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The Yorktown Expert System/MVS Manager (or
YES/MVS for short) is a continuous real-time
expert system that exerts active control over a
computing system and provides advice to
computer operators. YES/MVS provides advice
on routine operations and detects, diagnoses,
and responds to problems in the computer
operator’s domain. This paper discusses the
YES/MVS system, its domain of application, and
issues that arise in the design and development
of an expert system that runs continuously in
real time.

1. Introduction

The requirement for high availability and high performance
in large computing installations has increased the demand
for fast and consistent response to operational problems.
While automatic aids for computer operators are needed,
such aids would be very difficult to implement and maintain
in procedural software, because the operations environment
is characterized by high complexity and continuous
evolution. The use of expert system technology provides a
basis for the implementation of operator aids that is capable
of accommodating the complexity of large system operation
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and problem handling, yet is very flexible and well suited to
evolving with the changes in an installation’s operations and
policies.

YES/MVS’ (Yorktown Expert System/MVS Manager)
was designed to assist computer operators in carrying out
their activities. It is an experimental facility developed to aid
in the real-time operation of a large Multiple Virtual
Storage/System Product—Job Entry Subsystem 3 (MVS/SP-
JES3) [1] computing installation. We henceforth refer to
MVS/SP-JES3 as the target system. YES/MVS receives
messages that would normally appear at an operator’s
console. It submits queries and analyzes replies to ascertain
the status of the target system. Based on that analysis, YES/
MYVS submits active commands to MVS and its subsystems.
In solving problems, YES/MVS also displays advice for the
operator and indicates the manual tasks that need to be
performed.

YES/MVS addresses both routine actions taken in
operating the target system and spontaneous problems that
would normally be handled by an operator. The problems
addressed include various kinds of MVS-detected hardware
errors, JES queue space depletion, channel-to-channel link
problems, and subsystem abnormal ends. Problems detected
and positive corrective actions are displayed for the operator,
summary reports of incidents are generated, and individual
incidents are automatically reported to the appropriate
systems programmers via an electronic mail facility.

* A preliminary and abbreviated description of YES/MVS was presented at the 1984
National Conference on Artificial Intelligence and appears on pages 130-136 of the
conference proceedings under the title “*YES/MVS: A Continuous Real Time Expert
System.”
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YES/MVS employs the techniques of expert systems or
knowledge-based systems in its implementation. The
problem-solving expertise of operators and systems
programmers is encoded in a knowledge base using the high-
level, declarative format of production rules. This knowledge
base serves as a central repository for operational procedures,
providing a tool for formulating and enforcing installation
management policy. Since the knowledge base is inherently
modaular, it is easier for it to adapt and evolve with the
installation than would be the case with a procedural
encoding of the knowledge.

YES/MVS is among a few expert systems that execute
continuously in real time (e.g., [2-4]) and that can actively
exert control over the subject being monitored.

This paper describes the design of YES/MYVS and reports
the experience gained in developing and using YES/MVS,
with emphasis on design decisions and their motivations. In
Section 2, the problem domain of computer operations is
characterized, and in Section 3, the specific subdomains
chosen for early implementation in YES/MVS are described.
Section 4 contains a brief introduction to the OPS5
production system language which was used in the
development of YES/MVS. In Section 5 the organization of
YES/MVS is given, and in Section 6, a specific subdomain
of expertise is described in detail. The extensions to QPS5
which provided the real-time control capabilities needed in
YES/MVS are discussed in Section 7. Experience in
developing, testing, operating, and evaluating YES/MVS is
given in Sections 8 and 9. Section 10 contains a brief history
of the project, and Section 11 gives some conclusions
reached concerning the use of expert systems for developing
productivity aids for computer operators.

2. Problem characterization
The computer operations environment is characterized by
high and usually increasing complexity. Computer operators
perform many routine tasks, including mounting tapes,
loading and changing forms in printers, answering phones,
and actively monitoring the condition of the target system.
Operators additionally watch a number of consoles for a
variety of messages that may be volunteered by the target
system, responding to problems as they arise. Problem
resolution usually involves requesting more informational
messages, consulting system documentation, submitting
corrective commands, or calling for outside help.
Informational message rates are often high and supporting
documentation is usually voluminous. In some cases, fast
operator reaction is required and there is little opportunity
to consult reference material or obtain outside help.
Because the operations environment is complex and
dynamic, a long training period is usually required to
produce a skilled operator at a given installation. Even the
training of newly hired, experienced operators can represent
a significant cost to the installation, since operators’
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responsibilities vary with management policy, with the
particular system configuration installed at a site, and with
workload characteristics. The problem of operator turnover
is exacerbated by the common practice of promoting
experienced operators to other assignments, such as that of
systems programmer.

Thus, the installation is an evolving entity with regard to
both the technical environment and its personnel.
Operational procedures must evolve along with the
environment. Formal descriptions of operational procedures
usually exist but tend to lag behind. Consequently, operators
experiment and develop ad hoc solutions to operational
problems. This results in an approach to problem solving
that varies from operator to operator and increases the
installation’s dependence on specific personnel. Particularly
effective solutions are discussed among the operators and
become part of the installation’s “operational folklore.”
Unlike formal procedures, these operational rules of thumb
are not documented and distributed, and thus are not
performed consistently. Consequently, they cannot be
subjected to periodic management review, nor are they
immediately intelligible to systems programmers who later
examine the effects of operator actions in addressing system
problems.

The shortage of skilled operators, the increasing
complexity and speed requirements of the operator’s job,
and the dynamic nature of the installation call for more
powerful installation management tools. In particular, tools
are needed to ease the workload of the operator, to provide
fast, consistent reactions to installation problems, to decrease
the installation’s dependence on specific personnel, to
provide a basis for enforcing installation management
policies, and to provide a facility for integrating new policies
with old ones and testing their relative effectiveness.

