Interfaces for
knowledge-base
builders’ control
knowledge and
application-
specific
procedures

by P. Hirsch
W. Katke
M. Meier
S. Snyder
R. Stillman

Expert System Environment/VM is an expert
system shell—a general-purpose system for
constructing and executing expert system
applications. An application expert has both
factual knowledge about an application and
knowledge about how that factual knowledge
should be organized and processed. In addition,
many applications require application-dependent
procedures to access databases or to do
specialized processing. An important and novel
part of Expert System Environment/VM is the
technique used to allow the expert or
knowledge-base builder to enter the control
knowledge and to interface with application-
dependent procedures. This paper discusses
these high-level interfaces for the knowledge-
base builder.

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

Introduction
Expert System Environment/VM is an expert system shell—
a general-purpose system for constructing and executing
expert system applications. It consists of two programs:
Expert System Development Environment/VM (ESDE/VM)
and Expert System Consultation Environment/VM
(ESCE/VM). ESDE/VM provides the functions for the
development of a variety of specific expert system
applications. ESCE/VM is the consultation portion of the
Expert System Environment/VM and allows a user to
execute expert system applications on different processors.
Motivation for designing Expert System Environment/VM
arose from observing the difficulty with which expert system
applications are built—each is often one of a kind and
building it requires the skill of a person trained in the area of
Artificial Intelligence. There is need for a way to make
expert systems easy to build by experts or other people
having limited training in data processing, that can be used
in a variety of problem areas, and that can still produce
systems that run efficiently. Expert System Environment/
VM is such an expert system shell. An application expert has
both factual knowledge about an application and knowledge
about how that factual knowledge should be organized and
processed. In addition, many applications require

P. HIRSCH ET AL.

29

30

application-dependent procedures to access databases or to
do specialized processing. An important and novel part of
ESDE/VM is the technique used to allow the expert or
knowledge-base builder to enter the control knowledge and
to interface with application-dependent procedures. This
paper discusses these high-level interfaces for the knowledge-
base builder.

In this paper, we first present an overview of Expert
System Environment/VM. After a brief review of some
previous efforts at control, we show how ESDE/VM extends
this control work through the use of control language
primitives and control language strategies. Next we review
some of the applications that have used special-purpose
interfaces to application-specific data sources. We then show
how ESDE/VM improves on these approaches by providing
a generalized interface for builder procedures. In the last
section we give an example of an expert system that uses the
ESDE/VM general-purpose interfaces to produce written
documents, such as legal contracts.

Expert system environment overview
Three kinds of people may interact with an expert system
shell:

e The client or end user of the application.

o The expert.

e The knowledge engineer, who helps the expert to encode
his knowledge.

ESDE/VM is designed to be used by knowledge-base
builders (experts or knowledge engineers) to build a variety
of expert system applications. The experts may be, for
example, insurance underwriters, lawyers, bankers, or
engineers. These experts may not have had previous
programming experience but have a requirement to build
applications based on their expertise. ESDE/VM was
designed to be easy to use, with a high-level English-like
interface, so that experts can easily build their applications.

The technology of expert systems allows the building of
the knowledge base of application facts and relationships to
be separated from the processing of the knowledge base.
Compared with the traditional application development
process of writing code for each application, expert systems
technology makes applications easier to build and maintain.
This is primarily due to the separation of the complex
processing of an application from the knowledge and
expertise about the application.

ESDE/VM incorporates a set of procedures that can be
used to develop a variety of applications—it is an empty
system into which the knowledge-base builder inserts his
own rules (to define the “knowledge base”) and chooses a
reasoning method (the “inference engine™). The result is a
specific expert system ready for the end user. ESDE/VM has
an intelligent editor program that allows a knowledge-base

P. HIRSCH ET AL.

builder to create the knowledge base in the form of English-
like rules, parameters, and controls. The editor verifies the
consistency of the knowledge by providing to the knowledge-
base builder immediate messages if there is a semantic or
syntactic error.

ESDE/VM also includes a set of basic inference-engine-
processing functions. Examples include backward chaining
(obtaining a value for a desired goal by working backward to
the given premises) and forward chaining (proceeding from
given data to make inferences and draw conclusions or carry
out actions). From these basic inferencing functions, the
systems control language permits the building of more
complex functions.

It is the application of these functions to the rules in the
knowledge base that determines the particular characteristics
of the expert system. In each system the base set of
knowledge-processing functions is the same; what differs is
the sequence and focus of their execution.

The ESDE/VM system runs on an IBM System/370 under
the VM/CMS operating system. A knowledge-base builder
can use the English-like rules and parameters to construct an
application more rapidly than with standard programming
techniques. A knowledge engineer can use either of two
standard inference techniques, backward or forward
chaining, and can control the inference process though a
control language. In addition, a knowledge engineer can
organize or group the knowledge base into hierarchical
structures, called Focus Control Blocks (FCBs). Each FCB
can have its own inference engine and its own control steps.
ESDE/VM also allows for knowledge-base builder
procedures to be easily attached to the system to provide
information to or use information from other programs,
files, or databases.

An ESDE/VM knowledge base contains knowledge about
a particular application domain. This domain knowledge is
mainly in the form of knowledge-base objects:

e Parameters—application facts and constraints.

o Rules—relationships among parameters.

e Focus Control Blocks—knowledge-base organization and
control specifications.

¢ Groups—collections of rules, parameters, or focus control
blocks.

e Screens—-client screens for asking questions or displaying
results.

