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We  describe  what is  expected of a  knowledge- 
based  expert  system,  and  the  components  from 
which  such a system  is  constructed.  We  give a 
view  of  how an  interplay  between  principles  and 
practice  has  helped  the  knowledge  system  field 
to  develop,  and  we  give  simple  examples  to 
show  that  reasoning  techniques based on  formal 
logic are now  starting  to  provide  a  useful 
coupling between scientific  and  engineering 
work  in the  field.  The  examples are about  logic 
programming,  knowledge  representation, 
judgmental  reasoning,  and  about  three  methods 
by  which a system  can  acquire  the  knowledge  it 
needs. 

1. Introduction 
The rate of publication of articles about expert  systems is 
now higher than ever before. There  are survey articles  in 
computer science journals,  in  popular  computing  and 
scientific periodicals, and  in  the general press. The  volume of 
research publication is also unusually high. Expert systems 
have so far  proved their worth  in structure elucidation  in 
chemistry,  in  helping to find mineral  deposits,  in helping 
technicians in hospitals,  in suggesting maintenance 
procedures  for  locomotives, and in several specialties for 
which we do  not have  enough human experts. The 
commercial potential  of the subject is now  being recognized. 

In a period of such  intense  activity,  it can be healthy to 
step back from  the  day  to day  excitement of new uses of 
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expert systems, new research results, product 
announcements,  and  the  formation of new companies  in  the 
expert systems area. In this article we look at  some of the 
interplay between principles and practice in expert systems; 
we argue that it  is  fruitful to  combine principles and practice 
closely, and  that logic programming is a strong  candidate for 
bridging the  traditional  gap between the two. We set out a 
particular view of where work on expert  systems  has come 
from,  what  is  being done now, and of some of the  trends for 
the future. Because of the scope of the subject, our view 
necessarily focuses on  just  some of the  trends  and 
achievements. 

In the next section we describe the properties that we 
expect of an expert  system.  Section 3 sketches some central 
issues in  expert systems from  a historical point of view. 
Section 4 outlines  the role of Prolog and logic programming 
in  expert systems. In Section 5 we note  that  an expert system 
is only  as  good as  the knowledge it  contains, and we describe 
some  methods of knowledge representation. Then,  in 
Section 6, we describe some  trends in knowledge acquisition. 
Section 7 is a summary. 

2. What  is  an  expert  system? 
We expect an expert system to  act as an intelligent assistant 
in some task, or  to solve an  important problem that would 
otherwise have to be solved by a human expert. However, as 
the field has  developed, we have come  to expect  more. 
Because the expert knowledge that people  have may change 
with time, we would like an expert system to be flexible in 
integrating new knowledge incrementally into its existing 
store  of knowledge. Indeed, we increasingly expect an expert 
system to assist us  in the transfer  of knowledge. We would 
also like it to be able to show  its knowledge in  a  form that is 
easy for us to read. If  we are  to  take  actions with serious 
consequences  in the real world, based on advice given by an 
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expert  system, then we would like the system to provide 
explanations of its advice [ I ] .  Because the expert knowledge 
that people have is often  incomplete and only  partly 
understood, we would like an expert system to be able to 
reason with judgmental or inexact knowledge. This 
knowledge may be declurative (about  the  nature of a task), 
procedural (about how to  do  the task, and  about how to  do 
it efficiently), or both. Because we would like to  concentrate 
on  communicating expertise and knowledge, rather  than  on 
programming, we would like an expert system to be able to 
deal with simple  sentences  in English or other  natural 
languages. Since there are many open research questions  in 
natural language processing, it is perhaps  fortunate  that we 
can build useful expert  systems whose natural language 
technology is shallow yet exact;  a system can reason reliably 
and logically with English sentences whose meanings  stem 
from  the way in which they appear in rules, rather  than  from 
a  detailed dictionary, syntax, and  semantics of English. 
Almost  paradoxically,  these  sentences can even contain 
judgmental phrases, such  as “some evidence,” yet can still be 
used by the underlying,  exact  reasoning method  to yield 
judgmental conclusions. This simplified approach  appears  to 
be surprisingly useful. We can build effective expert systems 
whose English is limited, and we can add  more sophisticated 
natural language processing as  it  becomes available. 

system to be able  to  do. It 
To  summarize, here is what we would like an expert 

Should solve an  important problem that would otherwise 
have to be solved by a human expert. 

incrementally into its existing store  of knowledge. 

knowledge. 

easy for us  to read. 

Should be flexible in integrating new knowledge 

Should assist us to elicit, structure,  and transfer 

Should be able to show its knowledge in  a  form that is 

Should  provide explanations of its advice. 
Should be able  to reason with judgmental or inexact 
knowledge about  the  nature of a task or how to  do  the task 
efficiently. 

another  natural language. 
Should be able to deal with simple  sentences  in English or 

There are useful expert  systems that  do  not  do all of the 
above, so these points  are best read as ways to measure the 
sophistication of an expert  system.  They  also serve to 
outline, in  a general way, many of the  main research goals in 
the field. In addition, we can now list the  main  components 
that we expect to find in  most  expert systems: 

Facts,  plus knowledge, often  in the form  of rules. 
An inference  engine, for reasoning with the facts and rules. 
An explanation  generator. 
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A knowledge acquisition  engine. 
A (possibly limited)  natural language processor. 

Perhaps because of the variety of things we expect of an 
expert  system, there  are  many different names for such 
systems. They are known as knowledge-based systems, 
intelligent systems, intelligent knowledge-based systems, and 
so on. It seems likely that knowledge system will become the 
standard  term. (For example, many of the expert system 
projects at Stanford  University are now departments of  a 
recently formed Knowledge Systems Laboratory.) We use 
the  terms expert system and knowledge system 
interchangeably here. 

3. From general to specific,  and  back  again 
In this  section we sketch some central issues in  expert 
systems work  over the last three decades, and we outline 
how the issues are currently  treated. 

