Knowledge
systems:
Principles and
practice

by Adrian Walker

We describe what is expected of a knowledge-
based expert system, and the components from
which such a system is constructed. We give a
view of how an interplay between principles and
practice has helped the knowledge system field
to develop, and we give simple examples to
show that reasoning techniques based on formal
logic are now starting to provide a useful
coupling between scientific and engineering
work in the field. The examples are about logic
programming, knowledge representation,
judgmental reasoning, and about three methods
by which a system can acquire the knowledge it
needs.

1. Introduction
The rate of publication of articles about expert systems is
now higher than ever before. There are survey articles in
computer science journals, in popular computing and
scientific periodicals, and in the general press. The volume of
research publication is also unusually high. Expert systems
have so far proved their worth in structure elucidation in
chemistry, in helping to find mineral deposits, in helping
technicians in hospitals, in suggesting maintenance
procedures for locomotives, and in several specialties for
which we do not have enough human experts. The
commercial potential of the subject is now being recognized.
In a period of such intense activity, it can be healthy to
step back from the day to day excitement of new uses of

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

ADRIAN WALKER

expert systems, new research results, product
announcements, and the formation of new companies in the
expert systems area. In this article we look at some of the
interplay between principles and practice in expert systems;
we argue that it is fruitful to combine principles and practice
closely, and that logic programming is a strong candidate for
bridging the traditional gap between the two. We set out a
particular view of where work on expert systems has come
from, what is being done now, and of some of the trends for
the future. Because of the scope of the subject, our view
necessarily focuses on just some of the trends and
achievements.

In the next section we describe the properties that we
expect of an expert system. Section 3 sketches some central
issues in expert systems from a historical point of view.
Section 4 outlines the role of Prolog and logic programming
in expert systems. In Section 5 we note that an expert system
is only as good as the knowledge it contains, and we describe
some methods of knowledge representation. Then, in
Section 6, we describe some trends in knowledge acquisition.
Section 7 is a summary.

2. What is an expert system?

We expect an expert system to act as an intelligent assistant
in some task, or to solve an important problem that would
otherwise have to be solved by a human expert. However, as
the field has developed, we have come to expect more.
Because the expert knowledge that people have may change
with time, we would like an expert system to be flexible in
integrating new knowledge incrementally into its existing
store of knowledge. Indeed, we increasingly expect an expert
system to assist us in the transfer of knowledge. We would
also like it to be able to show its knowledge in a form that is
easy for us to read. If we are to take actions with serious
consequences in the real world, based on advice given by an

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

expert system, then we would like the system to provide
explanations of its advice [1]. Because the expert knowledge
that people have is often incomplete and only partly
understood, we would like an expert system to be able to
reason with judgmental or inexact knowledge. This
knowledge may be declarative (about the nature of a task),
procedural (about how to do the task, and about how to do
it efficiently), or both. Because we would like to concentrate
on communicating expertise and knowledge, rather than on
programming, we would like an expert system to be able to
deal with simple sentences in English or other natural
languages. Since there are many open research questions in
natural language processing, it is perhaps fortunate that we
can build useful expert systems whose natural language
technology is shallow yet exact; a system can reason reliably
and logically with English sentences whose meanings stem
from the way in which they appear in rules, rather than from
a detailed dictionary, syntax, and semantics of English.
Almost paradoxically, these sentences can even contain
judgmental phrases, such as “some evidence,” vet can still be
used by the underlying, exact reasoning method to yield
judgmental conclusions. This simplified approach appears to
be surprisingly useful. We can build effective expert systems
whose English is limited, and we can add more sophisticated
natural language processing as it becomes available.

To summarize, here is what we would like an expert
system to be able to do. It

e Should solve an important problem that would otherwise
have to be solved by a human expert.

o Should be flexible in integrating new knowledge
incrementally into its existing store of knowledge.

e Should assist us to elicit, structure, and transfer
knowledge.

o Should be able to show its knowledge in a form that is
easy for us to read.

