stanford
University, CA, May 1983.

7. M. P. Georgeff, “Procedural Control in Production Systems,”
Art([Intell. 18, 175-201 (1982).

8. H. C. Reinstein and J. S. Aikins, “Application Design: Issues in
Expert System Architecture,” Proc. IJCAI-81, pp. 888-892
(1981).

Intell. 20, 163-210 (1983).
10. W. van Melle, “A Domain-Independent System That Aids in

Constructing Knowledge-Based Consultation Programs,”
Heuristic Programming Project Report No. HPP-80-22,
Computer Science Department, Stanford University, CA, June
1980.

Lederberg, Applications ofArtifrcia1 Intelligence for Organic
Chemistry: The DENDRAL Project, William Kaufmann, lnc.,
Los Altos, CA, 1980.

“PUFF An Expert System for Interpretation of Pulmonary
Function Data,” Heuristic Programming Project Report No.
HPP-82-13, Computer Science Department, Stanford
University, CA, September 1982.

D. H. Copp, “ACE: An Expert System for Telephone Cable
Maintenance,” Proc. IJCAI-83, pp. 1 16-12 I (1983).

Microprocessor Based Expert Models for Instrument
Interpretation,” Proc. IJCAI-81, pp. 853-855 (1981).

Modeling the Medical Decision Making Pocess,” Heuristic
Programming Project Report No. HPP-82-3, Computer Science
Department, Stanford University, CA, March 1982.

16. M. S. Fox, S. Lowenfeld, and P. Kleinosky, “Techniques for
Sensor-Based Diagnosis,” Proc. IJCAI-83, pp. 158- 163 (1 983).

17. T. L. Williams, P. J . Orgren, and C. L. Smith, “Diagnosis of
Multiple Faults in a Nationwide Communications Network,”
Proc. IJCAI-83, pp. 179- 18 I (1 983).

Kastner, D. A. Klein, K. R. Milliken. M. I. Schor, and H. M.
Van Woerkom, “A Continuous Real-Time Expert System for
Computer Operations,” IBM J. Res. Develop. 30, 14-28 (1986,
this issue).

Natural Language and Knowledge Engineering Techniques in
SOPHIE I. I1 and Ill,” Intelligent Tutoring Systems. D. Sleeman
and J. S. Brown, Eds., Academic Press, London, 1982, pp. 227-
282. 37

9. J. S. Aikins, “Prototypical Knowledge for Expert Systems,” Art$

I I . R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J.

12. J . S. Aikins, J. C. Kunz, E. H. Shortliffe, and R. J. Fallat,

13. G. T. Vesonder, S. J . Stolfo, J. E. Zielinski, F. D. Miller, and

14. S. M. Weiss, C. A. Kulikowski, and R. S. Galen, “Developing

15. E. H. Shortliffe and L. M. Fagan, “Expert Systems Research:

18. R. L. Ennis, J. H. Griesmer, S. J. Hong, M. Karnaugh. J. K.

19. J . S. Brown, R. R. Burton, and J. de Kleer, “Pedagogical,

P. HIRSCH ET AL.

20. W. P. Nelson, “REACTOR: An Expert System for Diagnosis
and Treatment of Nuclear Reactor Accidents,” Proc. AAAI-82,
pp. 296-30 I (1982).

21. S. Weiss, C. Kulikowski, C. Apte, M. Uschoid, J. Patchett, R.
Brigham, and B. Spitzer, “Building Expert Systems for
Controlling Complex Programs,” Proc. AMI-82, pp. 322-326
(1982).

22. J. D. Hollan, E. L. Hutchins, and L. Weitzman, “STEAMER
An Interactive Inspectable Simulation-Based Training System,”
The AI Magazine 5, No. 2, 15-27 (Summer 1984).

23. H. P. Nii, E. A. Feigenbaum, J. J. Anton, and A. J. Rockmore,
“Signal-to-Symbol Transformation: HASP/SIAP Case Study,”
The AI Magazine 3, No. 2,23-35 (Spring 1982).

24. A. Bonnet and C. Dahan, “Oil-Well Data Interpretation Using
Expert System and Pattern Recognition Technique,” Proc.

25. R. G. Smith, “On the Development of Commercial Expert
IJCAI-83, pp. 185-189 (1983).

systems,” The AI Maguzine 5 . 6 1-73 (Fall 1984).

