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The  Yorktown  Expert  System/MVS  Manager  (or 
YES/MVS for  short) is  a continuous real-time 
expert system  that exerts  active control  over a 
computing  system  and  provides advice to 
computer  operators.  YES/MVS  provides  advice 
on  routine  operations  and detects,  diagnoses, 
and  responds  to  problems  in  the  computer 
operator’s  domain.  This  paper  discusses  the 
YES/MVS  system,  its  domain of application,  and 
issues  that  arise  in  the  design  and  development 
of an expert system  that  runs  continuously  in 
real time. 

1. Introduction 
The  requirement for high availability and high performance 
in large computing installations has increased the  demand 
for fast and consistent  response to operational  problems. 
While automatic  aids for computer operators are needed, 
such  aids  would be very difficult to  implement  and  maintain 
in  procedural software, because the  operations  environment 
is characterized by high complexity and  continuous 
evolution. The use of  expert system technology  provides  a 
basis for the  implementation of operator aids that is capable 
of accommodating  the complexity of large system operation 
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and problem  handling, yet is very flexible and well suited to 
evolving with the changes  in an installation’s operations  and 
policies. 

YES/MVS’ (Yorktown  Expert  System/MVS  Manager) 
was designed to assist computer operators in carrying out 
their activities. It is an experimental facility developed to aid 
in  the real-time operation of  a large Multiple  Virtual 
Storage/System Product-Job Entry Subsystem 3 (MVS/SP- 
JES3) [ I ]  computing installation. We henceforth refer to 
MVS/SP-JES3 as  the target system. YES/MVS receives 
messages that would normally appear  at  an operator’s 
console. It submits queries and analyzes replies to ascertain 
the  status of the target system. Based on  that analysis, YES/ 
MVS submits active commands  to MVS and its subsystems. 
In solving problems,  YES/MVS also displays advice  for the 
operator  and indicates the  manual tasks that need to be 
performed. 

YES/MVS  addresses both  routine  actions taken  in 
operating the target system and  spontaneous problems that 
would normally be handled by an  operator.  The problems 
addressed include various  kinds of MVS-detected hardware 
errors, JES  queue space  depletion,  channel-to-channel  link 
problems, and subsystem abnormal ends.  Problems  detected 
and positive corrective actions  are displayed for the  operator, 
summary reports of incidents are generated, and individual 
incidents are automatically  reported to  the  appropriate 
systems programmers via an electronic  mail facility. 

* A preliminary and abbreviated description of YES/MVS was  presented at the 1984 

conference Droceedines  under the title “YESIMVS: A Continuous Real Time Expert 
National Conference on Artificial Intelligence and  appears on pages 130-136 of the 

System.” 



YES/MVS  employs the techniques of expert systems or 
knowledge-based systems in its implementation.  The 
problem-solving expertise of operators and systems 
programmers is encoded in a knowledge base using the high- 
level, declarative format of production rules. This knowledge 
base serves as a central repository  for  operational  procedures, 
providing a tool  for  formulating and enforcing  installation 
management policy. Since the knowledge base is  inherently 
modular, it is easier for it to  adapt  and evolve with the 
installation than would be the case with a  procedural 
encoding  of the knowledge. 

YES/MVS is among a few expert systems that execute 
continuously in real time ( e g ,  [2-41) and  that  can actively 
exert control over the subject being monitored. 

This paper  describes the design of  YES/MVS and reports 
the experience  gained in developing and using YES/MVS, 
with emphasis on design decisions and their  motivations. In 
Section 2, the problem domain  of  computer  operations is 
characterized, and in  Section  3, the specific subdomains 
chosen for early implementation in  YES/MVS are described. 
Section  4 contains a brief introduction  to  the OPS5 
production system language which was used in the 
development  of YES/MVS. In Section 5 the organization of 
YES/MVS is given, and  in Section 6, a specific subdomain 
of expertise is described in detail. The extensions to OPS5 
which provided the real-time control capabilities needed in 
YES/MVS are discussed in  Section 7. Experience  in 
developing, testing, operating, and evaluating YES/MVS is 
given in  Sections 8 and 9. Section 10 contains a brief history 
of the project, and Section 1 1 gives some conclusions 
reached  concerning the use of  expert systems for developing 
productivity aids for computer operators. 

2.  Problem  characterization 
The  computer  operations  environment is characterized by 
high and usually increasing complexity. Computer operators 
perform many  routine tasks, including mounting tapes, 
loading and changing  forms  in  printers,  answering  phones, 
and actively monitoring  the  condition of the target system. 
Operators additionally watch a number of  consoles  for a 
variety of messages that  may be volunteered by the target 
system, responding to problems as they arise. Problem 
resolution usually involves requesting more  informational 
messages, consulting system documentation,  submitting 
corrective commands, or calling  for  outside help. 
Informational message rates are often high and supporting 
documentation is usually voluminous. In some cases, fast 
operator reaction is required and  there is little opportunity 
to consult reference material or obtain outside help. 

Because the  operations  environment is complex and 
dynamic, a  long  training period is usually required to 
produce a skilled operator  at a given installation. Even the 
training of newly hired,  experienced  operators can represent 
a significant cost to  the installation,  since  operators’ 
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responsibilities vary with management policy, with the 
particular system configuration installed at a site, and with 
workload  characteristics. The problem  of operator  turnover 
is exacerbated by the  common practice of promoting 
experienced operators  to  other assignments,  such as  that of 
systems programmer. 

Thus,  the installation is an evolving entity with regard to 
both the technical environment  and its  personnel. 
Operational  procedures  must evolve along with the 
environment.  Formal descriptions  of  operational  procedures 
usually exist but  tend  to lag behind.  Consequently,  operators 
experiment and develop ad hoc solutions to operational 
problems. This results in an  approach  to problem solving 
that varies from  operator  to  operator  and increases the 
installation’s dependence  on specific personnel.  Particularly 
effective solutions are discussed among  the operators and 
become  part  of the installation’s  “operational folklore.” 
Unlike  formal  procedures,  these  operational  rules  of thumb 
are  not  documented  and distributed, and  thus  are  not 
performed  consistently.  Consequently, they cannot be 
subjected to periodic management review, nor  are they 
immediately intelligible to systems programmers who  later 
examine  the effects of operator  actions in  addressing system 
problems. 

complexity and speed requirements of the operator’s job, 
and  the  dynamic  nature of the installation call for more 
powerful installation management tools. In particular,  tools 
are needed to ease the workload of the  operator,  to provide 
fast, consistent  reactions to installation  problems, to decrease 
the installation’s dependence on specific personnel, to 
provide  a basis for enforcing  installation management 
policies, and  to provide  a facility for integrating new policies 
with old ones  and testing  their relative effectiveness. 