Parameters A parameter has a name and various other
properties, such as type (number, boolean, alphanumeric
string, binary string, hexadecimal string). Parameters can be
single-valued or multivalued and may have a constraint
placed on their values as part of their definition. For
example, the constraint property of the parameter color
could be defined as

TAKEN FROM ('periwinkle’','persimmon','peach’)

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

which means that during a consultation color could only
have one of these three values.

Rules Rules specify relationships among parameters, and
it is the rules that contain the principal knowledge of a
knowledge base. A rule contains a premise part (IF. .. .) and
an action part (THEN. . . .), which causes an action to be
taken when the premise statement is TRUE.

For example, if there were three parameters in a
knowledge base

sky
wind
prediction

then there could be a rule
if sky is 'gray' and wind > 30 then prediction is 'rain’

which means that if sky is equal to gray and wind is greater
than 30, then set the value of prediction equal to rain,

Focus Control Blocks Focus Control Blocks (FCBs) are the
primary building blocks for ESDE/VM control. Each control
block contains a collection of rules and parameters, and each
control block represents a single focus or unit of work to be
accomplished during a consultation. The control blocks are
related to each other through being in a hierarchy. For
example, in a computer fault diagnostic system, FCBs could
represent the CPU, disk drives, tape drives, and
communication channels. For an infectious disease system,
FCBs could represent the patient, cultures, organisms, and
therapies.

Each Focus Control Block can be replicated so that, for
example, a collection of rules could be replicated for each
culture that was taken for a given patient. The number of
instances can be controlled either statically in the control
block or dynamically through a rule.

Each FCB has a number of “properties,” which can be
spectfied to produce a desired control flow for that particular
unit of work. The control text is the major property in that
specification. An example of control text is

ASK (sky, wind);
DISCOVER;
DISPLAY prediction;

which would produce the following sequence of events. First,
the client would be asked for the values of sky and wind.
Next, the forward chainer would be invoked to find other
parameter values, and finally, the value found for prediction
would be shown to the client.

FCBs can be organized into a parent/child hierarchy. Also,
except for the root FCB, multiple copies (instances) of the
same FCB are allowed. An example of an FCB hierarchy is
illustrated in Figure 1.

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

Root FCB

FCB DI FCB D4

FCB- D2

FCB D3

4
| Fig :

% A Focus Control Block hierarchy.

Groups are named collections of similar ESDE/
VM objects (parameters, rules, and FCBs). The function of a
group is to facilitate reference to a number of similar
knowledge-base objects. For example, the names of several
parameters can be placed in a group so that they can be
referred to by a single name in a rule rather than by a list of
individual names.

Groups

Screens During a dialog with a client, ESCE/VM can
display questions and results of the consultation. The system
has built-in default screens. A knowledge-base builder can, in
addition, create his own screens of unique design and ask
one or more questions on a single screen. The screen is
designed with the aid of an interactive screen design editor.

Historical background: control

Some of the early rule-based expert systems, such as MYCIN
[1], had much of their control knowledge implicitly specified
in their rules. In effect, some of the rules were used as a type
of programming language. For these implicit control rules,
the premise clause order is very critical. In response to this
implicit control problem, Davis [2] proposed the use of
meta-rules which can contain strategy information as well as
control knowledge. In another approach, the program
Amord [3] reverts to a very primitive control mechanism
that has almost no built-in preconceptions.

In ONCOCIN [4], control knowledge is separated from
domain knowledge by the use of control blocks. The need
for screening-type rules is eliminated by the use of
contextual information, which defines when a rule can be
applied.

In NEOMYCIN [5], control knowledge is represented
abstractly, and separately, from domain facts and
relationships in basic operating units called tasks. These
tasks can form a hierarchical tree structure. 31

P. HIRSCH ET AL.

32

Name :

Print name: (FCB name displayed to client)

Date: (supplied by system

Author: (may be supplied from user profile)

Comments: (optional)

Initial instance query: (optional--Yes/No response is expected)
Announce message: (optional

Structure

Root : Parent: Descendents:

(FCB name or NONE) {FCB name or NONE) (FCB names or NONE)
Goals: | Initial data: | External data: | Results:
Parameters: | Rules:

Controt text: {primitives and strategies)

Multiple instance information

Maximum number of instances: (default is 1)

Distinguishing features: (asked at instantiation)

Additional instance query: (optional--Yes/No response is expected)

Some Focus Control Block properties.

CRYSALLIS [6] is a three-level hierarchical system.
Control within this system proceeds from the top level down
using strategy rules, task rules, and application domain rules,
in that order.

Georgeff [7] proposes a different approach for the control
of a system for developing plans or a sequence of actions.
His concept is to activate only a subset of the total rule set at
any given time.

In a prototype system of Reinstein and Aikins [8], control
knowledge is represented as antecedent rules which operate
on an agenda of pending tasks. In this system, domain facts
and relationships are represented separately in frame
hierarchies.

CENTAUR [9] is organized around frame-like objects
called prototypes. Knowledge is represented as a
combination of these prototypes and rules. Control
knowledge is represented separately within each prototype,
which gives a context-specific control structure.

ESDE/VM control

ESDE/VM extends the control work done in the previously
mentioned systems by providing an explicit, separately
manipulable control language in which to express a search
strategy and a set of alternative strategies with which to
make modifications to the basic control scheme. ESDE/VM
Focus Control Blocks are used to organize this control
structure.