At a  meeting  in 1956 at  Dartmouth College, John 
McCarthy coined  the  term “Artificial Intelligence.” At the 
same meeting  a system called the Logic Theorist was 
discussed. It proved theorems in logic [2] and may be 
thought of as the first, or at least one of the first, expert 
systems. It seems useful to  outline  the subsequent  evolution 
of  expert  systems in  the USA in terms of a thesis, an 
antithesis, and a synthesis. We  then look at  the 
corresponding  evolution outside  the USA. 

solving can be found,  and  that these can be made 
computational  and  can be applied to  many different 
problems. This  approach is represented by the Logic 
Theorist (mentioned above), by the  General Problem Solver 
[ 3 ] ,  and by early work in automatic  theorem proving, e.g., 
[4]. Implicit  in the thesis is the concept that  the declarative 
and procedural aspects of how to solve a  problem are 
independent of the task at hand. The idea is that we should 
just be able to declare  what the task is, and  the problem 
solver should then do it. While this thesis works well in 
principle, the early implementation efforts were very 
inefficient in practice. One  apparent source of difficulty is 
that  there is no obvious place, within the framework 
prescribed by the thesis, to  put specialized procedural 
knowledge about how to  do each task efficiently. In the 
absence of this knowledge, the problem solver searches for 
answers  along  many  blind alleys before amving  at a 
solution. 

The thesis states that general methods of  expert  problem 

This difficulty led Edward Feigenbaum  of  Stanford 
University to advocate an antithesis. The antithesis  states 
that, rather than looking  for generality, we should set out 
empirically to  capture  human knowledge and procedures  for 
specific tasks (see Feigenbaum and McCorduck [5] for  a 
recent summary of this view). Essentially, we should be 
willing to write a new program  for each task. This technique 
led to  the first practical expert systems. For example, the 
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DENDRAL program [6] is a “smart assistant” for a  chemist 
concerned with structure elucidation  in  organic  chemistry. 
The  Meta-DENDRAL program (described in the  same 
paper) is a knowledge acquisition  program  for DENDRAL. 
The antithesis approach,  and its reduction to practice, has 
clearly been responsible for the present  commercial  interest 
in expert systems. However, the  approach is intellectually 
labor  intensive, so far  as the acquisition of knowledge is 
concerned. It is usual  for  a knowdedge engineer to study the 
task at  hand, specify appropriate inference engines, and  then 
work with both task experts and  programmers  to  construct a 
system. Since the conceptual levels dealt with by the task 
experts and  the  programmers  are usually far apart, success 
can  depend on the skill of the knowledge engineer.  Often the 
experts, knowledge engineer, and  programmers  must invest 
years of  work  in  building  a useful expert  system.  Moreover, 
with the notable  exception  of DENDRAL,  the systems so 
constructed  have not by and large contributed  much  to  our 
knowledge of the principles of expert systems. 

Thus we have  a thesis, that general problem solvers are 
desirable, and  an antithesis, that  the best practical approach 
is to build specific systems for specific tasks. The synthesis of 
these  two approaches essentially takes the middle ground. 
The idea is that  many tasks  have requirements in common, 
and  that these requirements  can be met by an expert system 
“shell,” to which we add knowledge about particular tasks. 
Typical shells, such  as  Emycin  [7] and OPS5 [8,9], each 
cover  a range of tasks, but no  one shell covers them all. 
Clearly there  are variations on this synthesis, one of which is 
to provide  a  “toolkit” containing  many of the  methods used 
in the various  expert system shells. The Expert System 
Environment/VM [ 10, 1 I], KEE [ 121, and  LOOPS [ 131 
systems can be thought of as toolkits  of  this  kind. Since even 
a  toolkit  may not  support all of the expert systems that we 
may wish to build,  it appears  important  that such  kits be 
packaged as  “open systems,” in the sense that  the underlying 
programming language is accessible. It should be easy to 
write new tools and  to link them with the  ones provided. 

that  there was no place in  the general framework  for 
procedural knowledge about how to  do a specific task 
efficiently. So it is natural  to ask how the synthesis avoids the 
efficiency problems that led to  the suspension of the thesis. 
There seem to be several reasons why individual  expert 
system shells are efficient enough  to be useful. First, 
individual shells do  not try to cover  such  a  broad class of 
problems as the thesis methods, so each shell can  be 
designed to be efficient for the class of problems for which it 
is intended.  Second, the processing speed  provided by the 
underlying  hardware  has increased significantly since the 
time  the thesis was first proposed, although  not  enough for 
direct support of the thesis. Third, although we like to keep 
the knowledge about a task as declarative as possible, in 
practice we often  program some efficiency know-how into  it. 

When we described the thesis about generality, we noted 

However, this last step tends  to  make  the knowledge harder 
to  examine  and change. It is usually better to  put  as  much of 
the procedural knowledge as possible in the inference engine. 

computational power than we can supply, but it allows us in 
principle to  just specify a task to be done, so that we do  not 
have to give a  procedure  for how to  do  the task. Thus  the 
thesis is computation intensive. The antithesis, on  the  other 
hand, is intellectual-labor  intensive.  Task experts, knowledge 
engineers, and artificial intelligence programmers have in 
some cases spent years building  a single specialized system. 
The synthesis, taking the middle ground,  tends  to reduce the 
amount of  intellectual  work in constructing  a system, and 
tends  to result in  a system that is reasonably efficient on 
current  computers. Work on computer-assisted  acquisition 
of knowledge, which we describe in  Section  6, shows some 
promise  of further reducing the intellectual  work needed to 
build  a  system,  without  increasmg the  computer power 
needed to  run  the system after  it  has  been  built. 
Interestingly, the  more  ambitious knowledge acquisition 
methods call for very large amounts of computing. Often 
this is worthwhile: We may be willing to  compute for days or 
weeks to build  a system, although we often expect fast 
response from  the system once it has been  built. 