An often-asked  question is “Why aren’t some of the 
modifications being built into MVS/SP-JES3 itself, rather 
than building an external facility such as YES/MVS?” MVS/ 
SP-JES3 represents  a  product into which considerable effort 
has been expended in implementing  automatic recovery 
procedures.  However,  it is not economically feasible to 
endow MVS/SP-JES3 with the capability  of  responding to 
every possible operational difficulty, particularly since each 
site will have a different configuration,  workload, and 
operation policy. It is that remaining area  that becomes the 
operator’s domain of concern. Expert systems technology 
offers the promise of raising the threshold  of operator 
responsibility for  problem  response and resolution more 
easily than would be possible by making  modifications to  the 
operating system itself. 

The shortage  of skilled operators, the increasing 

3. YES/MVS application  domain 
Whereas  YES/MVS was developed  for  a specific target 
computer, its overall objectives correspond to those  outlined 
in the preceding  section: to provide fast, accurate, and 
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consistent responses, both  in routine  situations  and in 
problem  situations, and  to reorganize and reduce the 
message traffic that  an  operator  must deal with in the course 
of his or her activities. The flexibility offered by the use of 
expert system techniques allows for accommodating changes 
in the  computing  environment  at  the IBM Research Center 
at Yorktown Heights, NY, and for potential  future use at 
other installations. 

At the outset,  it was decided which operator activities 
should be included  in  YES/MVS  in order  to provide  a 
sufficient test of the benefits expected  from the use of  expert 
systems  techniques. The following subdomains were selected 
for implementation, since they touched a  majority  of those 
operator activities at  Yorktown which involve no physical 
intervention. 

Scheduling large batch jobs  offprime shift 
Large batch jobs  must be scheduled to balance 
considerations  of system throughput  and user satisfaction. 
These  considerations  may vary in  detail  from one 
installation to  another. They include ensuring that no jobs 
are indefinitely delayed, employing round-robin scheduling 
among users submitting multiple  jobs, giving priority to 
users who  are waiting on site or who require some  other 
special consideration, running longer jobs early in the shift, 
and  running only  those jobs  that  can be finished before a 
scheduled shutdown. Since new jobs  may arrive or be 
withdrawn during  the shift, initial  scheduling  may  have to be 
changed among  the  jobs  that  are still in the  queue. In 
Section 6, this particular subdomain is described in more 
detail. 

JES queue space management 
All jobs processed under MVS are staged from a central 
spool file, called the  Job  Entry Subsystem (JES) queue space, 
before, during,  and after  execution. The  operator is 
concerned with the  remaining available queue space, because 
the  Job  Entry Subsystem cannot recover if queue space is 
exhausted. When  the level of remaining  queue space 
becomes critically low, many  actions should be initiated to 
free additional space, such as altering the  printer utilization 
policy to allow the printing  of jobs which have  been held, 
and  dumping large print  jobs  to tape. In  extreme cases, the 
system should be made  to refuse new jobs  and  stop  data 
being transmitted  from  other systems. To initiate  such 
actions  the  operator makes use of the available facilities 
connected  to  the target MVS system. This  means  the 
operator has to perform some anticipatory actions (e.g., 
mounting a tape  to  dump  jobs) as queue space decreases, 
and before it  becomes critical. 

Problems in channel-to-channel links 
The networking  of computers  at  the  same site is often 
implemented by means of 1/0 channel-to-channel 

transmission links. Failure to  maintain these  links  in an 
active status  not only  delays data traffic but also can 
contribute  to  the exhaustion  of JES  queue space. Monitoring 
and corrective actions  include periodic  querying of the states 
of these links, using heuristics to infer line  degradation, 
attempting  to restart the links, freeing links  from 
troublesome  jobs, and rerouting the  data  through  other 
computers. 

MVS-detected hardware errors 
When MVS fails to recover from  a  detected  hardware error, 
the system notifies the  operator so that he or she  may 
attempt  to solve the  problem.  Due  to  the  time criticality of 
possible remedies  (such  as speedy reconfiguration), 
otherwise-recoverable situations may  result  in  a system crash 
since a human  operator  cannot respond  in time. Responses 
to  the most frequent hardware  problems  have been 
implemented in rules. These  rules are  not tied to a  particular 
hardware  configuration  but rather  make use of hardware 
configuration data placed in  YES/MVS. The hardware 
configuration data  are initially  loaded  from the files used in 
the MVS system generation process. 

SMF management 
The System Measurement Facility (SMF) provides access to 
information  on resource utilization  in MVS. There  are 
several routine  actions  that  must be taken to switch SMF 
buffers and manage SMF  data for accounting purposes. 
Some  actions  are triggered by MVS  events, others  are 
regularly scheduled. 

Quiesce and Initial Program Load 
Before a  planned shutdown  the target system must be 
“quiesced.” Routine quiescing and restarting  (Initial 
Program  Load or IPL) of MVS systems are  done  to test new 
versions of software, to install new hardware, and  to allow 
time for maintenance procedures. The quiesce  operation 
typically takes  approximately 30 minutes  and involves many 
operator actions. 

Currently, YES/MVS does  not have access to  the system 
console.  Hence,  it cannot trigger a system IPL. However, 
YES/MVS  does give advice on system IPLs, and it can  take 
over the  IPL activities once  the  connection  to  the system 
console  becomes  functional. 

0 Performance monitoring 
This task goes beyond the usual  scope of an operator’s 
activities. A  short-term goal is to interpret the  data from 
existing performance monitoring software and automatically 
detect and classify performance  problems  in real time, 
generating summary reports  in  hard  copy as well as  in 
computer graphics. This work continues,  and a goal is 
eventually to diagnose the cause  of  performance  problems 
and  to  take corrective  actions. 16 
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Background monitor 
In addition  to  the above subdomains, a set of  functions in a 
“background monitor” was implemented.  The background 
monitor periodically verifies that all parts of YES/MVS are 
operational and issues incident  reports on YES/MVS 
activities, both routine  and problem responses. Summary 
reports of incidents encountered  during a shift or day  are 
automatically  generated.  Using an electronic mail facility, 
descriptions of each  incident are sent to  the  appropriate 
systems  programmers and  to  the YES/MVS developers. This 
incident-reporting facility has  proven very useful for  alerting 
responsible personnel to system problems and for recording 
when problem  handling  code  in  YES/MVS was exercised. 
These  incident  reports were analyzed to  aid  in  the further 
development of the YES/MVS knowledge base. 