It is important to distinguish between the operation within
ESDE/VM Focus Control Blocks and the operation within
contexts, such as in EMYCIN [10]. EMYCIN contexts
operate in an implicit, fixed, and prespecified manner. In
contrast, the control text in the ESDE/VM FCBs is
completely explicit and free-form. This text can be different
for each FCB, and it can combine forward chaining,
backward chaining, asking for data, displaying results, using
external data routines, and invoking other FCBs in any
combination, and as many times as desired. This difference

P. HIRSCH ET AL.

will become more apparent when we discuss the ESDE/VM
control components in more detail in the following sections.

o Focus Control Blocks

FCBs provide an overall control structure for ESDE/VM.
Each FCB represents a subtask for a given application. In
this respect only, FCBs are analogous to the “contexts” of
ONCOCIN [4], the “hypotheses” of NEOMYCIN (5], the
“prototypes” of CENTAUR [9], and the “processing states”
of the prototype system [8]. Each FCB has a number of
“properties,” which can be filled in to produce a desired
control flow for that particular unit of work. FCBs are
typically organized in a hierarchy as defined by the structural
properties (root, parent, and descendents) in each FCB. The
hierarchy of FCBs is used to resolve references to parameters
not associated with the current FCB. Parameters above the
current FCB in the FCB hierarchy are visible to that FCB.
Each FCB may incorporate groups of parameters defined as
goals, initial data, external data, and results, as well as
groups of rules. Each FCB also contains a set of control
language statements which are used to process the
parameters and rules associated with that FCB.

Just as EMYCIN allows multiple instances of its contexts,
ESDE/VM also allows multiple instances of an FCB. ESDE/
VM extends the EMYCIN work by allowing a user to specify
how many instances will be allowed (a positive integer or
any number), to automatically stop invocation of instances,
and to specify which parameter or group of parameters
distinguish one instance from another (distinguishing
features). For example, in an infectious disease expert
system, there could be any number of culture FCBs, and
culture-site could be a distinguishing feature. Figure 2 shows
some of the FCB properties.

o Control language
The ESDE/VM control language consists of seven control
primitives:

o ACQUIRE—get external data.

o ASK—ask user for data.

o DETERMINE—invoke backward chainer.
e DISCOVER—invoke forward chainer.

e DISPLAY—display data to user.

o ESTABLISH—initiate FCB processing.

o PROCESS—put external data.

All of these primitives, except DISCOVER, can specify
groups.of objects for their operands and, except for
PROCESS, the action specified in each primitive can be
modified by strategies. ACQUIRE obtains values from an
external data source, ASK interacts with a user to obtain
values, DETERMINE uses a backward chaining inference
engine plus information about the sources of new values
(i.e., from the user, from rules, from defaults, or from an

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

external data source) to find parameter values, and
DISCOVER uses a forward chaining inference engine over a
set of rules to find parameter values. Thus the knowledge-
base builder can tell the system not only which objects need
values, but also what method to use to find those values. The
other control primitives show parameter values (DISPLAY),
initiate processing of other FCBs (ESTABLISH), and pass
control to external data routines (PROCESS).

The control primitives typically operate on parameters,
e.g., DETERMINE size, color, weight; but thgy can also

operate on various FCB properties, such as initial data,
external data, results, and goals. For example, the statement

DETERMINE goals causes the system to determine values
for all of the parameters listed in the goals property of the
FCB using the backward chaining inference technique. Other
examples of control language statements include

ASK initial data,
where initial data is an FCB property containing a list of
parameters the values of which will be asked of the user.

DISCOVER
(has no operand, only has strategy options).

DISPLAY results,
where results is an FCB property.

ESTABLISH limit,
where limit is the name of an FCB.

The ACQUIRE and PROCESS control primitives are
discussed further in the section on the ESDE/VM external
interface.

o Strategies
ESDE/VM also contains a set of strategies which can be used
to modify statements in the control language:

o DONT ACQUIRE—exclude object(s) from ACQUIRE or
DETERMINE.

o DONT ASK-—exclude object(s) from ASK or
DETERMINE.

o DONT INFER—exclude object(s) from DETERMINE.

e FOCUS ON—consider object(s) first in DETERMINE.

¢ IGNORE—ignore object(s) during control action.

¢ ORDER BY—consider object(s) in this order.

e ORDER RULES BY—order rules by this criterion.

o STOP ON-—stop on this criterion in DISCOVER.

o USE—use object(s) during control action.

These strategies allow expression of strategical variations on
the basic control language statements. There are strategies
that specify the order of groups of objects given to a control
language statement (FOCUS ON, IGNORE, ORDER BY,
and ORDER RULES BY). For example, following is the
control statement and associated strategy that will order the
group of rules used to find a value for the parameter fault,

IBM). RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

| Name: machine
Parent: none. e
Descendents: pump, vacuum*chmber.

?aramecers minal—s miptoms: (power, -
Fights, smoke, (i), Fault, tause
‘Results: fault, cause .
Rules: par‘t‘indacf.ment rules‘
“"“E&‘é’;“’é? j-sympton
hitla *sympt s
DISCOVER

=AJSE art*mdzcment rules i
. DETERMINE .
. DIsRLAY rasults

Name: pump . ' Name vacuum*zhamtmr o
Parent: machine “Parentiimaching
Descendenns fong Descendents: none

Parameters: stangird-Sampla,
pressure; temperature.
sample~resulrs, vo.