So far, we have  outlined some central trends  in expert 
systems in the USA since the late fifties in  terms of  a thesis, 
an antithesis, and a synthesis. The thesis was based on 
mathematical logic, while the antithesis and synthesis 
dispensed with the logical approach  on  the  grounds of 
efficiency. Most  of the experimental  work  in all three phases 
has been done in the language Lisp, invented by John 
McCarthy at  about  the  start of the thesis period [ 141, and 
elaborated through  many different versions since. 
Interestingly, although  Lisp is designed for  symbol 
manipulation, it is afunctional  rather  than a  relational 
(logical) language; various operations for logic, such as 
unification and search, must be programmed in Lisp when 
needed. 

Outside  of the USA, there was a thesis stage concerned 
with automatic  theorem proving, but  there was generally 
much less of the antithesis-inspired  activity in building 
individual systems. Around  the mid-70s, the synthesis 
happened  in the USA;, several expert system shells with good 
but  not completely general coverage appeared  on  the scene. 
In  the  meantime research elsewhere also led to  some new 
logical techniques for  expert systems, and we discuss these 
next. 

In its most general form the thesis calls for more 

4. Prolog and logic  programming 
At about  the  same  time  that  the synthesis made itself known 
in the USA, a new language called Prolog was designed in 
Europe [ 15-  171. Although Prolog was first implemented  to 
support  natural language processing [ 181, it  works essentially 
as  an efficiently executable part of mathematical logic, so it 
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is of interest for expert system reasoning, as well as for other 
tasks. 

By 198 I ,  Prolog was adopted by the  Japanese  as  the basis 
of their Fifth Generation Project [ 191. The technical aims of 
this ten-year  project  include fundamental work on both 
software and hardware  for  advanced knowledge bases. In 
1984, at  the  end of the first phase of the project,  substantial 
progress was reported  on  a Prolog-based workstation,  a 
database machine, studies  of parallel machines to  support 
Prolog, and in some experimental  expert systems [20]. 

Prolog has  a  certain hybrid vigor, in that it contains  some 
declarative  features  from computational mathematical logic 
[2 I ,  221 and  some procedural aspects from  conventional 
programming. Thus it is called a /ogic programming 
language, and, like the expert system shells and toolkits,  it 
occupies the middle ground between our general thesis and 
specific antithesis. 

Prolog is somewhat weighted towards the thesis idea and 
towards  generality.  Many  of the mechanisms one needs for 
an expert system shell are in the language, yet the language 
has very  few features  in the  conventional sense. (For 
example, Prolog has  a generalized logical pattern match 
called unification, but it is built-in, and  one usually does not 
see it or call it explicitly when  writing  a  program.)  Perhaps 
because of the lack of conventional features, Prolog has  a 
very elegant and practical semantics  that seems to be the key 
to  much of  its  appeal. For example,  it is possible to say what 
a well-written Prolog program  should compute,  independent 
of any particular interpreter or compiler, and it is possible to 
say this precisely without  getting into  undue complexities. 
One analytical  tool  for doing  this is model  theory  in logic 
[23, 241, which turns  out, in many examples, to be quite 
close to  the  intuition  that most people have about what  a 
program should  do. As a very simple  example, the Prolog 
program 

route()(, Z) c road()<, Z). 
route()<, Z) t road(>(, Y) & route(\(, Z). 
road(b, c). road(c, d). road(d, e). 

says that  there is a  route from X to Z either if there is a  road 
from  X to Z, or if there is both a  road from X to Y and a 
route from Y to Z. It also says that  there  are roads  from  b to 
c,  c to  d,  and d to e. The following is a  model of the 
program: 

road(b, c). road(c, d). road(d, e). 
route(b, c). route(c, d). route(d, e). 
route(b, d). route(c,  e). route(b,  e). 

This is a  model  in the  ordinary sense that every relevant 
instance of each  rule in the program  evaluates to true in the 
model. It is also just  the collection  of commonsense 
consequences of the rules and facts in the program. 
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Because of its relation to mathematical logic, Prolog has  a 
theoretical basis [25-271 as well as  a body of associated 
practical experience. In fact, the theory and practice can be 
made  to mesh quite well [28, 291, and can be usefully 
extended to include  relational  databases  [30, 311. 

it works very well as its own  metalanguage. That is, it is 
rather easy to describe the semantics of Prolog in Prolog. 
While a Prolog interpreter  written  in  a conventional 
language may occupy upwards of 10 000 bytes, an 
interpreter for most  of Prolog can be written  in Prolog in 
about 100 bytes (less than half a  printed page). This may 
seem to be just  an academic  curiosity,  until we realize that 
many inference  engines for expert systems are somewhat 
similar to  the Prolog inference  engine. For example, by 
making relatively minor changes to a Prolog interpreter  in 
Prolog, we get the  core of the Emycin  inference engine: by 
making some  other changes, we  get rules by which each 
object belonging to some class inherits the general properties 
of the class unless otherwise stated. We pay an efficiency 
price for this conceptual elegance, since the inference  engines 
that we build in this way are generally slower than if they 
had been written directly. However, when supported by a 
fast computer,  the performance is adequate for many tasks, 
the flexibility advantages are overwhelming, and it is possible 
to compile some aspects of the inference  engine if necessary 
[32]. The inference  engine consists of Prolog rules that 
function  as  metainformation; they we rules about how to 
use the rules for particular tasks. If  we have procedural 
information about how to  do a range of  tasks efficiently (e&, 
always use a  relevant fact before trying a rule), then we can 
encode  this in the metarules that define the inference engine. 
Thus, in the metalanguage approach  to expert systems in 
Prolog, there is a natural place for  procedural knowledge, 
and  the task knowledge can  remain largely declarative. If our 
target is high performance on small  machines, then we can 
first make a  metalanguage  prototype of the inference  engine 
on a large machine  and  then rewrite or compile it as 
necessary. 

We mentioned  that Prolog is a  simple language with few 
features. In fact, the  main part of Prolog lacks  many of the 
standard  constructs of other  programming languages. For 
example,  destructive  assignment (as in X:=5) is rarely used 
in Prolog, whereas  modification of a working memory is a 
central  feature of OPSS. This  tends  to guide the  programmer 
away from machine-level state-transition  programming and 
towards  a more declarative style. Simultaneously,  it  appears 
to make pure Prolog (like pure Lisp) more suitable for 
implementation  on parallel hardware [33], and parallel 
hardware  now  seems to be promising for the  support of 
some of the  more  ambitious tasks, such as real-time  control, 
that  are proposed  for  expert systems. Some expert systems 
for  real-time control  can be built by very efficient 
programming  on a  sequential machine [34], while others 

One consequence  of the simple  semantics  of Prolog is that 
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appear  to need more: specifically, the kind of underlying 
performance that is expected from parallel machines. 