4.0PS5 
As a vehicle for implementing YES/MVS, a production 
system language, OPS5 [5, 61, was selected. OPS5 is one of a 
family of  expert system shells (languages with inference 
mechanisms)  developed at Carnegie-Mellon University. 
OPS5 had several advantages  for the YES/MVS project: 

It was flexible and modifiable. 
It could be converted to  run  under LISP/VM [7] on  an 
IBM computer. 
Its use of production rules as a knowledge base 
representation  seemed  naturally  suited to  the type of 
knowledge occurring in the  domain of computer 
operations. 
Its data-driven form of inference was particularly 
appropriate  to  the situation of responding  in real time  to 
information received from the target MVS system. 

These points  are elaborated throughout  the  remainder of the 
paper. We now proceed to describe the basic OPS5 
framework and reserve discussion of the extensions made  to 
OPS5 to enable it to be used in  a  real-time  application  until 
Section 7. 

An expert system written  in  OPS5 consists of three parts: 

Working memory, in which all the  data elements used or 
created during a problem-solving activity are stored. 
Knowledge base, in which the expertise of the  domain is 
encoded  in the form of situation-action or IF-THEN 
production rules. 
Inference mechanism or “engine,” which controls  the 
sequence of activity of the expert  system. 

These  three  parts are  mahtained as  separate  entities. This 
separation  represents an  important distinction between such 
an expert system and a  program  written  in  a  conventional 
procedural language, in which the knowledge and program 
control are  intermixed and often difficult to distinguish. 

(literalize printer-status Name uf workin8 mrmor)’ dement class 
reliable? Is the information reliable.? 
address Printer  uddress 
forms Dpe of printer forms 
line-limit 
current-job 

Maximum number .f lines ullowwl 
job number of the current job 

StdtUS) Other status injijrmution 

Definition of the  “printer-status”  class of working  memory  elements. 1 Specific  working  memory  elements  ofthis  class have  values  assigned 
2 to  some  of  the  six  indicated  attributes. 

(p jm:printer-status-update 
(task 

(printer-stetus-reply 

Name of rule 
Task identification 

Reply messare  from MVS 
‘T task-id jm:information-collection) 

f message-id iat8562 
T address <printer> 
T status <status> 
t forms <forms> 
t current-job <job> 
‘T line-limit <limit>) 

7jyx of message  is  primer  status 
Printer address 
Printer status 
Forms on the printer 
Current job 
Maximum number @ lines allowed 

(printer-status Printer status working memory 

‘Taddress <printer>) 
element 

Printer address 

Remove the reply 
Change the printer  .sta~us working 

memory  element 

-b 
(remove  2) 
(modify 3 

T reliable? yes Mark the information as reliuble 
tstatus <status> Updure status 
Tforms <forms> Update forms information 
tcurrent-job  <job> Updute current job 
tline-limit  <limit>)) Updute the line limit 

Example of an OPS5 production  rule from the JES queue  space  sub- 
domain.  This  rule is used  to  update  the  status of information  on  a 
given  printer  when  new  information  is  received.  Attributes  arc  pre- 
ceded  by t symbols.  Attribute  values  may  be  bound  to  variables 
which  can  then  be used in other  patterns  as  constraints. In the  case of 
values  which  are  variable,  the  variable  name is cncloscd in < > 

Each working  memory element is a member of a class. In 
each class definition an explicit list of attributes is given. Any 
particular  working  memory element belonging to  that class 
has values attached to  some of those  attributes. Figure 1 
contains  an OPS5  definition of the working memory element 
class “printer-status.’’ Included  in  the  definition is a list of six 
attributes which are associated with elements of that class. 

The second component of an OPS5 expert system, the 
knowledge base, contains knowledge encoded  in 
IF..  .THEN. . . production rules. The IF part  (left-hand side, 
LHS) specifies the  conditions which must be satisfied before 
the  actions specified in the  THEN part  (right-hand side, 
RHS) can be taken. We refer to  the members  of the IF part 
as  condition elements  and of the  THEN part  as  actions. 
Figure 2 shows a production rule  taken from the JES queue 17 
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Basic OPS5 inference cycle.  
. . . .. -. ._ .” I._ .. 

space subdomain. In this rule, the IF part  consists  of three 
condition elements, one of class “task,” one of class “printer- 
status-reply,’’ and  one of class “printer-status.’’ The 
condition  elements  appear above the right-pointing  arrow 
(-+). These conditions  must be satisfied: that is, particular 
instances  of the  three working memory  elements must be in 
working memory for the  rule  to be considered eligible by the 
inference  engine. Furthermore, these three working memory 
elements  must have mutual  conditions  that  are satisfied. For 
example,  both the “printer-status-reply” and “printer-status” 
working memory  elements have an  attribute “Taddress” with 
value given by the  same variable name <printer>. The value 
associated with this variable must be the  same in  both 
occurrences. 

If the inference  engine selects this particular rule for use, 
given that  the  condition  elements have been satisfied, the 
actions specified on  the right-hand  side are carried out. 
Usually such actions call for the modification or removal of 
existing working memory  elements (those referred to in the 
condition  elements of the rule) or the  addition of new 
working memory elements. The OPS5  terminology  for  these 
actions is MODIFY,  REMOVE,  and MAKE, respectively. In 
the case of this  particular rule, two  actions  are present. The 
first calls for the removal  of the “printer-status-reply” 
working memory  element used to satisfy the second 
condition in the IF part. The second calls for the 
modification  of the “printer-status”  working memory 
element, by filling in new or modified values which are 
obtained  from corresponding values in the “printer-status- 
reply” working memory  element which matched the second 
condition  element. 