Gaals: sample-results

Rules: filter-chack

Control texts o o

Parameters: piston, shaft;
pump*slatus, pump—function,

'Gaats punm*ﬁunctmm W :
Rules: cabla~check rule, ...
Control tewr: ° i
ASK:pump-status:
DET&RMI«_NE o8ls
zeFOLUS Npistw L

Sample FCB hierarchy for a fault detection problem.

putting those with the least number of unknown parameters
in their premise clauses first:

DETERMINE fault
—ORDER RULES BY Least Unknown Premises First.

Other strategies allow a user to alter the specified source of
an object during execution of a DETERMINE control
language statement (DONT ACQUIRE, DONT ASK, and
DONT INFER). As an example, the builder of an infectious
disease knowledge base could use the DETERMINE control
statement as shown below to find the identity of an
organism. If, in addition, one did not want the user of the
system to be asked the organism’s morphology, one could
add a DONT ASK strategy. Finally, if one also felt that the
site of the culture was important enough to be found first
when there was a choice of parameters to determine, one
could add a FOCUS ON strategy:

DETERMINE organism-identity
—DONT ASK morphology
—FOCUS ON culture-site.

The knowledge-base builder can specify a particular group
of rules, rather than all rules normally associated with an
FCB, to be used with a DISCOVER statement (the USE
strategy). In addition, one can define a stopping condition
for the DISCOVER statement (STOP ON). For example, if
one wanted to forward chain over a set of system-status
rules, stopping when the parameter speed became greater
than 200, the following control statement and strategies
could be used:

P. HIRSCH ET AL.

33

34

DISCOVER
—USE system-status rules
—3TOP ON speed > 200.

Sample FCB hierarchy

The fictitious example shown in Figure 3 for three FCBs in a
fault detection problem illustrates some of the control
language features of ESDE/VM. The root of the hierarchy in
this example is the Focus Control Block machine. Two
components of the machine, its pump and its vacuum-
chamber, are also represented as Focus Control Blocks. Each
FCB has a set of parameters and a set of rules which are used
to infer conclusions about the location and cause of the
machine fault. Rules and parameters may be listed singly,
for example, the temperature parameter and the cable-check
rule. ESDE/VM also permits the knowledge-base builder to
refer to a group of parameters or rules, for example, initial-
symptoms and part-indictment rules. Only a few of the FCB
properties are illustrated. A sample of control language is
shown for each FCB.

The control interpreter

Operation of the control interpreter is fairly simple. The
knowledge-base builder specifies one FCB as the root FCB.
This root FCB is invoked (instantiated) at the start of a
consultation. Upon entering an FCB, the interpreter begins
executing the control language statements in the order
specified. Reference to an object not contained in the FCB
or any of its parents causes an immediate change in focus to
the FCB which contains that object. The interpreter
continues invoking FCBs and executing their control
language statements until it has completed all work
generated from the initial FCB.

Historical background: external data

The simplest example of a special-purpose interface is to
pass data by file transfer. The DENDRAL [11] and PUFF
[12] programs use this technique. The ONCOCIN [4] and
ACE [13] programs are examples of expert systems which
have special-purpose interfaces to interact with external
database information.

Some expert system applications require the use of sensor-
based data, and some of the newer systems are also moving
into the real-time domain, where large quantities of rapidly
changing data must be efficiently processed. The Serum
Protein Diagnostic Program [14] obtains its sensor-based
data directly from the scanning densitometer itself. VM [15]
was specifically designed to interpret sensor-based data
obtained in an intensive care unit. PDS [16] is used for the
on-line diagnosis of a chemical process operation on a real-
time basis. NDS [17] is an expert system for fault isolation
in a nationwide communications network. YES/MVS [18] is
a continuous real-time expert system used to assist computer
operators in controlling an operating system.

P. HIRSCH ET AL.

An increasingly important expert system application area
involves the external interaction of a consultation or tutoring
system with a computer simulation model or a collection of
application programs.' SOPHIE [19] is used to teach
problem-solving skills in a simulated electronics laboratory
environment. REACTOR [20] is intended to assist plant
operators in handling nuclear reactor accidents. ELAS [21]}
integrates a production rule advice system directly with pre-
existing AMOCO programs for well-log analysis and display.
STEAMER [22] is an intelligent computer-based training
system which serves as an assistant in naval propulsion
engineering instruction.

The processing and interpretation of signal data is another
area of current interest in expert system research. HASP/
SIAP [23] is one of these programs; it is concerned with the
signal-to-symbol transformation problem. CRYSALIS [6]
automates the electron density map signal interpretation
process. LITHO [24] is a program for interpretation of oil-
well log data. The DIPMETER ADVISOR [25] is a
commercial expert system which is also a well-log
interpretation program.

ESDE/VM external interface

All of the expert system programs mentioned in the previous
section used special-purpose interfaces for sourcing external
data. In contrast, ESDE/VM does not have this restriction
since it provides three generalized procedural escape options:
the external data sourcing sequence specification, and both
the ACQUIRE and the PROCESS control language
primitive commands. ESDE/VM also provides some
general-service routines for use in the knowledge-base
builder’s application-specific procedures.

e External data routines

An ESDE/VM parameter can obtain its value in several
ways. This sourcing sequence is specified at the time the
knowledge base is developed by the knowledge-base builder.
Any or all of the sources

rule consequent
user input
apply default
external data

can be specified in any order. Thus, the first method of
getting data from an external source is provided by the
sourcing sequence property of a parameter. When the
ESDE/VM backward chaining inference process encounters
this external data option during a consultation run, it tries to
obtain the parameter value by invoking a specified
procedure. This procedural escape entry point is specified in
the procedure name property of the given parameter. Any
additional information needed by the external data routine,
such as file name and file type, can be specified in the
procedure arguments property of that same parameter.