¢ Should provide explanations of its advice.

o Should be able to reason with judgmental or inexact

knowledge about the nature of a task or how to do the task

efficiently.

Should be able to deal with simple sentences in English or

another natural language.

There are useful expert systems that do not do all of the
above, so these points are best read as ways to measure the
sophistication of an expert system. They also serve to
outline, in a general way, many of the main research goals in
the field. In addition, we can now list the main components
that we expect to find in most expert systems:

o Facts, plus knowledge, often in the form of rules.
® An inference engine, for reasoning with the facts and rules.
e An explanation generator.

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

* A knowledge acquisition engine,
e A (possibly limited) natural language processor.

Perhaps because of the variety of things we expect of an
expert system, there are many different names for such
systems. They are known as knowledge-based systems,
intelligent systems, intelligent knowledge-based systems, and
so on. It seems likely that knowledge system will become the
standard term. (For example, many of the expert system
projects at Stanford University are now departments of a
recently formed Knowledge Systems Laboratory.) We use
the terms expert system and knowledge system
interchangeably here.

3. From general to specific, and back again
In this section we sketch some central issues in expert
systems work over the last three decades, and we outline
how the issues are currently treated.

At a meeting in 1956 at Dartmouth College, John
McCarthy coined the term “Artificial Intelligence.” At the
same meeting a system called the Logic Theorist was
discussed. It proved theorems in logic [2] and may be
thought of as the first, or at least one of the first, expert
systems. It seems useful to outline the subsequent evolution
of expert systems in the USA in terms of a thesis, an
antithesis, and a synthesis. We then look at the
corresponding evolution outside the USA.

The thesis states that general methods of expert problem
solving can be found, and that these can be made
computational and can be applied to many different
problems. This approach is represented by the Logic
Theorist (mentioned above), by the General Problem Solver
[3], and by early work in automatic theorem proving, e.g.,
[4]. Implicit in the thesis is the concept that the declarative
and procedural aspects of how to solve a problem are
independent of the task at hand. The idea is that we should
just be able to declare what the task is, and the problem
solver should then do it. While this thesis works well in
principle, the early implementation efforts were very
inefficient in practice. One apparent source of difficulty is
that there is no obvious place, within the framework
prescribed by the thesis, to put specialized procedural
knowledge about how to do each task efficiently. In the
absence of this knowledge, the problem solver searches for
answers along many blind alleys before arriving at a
solution.

This difficulty led Edward Feigenbaum of Stanford
University to advocate an antithesis. The antithesis states
that, rather than looking for generality, we should set out
empirically to capture human knowledge and procedures for
specific tasks (see Feigenbaum and McCorduck [5] for a
recent summary of this view). Essentially, we should be
willing to write a new program for each task. This technique
led to the first practical expert systems. For example, the 3

ADRIAN WALKER

DENDRAL program [6] is a “smart assistant” for a chemist
concerned with structure elucidation in organic chemistry.
The Meta-DENDRAL program (described in the same
paper) is a knowledge acquisition program for DENDRAL.
The antithesis approach, and its reduction to practice, has
clearly been responsible for the present commercial interest
in expert systems. However, the approach is intellectually
labor intensive, so far as the acquisition of knowledge is
concerned. It is usual for a knowledge engineer to study the
task at hand, specify appropriate inference engines, and then
work with both task experts and programmers to construct a
system. Since the conceptual levels dealt with by the task
experts and the programmers are usually far apart, success
can depend on the skill of the knowledge engineer. Often the
experts, knowledge engineer, and programmers must invest
years of work in building a useful expert system. Moreover,
with the notable exception of DENDRAL, the systems so
constructed have not by and large contributed much to our
knowledge of the principles of expert systems.