An often-asked question is “Why aren’t some of the
modifications being built into MVS/SP-JES3 itself, rather
than building an external facility such as YES/MVS?” MVS/
SP-JES3 represents a product into which considerable effort
has been expended in implementing automatic recovery
procedures. However, it is not economically feasible to
endow MVS/SP-JES3 with the capability of responding to
every possible operational difficulty, particularly since each
site will have a different configuration, workload, and
operation policy. It is that remaining area that becomes the
operator’s domain of concern. Expert systems technology
offers the promise of raising the threshold of operator
responsibility for problem response and resolution more
easily than would be possible by making modifications to the
operating system itself.

3. YES/MVS application domain

Whereas YES/MVS was developed for a specific target

computer, its overall objectives correspond to those outlined

in the preceding section: to provide fast, accurate, and 15
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consistent responses, both in routine situations and in
problem situations, and to reorganize and reduce the
message traffic that an operator must deal with in the course
of his or her activities. The flexibility offered by the use of
expert system techniques allows for accommodating changes
in the computing environment at the IBM Research Center
at Yorktown Heights, NY, and for potential future use at
other installations.

At the outset, it was decided which operator activities
should be included in YES/MVS in order to provide a
sufficient test of the benefits expected from the use of expert
systems techniques. The following subdomains were selected
for implementation, since they touched a majority of those
operator activities at Yorktown which involve no physical
intervention.

o Scheduling large batch jobs off prime shift

Large batch jobs must be scheduled to balance
considerations of system throughput and user satisfaction.
These considerations may vary in detail from one
installation to another. They include ensuring that no jobs
are indefinitely delayed, employing round-robin scheduling
among users submitting multiple jobs, giving priority to
users who are waiting on site or who require some other
special consideration, running longer jobs early in the shift,
and running only those jobs that can be finished before a
scheduled shutdown. Since new jobs may arrive or be
withdrawn during the shift, initial scheduling may have to be
changed among the jobs that are still in the queue. In
Section 6, this particular subdomain is described in more
detail.

o JES queue space management

All jobs processed under MVS are staged from a central
spool file, called the Job Entry Subsystem (JES) queue space,
before, during, and after execution. The operator is
concerned with the remaining available queue space, because
the Job Entry Subsystem cannot recover if queue space is
exhausted. When the level of remaining queue space
becomes critically low, many actions should be initiated to
free additional space, such as altering the printer utilization
policy to allow the printing of jobs which have been held,
and dumping large print jobs to tape. In extreme cases, the
system should be made to refuse new jobs and stop data
being transmitted from other systems. To initiate such
actions the operator makes use of the available facilities
connected to the target MVS system. This means the
operator has to perform some anticipatory actions (e.g.,
mounting a tape to dump jobs) as queue space decreases,
and before it becomes critical.

o Problems in channel-to-channel links
The networking of computers at the same site is often
implemented by means of I/O channel-to-channel
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transmission links. Failure to maintain these links in an
active status not only delays data traffic but also can
contribute to the exhaustion of JES queue space. Monitoring
and corrective actions include periodic querying of the states
of these links, using heuristics to infer line degradation,
attempting to restart the links, freeing links from
troublesome jobs, and rerouting the data through other
computers.

o MVS-detected hardware errors

When MVS fails to recover from a detected hardware error,
the system notifies the operator so that he or she may
attempt to solve the problem. Due to the time criticality of
possible remedies (such as speedy reconfiguration),
otherwise-recoverable situations may result in a system crash
since a human operator cannot respond in time. Responses
to the most frequent hardware problems have been
implemented in rules. These rules are not tied to a particular
hardware configuration but rather make use of hardware
configuration data placed in YES/MVS. The hardware
configuration data are initially loaded from the files used in
the MVS system generation process.

o SMF management

The System Measurement Facility (SMF) provides access to
information on resource utilization in MVS. There are
several routine actions that must be taken to switch SMF
buffers and manage SMF data for accounting purposes.
Some actions are triggered by MVS events, others are
regularly scheduled.

e Quiesce and Initial Program Load

Before a planned shutdown the target system must be
“quiesced.” Routine quiescing and restarting (Initial
Program Load or IPL) of MVS systems are done to test new
versions of software, to install new hardware, and to allow
time for maintenance procedures. The quiesce operation
typically takes approximately 30 minutes and involves many
operator actions.

Currently, YES/MVS does not have access to the system
console. Hence, it cannot trigger a system IPL. However,
YES/MVS does give advice on system IPLs, and it can take
over the IPL activities once the connection to the system
console becomes functional.

e Performance monitoring

This task goes beyond the usual scope of an operator’s
activities. A short-term goal is to interpret the data from
existing performance monitoring software and automatically
detect and classify performance problems in real time,
generating summary reports in hard copy as well as in
computer graphics. This work continues, and a goal is
eventually to diagnose the cause of performance problems
and to take corrective actions.
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e Background monitor

In addition to the above subdomains, a set of functions in a
“background monitor” was implemented. The background
monitor periodically verifies that all parts of YES/MVS are
operational and issues incident reports on YES/MVS
activities, both routine and problem responses. Summary
reports of incidents encountered during a shift or day are
automatically generated. Using an electronic mail facility,
descriptions of each incident are sent to the appropriate
systems programmers and to the YES/MYVS developers. This
incident-reporting facility has proven very useful for alerting
responsible personnel to system problems and for recording
when problem handling code in YES/MVS was exercised.
These incident reports were analyzed to aid in the further
development of the YES/MVS knowledge base.