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

Two of the control language primitives, ACQUIRE and
PROCESS, operate on external data and provide the second
and third external interfacing options for ESDE/VM.,

The ACQUIRE control language primitive command is
used to acquire ESDE/VM parameter values from an
external data source. The form of this command is

ACQUIRE External-Data USING Procedure-Name

where Procedure-Name specifies the procedural escape entry
point. External-Data is an FCB component containing either
a parameter name or a list of parameter names whose values
are to be obtained from the specified external data source.
Again, additional information can be specified in the
procedure arguments property of a given parameter.

The PROCESS control language primitive command is
used to pass control to an external routine. This option
provides a way for an external routine to access ESDE/VM
results during or after a consultation session. The form of
this command is

PROCESS ESDE/VM-Results USING Procedure-Name

As before, Procedure-Name specifies the procedural escape
entry point. ESDE/VM-Results represents either a parameter
or a list of parameters whose values are to be made available
to the external routine.

o External data services

ESDE/VM provides a set of general-service routines which
can be used in the external data procedures to obtain and
assign ESDE/VM parameter values and to perform other
utility functions. The functions of these routines are as
follows:

Utility services

e Get the name of a parameter that is the subject of either
the backward chaining facility or the ACQUIRE
command.

o Get the number of arguments being passed to the routine.

¢ Get the name of a parameter that is an argument.

o Get the argument data type (string, number, etc.).

o Get the number of values of an argument.

o Put a message into the trace file.

Services that obtain an argument value

¢ Get an alphanumeric string value.

o Get a number value.

o Get the certainty value of a boolean parameter.
o Get a hexadecimal string value.

o Get a binary string value.

Services that assign a valid value

¢ Set an alphanumeric string parameter value.
o Set a number parameter value.

o Set a boolean parameter certainty.

o Set a hexadecimal string parameter value.

o Set a binary string parameter value.

IBM J. RES. DEVELOP. VOL. 30 NO. i JANUARY 1986

Individual get/set commands were used, rather than a simple
generic get/set call, because of the strong data typing
characteristic of Pascal and the desire to avoid the use of
complex data structures. Also, it should be noted that this
general-service routine approach means that users do not
have to know ESDE/VM internal data structures, pointers,
etc., in order to write an external data program.

e Installing knowledge-base builder procedures
Knowledge-base builder application-specific procedures can
be written in any language that can be called from Pascal/
VS. Such languages include Pascal, PL/I, FORTRAN,
COBOL, and assembler. ESDE/VM has an external data
segment which contains a series of skeleton Pascal
procedures (i.e., procedures that contain no Pascal code) into
which user-written external procedures can be placed.

ESDE/VM also provides two EXECs and a macro to help
integrate the knowledge-base builder procedures with the
knowledge base. One EXEC is used to compile the external
data segment, and the other one is used for linking the
segment to ESDE/VM. The macro contains the library
routines needed when compiling the segment.

These user-written routines can call other subroutines
available to the user which are not in ESDE/VM. These
routines can also exit to user EXECs which contain simple
lists of commands that could, for example, be used to make
database inquiries.

o Knowledge-base builder procedures: an example

A knowledge base has been developed to produce legal
contracts for joint study activities with IBM customers, such
as universities and research organizations. Each such legal
contract is based both on some prepared sections of text that
are of a general nature and on some text based on the
particular circumstances for that customer contract.

To achieve this text integration, it is necessary to use
procedures that are specifically written for this contract
application to provide the output of the expert system to
IBM’s word processor, Documentation Composition Facility
(DCF).

Typical rules for such a legal contract system are as
follows:

IF output _owner is 'IBM'
THEN there is strong evidence that copyright is 'IBM
owns'

IF joint_effort is 'Jointly defined only'
and copyright is 'IBM owns'
and delivered __software is 'Marketable software'
and underlying._assumptions is true
and patents is 'Customer owns'
and patents is 'IBM has an unrestricted free license’
THEN there is strong evidence that contract_type is
'Jointly Defined, Software produced, IBM owns' 35

P. HIRSCH ET AL.

36

Focus: ibm contract: advisor (1) 26

PET. Help

PF2. . Review
PF3 - End

PFh. What

PS5 Quéstion
PEGUnknown

PE7 " Up

PEB - Down

PES: - Tab
Wit1 AITECH create marketable ‘software. under ‘this | /PFi0. How
cantract? PETT Why
(Choose’ vne of ‘the following!) PE12- Commard

Marketable Software
No: Marketable Software

Example of ESCE/VM client screen.

The English-like syntax of these rules allows a contract
relations person to build and maintain the application
knowledge base.

A typical end-user screen is shown in Figure 4.

The end user would then answer this and the subsequent
consultation questions to produce the final contract.