Received April 23, 1985; revised September 3, 1985

Peter M. Hirsch IBM Scientific Center, P.O. Box 10500, Palo
Alto, California 94304. Dr. Hirsch received his B.Sc. in applied
mathematics and engineering physics in 1961, his M.Sc. in
mathematics in 1966, and his Ph.D. in numerical analysis in 1966,
all from the University of Wisconsin, Madison. Prior to joining IBM
in 1966, he was an instructor in the Mathematics Department at
Pennsylvania State University. He joined IBM at the Houston,
Texas, Scientific Center, working in the areas of power application
and computer generated holograms. Since joining the Palo Alto
Scientific Center in 1974, he has worked on expert systems, power
systems analysis, and energy. He received an IBM Division
Headquarters Excellence Award in 1982 for the development of
FORTRAN Utilities for VM, an IBM Division Headquarters
Excellence Award in 1979, an IBM Outstanding Invention Award in
1969, an IBM First-Level Invention Achievement Award in 1970,
and an IBM Second-Level Invention Achievement Award in I97 1.
Dr. Hirsch is a member of the American Association for Artificial
Intelligence and the Association for Computing Machinery.

called Prototype Inference System (PRISM). Mr. Meier joined IBM
in 1978 as an MVS program support representative in the
Southfield, Michigan, Field Engineering branch office. Before joining
IBM, Mr. Meier was with Kimberly-Clark Corporation and Federal-
Mogul Corporation as a system programmer working primarily on
IMS and MVS. He has a B.S. in mathematics/computer science
from the Lawrence Institute of Technology, Southfield, Michigan.

Steven Snyder IBM Scientific Center, P.O. Box 10500, Palo Alto,
California 94304. At present Mr. Snyder is working in the area of
expert systems. He defines requirements for, implements, and
maintains an experimental expert systems shell (PRISM). From 1980
to 1984, he was with Field Engineering Service Research in Palo
Alto investigating expert systems techniques, benefits, potential
application areas, and requirements. From 1965 to 1980, he held a
variety of positions with the Systems Manufacturing Division, the
Field Engineering Division, Systems Development Division, System
Communications Division, Data Processing Division, and the Field
Engineering Systems Center. Prior to joining IBM, Mr. Snyder was
with the U.S. Army and Allied Chemical Corporation, Buffalo, New
York. He attended the State University Agricultural and Technical
College, Alfred, New York, in 1959, the State University of New
York, Buffalo, from 1960 to 1962, and Arizona State University,
Tempe, from 1968 to 1969. In 1985 he received an IBM
Outstanding Technical Achievement Award for his work on the
Expert System Environment/VM program offering. Mr. Snyder is a
member of the American Association for Artificial Intelligence.

Richard E. Stillman IBM Scientijic Center, P.O. Box 10500, Palo
Alto, California 94304. Dr. Stillman joined the IBM Research
Division in 1958 in a process control group. He is currently helping
to apply expert systems technology to IBM manufacturing
productivity improvement. Although he is located at the Palo Alto
Scientific Center, he reports to Manufacturing Research in
Yorktown Heights, New York. His past work has been in the areas
of expert systems, process simulation and optimization, and
numerical solution of differential equations. Dr. Stillman received
his B.S. from the University of Kansas, Lawrence, in 1951, his M.S.
from the University of Kansas in 1956, and his Ph.D. from the
Pennsylvania State University, University Park, in 1969, all in
chemical engineering. He is a member of the American Association
for Artificial Intelligence, the American Institute of Chemical

Beta Pi.
William Katke IBM Scientific Center, P.O. Box 10500, Palo Alto. Phi Lambda Upsilon, Sigma Tau, Sigma xi, and Tau
California 94304. Mr. Katke has been involved in artificial
intelligence since 1967. While at the University of Wisconsin, he
worked on Autoling, a program that learns a syntax for natural
language. He also conceived and developed a program generation
system using semantic networks. Since 1974, he has worked for the
World Bank, the Computer Science Corporation, Advanced
Computer Techniques, and the Planning Research Corporation. His
experience includes the design of a back-end database system, the
design and development of a distributed electronic mail system for
IBM PCs, and the development of MsSpeller, a spelling correction
program for the Apple 11. He joined IBM in 1984 to participate in
the development of Expert System Environment/VM, which has
been announced as a program offering. Mr. Katke received a
Director’s Award for his work on Expert System Environment/VM.

Michael Meier IBM Scientific Center. P.O. Box 10500, Palo Alto,
California 94304. Mr. Meier is a staff member in the expert systems
group at the Palo Alto Scientific Center, where he is involved in the
development of the Expert System Environment/VM. Prior to this
assignment, he worked in the service research knowledge-based
systems group on a prototype of the expert system environment

38

P. HIRSCH ET P LL. IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