So far, we have  sketched some of the issues in  expert 
systems over the last three decades,  both  inside and outside 
the USA, in terms of a thesis about generality, an antithesis 
about specialization and efficiency, and a synthesis 
containing a partial return  to generality. We have touched 
on a spectrum of activities  from general to specific, and  from 
theoretical to empirical. An expert system is only  as good as 
the declarative and procedural knowledge that it contains.  In 
the next sections, we look at knowledge representation and 
at knowledge acquisition. 

5. Knowledge  representation 
In  order  to use knowledge in a machine, we must first 
choose  a way of  representing it. We need a notation  that 
supports what we expect an expert system to  do.  The 
notation should make it easy for us to  add  and change 
knowledge, should be easy for us to read, and should support 
explanation  generation. In addition,  the  notation should 
suggest ways in which it will be used and should allow us to 
write down different methods of use. The  notation should 
also encourage us to separate  declarative knowledge (what a 
problem  is about)  from procedural knowledge (how  to solve 
the  problem), yet it should support efficient problem solving. 
Thus we can use these  criteria to  estimate how useful 
conventional  programming is  for  expert systems and  to 
compare  the various knowledge representations that  are used 
for expert systems. 

When we write a  program  in  a conventional language, we 
are writing  down knowledge about how to  do a  task.  When 
we load the program into a computer,  the  computer could 
be said to  acquire knowledge. However,  it  may be quite hard 
to  add  to  the knowledge or to change it. It can also be hard 
for  a person other  than  the  author  to read and  understand 
the program, and it is rare  for ordinary programs to provide 
explanations of  what they do.  On  the plus side, ordinary 
programming  notation does suggest how it is to be used, 
since the  meaning of a  program can (in principle) be worked 
out in terms of how  it  changes the state of the  computer it 
runs  on. Yet, most conventional  programming languages 
encourage us to mix declarative and procedural knowledge 
so much  that it can be difficult to separate the two. On  the 
plus side  again, the knowledge can often be used very 
efficiently. 

The kind of task for which we build an expert system is, 
almost by definition,  complicated.  When we describe a task 
in English, we usually keep the description to a  readable 
length by relying on knowledge that  the writer and  the 
reader  already  have in  common. If the task is simple, it is 
usually feasible to write a  suitable  program from  the 
description, although  there  may be many suitable  programs. 
However, if the task is complicated and specialized, we 
cannot rely so much  on shared knowledge. An English 
description  of  readable  length is no longer enough, while if 

we make  the description  long and pedantic, we get lost in the 
details. So there  are several notations for knowledge that 
stand somewhere between English and programs.  They are 
useful to  the  extent  that they allow us to write down 
knowledge in  a form  that  both people (who need not be 
programmers) and  computers  can use. 

Some of our  methods for  representing knowledge for 
expert  systems make use of the  notion of  a hierarchy, in 
which lower items  are normally  assumed to inherit some of 
the properties  of higher items. For example, if a  manager in 
a company is interested in expert systems, then we assume 
that  the people who work in his or her group have the  same 
interest,  unless we are told that  one of them specializes in 
hardware. Some  notations for knowledge are often used 
without explicit reference to a  hierarchy,  for  example, rules 
and nets. Others,  such  as frames and objects, are centered 
around  the hierarchical notion. Although the various 
notations have been designed separately, and have been used 
for many different purposes, there is increasing  evidence that 
each one  can usefully be written down  in logic. We look at 
some of this evidence  next. 

Knowledge is represented as rules in  systems  such as 
Emycin [7] and Syllog [30]. For example, an Emycin-style 
rule reads 

if "plant is wilting" and 
not "leaves have yellow spots" 

then "there is not  enough water" : 60. 

The  number "60" indicates that we have 60% confidence  in 
the rule and is used in a  numerical  form  of judgmental 
reasoning. A Syllog rule  reads 

site e g n u m b e r  has e g t y p e  rock in  suitable form 
eg-group fossils have  been found  at site e g n u m b e r  
eggroup fossils are characteristic of the e g p  period 
known reserves in  eg-type  rock  from the e g p  period 
""""""""_""""""""""""""""""""""""""". 
some evidence  for oil at site e g n u m b e r  

Here, the conclusion below the line is established if all of the 
premises  above the line are  true.  The " e g "  items  are 
variables that  make  the rule general. 

In Emycin, judgmental reasoning proceeds by chaining 
rules  together to  form deductions, and by using a built-in 
algorithm to  combine  the  numerical confidences at each step 
in the chain. Thus it is a design assumption  that  there should 
be some way of assigning confidence numbers  to rules so 
that  the built-in algorithm will give reasonable  answer 
confidences. The algorithm  is  a part of the Emycin shell, and 
most of its  operation is hidden  from  the user. In writing a 
knowledge base it  is not always easy to assign suitable 
numbers  to rules, perhaps because one  cannot easily tell 
without experimentation  just what  their effect  will be on  the 
answer confidences. [35] describes an interesting  approach to 
this problem. 
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In Syllog, there is no built-in algorithm for judgmental 
reasoning.  When  needed, judgments  are written and used 
explicitly (and usually symbolically) rather  than implicitly 
and numerically  in the Emycin style. For example, the 
phrases  “suitable form”  and  “some evidence”  in the Syllog 
rule  above  carry judgment. If  we carry the  judgmental 
reasoning explicitly in this way, we are  not forced to assume 
that  there is a  uniform method (e.g., Bayesian) for weighing 
evidence; the way in which evidence is weighed may be quite 
different from  rule to rule. Although the lack of  a built-in 
algorithm  for combining  numerical confidences  appears at 
first sight to be a disadvantage, it seems very natural in 
practice to use judgmental English phrases  in the syllogisms, 
and  to show in  explanations  how the  judgments  are 
combined  at each  step. 