4. OPS5

As a vehicle for implementing YES/MVS, a production
system language, OPSS {5, 6], was selected. OPSS is one of a
family of expert system shells (languages with inference
mechanisms) developed at Carnegie-Mellon University.
OPSS had several advantages for the YES/MVS project:

1. It was flexible and modifiable.

2. It could be converted to run under LISP/VM [7] on an
IBM computer.

3. Its use of production rules as a knowledge base
representation seemed naturally suited to the type of
knowledge occurring in the domain of computer
operations. '

4. Its data-driven form of inference was particularly
appropriate to the situation of responding in real time to
information received from the target MVS system.

These points are elaborated throughout the remainder of the
paper. We now proceed to describe the basic OPSS
framework and reserve discussion of the extensions made to
OPSS5 to enable it to be used in a real-time application until
Section 7.

An expert system written in OPSS consists of three parts:

. Working memory, in which all the data elements used or
created during a problem-solving activity are stored.

2. Knowledge base, in which the expertise of the domain is
encoded in the form of situation-action or IF-THEN
production rules.

3. Inference mechanism or “engine,” which controls the
sequence of activity of the expert system,

These three parts are maintained as separate entities. This
separation represents an important distinction between such
an expert system and a program written in a conventional
procedural language, in which the knowledge and program
control are intermixed and often difficult to distinguish.
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(literalize printer-status Name of working memory element class

reliable? Is the information reliable?
address Printer address

forms Type of printer forms

line-limit Maximum number of lines allowed

current-job Job number of the current job
status) Other status information

Definition of the *printer-status™ class of working memory elements.
Specific working memory elements of this class have values assigned
. to some of the six indicated attributes.

(p jm:printer-status-update Name of rule

(task Task identification
7T task-id jm:information-collection)

(printer-status-reply Reply message from-MVS
T message-id 1at8562 Type of message is printer status
T address <printer> Printer address
1 status <<status> Printer status
1 forms <forms> Forms on the printer
1 current-job <job>> Current job
T line-limit <limit>) Maximum number of lines allowed

(printer-status Printer status working memory
element

T address <printer>) Printer address

(remove 2)
(modify 3

Remove the reply
Change the printer status working
memory element

Mark the information as reliable
Update status
Update forms information
Update current job
Update the line limit

T reliable? yes

T status <status>

T forms <forms>

T current-job <job>
T line-limit <limit>))

Example of an OPSS5 production rule from the JES queue space sub-
domain. This rule is used to update the status of information on a
given printer when new information is received. Attributes are pre-
ceded by T symbols. Attribute values may be bound to variables
which can then be used in other patterns as constraints. In the case of

3
i
’
g
§ values which are variable, the variable name is enclosed in < >.

Each working memory element is a member of a class. In
each class definition an explicit list of attributes is given. Any
particular working memory element belonging to that class
has values attached to some of those attributes. Figure 1
contains an OPS5 definition of the working memory element
class “printer-status.” Included in the definition is a list of six
attributes which are associated with elements of that class.

The second component of an OPSS5 expert system, the
knowledge base, contains knowledge encoded in
IF.. . THEN. .. production rules. The IF part (left-hand side,
LHS) specifies the conditions which must be satisfied before
the actions specified in the THEN part (right-hand side,
RHS) can be taken. We refer to the members of the IF part
as condition elements and of the THEN part as actions.
Figure 2 shows a production rule taken from the JES queue
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Tnitial makes Getting OPS5 going

Literalize

Make
Remove
Modify

Conflict resolution
Inference

cycle

Basic OPSS inference cycle.

space subdomain. In this rule, the IF part consists of three
condition elements, one of class “task,” one of class “printer-
status-reply,” and one of class “printer-status.” The
condition elements appear above the right-pointing arrow
(—). These conditions must be satisfied; that is, particular
instances of the three working memory elements must be in
working memory for the rule to be considered eligible by the
inference engine. Furthermore, these three working memory
elements must have mutual conditions that are satisfied. For
example, both the “printer-status-reply” and “printer-status”
working memory elements have an attribute “address” with
value given by the same variable name <printer>. The value
associated with this variable must be the same in both
occurrences.

If the inference engine selects this particular rule for use,
given that the condition elements have been satisfied, the
actions specified on the right-hand side are carried out.
Usually such actions call for the modification or removal of
existing working memory elements (those referred to in the
condition elements of the rule) or the addition of new
working memory elements. The OPS5 terminology for these
actions is MODIFY, REMOVE, and MAKE, respectively. In
the case of this particular rule, two actions are present. The
first calls for the removal of the “printer-status-reply”
working memory element used to satisfy the second
condition in the IF part. The second calls for the
modification of the “printer-status” working memory
element, by filling in new or modified values which are
obtained from corresponding values in the “printer-status-
reply” working memory element which matched the second
condition element.

The OPSS5 inference or control mechanism uses an
inference cycle consisting of three phases:
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1. Recognize,
2. Conflict resolution,
3. Act,

and is illustrated in Figure 3.

The IF parts (or left-hand sides) of all rules in the
knowledge base are compared with the current contents of
working memory to determine which rules have their
condition elements satisfied (recognition phase). The Rete
matching process [8] used in OPSS5 is particularly efficient in
carrying out this phase. A rule may have its IF part satisfied
by more than one set of working memory elements. Each
combination of a rule and a set of matching working
memory elements is called an instantiation. The set of all
such instantiations is called the conflict set. If the conflict set
contains more than one instantiation, which is usually the
case, then the control strategy is to select one of them to
execute (conflict resolution). OPS5 provides two conflict
resolution strategies: LEX (lexical), which is used in YES/
MVS, and MEA (means-ends analysis). Both strategies
prevent instantiations from being executed more than once,
favor the most recently created data in working memory,
and give preference to rules with more specific IF parts. The
THEN part (or right-hand side) of the selected rule is
executed (act phase). The actions of the THEN part
normally change the contents of working memory (creating,
modifying, or removing data elements). They may, however,
also contain calls to LISP functions or to operating system
facilities.