The OPS5  inference or control mechanism uses an 
inference cycle consisting  of three phases: 18 
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1. Recognize, 
2. Conflict resolution, 
3. Act, 

and is illustrated in Figure 3. 
The  IF parts (or left-hand sides) of all rules in the 

knowledge base are  compared with the  current  contents of 
working memory  to  determine which rules  have  their 
condition  elements satisfied (recognition phase). The Rete 
matching process [8] used in  OPS5 is particularly efficient in 
carrying out this phase. A rule may have its IF part satisfied 
by more  than  one set of working memory elements.  Each 
combination of a rule and a set of matching working 
memory  elements is called an instantiation. The set of all 
such instantiations is called the conflict set. If the conflict set 
contains  more  than  one  instantiation, which is usually the 
case, then  the  control strategy is to select one of them  to 
execute (conflict resolution).  OPS5  provides  two conflict 
resolution strategies: LEX (lexical), which is used in YES/ 
MVS, and MEA (means-ends analysis). Both strategies 
prevent instantiations  from being executed more  than once, 
favor the most recently created data in  working memory, 
and give preference to rules with more specific IF parts. The 
THEN part (or right-hand  side) of the selected rule is 
executed (act phase). The  actions of the  THEN part 
normally  change the  contents of working memory (creating, 
modifying, or removing data elements).  They  may, however, 
also contain calls to LISP functions or to operating system 
facilities. 

After the  actions  are carried out,  the inference cycle is 
repeated. If no rules are  found whose IF parts are satisfied, 
an OPS5 system halts. 

/ 

5. YES/MVS organization 
In order  to be able to  handle  major incidents  in the target 
system,  YES/MVS runs in  a  separate computer  and is not 
dependent  upon  the target system for computing  time  and 
other resources. Its sole interface to MVS is through an 
emulated JES3 console,  appearing to MVS as a normal 
operator’s  console,  but  having the ability to be “read”  and 
“typed on” by YESIMVS. YES/MVS runs in three 
concurrently running virtual  machines under  the  VM/SP 
operating system [9]. Communication with the  emulated 
JES3 console is provided by the Centralized Computer 
Operation  Project  (CCOP) facility [ 101. (See Figure 4.) 

The Expert Virtual Machine executes the rules in the 
knowledge base, receiving messages and  submitting 
commands  to  the target  machine. The expert system also 
sends text for, and receives responses from,  the operator. 
The MVS Communications Control Facility (MCCF) 
Virtual Machine provides the  communications interface 
between the Expert Virtual Machine  and  the target 
system. 
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3. The Display Control Virtual Muchine provides the 
communications interface between the  human  operator 
and  the Expert  Virtual  Machine. It also transmits 
commands suggested by the expert system that  are 
authorized for  execution by the  operator  to MCCF. 
MCCF,  in turn, sends  these commands  to  the target 
system. 

This design has the following benefits: better management of 
the different processes which are  running asynchronously as 
parts of YES/MVS; relieving the expert system from low- 
level input/output considerations,  such as message and 
display screen formatting;  providing  a self-contained 
knowledge base, so that  operational policy description can be YES/MVS organization 
more easily read and modified. The  three virtual  machines 
are now described in more detail. 

LISP/VM environment. Working memory  contains all data 
used or manipulated in solving a  problem,  such as a model 

Subdomain  name  Number of Number of Number of 
rules WME classes attributes 

of all pertinent target system status  data. All target system 
messages that  are of importance  to YES/MVS are Batch scheduling 139 59 266 
automatically placed in working memory (after  translation C-to-C links 

JES queue space 104 61  175 
68 42 150 

into  the  appropriate  format by MCCF), where rules that Hardware  errors 87 33 167 
respond to those messages are triggered. SMF management 25 29 103 

Quiesce and IPL 52 51 I85 
41 16 66 

there is no  rule  to be fired, the cycle remains in  a wait state Background monitor 32 23 105 
In YES/MVS, the inference cycle never terminates.  When Performance 

until an external message is received in  working memory 
from  the target system or from  the  operator or until the  time 
amves  at which the creation  of  a new working memory 
element has been requested. 

All the rules for different subdomains of the operator’s 
actions coexist in one knowledge base. Some  data describing 
the YES/MVS  expert knowledge base are provided  in Table 
1. The average number of attributes per working  memory 
class is 3.9. The  maximum  number of attributes in  a 
working memory class is 21, and  the  minimum  number is 1. 

information  about  the matching contexts of all the rules in 
the knowledge base. Figure 5(a) displays a histogram of the 
rule set classified by number of condition elements. Figure 
5(b) classifies the rule set by number of attributes. Figure 
5(c) classifies the set of all condition  elements by number of 
attributes. 

Using the expertise  from  multiple subdomains together  in 

Three histograms  in Figure 5 give more detailed 

one expert system has several advantages  over  creating  a 
separate  expert  for  each subdomain in its own  virtual 
machine.  Since rules in  a given subdomain  may use some of 
the  same  status  information  that is needed by rules in 
another  subdomain,  one global model of the target system is 
kept in working memory.  This eliminates redundancy  and, 
hence,  inconsistency  across subdomains in the expert 

Total 548 314 1217 

system’s model of the target system. This design additionally 
allows the expert system to  control  the scheduling of actions 
in different subdomains, rather than leaving such  scheduling 
to  the underlying VM operating  system. 

The  MVS Communications Control Fucilit), Virtual 
Machine 
The second  virtual machine  runs  the MVS Communications 
Control Facility (MCCF), which is written  in REXX [ 1 I ]  
and assembly language. MCCF controls the receipt of 
messages from MVS and  the  formatting of commands 
specified by the expert  system. Thus,  the expert system is 
effectively insulated  from the format of MVS and JES 
messages/commands, and  the equivalent information is 
passed to/received from the Expert Virtual  Machine  in OPS5 
working  memory format.  This frees the knowledge engineer 
from concerns  about parsing messages and extracting 
internal character strings. 

capability. The desired messages are described in tables. the 
fields containing variable parameters are specified, and a 19 

MCCF provides  a table-driven match and translate 
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Attributes 

I 000 

800 
rz  
1 

0 - 8 600 
C 
.- 9 400 

6 
200 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 1 5 1 6  

Attributes 

Matching  contexts of the  rules in the  expert  knowledge  base: (a) 
Number of rules  with a given  number of condition  elements;  (b) 
number of rules with a given  number of attributes; (c) number of 
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description of the desired output  data  structure is included. 
When a desired message amves, it is identified and 
translated, and  the corresponding data  structure is sent on to 
the Expert Virtual  Machine.  Arriving messages that  are of no 
interest  are  discarded. MCCF also builds and  submits 
commands  to MVS upon receipt of a command  name  and 

I 20 associated parameters from the Expert  Virtual  Machine. 