For the Prospector system [36], knowledge is written 
down  as a net with nodes and arcs. The nodes  represent 
geological evidence or hypotheses, and  the arcs  represent 
causal linkages among  the nodes. We can  think of  part of a 
net  as represented  inside the  computer by the logical facts, 
such  as 

arc(favorableAeve1-oferosion, 

arc(preintrusive-throughgoing-faultsystem, 
favorable-environment, 5700, 0.0001) 

favorable-environment, 5 ,  0.7) 

This describes two arcs in  a net. The first arc is from a  node 
called “favorable level of erosion”  to  one called “favorable 
environment,”  and it bears numbers for judgmental 
reasoning. The second arc is similar, and  both  arcs  can 
provide  evidence to  support  the conclusion  “favorable 
environment.” For another  method of representing 
knowledge in networks, see [37]. 

We can  think of afrarne [38] as  something like a  form 
that we can fill in, which may have  a place in  a hierarchy of 
forms. For example, a form about a  kind  of  house might be 
filled in like this: 

house  has 
s t reetname : main 
number-of-bathrooms : 2 
walLcolor : white 

Then we might fill in  a form  about a more particular  kind of 
house like this, 

t y p e A h o u s e  has 
number-of-bedrooms : 8 

and  about  an individual  house like this, 

housel has 
s t reetname : delaware 
walLcolor : green 
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Now given that  housel is a type A house, and  that a  type  A 
house is a  kind of house, we can reason that  housel has 8 
bedrooms  and 2 bathrooms,  and  that, exceptionally,  its walls 
are green rather  than white. The  notation is a  succinct one 
for  describing many houses,  provided that  the houses can be 
grouped  according to  common features. 

An object can be thought of as  a process or agent that 
receives a message, changes  its internal state, and sends out a 
message [39]. An object can also be used as a  template to 
generate other objects with similar  properties.  Objects form 
an intuitively  appealing way of  representing knowledge in 
situations  where there  are  many agents (say, people and 
computers)  that work  together on a task. In fact, there is a 
language called Smalltalk [40] that is based on objects. In 
our frames  example, we looked at  the description of a house, 
and if  we did  not find a property  there, we looked at  the 
descriptions of the kind  of  house. Similarly, if an object 
receives a message, it may  handle it according to its  own 
procedure, or it  may look among  more generic objects for  a 
suitable  procedure. For example, Shapiro  and  Takeuchi [4 I] 
use logic to describe a screen management program for a 
computer  terminal. Windows on  the screen correspond to 
objects that  can send messages to  one  another; a window 
with a caption is a special case of  a  window, which in turn is 
a special case of  a  rectangular area of the screen. 

in several ways, including rules, nets, frames, and objects, 
and we have  argued that logic provides  a natural  common 
notation. Many  kinds of knowledge that  are largely symbolic 
contain a few numbers, as  in our examples  above. 
Sometimes it is useful to express knowledge, particularly 
knowledge about how to search a space of possible actions 
for the best action to take, almost purely numerically; see 
[42]. In  the  numeric case logic is also a  strong candidate 
notation. However, numeric knowledge is traditionally 
written down  as  functions  rather  than  as logical relations- 
that is, there is an implied  direction  of computation  from 
input  numbers  to  an  output  number. Writing the  same 
knowledge in logic allows us, in principle, to also specify the 
output  and generate the corresponding sets of  inputs. This 
generalization is very powerful and often  works directly in 
Prolog for the symbolic case. However, in the  numeric case 
Prolog must usually be supported by extra knowledge about 
how to solve equations. Thus  the ability to  treat symbolic 
knowledge reversibly is to a large extent  built into Prolog, 
while the  same ability for numeric knowledge must in  most 
cases be added by extra programming. For example, in [43] 
it is shown  how to isolate a variable in  an  equation 
symbolically (and automatically) so that  one  can  then use 
the  equation numerically in  the usual way. 

We have  looked briefly at  some of the useful ways of 
representing knowledge in  a computer,  and we have argued 
that logic is a useful common  notation (see also [44, 451). 
Next we shall turn  to  methods for transfemng knowledge 

We have seen that symbolic knowledge can be represented 
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from people to  the  machine. Before doing so, however, it  is 
important  to  note  that a  choice of representation sets the 
framework in which the  machine acquires knowledge. An 
unsuitable  representation can  make  the task very difficult, 
while a suitable one  can allow acquisition techniques  that 
work well for one task to work  for an entirely new subject; 
see, e.g., [46]. 

6. Some  trends  in knowledge acquisition 
As we mentioned, expert  systems are also known as 
knowledge systems, and  it is clear that they are useful only 
insofar as they contain knowledge. For a  person it is an  open 
question how much knowledge is innate  and how much is 
acquired. For a computer, however, the answer is clear. All 
knowledge must  be acquired, since nothing significant is 
built  in during  manufacture. 

If we think for  a moment  about  human learning,  it is 
clearly difficult for  a person to  acquire a full slate of 
commonsense  and specialized knowledge; it  takes about a 
quarter of  a lifetime, and  this fact may influence our 
research approaches  to  machine learning [47]. We can 
calculate that, roughly speaking,  a  person may be able to 
change the  information in his or her brain at a  rate (in bits 
per  second) that is at least comparable to, and may be much 
greater than,  the rate at which the fastest current  computer 
can change  its information. So, if the  human potential is in 
fact used for  learning, and if artificial methods  are  no faster 
than  the  natural ones, we may expect the task of general 
knowledge acquisition  for computers  to be very difficult. It 
could  require  substantially  faster computers  than we now 
possess. 

However, it  already  seems clear that we can write useful 
knowledge acquisition  programs that  can help  us to build 
expert systems. We  can set up  some useful forms of machine 
learning,  although  what is currently practical falls far short of 
the kinds of learning that people can  do.  Once we have 
chosen to represent knowledge so that it is easy to  examine 
and change, we can set up several methods by which a 
machine  can  acquire it. It is useful to  group  the  methods like 
this: 

Learning by being told. 
Learning by induction  from examples. 
Learning by observation and discovery, 

In the following subsections we look at each of these 
methods of knowledge acquisition. 