After the actions are carried out, the inference cycle is
repeated. If no rules are found whose IF parts are satisfied,
an OPSS system halts.

5. YES/MVS organization

In order to be able to handle major incidents in the target
system, YES/MVS runs in a separate computer and is not
dependent upon the target system for computing time and
other resources. Its sole interface to MVS is through an
emulated JES3 console, appearing to MVS as a normal
operator’s console, but having the ability to be “read” and
“typed on” by YES/MVS. YES/MVS runs in three
concurrently running virtual machines under the VM/SP
operating system {9]. Communication with the emulated
JES3 console is provided by the Centralized Computer
Operation Project (CCOP) facility [10]. (See Figure 4.)

1. The Expert Virtual Machine executes the rules in the
knowledge base, receiving messages and submitting
commands to the target machine. The expert system also
sends text for, and receives responses from, the operator.

2. The MVS Communications Control Facility (MCCF)
Virtual Machine provides the communications interface
between the Expert Virtual Machine and the target
system.
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3. The Display Control Virtual Machine provides the
communications interface between the human operator
and the Expert Virtual Machine. It also transmits
commands suggested by the expert system that are
authorized for execution by the operator to MCCF.
MCCEF, in turn, sends these commands to the target
system.

This design has the following benefits: better management of
the different processes which are running asynchronously as
parts of YES/MVS; relieving the expert system from low-
level input/output considerations, such as message and
display screen formatting; providing a self-contained
knowledge base, so that operational policy description can be
more easily read and modified. The three virtual machines
are now described in more detail.

o The Expert Virtual Machine

The expertise in YES/MVS on system operation is encoded
in an extended version of OPSS, which runs within the
LISP/VM environment. Working memory contains all data
used or manipulated in solving a problem, such as a model
of all pertinent target system status data. All target system
messages that are of importance to YES/MVS are
automatically placed in working memory (after translation
into the appropriate format by MCCF), where rules that
respond to those messages are triggered.

In YES/MVS, the inference cycle never terminates. When
there is no rule to be fired, the cycle remains in a wait state
until an external message is received in working memory
from the target system or from the operator or until the time
arrives at which the creation of a new working memory
element has been requested.

All the rules for different subdomains of the operator’s
actions coexist in one knowledge base. Some data describing
the YES/MVS expert knowledge base are provided in Table
1. The average number of attributes per working memory
class is 3.9. The maximum number of attributes in a
working memory class is 21, and the minimum number is 1.

Three histograms in Figure 5 give more detailed
information about the matching contexts of all the rules in
the knowledge base. Figure 5(a) displays a histogram of the
rule set classified by number of condition elements. Figure
5(b) classifies the rule set by number of attributes. Figure
5(c) classifies the set of all condition elements by number of
attributes.

Using the expertise from multiple subdomains together in
one expert system has several advantages over creating a
separate expert for each subdomain in its own virtual
machine. Since rules in a given subdomain may use some of
the same status information that is needed by rules in
another subdomain, one global model of the target system is
kept in working memory. This eliminates redundancy and,
hence, inconsistency across subdomains in the expert
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control
virtual
machine
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Expert
virtual
machine

MCCF
virtual
machine

Target
MVS
machine

Host VM/370 machine

g YES/MVS organization.
L

Table 1 Rule and working memory statistics for the expert .
virtual machine.

Number of  Number of
rules WME classes

Number of
attributes

Subdomain name

Batch scheduling 266
JES queue space 175
C-t0-C links 150
Hardware errors 167
SMF management 103
Quiesce and IPL 185
Performance 66
Background monitor 105

Total 1217

system’s model of the target system. This design additionally
allows the expert system to control the scheduling of actions
in different subdomains, rather than leaving such scheduling
to the underlying VM operating system.

o The MVS Communications Control Facility Virtual
Machine
The second virtual machine runs the MVS Communications
Control Facility (MCCF), which is written in REXX [11]
and assembly language. MCCF controls the receipt of
messages from MVS and the formatting of commands
specified by the expert system. Thus, the expert system is
effectively insulated from the format of MVS and JES
messages/commands, and the equivalent information is
passed to/received from the Expert Virtual Machine in OPSS
working memory format. This frees the knowledge engineer
from concerns about parsing messages and extracting
internal character strings.

MCCF provides a table-driven match and translate
capability. The desired messages are described in tables, the
fields containing variable parameters are specified. and a
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description of the desired output data structure is included.
When a desired message arrives, it is identified and
translated, and the corresponding data structure is sent on to
the Expert Virtual Machine. Arriving messages that are of no
interest are discarded. MCCF also builds and submits
commands to MVS upon receipt of a command name and
associated parameters from the Expert Virtual Machine.
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BATOH SCHEDULER STATUS HPBATED: 1118

The YES/MVS top-level screen. The screen name is on the left side
of the first line, the time of the day is in the center, and an indication
of automatic mode and a pending count are on the right. The pending
count indicates the number of messages which are not showing and
which the operator has not yet acknowledged. Line 2 of the display
provides a command line for typing (signaled by ===>>) and is
also used for the display of error messages. The bottom two lines of
the display are used to provide information about the use of program
function keys.

s

o The Display Control Virtual Machine

The third virtual machine controls the display facility and all
interactions between YES/MVS and the system operator.
The operator is provided with a hierarchical collection of
screens. The screen at the top level (see Figure 6) provides an
overview of incidents that do now or have recently required
attention. The operator may select a problem for scrutiny,
and a screen that is specific to that problem is displayed. In
the case of an incident, such as depletion of JES queue
space, the screen would contain a text description of the
problem, a specification of the suggested response (including
the specific commands to be submitted), a justification for
the response, and a prognosis of the situation. In the case of
scheduling batch jobs, the detail screen, as illustrated in
Figure 7, shows the status of jobs in the batch job queue.