The Display Control Virtual Machine 
The third  virtual machine  controls  the display facility and all 
interactions between YES/MVS and  the system operator. 
The  operator is provided with a  hierarchical collection of 
screens. The screen at  the  top level (see Figure 6) provides an 
overview of incidents that  do now or have recently required 
attention.  The  operator  may select a  problem  for  scrutiny, 
and a screen that is specific to  that problem is displayed. In 
the case of an incident,  such as depletion  of JES queue 
space, the screen would contain a text description of the 
problem,  a specification of the suggested response (including 
the specific commands  to be submitted),  a  justification  for 
the response, and a prognosis of the situation. In  the case of 
scheduling  batch jobs,  the detail screen, as illustrated  in 
Figure 7, shows the  status of jobs in the batch job  queue. 

This design was motivated by discussions with system 
operators  who  indicated that,  at a given time, they either 
were taking a  broad overview of the target system or were 
concentrating  on  one particular  situation. 

YES/MVS  can (as controlled by software switches that 
may be reset by the  operator) either take  actions 
automatically or give advice to  the  operator  on how to 
handle  situations. This is required because large computing 
centers are unlikely to  turn system operation  over to  any 
software facility without  a significant period of testing during 
which operators  can  maintain a manual override capability 
over the actions taken. 

The  actual  implementation of the display facility was 
carried out  through  the use of an OPS5 rule base, combined 
with calls to  the IBM Graphical  Data Display Manager [ 121 
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for  actual  presentation on  an IBM 3279 Color Display 
Station.  The  pertinent OPS5 statistics for the Display 
Control Virtual Machine  are given in Table 2. The average 
number of attributes per working memory class for  the 
display control knowledge base is 4. I .  The  maximum 
number of attributes in  a  working  memory class is 23, and 
the  minimum  number is I .  

The three  histograms  in Figure 8 are analogous to those 
given in Fig. 5 and describe the  matching contexts of all the 
rules  in the display control knowledge base. Color was used 
extensively in the design of the display screens at various 
levels. For example,  in the screen showing the  status of the 
batch job  queue,  jobs which are finished are shown  in green, 
jobs which are  running are  shown  in white, and  jobs which 
are  not yet run  are shown  in  turquoise,  in the  order in which 
they will start (or have  started) running.  Jobs in  hold  status 
are displayed in yellow separately below the non-held  jobs. 

6. A detailed look at one subdomain 
To give specificity to  some of the issues raised in the 
preceding section, we look in more detail at  the  subdomain 
of scheduling very large batch jobs for overnight  running. 

Knowledge acquisition 
To develop the knowledge base for this subdomain,  the 
operations staff and  management were interviewed to 
determine what  rules of thumb  and procedures they used in 
doing  the scheduling. The  major factors that emerged were 
the following: 

IBM J .  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 

1401 

120- 

100- 

rn 80- ' 60- 

40 - 

- 

I 

0 t  
0 

Condition elements 

700 1 
Attributes 

(C) 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

14 16 18 20 22 24 26 28 30  32  34  36 38 4042 

Attributes 

Table 2 Rule  and working memory statistics for the display 
control virtual machine. 

21 

R L. ENNlS ET AL. 



1. The overnight  batch shift is brought up in the evening 
and brought down  at  the  start of the  day shift. This 
contrasts with many MVS  installations which do not 
have explicit shift changeovers. This brought about 
requirements  to 
a. Not  schedule a job  that would not be completed 

b. Run  the larger jobs  at  the beginning (to give them 

c. Save the  shorter  jobs till near  the  end of the shift, to 

before the scheduled shift changeover. 

enough time  to be completed). 

better fit the available time left in  the shift. 
2.  Some users submit several (five, for example) multi-hour 

jobs;  they  expect that they will perhaps be run over 
several evenings (or if the shift load is light, they  may be 
run in one night). The  operations staff has  a policy of 
fairness among users; they do  not let five of user A’s jobs 
be completed while running  none of user B’s jobs. This 
requirement was eventually codified into a round-robin 
scheduling strategy: Don’t run  job N for user A if user B 
hasn’t had his job N - I run yet (assuming, of course, 
that user B has that  many jobs). 

3. The  jobs left in  the system from previous days  are given 
preference over  subsequently submitted jobs. 

4. Jobs having the  same  job  name  are  run serially. 
5. If a user has called the  operator  and asked for special 

treatment  (perhaps he or she is working late), the 
operators often give his or her job(s) preference. 

During  operation  the Batch Scheduler continually strives to 
derive  a  consistent  model  of  what the batch job  queue  order 
should be, based on (changing) information  from MVS. This 
approach is an  implementation of a type of  a Truth 
Maintenance System (TMS). (See [ 131 for further details.) In 
our case we have  a  model of a  real-time system. As the 
system changes  through time,  the “facts” representative  of 
the system change. Contradiction occurs between the 
changed facts and  the previously derived  consequences. 
Truth  Maintenance is the removal  of  now-inconsistent 
deductions  and  the  computation of new consequences in 
accordance with the changed facts, thus re-achieving a 
consistent  state. 

An example of a Truth  Maintenance rule is provided  in 
Figure 9. This is the case of maintaining  the  jobs  to be run 
in an ordered queue. Each job in the  queue has  a pointer  to 
the following job. Each job also has an order  number,  the 
sequence number of that job in  the  queue.  When a new job 
is inserted  in the  queue (or a job is  removed), the  order 
numbers need to be adjusted. The rule in Fig. 9 keeps the 
order  numbers “truthful.” The left-hand side  (LHS)  of the 
rule is the recognizer of  inconsistent data  in working 
memory,  and  the right-hand  side (RHS) provides a strategy 
for  changing the state  of  working memory  to achieve 
consistency  (as defined by the LHS). 

The rule recognizes an inconsistency  when  two  adjacent 
jobs in the  queue have order  numbers  that  are  not separated 
by 1. When  a job is  inserted,  this  rule fires repeatedly, 
advancing up the  queue, until all the  jobs have had their 
order  numbers properly reestablished. 