Thus we have a thesis, that general problem solvers are
desirable, and an antithesis, that the best practical approach
is to build specific systems for specific tasks. The synthesis of
these two approaches essentially takes the middle ground.
The idea is that many tasks have requirements in common,
and that these requirements can be met by an expert system
“shell,” to which we add knowledge about particular tasks.
Typical shells, such as Emycin [7] and OPSS [8, 9], each
cover a range of tasks, but no one shell covers them all.
Clearly there are variations on this synthesis, one of which is
to provide a “toolkit” containing many of the methods used
in the various expert system shells. The Expert System
Environment/VM [10, 11], KEE [12], and LOOPS [13]
systems can be thought of as toolkits of this kind. Since even
a toolkit may not support all of the expert systems that we
may wish to build, it appears important that such kits be
packaged as “open systems,” in the sense that the underlying
programming language is accessible. It should be easy to
write new tools and to link them with the ones provided.

When we described the thesis about generality, we noted
that there was no place in the general framework for
procedural knowledge about how to do a specific task
efficiently. So it is natural to ask how the synthesis avoids the
efficiency problems that led to the suspension of the thesis.
There seem to be several reasons why individual expert
system shells are efficient enough to be useful. First,
individual shells do not try to cover such a broad class of
problems as the thesis methods, so each shell can be
designed to be efficient for the class of problems for which it
is intended. Second, the processing speed provided by the
underlying hardware has increased significantly since the
time the thesis was first proposed, although not enough for
direct support of the thesis. Third, although we like to keep
the knowledge about a task as declarative as possible, in
practice we often program some efficiency know-how into it.

ADRIAN WALKER

However, this last step tends to make the knowledge harder
to examine and change. It is usually better to put as much of
the procedural knowledge as possible in the inference engine.

In its most general form the thesis calls for more
computational power than we can supply, but it allows us in
principle to just specify a task to be done, so that we do not
have to give a procedure for how to do the task. Thus the
thesis is computation intensive. The antithesis, on the other
hand, is intellectual-labor intensive. Task experts, knowledge
engineers, and artificial intelligence programmers have in
some cases spent years building a single specialized system.
The synthesis, taking the middle ground, tends to reduce the
amount of intellectual work in constructing a system, and
tends to result in a system that is reasonably efficient on
current computers. Work on computer-assisted acquisition
of knowledge, which we describe in Section 6, shows some
promise of further reducing the intellectual work needed to
build a system, without increasing the computer power
needed to run the system after it has been built.
Interestingly, the more ambitious knowledge acquisition
methods call for very large amounts of computing. Often
this is worthwhile: We may be willing to compute for days or
weeks to build a system, although we often expect fast
response from the system once it has been built.

So far, we have outlined some central trends in expert
systems in the USA since the late fifties in terms of a thesis,
an antithesis, and a synthesis. The thesis was based on
mathematical logic, while the antithesis and synthesis
dispensed with the logical approach on the grounds of
efficiency. Most of the experimental work in all three phases
has been done in the language Lisp, invented by John
McCarthy at about the start of the thesis period [14], and
elaborated through many different versions since.
Interestingly, although Lisp is designed for symbol
manipulation, it is a functional rather than a relational
(logical) language; various operations for logic, such as
unification and search, must be programmed in Lisp when
needed.

Qutside of the USA, there was a thesis stage concerned
with automatic theorem proving, but there was generally
much less of the antithesis-inspired activity in building
individual systems. Around the mid-70s, the synthesis
happened in the USA; several expert system shells with good
but not completely general coverage appeared on the scene.
In the meantime research elsewhere also led to some new
logical techniques for expert systems, and we discuss these
next.

4. Prolog and logic programming

At about the same time that the synthesis made itself known
in the USA, a new language called Prolog was designed in
Europe [15-17). Although Prolog was first implemented to
support natural language processing [18], it works essentially
as an efficiently executable part of mathematical logic, so it

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

is of interest for expert system reasoning, as well as for other
tasks. :

By 1981, Prolog was adopted by the Japanese as the basis
of their Fifth Generation Project [19]. The technical aims of
this ten-year project include fundamental work on both
software and hardware for advanced knowledge bases. In
1984, at the end of the first phase of the project, substantial
progress was reported on a Prolog-based workstation, a
database machine, studies of parallel machines to support
Prolog, and in some experimental expert systems [20].