This design was motivated by discussions with system
operators who indicated that, at a given time, they either
were taking a broad overview of the target system or were
concentrating on one particular situation.

YES/MVS can (as controlled by software switches that
may be reset by the operator) either take actions
automatically or give advice to the operator on how to
handle situations. This is required because large computing
centers are unlikely to turn system operation over to any
software facility without a significant period of testing during
which operators can maintain a manual override capability
over the actions taken.

The actual implementation of the display facility was
carried out through the use of an OPSS5 rule base, combined
with calls to the IBM Graphical Data Display Manager [12]
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SUBMPX 7599 m el O 06:06 2

: i e
A lower-level YES/MVS screen. This screen gives detailed informa-
tion about the status of the queue of large batch jobs. Each such
screen can show up to 30 jobs arranged in two columns. For each job,
the respective information shows its order in the queue, the job name,
the job number, an indication of whether the user is waiting, an indi-
cation of whether the job should be scheduled even if it probably
won’t finish, how many jobs are ahead or at this point in the queue for
this user, the number of days since the job was submitted, the esti-
mated CPU time, and the job priority, if assigned.
S s

for actual presentation on an IBM 3279 Color Display
Station. The pertinent QPSS statistics for the Display
Control Virtual Machine are given in Table 2. The average
number of attributes per working memory class for the
display control knowledge base is 4.1. The maximum
number of attributes in a working memory class is 23, and
the minimum number is 1.

The three histograms in Figure 8 are analogous to those
given in Fig. 5 and describe the matching contexts of all the
rules in the display control knowledge base. Color was used
extensively in the design of the display screens at various
levels. For example, in the screen showing the status of the
batch job queue, jobs which are finished are shown in green,
jobs which are running are shown in white, and jobs which
are not yet run are shown in turquoise, in the order in which
they will start (or have started) running. Jobs in hold status
are displayed in yellow separately below the non-held jobs.

6. A detailed look at one subdomain

To give specificity to some of the issues raised in the
preceding section, we look in more detail at the subdomain
of scheduling very large batch jobs for overnight running.

o Knowledge acquisition

To develop the knowledge base for this subdomain, the
operations staff and management were interviewed to
determine what rules of thumb and procedures they used in
doing the scheduling. The major factors that emerged were
the following:
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Table 2 Rule and working memory statistics for the display
control virtual machine.

Number of Number of Number of
rules WME classes attributes
339 145 598
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(p tms:order-nbr-wrong
(task
Ttask-id -normal + 1) the task priority
(job-order a job
7 next-job-id- <next-job-id> whose next job is <next-job-id>
Tin-g't which is in the’ queue
T-order-nbr + 1 <order-nbr +1>) having an order-nbr +1
{<nxt:job>
(job-order the next job

1 job-id ‘< next-job-id >

i in‘the queue

whose order-nbr isn’t 1. more
than the previous job's

in-q-t
Torder-nbr < > <ordernbr + 1)}

.
(modify <uxt-job>
Torder-nbr+1
(compute 1+ <order-nbr+1>)
Torder-nbr <order-nbr+1>>))

the strategy to rectify the
inconsistency: change the
order-nbr of the following job
to be correct.

Truth maintenance rule — queue order numbers.

1. The overnight batch shift is brought up in the evening
and brought down at the start of the day shift. This
contrasts with many MVS installations which do not
have explicit shift changeovers. This brought about
requirements to
a. Not schedule a job that would not be completed
before the scheduled shift changeover.

b. Run the larger jobs at the beginning (to give them
enough time to be completed).

¢. Save the shorter jobs till near the end of the shift, to
better fit the available time left in the shift.

2. Some users submit several (five, for example) multi-hour
jobs; they expect that they will perhaps be run over
several evenings (or if the shift load is light, they may be
run in one night). The operations staff has a policy of
fairness among users; they do not let five of user A’s jobs
be completed while running none of user B’s jobs. This
requirement was eventually codified into a round-robin
scheduling strategy: Don’t run job N for user A if user B
hasn’t had his job N — | run yet (assuming, of course,
that user B has that many jobs).

3. The jobs left in the system from previous days are given
preference over subsequently submitted jobs.

4. Jobs having the same job name are run serially.

5. If a user has called the operator and asked for special
treatment (perhaps he or she is working late), the
operators often give his or her job(s) preference.

6. The shift start and stop times can change dynamically;
for example, a hardware error may require the system to
be given over to the repair personnel at 3 A.M., thus
shortening the shift.

7. New jobs are dynamically scheduled in as they arrive.
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8. Normally, four jobs are allowed to run at once; that is,
the number of large batch initiators is four. However, this
number is sometimes changed by the operator.

¢ Knowledge base organization

The rules comprising the knowledge base for the Batch
Scheduler subdomain can be thought of as being divided
into six groups:

1. Creating and maintaining a model of MVS and the jobs
in the queue.

2. The scheduling rules.

3. The job priority setting rules.

4. Transmitting the results of the rules to the operator and/
or MVS,

5. Shift state control (in shift, not in shift, starting,
terminating).

6. Utility subroutine rules.

During operation the Batch Scheduler continually strives to
derive a consistent model of what the batch job queue order
should be, based on (changing) information from MVS. This
approach is an implementation of a type of a Truth
Maintenance System (TMS). (See [13] for further details.) In
our case we have a model of a real-time system. As the
system changes through time, the “facts” representative of
the system change. Contradiction occurs between the
changed facts and the previously derived consequences.
Truth Maintenance is the removal of now-inconsistent
deductions and the computation of new consequences in
accordance with the changed facts, thus re-achieving a
consistent state.