6. The shift start  and  stop  times  can change  dynamically; 
for  example,  a  hardware error  may require the system to 7. Real-time Control 
be given over to  the repair  personnel at 3 A.M., thus The MVS system being monitored  and controlled by YES/ 
shortening  the shift. MVS is, of  course, highly dynamic. Problem  states may  be 

7. New jobs  are dynamically  scheduled in as they amve.  entered spontaneously; problems  may disappear  in the 22 
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middle of attempted resolution. In this sense, the MVS 
world is highly nonmonotonic. It is impossible to  maintain 
an accurate  model  of MVS that is complete in all detail. 
Instead we maintain a model that provides  a  reasonably 
good  description  of the  status of MVS, from the viewpoint of 
operations. The model is updated whenever MVS gives 
pertinent status  information, either  voluntarily, based upon 
responses to queries, or upon acknowledgment messages to 
control  commands. Queries  of status  information  are 
submitted  at regular  intervals or may be triggered by events 
and  the need for information in the resulting analysis. The 
frequency of different queries varies enormously based on 
the volatility of the status data  invoked  and  on  the 
requirement for current  information. Extensive use of 
timestamps  and validity flags provides additional 
information  on  the “currentness” of MVS status. 

The  status model  of MVS is updated only on  the receipt 
of information from MVS. Attempts  to  compute  status  from 
history and  the anticipated response to stimuli are avoided, 
because of the  many possibilities that exist for  a stimulus  not 
to have the  intended effect. These  include delays in 
command submission or processing, conflicting commands 
from  operators, and nonresponse or errors in response to 
advice by operators.  When  YES/MVS is providing advice, as 
opposed to  submitting  control  commands directly,  there is a 
potential race condition between the existence of  a  problem 

g state  and  the submission  of  a  corrective command. It should 
be noted that this is an  inherent problem, and  the use of an 
automatic  control system such as YES/MVS  improves rather 
than exacerbates  such  situations. 

The next sections identify specific requirements  of an 
inference system which is to perform continuous, real-time, 
interactive control,  and describe  solutions in  terms  of 
various  extensions to OPS5. Some of  these  extensions take 
the form of new primitives; others  are LISP functions and 
macros  added  to  the OPSS environment. 

Responsiveness 
The ability of an inference  engine to process rules at a  speed 
commensurate with real-time control is a basic concern. We 
have improved  the speed of  execution of OPS5 by compiling 
the right-hand  side  (RHS) of the rule. (Such  a compilation 
process has been independently  introduced  in YAPS [ 141 
and in OPS83 [ 151.) The  matching process has been tuned 
with several LISP macros. Also, we distribute the rules 
among multiple  OPS5 systems using concurrent processes in 
the form  of  separate virtual machines  supported by a host 
computer. 

Timed productions 
Being able to initiate an action at a given time is one of the 
fundamental requirements  of  a  real-time control problem. 
With  a  data-driven inference engine,  this  includes the 
production of working memory elements at  some future 

time. We accomplish  this by defining  a new RHS action 
primitive for delayed production, TIMED-MAKE, which 
takes the  normal OPS5  MAKE arguments followed by either 
an absolute or a relative time specification. For example, 
execution of an  RHS action. 

(TIMED-MAKE query-request ftype jes-q-space (in <iv> 
<un>)) 

would cause the  production of a working memory element 
of class “query-request’’ with the value “jes-q-space” assigned 
to  the  attribute “type”  after  a  certain elapsed time, which is 
specified by the values assigned to  the variables <iv> and 
<un>, giving the interval and  unit of time, respectively. 

A timer function and  timer  queue were added as necessary 
support  functions for the  TIMED-MAKE action. To  support 
debugging, functions were provided to  manipulate  the  timer 
clock. 

Communications 
Another  requirement  of real-time processing is the ability to 
have distributed processes interact  in  a  timely  fashion. Fast 
communication is achieved by introducing a new 
communication phase in  the  normal OPSS inference cycle 
(recognize, conflict resolution,  act). During  the 
communication phase, external messages are picked up  and 
outbound messages are sent. Conflict resolution then takes 
place based on changes to working memory  as  the result of 
both RHS  actions  and  incoming messages. 

All messages are sent out by a communication primitive, 
REMOTE-MAKE, which takes the  same  arguments as the 
regular OPS5 MAKE  action, with an  additional  attribute 
“fRm-to:” whose value is the user-id of the  intended receiver 
virtual  machine. The message is actually sent by the host 
system’s program-level message sending  mechanism. The 
“fRm-to:” attribute-value  pair is changed, en route, to 
another  attribute  “fRm-from:” with the sender’s machine 
user-id as its value. In the following example,  a REMOTE- 
MAKE  action is  being sent  to  the virtual machine specified 
by the value of the variable <query>. In  the receiver virtual 
machine,  a working memory  element  of class “tape-drive- 
status-query” is to be created with attribute “Taddress” and 
value specified by the variable <tape>. 

(REMOTE-MAKE tape-drive-status-query frm-to: <query> 
faddress <tape>) 

The REMOTE-MAKE action,  as is the case with the 
TIMED-MAKE  action,  can use any  of  the OPSS functions 
to create result elements. Thus,  one  can write a meta-level 
REMOTE-MAKE rule, if desired, to create messages 
dynamically from templates,  defaults, and substituted values 
of bound variables. 
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For debugging purposes,  a global variable can be set to 
block the  actual transmission  of  elements  created by 
REMOTE-MAKE.  Then  the messages are displayed along 
with requests  for replies. When a reply is entered or selected 
from a pre-existing file using a  multi-window  interactive 
editor,  it is employed just  as if it came  from  another virtual 
machine. 

Need for explicit control 
There  are critical problems that require  a command 
sequence to be issued to MVS  without other queries or 
commands being interspersed. Hardware  error message 
handling is one such case. Such a  real-time requirement 
necessitates explicit control over the rule firing in  the 
inference engine. For this  purpose, the two  modes  of  OPS5 
conflict resolution, LEX  and MEA, were extended by a 
Priority  Mode which has  precedence  over these. 