Learning by being told 
This is the simplest form of knowledge acquisition, and it 
can be surprisingly useful. We simply tell the system facts 
and rules about  the task at  hand. For example,  in the 
knowledge system shell Syllog [48], we can simply add 8 
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English-like syllogisms that  contain knowledge about a 
particular  subject,  such as airline  reservations or 
manufacturing  planning [49]. We can easily examine  the 
knowledge, and when the system answers  a  question,  it can 
also provide an  explanation of its answer. The  implemented 
Syllog system does partial  checking of the  incoming 
knowledge. Checking can also be done  in Emycin-style 
systems that use numbers for judgmental reasoning [50]. 

We can  make learning by being  told more helpful, and 
thus hopefully use up less of the  time of  a human expert, by 
having an expert system assist in  pinpointing faulty or 
missing rules. This process has been called “interactive 
transfer  of  expertise” [ 5  11. Once a  faulty  rule has been 
found,  it  can  be specialized (e.g.,  by adding a premise) or 
generalized. If a  rule is missing, it can be very useful if the 
system can suggest what kind of premises and conclusions 
should be added. Shapiro [52] describes some methodical 
techniques  for  computer-assisted debugging of Prolog 
programs that essentially interview  a  person at  the  terminal 
to find out, by example,  what he or she has  in mind. 
Notably, Shapiro’s techniques are  not only implemented  as a 
program but also have  a  clear  theory, based on models in 
logic, to back them up. The techniques  extend to inductive 
inference of programs from examples, as discussed in the 
next  subsection. 

In principle we would like an expert system to check what 
it is told  thoroughly. Basically, there  are  three things that  can 
happen when we present  a system with a new item of 
knowledge [53]: 

a.  The new item is already  deducible  from the  current 
knowledge. Efficiency issues aside, we may set up  the 
system to reject the  item, with a suitable message to  the 
user. 

b. The new item  is  inconsistent with the  current knowledge. 
Either the item  is to be rejected, or the knowledge is to be 
changed before the item is accepted.  Rejection is 
straightforward. Alternatively, we can set up  the system to 
add  the item  automatically  as an exception to  the 
knowledge, or to hold a  dialog about what  action to  take 
with the person providing the knowledge. 

knowledge, nor inconsistent with it. The item is added  to 
the knowledge. However, there may  now be 

c. The new item is neither deducible from  the  current 

redundancies, e.g.,  if  we have added a general rule that 
covers a number of facts. So we may wish to  edit these 
out of the new knowledge. 

We have spoken so far about  adding  an item to a knowledge 
base. In relational  database  systems [54] items  are also 
deleted, and  this presents some  additional theoretical and 
practical  problems.  Indeed, Kowalski and Sergot [55] 
propose that,  rather  than deleting an  item,  one  can  add  to 
the knowledge base the fact that  the  item ceased to be true  at 



some  point in time.  This is intuitively  appealing, perhaps 
because people do  not automatically forget past facts or 
knowledge. It also  has far-reaching consequences  for 
database  normalization  theory.  However, in practice  it  needs 
very large archival  memories, and  it  may have to be 
combined with some measures to limit the  amount of 
knowledge that is stored. 

The steps a-c above can  be written as a logic program that 
assimilates new information  into a knowledge base. The 
declarative version of the program is short  and clear, about a 
page of Prolog, and it works well for  small knowledge bases. 
However, it is not efficient in general for large knowledge 
bases. There  are  some techniques  available  for  writing a 
longer, more procedural logic program that is more efficient 
[56].  However,  for  certain knowledge bases, some of the 
checking that  the program does is combinatorially  hard. 

In this situation  the  natural choice is to only do partial 
checking, or (equivalently) to  run  the full checking  program 
with a resource bound  on steps a and b, and  to  do step c if 
the resources are used up. This  can result in  an inconsistent 
knowledge base. In principle, any answer to  any question 
can be obtained  from a logic knowledge base that is 
inconsistent. Fortunately,  most logic programming 
interpreters and compilers,  including the Prolog and Syllog 
inference engines, impose relevance conditions  that prevent 
a local inconsistency  from  causing a global one. 

So there is really a continuum here. Some knowledge 
systems provide no checking of the  incoming knowledge at 
all, placing the  entire  burden  on  the users. Some, such as 
Syllog, do  some checking, thus moving part of the  burden 
from users to  the machine. In  future,  additional machine 
speed,  as well as  more efficient methods, should allow us to 
increase the  amount of checking that is done by the 
machine. We  mentioned  that, even with a consistent 
knowledge base, it  is important  that a system be able to 
explain the answers that  it gives to questions. In  the absence 
of full checking, explanations also give us a way of verifying 
the knowledge while a system is being  built and when a 
system is in use. 

Learning by induction from examples 
It is now generally accepted that people often have expertise 
that they find difficult to write down explicitly. A person 
may be very good at a task, but  may find it difficult to tell 
someone else, or a knowledge system shell, how to  do  the 
task. One reason  for  making the language of a system shell 
declarative and English-like, and for  providing  explanations, 
is that  some experts may actually experiment directly with 
the shell and  thus  may be able to  make  their implicit 
knowledge explicit. 

On  the  other  hand,  an expert can usually provide a wealth 
of examples about how to  do a task for which we would like 
to build a knowledge base. A particular  experimental  study 
[57] found  that a knowledge base induced  automatically 

from  examples  of  expert  behavior gave better  advice than 
one  that was built “by being told” by the expert. In general, 
the difficulty is to  make  the  leap from  examples containing 
some underlying pattern  to general rules that  summarize  the 
examples and  are capable of dealing with new examples that 
have not been seen before. Logically, this is not a deduction 
(given K, and  that K implies E, conclude E), but  an 
induction (given E, find a “suitable” K such that K implies 
E). Here, the examples are represented by E, and  the 
knowledge base that is to  be  found is K. 