An example of a Truth Maintenance rule is provided in
Figure 9. This is the case of maintaining the jobs to be run
in an ordered queue. Each job in the queue has a pointer to
the following job. Each job also has an order number, the
sequence number of that job in the queue. When a new job
is inserted in the queue (or a job is removed), the order
numbers need to be adjusted. The rule in Fig. 9 keeps the
order numbers “truthful.” The left-hand side (LHS) of the
rule is the recognizer of inconsistent data in working
memory, and the right-hand side (RHS) provides a strategy
for changing the state of working memory to achieve
consistency (as defined by the LHS).

The rule recognizes an inconsistency when two adjacent
jobs in the queue have order numbers that are not separated
by 1. When a job is inserted, this rule fires repeatedly,
advancing up the queue, until all the jobs have had their
order numbers properly reestablished.

7. Real-time control

The MVS system being monitored and controlled by YES/
MVS is, of course, highly dynamic. Problem states may be
entered spontaneously; problems may disappear in the
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middle of attempted resolution. In this sense, the MVS
world is highly nonmonotonic. It is impossible to maintain
an accurate model of MVS that is complete in all detail.
Instead we maintain a model that provides a reasonably
good description of the status of MVS, from the viewpoint of
operations. The model is updated whenever MVS gives
pertinent status information, either voluntarily, based upon
responses to queries, or upon acknowledgment messages to
control commands. Queries of status information are
submitted at regular intervals or may be triggered by events
and the need for information in the resulting analysis. The
frequency of different queries varies enormously based on
the volatility of the status data involved and on the
requirement for current information. Extensive use of
timestamps and validity flags provides additional
information on the “currentness” of MVS status.

The status model of MVS is updated only on the receipt
of information from MVS. Attempts to compute status from
history and the anticipated response to stimuli are avoided,
because of the many possibilities that exist for a stimulus not
to have the intended effect. These include delays in
command submission or processing, conflicting commands
from operators, and nonresponse or errors in response to
advice by operators. When YES/MVS is providing advice, as
opposed to submitting control commands directly, there is a
potential race condition between the existence of a problem
state and the submission of a corrective command. It should
be noted that this is an inherent problem, and the use of an
automatic control system such as YES/MVS improves rather
than exacerbates such situations.

The next sections identify specific requirements of an
inference system which is to perform continuous, real-time,
interactive control, and describe solutions in terms of
various extensions to OPS5. Some of these extensions take
the form of new primitives; others are LISP functions and
macros added to the OPSS environment.

o Responsiveness

The ability of an inference engine to process rules at a speed
commensurate with real-time control is a basic concern. We
have improved the speed of execution of OPS5 by compiling
the right-hand side (RHS) of the rule. (Such a compilation
process has been independently introduced in YAPS [14]
and in OPS83 [15].) The matching process has been tuned
with several LISP macros. Also, we distribute the rules
among multiple OPSS systems using concurrent processes in
the form of separate virtual machines supported by a host
computer.

o Timed productions

Being able to initiate an action at a given time is one of the
fundamental requirements of a real-time control problem.
With a data-driven inference engine, this includes the
production of working memory elements at some future
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time. We accomplish this by defining a new RHS action
primitive for delayed production, TIMED-MAKE, which
takes the normal OPS5 MAKE arguments followed by either
an absolute or a relative time specification. For example,
execution of an RHS action,

(TIMED-MAKE query-request {type jes-g-space (in <iv>
<un>))

would cause the production of a working memory element
of class “query-request” with the value “jes-q-space” assigned
to the attribute “type” after a certain elapsed time, which is
specified by the values assigned to the variables <iv> and
<un>, giving the interval and unit of time, respectively.

A timer function and timer queue were added as necessary
support functions for the TIMED-MAKE action. To support
debugging, functions were provided to manipulate the timer
clock.

& Communications

Another requirement of real-time processing is the ability to
have distributed processes interact in a timely fashion. Fast
communication is achieved by introducing a new
communication phase in the normal OPS5 inference cycle
(recognize, conflict resolution, act). During the
communication phase, external messages are picked up and
outbound messages are sent. Conflict resolution then takes
place based on changes to working memory as the result of
both RHS actions and incoming messages.

All messages are sent out by a communication primitive,
REMOTE-MAKE, which takes the same arguments as the
regular OPS5 MAKE action, with an additional attribute
“tRm-to:” whose value is the user-id of the intended receiver
virtual machine. The message is actually sent by the host
system’s program-level message sending mechanism. The
“fRm-to:” attribute-value pair is changed, en route, to
another attribute “tRm-from:” with the sender’s machine
user-id as its value. In the following example, a REMOTE-
MAKE action is being sent to the virtual machine specified
by the value of the variable <query>. In the receiver virtual
machine, a working memory element of class “tape-drive-
status-query” is to be created with attribute “faddress” and
value specified by the variable <tape>.

(REMOTE-MAKE tape-drive-status-query {rm-to: <query>
Taddress <tape>)

The REMOTE-MAKE action, as is the case with the

TIMED-MAKE action, can use any of the OPS35 functions

to create result elements. Thus, one can write a meta-level
REMOTE-MAKE rule, if desired, to create messages

dynamically from templates, defaults, and substituted values

of bound variables. 23
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Getting OPS5 going

Initial makes

External makes

Timed-makes
Remote-makes

Conflict resolution

Inference

External actions

For debugging purposes, a global variable can be set to
block the actual transmission of elements created by
REMOTE-MAKE. Then the messages are displayed along
with requests for replies. When a reply is entered or selected
from a pre-existing file using a multi-window interactive
editor, it is employed just as if it came from another virtual
machine.

o Need for explicit control

There are critical problems that require a command
sequence to be issued to MVS without other queries or
commands being interspersed. Hardware error message
handling is one such case. Such a real-time requirement
necessitates explicit control over the rule firing in the
inference engine. For this purpose, the two modes of OPS5
conflict resolution, LEX and MEA, were extended by a
Priority Mode which has precedence over these.