To  implement  the priority  mechanism,  each  rule  has an 
additional left-hand side  (LHS) condition  element (TASK 
ftask-id  XXX), where XXX is  a unique task name or a list 
(expressed as  an OPS5  disjunction) of task names  to which 
the rule is relevant. Each such task-id XXX has an 
associated priority. The conflict resolution phase of OPS5 is 
modified so that  the active conflict set is temporarily  reduced 
by excluding all active rules that do not have the highest- 
priority task among  the set. Then,  the  normal OPS5 conflict 
resolution process acts on  this reduced set. The task working 
memory  elements  as well as associated priorities are defined 
either by a top-level MAKE or by an  RHS  action. Tasks can 
thus be dynamically  created or destroyed. The priority can 
also be dynamically computed as an  RHS action  of  a rule. 

in Figure 10, indicating the  introduction of external and 
The modified inference cycle used in YES/MVS is shown 
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timed events and  the use of priorities. As an alternative to 
implementing  the priority control  mechanism,  the MEA 
strategy could  have been used for this  purpose by carefully 
making  ordered “goal” working memory elements and using 
them for priority  control,  having them be the first condition 
element of the rules. However,  this  would usurp  the MEA 
mechanism  for this purpose and  make it  unavailable for 
other uses. Also, the priority of a  rule  would be obscure, 
being dependent  on  the  order  in which the  MAKE  actions of 
the MEA goals were done. 

The priority control mechanism effectively satisfies our 
real-time control needs. It also allows control over rule 
interaction between different subdomain areas. While meta- 
rules could  have  been used to refine the conflict resolution 
strategy, we found  that  the priority control mechanism 
offered an equivalent  capability  without incurring  the 
overhead and complexity  of  such  a facility. (Benjamin and 
Harrison [ I61 use meta-rules  for  a different purpose: 
reasoning about  the  contents of the conflict set.) 
Furthermore, it  provides  a  rule-grouping  paradigm  similar to 
the use of contexts  in EMYCIN [ 171 and rule-groups for HH 
rules in  EXPERT [ 181. 

Requirements for continuous operation 
There  are  at least three basic requirements for  operating in a 
continuous mode: 

1. The inference  engine  should not  terminate when no rule 
is eligible to fire. We implemented  an OPS5 rule OPS- 
WAIT, which puts  the system into a waiting mode. Any 
external message (including  a timer event)  causes the 
system to resume, with the new data  added  to working 
memory. 

2 .  The system should ideally run  on a special-purpose, high- 
availability computer, different from  the subject machine. 
If the host computer itself or the virtual  machines 
comprising the system go down,  the system must be 
restarted. We call an  automatic restart  procedure during 
the host computer initial  program  load and also when  a 
down machine is  detected during a  periodic mutual 
polling among virtual machines of the system. 

3. Working memory  elements  that have served their 
purposes must be removed. The  accumulation of old 
useless data in the working memory  not only  creates  a 
memory space  problem in  continuous  operation,  but, of 
more  importance, instantiates the wrong  productions  in  a 
data-driven  inference  engine,  such  as  OPS5. We have 
made use of  many different “garbage collection” 
techniques (RHS actions) to remove  old data, including 
the  one illustrated  next. 

Removal of multiple  working memory  elements  must be 
done carefully so as not  to trigger rules unintentionally 
which might be satisfied when  only  a  partial set of working 
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memory  elements  had been  removed. For example, the 
ability of a rule  to fire may depend  not only on  the presence 
of some elements, but also on  the absence  of  others. The 
priority mechanism  can  be used to cause an  atomic 
procedure, as shown  in the three-rule  example in Figure 11. 
(This also illustrates the  dynamic creation  of tasks.) Suppose 
the  normal operating  priority is 100. The priority for the 
CLEAN-UP task  would be set low, say, at 50. Define 
another task name, IN-CLEAN-UP, with a priority, say, 
150, which is higher than  the priority of other tasks. The 
CLEAN-UP task is created in  the system as a permanent 
working memory  element  during initialization. 

it and so does  not fire until all garbage has been removed, 
due  to  the conflict resolution mechanism of OPS5. 

The final rule  in Fig. 1 1 is less specific than  the rule above 

8. Developing YES/MVS 
From  the knowledge engineer’s perspective, it is more 
difficult to develop  rules that interact with both the target 
system and  the  operator  than  to develop  rules that assume 
full control over the target system. Interaction with the 
operator requires that all actions  not only make sense to  the 
target  system, but also are reasonable in  timing  and  quantity 
to  the operator. 

Knowledge acquisition 
Domain knowledge sources for YES/MVS  included one 
operations expert  dedicated  full-time to  the project, MVS 
operators  and  operations managers,  resident  systems 
programmers, system manuals, operator console  traces  of 
responses to  actual problems, and, occasionally, the 
designers of the MVS  operating system itself. 

Intensive  meetings with the primary  expert culminated  in 
the  formulation of strategies for  problem  handling  in  each of 
the selected subdomains. Knowledge engineers then 
produced documents detailing  these strategies and 
distributed the  documents  to several experts for feedback. 
This served the  dual purpose  of  correcting  misconceptions 
and of  uncovering  considerations that  had  not yet surfaced. 
Observation  of operator  actions  and  the  examination of 
console  traces by knowledge engineers unearthed  additional 
details that  the experts  had omitted or not emphasized.  A 
common problem  in  expert  systems  development is that 
experts  often fail to describe knowledge completely, at least 
in the initial phases of  a project. In part,  this is what 
motivates a software  organization that facilitates incremental 
development. 

Rules were coded  in  each  of the subdomains. The rule 
coding process was facilitated by a programming 
environment  in which the LISP/VM  system, on which OPS5 
was built, and  the system editor exist as co-routines. 
Thereafter followed a  period  of  iterative information 
gathering, testing, and debugging. Information gathering 
took  the  form of additional discussions and “rule 

(p start-clean-up 
(task  ?task-id CLEAN-UP) 

(make  task  ?task-id IN-CLEAN-UP) 
+ 

(p doing-clean-up 
(task  ?task-id IN-CLEAN-UP) 
{<garbage> [List of working  memory 

element names to be  removed]} 
+ 

(remove <garbage>)) 

(P{<done-task> 
clean-up-done 

-* 
(task  ?task-id  IN-CLEAN-UP)} 

(remove <done-task>)) 

Low-priority  rule 
that fires when no 
other  normal  action 
rules fire. 

fires and removes 
This rule repeatedly 

all garbage  as  an  atomic 
procedure,  at high 
priority. 

This rule removes the 
IN-CLEAN-UP task which 
is now garbage and the 
system  reverts  back  to  a 
low-priority  CLEAN-UP  mode. 