Prolog has a certain hybrid vigor, in that it contains some
declarative features from computational mathematical logic
[21, 22] and some procedural aspects from conventional
programming. Thus it is called a logic programming
language, and, like the expert system shells and toolkits, it
occupies the middle ground between our general thesis and
specific antithesis.

Prolog is somewhat weighted towards the thesis idea and
towards generality. Many of the mechanisms one needs for
an expert system shell are in the language, yet the language
has very few features in the conventional sense. (For
example, Prolog has a generalized logical pattern match
called unification, but it is built-in, and one usually does not
see it or call it explicitly when writing a program.) Perhaps
because of the lack of conventional features, Prolog has a
very elegant and practical semantics that seems to be the key
to much of its appeal. For example, it is possible to say what
a well-written Prolog program should compute, independent
of any particular interpreter or compiler, and it is possible to
say this precisely without getting into undue complexities.
One analytical tool for doing this is model theory in logic
[23, 24], which turns out, in many examples, to be quite
close to the intuition that most people have about what a
program should do. As a very simple example, the Prolog
program

route(X, Z) « road(X, Z).
route(X, Z) « road(X, Y) & route(Y, Z).
road(b, c). road(c, d). road(d, e).

says that there is a route from X to Z either if there is a road
from X to Z, or if there is both a road from X to Y and a
route from Y to Z. It also says that there are roads from b to
¢, ¢ to d, and d to e. The following is a model of the
program:

road(b, ¢c). road(c,d). road(d,e).
route(b, ¢). route(c, d). route(d,).
route(b, d). route(c,). route(b, e).

This is a model in the ordinary sense that every relevant
instance of each rule in the program evaluates to frue in the
model. It is also just the collection of commonsense
consequences of the rules and facts in the program.

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986

Because of its relation to mathematical logic, Prolog has a
theoretical basis [25-27] as well as a body of associated
practical experience. In fact, the theory and practice can be
made to mesh quite well [28, 29), and can be usefully
extended to include relational databases {30, 31].

One consequence of the simple semantics of Prolog is that
it works very well as its own metalanguage. That is, it is
rather easy to describe the semantics of Prolog in Prolog.
While a Prolog interpreter written in a conventional
language may occupy upwards of 10 000 bytes, an
interpreter for most of Prolog can be written in Prolog in
about 100 bytes (less than half a printed page). This may
seem to be just an academic curiosity, until we realize that
many inference engines for expert systems are somewhat
similar to the Prolog inference engine. For example, by
making relatively minor changes to a Prolog interpreter in
Prolog, we get the core of the Emycin inference engine; by
making some other changes, we get rules by which each
object belonging to some class inherits the general properties
of the class unless otherwise stated. We pay an efficiency
price for this conceptual elegance, since the inference engines
that we build in this way are generally slower than if they
had been written directly. However, when supported by a
fast computer, the performance is adequate for many tasks,
the flexibility advantages are overwhelming, and it is possible
to compile some aspects of the inference engine if necessary
[32]. The inference engine consists of Prolog rules that
function as metainformation; they are rules about how to
use the rules for particular tasks. If we have procedural
information about how to do a range of tasks efficiently (e.g.,
always use a relevant fact before trying a rule), then we can
encode this in the metarules that define the inference engine.
Thus, in the metalanguage approach to expert systems in
Prolog, there is a natural place for procedural knowledge,
and the task knowledge can remain largely declarative. If our
target is high performance on small machines, then we can
first make a metalanguage prototype of the inference engine
on a large machine and then rewrite or compile it as
necessary.