To implement the priority mechanism, each rule has an
additional left-hand side (LHS) condition element (TASK
Ttask-id XXX), where XXX is a unique task name or a list
(expressed as an OPS35 disjunction) of task names to which
the rule is relevant. Each such task-id XXX has an
associated priority. The conflict resolution phase of OPSS is
modified so that the active conflict set is temporarily reduced
by excluding all active rules that do not have the highest-
priority task among the set. Then, the normal OPS5 conflict
resolution process acts on this reduced set. The task working
memory elements as well as associated priorities are defined
either by a top-level MAKE or by an RHS action. Tasks can
thus be dynamically created or destroyed. The priority can
also be dynamically computed as an RHS action of a rule.

The modified inference cycle used in YES/MVS is shown
in Figure 10, indicating the introduction of external and
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timed events and the use of priorities. As an alternative to
implementing the priority control mechanism, the MEA
strategy could have been used for this purpose by carefully
making ordered “goal” working memory elements and using
them for priority control, having them be the first condition
element of the rules. However, this would usurp the MEA
mechanism for this purpose and make it unavailable for
other uses. Also, the priority of a rule would be obscure,
being dependent on the order in which the MAKE actions of
the MEA goals were done.

The priority control mechanism effectively satisfies our
real-time control needs. It also allows control over rule
interaction between different subdomain areas. While meta-
rules could have been used to refine the conflict resolution
strategy, we found that the priority control mechanism
offered an equivalent capability without incurring the
overhead and complexity of such a facility. (Benjamin and
Harrison [16] use meta-rules for a different purpose:
reasoning about the contents of the conflict set.)
Furthermore, it provides a rule-grouping paradigm similar to
the use of contexts in EMYCIN [17] and rule-groups for HH
rules in EXPERT [18].

® Requirements for continuous operation
There are at least three basic requirements for operating in a
continuous mode:

1. The inference engine should not terminate when no rule
is eligible to fire. We implemented an OPS5 rule OPS-
WAIT, which puts the system into a waiting mode. Any
external message (including a timer event) causes the
system to resume, with the new data added to working
memory.

2. The system should ideally run on a special-purpose, high-
availability computer, different from the subject machine.
If the host computer itself or the virtual machines
comprising the system go down, the system must be
restarted. We call an automatic restart procedure during
the host computer initial program load and also when a
down machine is detected during a periodic mutual
polling among virtual machines of the system.

3. Working memory elements that have served their
purposes must be removed. The accumulation of old
useless data in the working memory not only creates a
memory space problem in continuous operation, but, of
more importance, instantiates the wrong productions in a
data-driven inference engine, such as OPSS. We have
made use of many different “garbage collection”
techniques (RHS actions) to remove old data, including
the one illustrated next.

Removal of multiple working memory elements must be
done carefully so as not to trigger rules unintentionally
which might be satisfied when only a partial set of working
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memory elements had been removed. For example, the
ability of a rule to fire may depend not only on the presence
of some elements, but also on the absence of others. The
priority mechanism can be used to cause an atomic
procedure, as shown in the three-rule example in Figure 11.
(This also illustrates the dynamic creation of tasks.) Suppose
the normal operating priority is 100. The priority for the
CLEAN-UP task would be set low, say, at 50. Define
another task name, IN-CLEAN-UP, with a priority, say,
150, which is higher than the priority of other tasks. The
CLEAN-UP task is created in the system as a permanent
working memory element during initialization.

The final rule in Fig. 11 is less specific than the rule above
it and so does not fire until all garbage has been removed,
due to the conflict resolution mechanism of OPSS.

8. Developing YES/MVS

From the knowledge engineer’s perspective, it is more
difficult to develop rules that interact with both the target
system and the operator than to develop rules that assume
full control over the target system. Interaction with the
operator requires that all actions not only make sense to the
target system, but also are reasonable in timing and quantity
to the operator.

e Knowledge acquisition

Domain knowledge sources for YES/MVS included one
operations expert dedicated full-time to the project, MVS
operators and operations managers, resident systems
programmers, system manuals, operator console traces of
responses to actual problems, and, occasionally, the
designers of the MVS operating system itself.

Intensive meetings with the primary expert culminated in
the formulation of strategies for problem handling in each of
the selected subdomains. Knowledge engineers then
produced documents detailing these strategies and
distributed the documents to several experts for feedback.
This served the dual purpose of correcting misconceptions
and of uncovering considerations that had not yet surfaced.
Observation of operator actions and the examination of
console traces by knowledge engineers unearthed additional
details that the experts had omitted or not emphasized. A
common problem in expert systems development is that
experts often fail to describe knowledge completely, at least
in the initial phases of a project. In part, this is what
motivates a software organization that facilitates incremental
development.

Rules were coded in each of the subdomains. The rule
coding process was facilitated by a programming
environment in which the LISP/VM system, on which OPS3
was built, and the system editor exist as co-routines.
Thereafter followed a period of iterative information
gathering, testing, and debugging. Information gathering
took the form of additional discussions and “rule
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Low-priority rule
that fires when no
other normal action
rules fire.

(p start-clean-up
(task Ttask-id CLEAN-UP)

-
(make task Ttask-id IN-CLEAN-UP)

(p doing-clean-up This rule repeatedly
(task Ttask-id IN-CLEAN-UP) fires and removes
{<garbage> [List of working memory all garbage as an atomic

element names to be removed]} procedure, at high

- priority.