The dialog and system processing are driven by the ESDE/
VM Focus Control Blocks. These FCBs were developed by
the knowledge-base builder to process the rules and
parameters specified in the knowledge base. The statements
in this particular control text were as follows:

ASK initial data;
DETERMINE goals;

DISPLAY (contract_type,initial data,
royalties,third _party,customer_confidential,
pre_existing__work,sponsor,
academic_institution,copyright,patents,
joint__effort,delivered _software,
subsidiaries,goals);

PROCESS (fname,ftype,script__id,output2) USING writefile

The control text above provides the mechanism and
sequence of events for ESCE/VM to process the knowledge
that it has in its knowledge base as well as the knowledge
that it acquires from the client. The first statement, ASK
initial data, asks the user about parameters such as the name
of the customer, the customer address, or the starting date of
the contract. The second statement, DETERMINE goals,
indicates to ESCE/VM that the second order of business is
to use the backward chaining inference engine to obtain the
necessary goals, such as the type of contract or who should
own the patent rights. The third statement in the control text
is to DISPLAY (contract _type . . .); which will display to the
user the results of the consultation for review. The last

P. HIRSCH ET AL.

statement of the control text is where the external procedure
comes into play. The control text is PROCESS (argument
list) USING writefile. In this statement, the results of the
consultation contained in the parameter output2 are
processed and written to a file using a special external
procedure called writefile. The program writefile was written
in PASCAL specifically for this application. This is the
mechanism that Expert System Environment/VM employs
to tie together the results of the dialog with the word
processing system.

The resulting file has the following form:

.se compamt = '$500,000'

September 1. 1985

Professor Calclitus
Divector .of Special “Studies
ALTECH

1151-Vista Drive

Menlo Park; CA 94303

Dear Professor Caleulus:

This tetter: sets Fforth the Agreement between AITECH and
International Business Machines Corporation ("1BMY) refating
to ‘a Joint Effort’ to select weather models using expert
systems. It is the desire.of 'IBM. and AITECH to-gain: further
knowledge concerning the subject matter of ‘the Jdoint Effert.
The knowledge- and materials:1BM gains or receives:as:-a
result. of this Joint Effort may be used by 18BM:in the
design, manufacture; ‘yse, rentat, Tease, Ticense, sale, and
application of information protessing and related products
and. services. The parties agree as follows:

R SCOPE OF WORK

The. scope -of worky “including the:Joint ‘Effort
objectives, tasks to be performéd;
responsibii1ities of each party, Deliverables;
task/Deliverables. schedule . and. personnel
requirements, s set forth in Appendix.)} hereto
which Forms & part of ‘this Agreement:

2. COMPENSATION

2.1 i8M shall ‘pay AFTECH up ‘to $5005000 .in
compensation. for’ the performance of -the tasks set
forth: in-Appendix:} of . this Agreement .~ Such
payment:shall) include the' following itemsi travel,
sataries, computer timé. - This payment, based on
the expenses outliped.in Appendix ‘2, shall be made

as ‘follows:
Amoutit Payment Date
$200, 000 September . 1, 1985
§125,000 May 1, 1986
$175,000 August 31, 1986
2.2 18M. shiall: reimburse AITECH for gl reasonable

traveland ‘Fiving expenses aythorized in.advance
by [BM and ‘incurred in copnectian with this

i Agreement. It i¢ understood that reimbursements
for travel:and }iving expenses shall be in.amounts
which are consistent .with those received by -1BM
employees. performing comparable services on behalf
of [[BM.

2.3 AITECH will 'submit: invaiceés to. Bette Jones, 1530
Page.Mill Road, Palo Alto, CA.9k304, according to
the schedule in Section 2.1 above -for the services
furnished,. and 'monthly: for: the travel and living
expenses incurred hereunder -during the preceding
month; accompdn iéd by vouchers evidenging such
expenses, IBM shall .make paymient to AITECH within
thirty. (30) days after receipt of its invoice.

3. INFORMAT HON TRANSFERS

3.1 All information supplied-by either party shall be

el

{ Sample contract.

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

'August 31, 1986'
'$175,000'
'travel, salaries, computer time'

.se comdate3 =
.se compamt3 =
.s¢ compitem =

Acknowledgments
Jan Aikins and Harry Reinstein helped to develop ESDE/
VM’s control architecture, and Mary Degener provided the

.se comdatel = 'September 1, 1985’

contract example.

.se compamtl = '$200,000'
.se comdate2 = 'May 1, 1986’
.se compamt? = '$125,000' References

.cs 2 include

1.