In  thinking  about criteria  for  “suitable” knowledge bases 
K, we can immediately  rule out two  particular  inductive 
inferences from  the examples E. A case that is much simpler 
than a real knowledge induction problem  helps to illustrate 
this. Suppose we are given as  examples E just  the  numbers 

1 4 9 1 6 2 5 3 6 4 9 6 4  

and we are asked for a K which generalizes this. Most  people 
would say 

K consists ofthe squares of the integers. 

Intuitively,  this is suitable.  However,  it is much easier to 
recognize suitability in particular cases than  to  capture it  as a 
general concept. At least we can avoid  two  kinds of 
induction  that  are  almost always unsuitable. The first is that 
K is just E, i.e., the induced knowledge base is just a look-up 
table  of the examples that have been seen. This is 
unsatisfactory because we usually want a knowledge base 
that is smaller than  the examples from which it was induced, 
and because no new examples can be handled. (In our 
simple case above, K would not imply 8 1 .) The second 
inductive  inference is that K is the  most general possible 
knowledge base that implies E; that is, it implies  everything 
in the  domain from which E is a sample.  (In our simple case, 
K would consist of all of the integers.) Although  such a 
knowledge base is often much smaller than  the examples,  it 
tends  to be vacuous,  in the sense that it  indicates that 
anything is possible. 

Shapiro [ 5 2 ]  shows how to  induce Prolog programs 
automatically from examples  of  their desired behavior. 
There  can be many programs that cover a set of examples, 
but which one  to choose is not  the only concern.  The 
number of examples  needed to produce a program and  the 
computer  time needed  for the  induction process must also 
be weighed. Shapiro gives an  induction algorithm that  can  be 
used with different search strategies. In one case a strategy 
that needs many examples yields a short program, while a 
strategy that sometimes  needs fewer examples can (with an 
adverse  ordering of the examples) yield an arbitrarily  long 
program. Kitakami  et al. [ 5 8 ]  describe a way of combining 
knowledge acquisition by being  told with the inductive 
approach of Shapiro. 
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Several criteria  have been used to strike  a  balance between 
small, overly general inductions  on  the  one  hand,  and large, 
overly specific ones  on  the  other  hand.  In  the  Ockham 
system [ 5 9 ] ,  a Bayesian measure was used to steer  a search 
through a  space  of  causal  graphs. Quinlan [60] introduces a 
system in which a decision tree is induced from examples, 
and different trees are ranked by the  amount of information 
that is gained from the  questions asked.  Relational  databases 
can be compressed, as described in [6 I], by replacing several 
entries by the  name of the class to which they belong. For 
example, “cat”  and “dog”  could be replaced by “mammal.” 
However, they could also be replaced by “pet.” The resulting 
compressed  databases are inductive  generalizations, and their 
succinctness can be compared by running  the compression 
backward and seeing how close we get to  the original 
database. Mitchell’s version space technique [62] provides  a 
compact representation for all of the inductive  hypotheses 
that  are  compatible with a  collection  of  examples and 
nonexamples  of  a  concept. The idea is to store the most 
general hypotheses that do not imply any nonexample, and 
the most specific hypotheses that do  not exclude any 
example. The admissible  hypotheses then lie in  a “version 
space,” which is  partially ordered by generality, between 
these  extremes. If a  balance  criterion is added,  then  the 
hypotheses that satisfy it can be found from the version 
space. 

We noted in Section 5 that  there  are  many different 
representations  of knowledge, but  that logic is a useful 
common  notation. As we have  seen, there  are  many different 
criteria for judging  the quality of an inductive  inference. It 
appears  that  further empirical  work is needed to relate  these 
criteria and  to try to find some useful common  ground 
amongst  them. 

Learning by observation and discoverv 
So far, we have looked at learning by being  told and  at 
learning by induction  from examples,  both of which are 
techniques  for acquiring knowledge for  subsequent use in an 
expert system. In this  section, we look at  the extent to which 
a system can be said to discover new knowledge. 

In learning by being told, the system is given facts plus 
general rules about how to use the facts, which together 
amount  to a knowledge base K that implies the advice that 
we  wish it to give. Generally, K is very much smaller than 
an explicit listing of the advice. 

In learning by induction  from examples, the knowledge 
acquisition  part  of the system is given a collection of 
examples of good and bad advice (so labeled) from which it 
should induce a knowledge base K that implies the good 
advice,  refrains  from  implying the bad advice, and gives 
correct  advice on examples that  are  not in the original 
collection. In order  to do this, the knowledge acquisition 
engine  needs  a  guidance  criterion (let us call it G)  to choose 
a  “good” knowledge base K that implies sensible 
consequences. 

For learning by discovery, we equip  the knowledge 
acquisition system with a minimal initial knowledge base k, 
some  operators 0 for adding  information to k, and  some 
guidance G about what operators  to apply  in  what 
circumstances. We then let the acquisition system run, 
applying 0 to k,  guided by G. If we have  chosen k, 0, and G 
well, the system will discover  a larger knowledge base K 
containing  some conjectures that can turn  out  to be useful. 
For example,  in Lenat’s AM system [63], k consists of some 
simple non-numerical knowledge about  mathematical sets; 
0 contains  some  operators such  as 

Iff(x, y) is a function in the knowledge base, add to the 
knowledge base the  function  g(z) = f ( z ,  z); 

and  the guidance  G is a  prioritized  agenda. 

containing,  amongst  other conjectures (not all of which were 
interesting), de Morgan’s laws and  the  unique factorization 
theorem, although  nothing resembling either of these was 
present  in k, 0, or G. In fact, it also made  some interesting 
numerical  conjectures that were unknown  to  Lenat  at  the 
time  he wrote AM. Unfortunately, when the program  moved 
away from the symbolic domain with which it  had been 
primed,  and  into  the  numeric  domain, it made  more 

Equipped  in this way, the AM system produced a K 

uninteresting  conjectures  as well. 
Lenat  then observed that, since the program  could make 

interesting  conjectures  in  a domain such  as  mathematics,  it 
should also be able to discover useful new guidance 
heuristics G. This led Lenat  to  formulate metaheuristics- 
heuristics about how to find heuristics-such as 