(remove <garbage>))

This rule removes the
IN-CLEAN-UP task which

is now garbage and the
system reverts back to a
low-priority CLEAN-UP mode.

(p clean-up-done
{<done-task>
(task Ttask-id IN-CLEAN-UP)}

(remove <done-task>))

Three rules illustrating the collection of unneeded working memory
elements as an atomic action.

t
%

walkthroughs™ with the operations staff. Systems
programmers were consulted in cases of inadequate
information or conflicting viewpoints.

o Testing

It was established early in the project that the complexity
and dynamics of the MVS environment would prohibit the
construction of an MVS simulator against which to test
YES/MVS. Testing on a system that is not in production use
frequently omits much of the complexity of a running
production environment. Thus, the primary testbed for
YES/MVS has been the actual operations environment of a
production system. Still, there have been challenges. It is
hard to manufacture some kinds of target system problems,
for example, hardware failures.

Balancing testing objectives with service degradation
presented another testing consideration. While tests
involving “sabotage” of the target system were performed off
shift, some users were nonetheless affected. Also, the
dynamics of a production workload make problem re-
creation difficult when tests of modifications to the
knowledge base are being made.

9. Operation and evaluation of YES/MVS

During initialization, the central processor utilization
averages 0.5% of an IBM 3081-K processor for the Expert
Virtual Machine and 0.86% for the Display Control Virtual
Machine. During normal running, the average usage is 0.3%
and 0.57%, respectively.

YES/MVS ran regularly at the Yorktown Computing
Center during a period of over nine months. (The functions
and capabilities of YES/MVS are currently being replaced by
a second version.) YES/MVS itself enjoyed reasonably high
availability, although this result was achieved only after
considerable effort. For example, rules were added to the
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background monitor subdomain to test the status of the
other two virtual machines. Checkpoint and recovery
procedures were added as well. Tests were built into the
Expert Virtual Machine to ensure that errant messages were
accounted for and retries sent, if necessary. Generally, YES/
MVS went down only when the host computer went down.

Eventually, YES/MVS ran fully authorized, taking action
automatically and subsequently notifying the operator.
Operations staff members were enthusiastic about the project
and informally reported that YES/MVS successfully detected
and responded to problems in the subdomains implemented.
For example, YES/MVS had alerted operators to channel-to-
channel link problems of which they were unaware and
guided the operators in resolving these problems. In
developing YES/MVS the best expertise was sought, and
operators have reported learning better techniques for
handling problems by following the advice provided by YES/
MVS. The YES/MVS Batch Scheduler and SMF Manager
were routinely used and were significant productivity aids to
operators.

10. Project history

The project was begun early in 1983 as a collaborative effort
on the part of the Expert Systems Group and the Expert
Systems for Systems Management Group. The group began
as a six-person effort, augmented by a seventh person from
the computing center who joined the group on sabbatical
assignment and served as the resident expert. By late 1983
two additional members had been added.

A three-day work session at the beginning of the project
determined the scope of the initial effort in terms of the
subdomains to be covered. Responsibility for each
subdomain was divided among the project members.
Demonstrations of two of the domains, JES queue space
monitoring and batch job scheduling, together with the
operator’s console display, were first given in the fall of 1983,
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using a simulated set of messages from MVS. Testing during
the fall was primarily limited to exercising individual
subdomains with canned data. In February 1984, on-line
testing of an integrated system was begun, using a schedule
of two evening sessions each week. On April 12, electronic
mail was received from a member of the operations staff
commenting positively about the advice provided by YES/
MYVS concerning the canceling and restarting of channel-to-
channel links. By May, the system was providing advice to
operators, using the knowledge bases for some subdomains,
while testing continued in others. Statistics on YES/MVS
availability began to be gathered. (See Figure 12.) The YES/
MVS system was demonstrated during an IBM exhibit at the
1984 National Conference on Artificial Intelligence, held
August 6~10 in Austin, Texas, emphasizing the two
subdomains of JES queue space monitoring and batch job
scheduling.

11. Conclusions

There is significant economic value in a facility that will
increase either the productivity of computer operators or the
quality of the function they provide. Still, there are inherent
problems of

1. Complexity of the problem domain,

2. Variation in operational policy from one computer
installation to the next, and

3. Evolution of the computer system and of operational
policy at any one site.

1n the development of YES/MVS, we have found the “IF
condition, THEN take action” format of production rules to
have advantages in addressing all of the three mentioned
difficulties that are inherent in the operator’s task.

The modularity of production rules encourages writing
software that is relatively easy to read and modify. This
should tend to simplify the long-term maintenance of an
operator’s knowledge encoded in production rules. It is also
well understood that the process of encoding an expert’s
knowledge must be done incrementally, and the modularity
of production rule software helps support this incremental
development.

We found that our computer operators most frequently
describe their knowledge in sentences such as “When I see
this...and this..., then I dothis...and this....”
Similarly, a standard statement of operational policy would
be of the form “under circumstances . . ., take actions . . . in
order to change from resource allocation scheme A to
resource allocation scheme B.” We conclude that production
rules invoked through a data-driven inference mechanism
provide a natural representation for these forms of
operational knowledge.

Because production rules are a natural vehicle for stating
operational policy and because YES/MVS has established
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the feasibility of encoding the complexity of operators’
knowledge about computing system problem diagnosis and
recovery, additional work on YES/MVS has received strong
support. A second version of YES/MVS is being developed
by the Expert Systems for Systems Management Group. This
second version will be installed at several large IBM
computing centers. It will contain software to address
problems that are sufficiently uniform that generally
applicable knowledge can be used to control diagnosis and
corrective actions. It will also emphasize software constructs
that support the natural statement and direct
implementation of knowledge about the operational policy
that is unique to a particular computing installation.
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