E. H. Shortliffe, Computer-Based Medical Consultations:
MYCIN, American Elsevier, New York, 1976.

.cs 5 ignore 2. R. Davis, “Meta-Rules: Reasoning About Control,” Artif. Intell.
: 15, 179-222 (1980).
' 3. J. de Kleer, J. Doyle, G. L. Steele, Jr., and G. J. Sussman,
The statements are in the form required by the word “AMORD: Explicit Control of Reasoning,” SIGPLAN/SIGART
: s - Special Issue, pp. 116-125 (August 1977).
h 1 . .
processing system, DCF. and indicate that the variable 4. E. H. Shortliffe, A. C. Scott, M. B. Bischoff, A. B. Campbell, W.
compamt” (compensation amount) should be set to van Melle, and C. D. Jacobs, “ONCOCIN: An Expert System
$500,000 and that Section 2 should be included, but Section for Oncology Protocol Management,” Proc. 1JCAI-81, pp. 876-
. 881 (1981).
3 should not be mCl,Uded' 5. W.J. Clancey, “The Advantages of Abstract Control Knowledge
The word processing system uses these statements along in Expert System Design,” Proc. AA41-83, pp. 74-78 (1983).
with the standard text to meld together a contract, a portion 6. A. Terry, “The CRYSALIS Project: Hierarchical Control of
c e : . : Production Systems,” Heuristic Programming Project Report
of which is shown in Figure 5. Notice Ihi.n the type of No. HPP-83-19, Computer Science Department, Stanford
contract has been correctly selected, Section 2.2 on travel has University, CA, May 1983.
been included, and variable names such as compensation 7. M. P. Georgeff, “Procedural Control in Production Systems,”
. . . Artif. Intell. 18, 175-201 (1982).
amount have l?e(?n subst.lt'uted appropna.tely mn t}_“% text. 8. H. C. Reinstein and J. S. Aikins, “Application Design: Issues in
Although this is a fictitious contract with a fictitious Expert System Architecture,” Proc. IJCAI-81, pp. 888-892
customer, AITECH, the language is similar to the actual (1981). _ .
language contained in many IBM joint study contracts. By 9. ‘]'n[Se[[Alzl;)ln]S63P ;‘it(;’t(ylg‘g;; Knowledge for Expert Sysiems,” Artif.
employing this type of system, an end user can provide a 10. W. van Melle, “A Domain-Independent System That Aids in
finished contract to a customer in a shorter period of time Constructing Knowledge-Based Consultation Programs,”
. st “p Heuristic Programming Project Report No. HPP-80-22,
with the correct te.rms and Con.dltlo.ns. Tl.'le.ablhty of these Computer Science Department, Stanford University, CA, June
expert systems to integrate easily with existing computer 1980.
systems adds additional power to a useful technology. 1. R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J.
. s Lederberg, Applications of Artificial Intelligence for Organic
Other Expert System Env1r0nmc.m/VM applications have Chemistry: The DENDRAL Project, William Kaufmann, Inc.,
made use of general-purpose graphics procedures, large real- Los Altos, CA, 1980.
time data bases, and system hardware modeling programs. 12. J. 8. Aikins, J. C. Kunz, E. H. Shortliffe, and R. J. Fallat,
“PUFF: An Expert System for Interpretation of Pulmonary
Function Data,” Heuristic Programming Project Report No.
Summar]{ L. . . HPP-82-13, Computer Science Department, Stanford
ESDE/VM’s explicit representation of control know_ledge in University, CA, September 1982.
Focus Control Blocks allows the knowledge-base builder to 13. G. T. Vesonder, S. J. Stolfo, J. E. Zielinski, F. D. Miller, and
separate an expert system application into discrete units of D. H. Copp, “ACE: An Expert System for Telephone Cable
L. f obi d 11 Maintenance,” Proc. IJCAI-83, pp. 116-121 (1983).
work, each with its own set of objects and control language 14 M. Weiss, C. A. Kulikowski, and R. S. Galen, “Developing
statements. In addition, strategy options allow the Microprocessor Based Expert Models for Instrument
specification of variations on the control language Interpretation,”™ Proc. 1JCAI-81, pp. 853-855 (1981).
hi lici . kes th - 15. E. H. Shortliffe and L. M. Fagan, “Expert Systems Research:
statements. This explicit representation .rrlla €5 the expe Modeling the Medical Decision Making Pocess,” Heuristic
system design more transparent and facilitates easy Programming Project Report No. HPP-82-3, Computer Science
modification of the control strategy. Department, Stanford University, CA, March 1982.
VM’ | techni for i faci ith 16. M. S. Fox, S. Lowenfeld, and P. Kleinosky, “Techniques for
ESDE/VM's general technique for interfacing wit Sensor-Based Diagnosis,” Proc. IJCAI-83, pp. 158-163 (1983).
external procedures provides an effective way to use already 17. T. L. Williams, P. J. Orgren, and C. L. Smith, “Diagnosis of
available computer data and to send ESDE/VM results to Multiple Faults in a Nationwide Communications Network,”
R hi ESDE/VM Proc. 1JCAI-83, pp. 179-181 (1983).
other external routines. For this purpose, > / 18. R. L. Ennis, J. H. Griesmer, S. J. Hong, M. Karnaugh, J. K.
provides three options: the parameter sourcing sequence Kastner, D. A. Klein, K. R. Milliken, M. L. Schor, and H. M.
specification, the ACQUIRE control language primitive Van Woerkom, “A Continuous Real-Time Expert System for
A Computer Operations,” IBM J. Res. Develop. 30, 14-28 (1986,
command, and the PROCESS control language primitive this issue).
command. ESDE/VM also provides a set of general-service 19. J. S. Brown, R. R. Burton, and J. de Kleer, “Pedagogical,

routines which can be used by the external procedures to
access ESDE/VM data and to perform various utility
functions.

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

Natural Language and Knowledge Engineering Techniques in
SOPHIE I, Il and 111,” Intelligent Tutoring Systems, D. Sleeman
and J. S. Brown, Eds., Academic Press, London, 1982, pp. 227~

282. 37

P. HIRSCH ET AL.

38

20. W. P. Nelson, “REACTOR: An Expert System for Diagnosis
and Treatment of Nuclear Reactor Accidents,” Proc. AAAI-82,
pp. 296-301 (1982).

21. S. Weiss, C. Kulikowski, C. Apte, M. Uschoid, J. Patchett, R.
Brigham, and B. Spitzer, “Building Expert Systems for
Controlling Complex Programs,” Proc. AAAI-82, pp. 322-326
(1982).

22. J. D. Hollan, E. L. Hutchins, and L. Weitzman, “STEAMER:
An Interactive Inspectable Simulation-Based Training System,”
The AI Magazine 5, No. 2, 15-27 (Summer 1984).