8 Three  rules  illustrating the collection of unneeded  working  memory 
elements  as an atomic  action. 

walkthroughs” with the  operations staff. Systems 
programmers were consulted  in cases of inadequate 
information or conflicting viewpoints. 

Testing 
It was established early in the project that  the complexity 
and  dynamics of the MVS environment would  prohibit the 
construction of an MVS simulator against which to test 
YES/MVS. Testing on a system that is not in  production use 
frequently omits  much of the complexity of a running 
production  environment.  Thus,  the primary  testbed  for 
YES/MVS has been the  actual  operations  environment of a 
production system. Still, there have been challenges. It is 
hard to  manufacture  some kinds of target system problems, 
for  example,  hardware failures. 

presented another testing consideration. While tests 
involving  “sabotage” of the target system were performed off 
shift, some users were nonetheless affected. Also, the 
dynamics of a production workload make problem re- 
creation difficult when tests of  modifications to  the 
knowledge base are being  made. 

Balancing testing  objectives with service degradation 

9. Operation and evaluation of YES/MVS 
During initialization, the central processor utilization 
averages 0.5% of an IBM 308 1-K processor for the Expert 
Virtual Machine  and 0.86% for the Display Control Virtual 
Machine. During  normal  running,  the average usage is 0.3% 
and 0.57%, respectively. 

YES/MVS  ran regularly at  the Yorktown Computing 
Center  during a period of over nine  months.  (The  functions 
and capabilities  of  YES/MVS are currently being replaced by 
a  second version.) YES/MVS itself enjoyed reasonably high 
availability, although this result was achieved only after 
considerable effort. For example, rules were added to  the 
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using a  simulated set of messages from MVS. Testing during 
the fall was primarily  limited to exercising individual 
subdomains with canned  data. In February 1984, on-line 
testing of an integrated system was begun, using a  schedule 
of two  evening sessions each week. On April 12, electronic 
mail was received from  a member of the  operations staff 
commenting positively about  the advice provided by YES/ 
MVS concerning the canceling and restarting of channel-to- 
channel links. By May, the system was providing  advice to 
operators, using the knowledge bases for some  subdomains, 
while testing continued in  others. Statistics on YES/MVS 
availability began to be gathered. (See Figure 12.) The YES/ 
MVS system was demonstrated  during  an IBM exhibit at  the 
1984 National  Conference on Artificial Intelligence, held 

1 YESlMVS operations statistics. August 6- 10 in  Austin, Texas, emphasizing the two 
subdomains of JES  queue space monitoring  and batch job 
scheduling. 

background monitor  subdomain  to test the  status of the 
other  two virtual  machines. Checkpoint  and recovery 
procedures were added as well. Tests were built into  the 
Expert  Virtual Machine  to  ensure  that  errant messages were 
accounted for and retries sent, if necessary. Generally, YES/ 
MVS went down  only  when the host computer went  down. 

Eventually,  YES/MVS ran fully authorized, taking  action 
automatically and subsequently notifying the operator. 
Operations staff members were enthusiastic about  the project 
and informally  reported that YES/MVS successfully detected 
and responded to problems in  the  subdomains  implemented. 
For example,  YES/MVS had alerted  operators to channel-to- 
channel link  problems  of which they were unaware and 
guided the operators in resolving these  problems. In 
developing  YES/MVS the best expertise was sought, and 
operators have  reported  learning  better  techniques  for 
handling  problems by following the advice  provided by YES/ 
MVS. The YES/MVS Batch Scheduler and  SMF Manager 
were routinely used and were significant productivity  aids to 
operators. 

10. Project history 
The project was begun early in  1983  as  a  collaborative effort 
on  the  part of the Expert  Systems Group  and  the Expert 
Systems for Systems Management  Group.  The  group began 
as a six-person effort, augmented by a  seventh person from 
the  computing  center  who  joined  the  group  on sabbatical 
assignment and served as  the resident  expert. By late 1983 
two additional  members  had been added. 

A  three-day work session at  the beginning of the project 
determined  the scope  of the initial effort in  terms of the 
subdomains  to be covered. Responsibility for each 
subdomain was divided among  the project  members. 
Demonstrations of  two of the  domains, JES queue space 
monitoring  and batch job scheduling,  together with the 
operator’s  console display, were first given in  the fall of 1983, 

11. Conclusions 
There is significant economic value in  a facility that will 
increase either  the productivity  of computer operators or the 
quality of the function  they provide. Still, there  are  inherent 
problems of 

1. Complexity of the problem domain, 
2.  Variation  in  operational policy from one  computer 

3. Evolution of the  computer system and of  operational 
installation to the next, and 

policy at  any  one site. 

In the  development of YES/MVS, we have found  the “IF 
condition,  THEN  take  action”  format of production rules to 
have  advantages  in  addressing all of the  three  mentioned 
difficulties that  are  inherent in the operator’s task. 

The modularity of production rules encourages writing 
software that is relatively easy to read and modify. This 
should  tend to simplify the long-term maintenance of an 
operator’s knowledge encoded in  production rules. It is also 
well understood that  the process of  encoding an expert’s 
knowledge must be done incrementally, and  the modularity 
of production rule software helps support  this incremental 
development. 

We found  that  our  computer operators  most  frequently 
describe their knowledge in sentences  such as  “When I see 
this. . . and  this. .  . , then I do  this. .  . and  this. .  . .” 
Similarly,  a standard  statement of  operational policy would 
be of the  form  “under circumstances . . . , take actions . . . in 
order to change  from  resource  allocation  scheme  A to 
resource  allocation  scheme B.” We conclude  that  production 
rules  invoked through a  data-driven  inference  mechanism 
provide  a natural representation  for  these forms of 
operational knowledge. 

operational policy and because YES/MVS  has established 
Because production rules are a natural vehicle for  stating 

R. L. ENNIS ET AL. IBM J .  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 



the feasibility of  encoding the complexity of operators’ 
knowledge about  computing system problem diagnosis and 
recovery, additional work on YES/MVS  has received strong 
support. A  second version of YES/MVS is being developed 
by the Expert  Systems for Systems Management  Group.  This 
second version will be installed at several large IBM 
computing centers. It will contain software to address 
problems that  are sufficiently uniform  that generally 
applicable knowledge can  be used to  control diagnosis and 
corrective  actions. It will also  emphasize  software  constructs 
that  support  the  natural  statement  and direct 
implementation of knowledge about  the operational policy 
that is unique  to a particular computing installation. 
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