$a heuristic is occasionally useful but usually bad,  then add 
specializations ofthe heuristic, 

and even to have the system apply this heuristic to itself. 

usually contains rules that  are general in  the sense that they 
contain variables. In learning by induction from  examples, 
the knowledge acquisition part of a system will often 
generalize the examples  it is given by replacing constants 
with variables (perhaps with range restrictions). A  notable 
feature of learning by discovery is that variables ranging over 
function or predicate names  are sometimes used; that is, 
viewed as logic, the process is  second  order. For example, 
Lenat’s operator  that specializes f ( x ,  y )  to f (  z ,  z) is intended 
to apply to any function of two variables. Another study [64] 
describes a  program that discovers the geographical concept 
of an  equator.  The program is primed with some 
geographical facts and also with some second-order logical 
knowledge. McCarthy [65]  gives a  second-order logic 
technique, called circumscription, that  can  be used to 
discover some general properties  of  a  situation. Thus, while 
our first two  kinds of learning can often be stated  in first- 
order logic, there is some evidence that guidance  for 

In learning by being told, the expertise given to  the system 
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discovery is naturally expressed in  second-order logic. Since 
we have little experience so far  in practical computing with 
second-order logic, it  seems likely that simulation using 
metalanguage  techniques  in first-order logic [53] will be 
useful for learning by discovery. 

7. Summary 
We have described some of the interplay between principles 
and practice in  expert systems. 

Behind early work in the field, there was a thesis that 
general problem solving engines  could be built, and  that it 
would suffice to  add declarative knowledge about a task to 
an engine to get an expert  system. However, the thesis did 
not have a  niche  for  procedural knowledge about how to  do 
a task efficiently. Consequently, the thesis led to very slow 
computation  on early  machines and still cannot be 
supported directly on  current computers. 

collect declarative and procedural knowledge for  a specific 
task and be willing to write a new expert system for each 
task. The antithesis  has the first practical expert systems to 
its  credit and  has been  mainly responsible for the  current 
commercial  interest  in  expert systems. However, the 
antithesis approach is intellectually labor-intensive  for  task 
experts and for knowledge engineers whose job  it is to collect 
and codify the expertise. 

As computer power  increased,  a  practical  synthesis of the 
two  earlier approaches appeared. The  common  elements of 
various ranges of  expert system tasks are collected into 
expert system shells. These shells each  cover  a range of tasks 
efficiently, but  no  one shell is as general as  the  extreme  form 
of the original thesis. Together, the shells support a wide 
range of tasks, so they  can be collected together into toolkits 
for  building  expert systems. Many  of the shells and most 
toolkits must still be primed by knowledge engineers, but  the 
time taken to build an expert system is reduced. 

The original thesis  had  a  strong flavor of  mathematical 
logic to it. About  the  time of the expert system shell 
synthesis, the Prolog language for logic programming 
appeared. Prolog is a restricted form of logic for which there 
are efficient interpreter/compilers. It appears  to be very 
suitable for implementation  on parallel machines.  Although 
it is a language, Prolog is at a  conceptual level much closer 
to a shell or a  toolkit than  to a conventional programming 
language. Prolog is very simple, with few language features, 
but  an  important  technique called metalanguage 
programming allows us to tailor  expert system shells. This 
technique provides  separate  niches  for  procedural and 
declarative knowledge, and  the separation further eases the 
knowledge engineering task. Because of the  connection with 
logic, Prolog allows us to build useful bridges from theory to 
the actual  practice  of  building and using expert systems. 

Even with the separation  of  declarative and procedural 
knowledge, it  is  clear that  more  can be done  to ease the 

There followed the Feigenbaum  antithesis that we should 

transfer  of knowledge from  human experts to expert systems. 
A good choice of knowledge representation is important, 
and, now that it can be supported efficiently enough, logic 
seems to be a highest common  notation for the 
representations  in current use. An expert system can acquire 
knowledge by being  told  (in which case we like it to help us 
by checking the consistency  of  what we say), by induction 
from  examples, or by semi-autonomous learning  from 
observation and discovery. A  problem with induction from 
examples is that we usually cannot get explanations 
automatically from  an  induced expert system. Learning by 
being told or by induction from  examples is normally  a first- 
order logic activity, while discovery is often guided by 
statements in  second-order logic. However, metalanguage 
techniques allow us to  handle  some second-order logic at  the 
first-order level. 

As expert systems become more useful, it  may be good to 
keep  in mind  that  there  are several levels of  detail at which 
they can be built. At the least detailed level, we supply 
simple  rules and facts that describe English (or other  natural 
language) abstractions that people use to  make decisions. As 
we go further  into detail, we may wish to  simulate certain 
theories about our own cognitive processes (e&, by using 
situation-action rules) or we may wish to  simulate 
approximately some aspect of the real world (e.g., a 
mechanical  device that  the expert system is to diagnose). At 
the limits of feasible detail, we may actually simulate events 
in our brains at  the level of  individual neurons, or the 
detailed  functioning of a  mechanical device that we wish to 
diagnose. We have achieved  most of our expert system 
successes so far with very little detail. It is a  fascinating 
question  whether this  trend will continue, or whether we 
shall find it more useful to be more detailed in future. 

The economically successful expert  systems so far have 
each addressed a specialized task, such  as  finding  mineral 
deposits. It is worth noting  that most human experts 
specialize too, in professions such  as geology. However, each 
human expert also has commonsense knowledge about  the 
world in general and knows how to  consult experts in 
subjects other  than his or her own. While we each find it 
easy to  do  commonsense reasoning, no  one so far  has 
produced an  account of how we do so (or even of the 
declarative knowledge we might be using) that is sufficient 
for us to write a “commonsense expert system.” We can 
speculate that, as  in the case of specialized expert systems, 
good progress will  be made where there is an interplay 
between theory  (influenced by logic) and specific empirical 
work in  building prototype  commonsense systems. 
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