23. H. P. Nij, E. A. Feigenbaum, J. J. Anton, and A. J. Rockmore,
“Signal-to-Symbol Transformation: HASP/SIAP Case Study,”
The AI Magazine 3, No. 2, 23-35 (Spring 1982).

24. A. Bonnet and C. Dahan, “Oil-Well Data Interpretation Using
Expert System and Pattern Recognition Technique,” Proc.
IJCAI-83, pp. 185-189 (1983).

25. R. G. Smith, “On the Development of Commercial Expert
Systems,” The AI Magazine S, 61-73 (Fall 1984).

Received April 23, 1985, revised September 3, 1985

Peter M. Hirsch 1BM Scientific Center, P.O. Box 10500, Palo
Alto, California 94304. Dr. Hirsch received his B.Sc. in applied
mathematics and engineering physics in 1961, his M.Sc. in
mathematics in 1966, and his Ph.D. in numerical analysis in 1966,
all from the University of Wisconsin, Madison. Prior to joining IBM
tn 1966, he was an instructor in the Mathematics Department at
Pennsylvania State University. He joined IBM at the Houston,
Texas, Scientific Center, working in the areas of power application
and computer generated holograms. Since joining the Palo Alto
Scientific Center in 1974, he has worked on expert systems, power
systems analysis, and energy. He received an IBM Division
Headquarters Excellence Award in 1982 for the development of
FORTRAN Ultilities for VM, an IBM Division Headquarters
Excelience Award in 1979, an IBM Outstanding Invention Award in
1969, an IBM First-Level Invention Achievement Award in 1970,
and an IBM Second-Level Invention Achievement Award in 1971,
Dr. Hirsch is a member of the American Association for Artificial
Intelligence and the Association for Computing Machinery.

William Katke /BM Scientific Center, P.O. Box 10500, Palo Alto,
California 94304. Mr. Katke has been involved in artificial
intelligence since 1967. While at the University of Wisconsin, he
worked on Autoling, a program that learns a syntax for natural
language. He also conceived and developed a program generation
system using semantic networks. Since 1974, he has worked for the
World Bank, the Computer Science Corporation, Advanced
Computer Techniques, and the Planning Research Corporation. His
experience includes the design of a back-end database system, the
design and development of a distributed electronic mail system for
IBM PCs, and the development of MsSpeller, a spelling correction
program for the Apple II. He joined IBM in 1984 to participate in
the development of Expert System Environment/VM, which has
been announced as a program offering. Mr. Katke received a
Director’s Award for his work on Expert System Environment/VM.

Michael Meier /BM Scientific Center, P.O. Box 10500, Palo Alto,
California 94304. Mr. Meier is a staff member in the expert systems
group at the Palo Alto Scientific Center, where he is involved in the
development of the Expert System Environment/VM. Prior to this
assignment, he worked in the service research knowledge-based
systems group on a prototype of the expert system environment

P. HIRSCH ET AL.

called Prototype Inference System (PRISM). Mr. Meier joined IBM
in 1978 as an MVS program support representative in the
Southfield, Michigan, Field Engineering branch office. Before joining
IBM, Mr. Meier was with Kimberly-Clark Corporation and Federal-
Mogul Corporation as a system programmer working primarily on
IMS and MVS. He has a B.S. in mathematics/computer science
from the Lawrence Institute of Technology, Southfield, Michigan.

Steven Snyder BM Scientific Center, P.O. Box 10500, Palo Alto,
California 94304. At present Mr. Snyder is working in the area of
expert systems. He defines requirements for, implements, and
maintains an experimental expert systems shell (PRISM). From 1980
to 1984, he was with Field Engineering Service Research in Palo
Alto investigating expert systems techniques, benefits, potential
application areas, and requirements. From 1965 to 1980, he held a
variety of positions with the Systems Manufacturing Division, the
Field Engineering Division, Systems Development Division, Systern
Communications Division, Data Processing Division, and the Field
Engineering Systems Center. Prior to joining IBM, Mr. Snyder was
with the U.S. Army and Allied Chemical Corporation, Buffalo, New
York. He attended the State University Agricultural and Technical
College, Alfred, New York, in 1959, the State University of New
York, Buffalo, from 1960 to 1962, and Arizona State University,
Tempe, from 1968 to 1969. In 1985 he received an IBM
Outstanding Technical Achievement Award for his work on the
Expert System Environment/VM program offering. Mr. Snyder is a
member of the American Association for Artificial Intelligence.

Richard E. Stillman IBM Scientific Center, P.O. Box 10500, Palo
Alro, California 94304. Dr. Stillman joined the IBM Research
Division in 1958 in a process control group. He is currently helping
to apply expert systems technology to IBM manufacturing
productivity improvement. Although he is located at the Palo Alto
Scientific Center, he reports to Manufacturing Research in
Yorktown Heights, New York. His past work has been in the areas
of expert systems, process simulation and optimization, and
numerical solution of differential equations. Dr. Stillman received
his B.S. from the University of Kansas, Lawrence, in 1951, his M.S.
from the University of Kansas in 1956, and his Ph.D. from the
Pennsylvania State University, University Park, in 1969, all in
chemical engineering. He is a member of the American Association
for Artificial Intelligence, the American Institute of Chemical
Engineers, Phi Lambda Upsilon, Sigma Tau, Sigma Xi, and Tau
Beta Pi.

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