We mentioned that Prolog is a simple language with few
features. In fact, the main part of Prolog lacks many of the
standard constructs of other programming languages. For
example, destructive assignment (as in X:=5) is rarely used
in Prolog, whereas modification of a working memory is a
central feature of OPSS. This tends to guide the programmer
away from machine-level state-transition programming and
towards a more declarative style. Simultaneously, it appears
to make pure Prolog (like pure Lisp) more suitable for
implementation on parallel hardware {33], and parallel
hardware now seems to be promising for the support of
some of the more ambitious tasks, such as real-time control,
that are proposed for expert systems. Some expert systems
for real-time control can be built by very efficient
programming on a sequential machine [34], while others 5

ADRIAN WALKER

appear to need more: specifically, the kind of underlying
performance that is expected from parallel machines.

So far, we have sketched some of the issues in expert
systems over the last three decades, both inside and outside
the USA, in terms of a thesis about generality, an antithesis
about specialization and efficiency, and a synthesis
containing a partial return to generality. We have touched
on a spectrum of activities from general to specific, and from
theoretical to empirical. An expert system is only as good as
the declarative and procedural knowledge that it contains. In
the next sections, we look at knowledge representation and
at knowledge acquisition.

5. Knowledge representation

In order to use knowledge in a machine, we must first
choose a way of representing it. We need a notation that
supports what we expect an expert system to do. The
notation should make it easy for us to add and change
knowledge, should be easy for us to read, and should support
explanation generation. In addition, the notation should
suggest ways in which it will be used and should allow us to
write down different methods of use. The notation should
also encourage us to separate declarative knowledge (what a
problem is about) from procedural knowledge (how to solve
the problem), yet it should support efficient problem solving.
Thus we can use these criteria to estimate how useful
conventional programming is for expert systems and to
compare the various knowledge representations that are used
for expert systems.

When we write a program in a conventional language, we
are writing down knowledge about how to do a task. When
we load the program into a computer, the computer could
be said to acquire knowledge. However, it may be quite hard
to add to the knowledge or to change it. It can also be hard
for a person other than the author to read and understand
the program, and it is rare for ordinary programs to provide
explanations of what they do. On the plus side, ordinary
programming notation does suggest how it is to be used,
since the meaning of a program can (in principle) be worked
out in terms of how it changes the state of the computer it
runs on. Yet, most conventional programming languages
encourage us to mix declarative and procedural knowledge
so much that it can be difficult to separate the two. On the
plus side again, the knowledge can often be used very
efficiently.

The kind of task for which we build an expert system is,
almost by definition, complicated. When we describe a task
in English, we usually keep the description to a readable
length by relying on knowledge that the writer and the
reader already have in common. If the task is simple, it is
usually feasible to write a suitable program from the
description, although there may be many suitable programs.
However, if the task is complicated and specialized, we
cannot rely so much on shared knowledge. An English
description of readable length is no longer enough, while if

ADRIAN WALKER

we make the description long and pedantic, we get lost in the
details. So there are several notations for knowledge that
stand somewhere between English and programs. They are
useful to the extent that they allow us to write down
knowledge in a form that both people (who need not be
programmers) and computers can use.

Some of our methods for representing knowledge for
expert systems make use of the notion of a hierarchy, in
which lower items are normally assumed to inherit some of
the properties of higher items. For example, if a manager in
a company is interested in expert systems, then we assume
that the people who work in his or her group have the same
interest, unless we are told that one of them specializes in
hardware. Some notations for knowledge are often used
without explicit reference to a hierarchy, for example, rules
and nets. Others, such as frames and objects, are centered
around the hierarchical notion. Although the various
notations have been designed separately, and have been used
for many different purposes, there is increasing evidence that
each one can usefully be written down in logic. We look at
some of this evidence next.

Knowledge is represented as rules in systems such as
Emycin [7] and Syllog [30]. For example, an Emycin-style
rule reads

if “plant is wilting” and
not “leaves have yellow spots”
then “there is not enough water” : 60.

The number “60” indicates that we have 60% confidence in
the rule and is used in a numerical form of judgmental
reasoning. A Syllog rule reads

site eg._number has eg_type rock in suitable form
eg—group fossils have been found at site eg_number
eg_group fossils are characteristic of the eg_p period
known reserves in eg_type rock from the eg_p period

some evidence for oil at site eg_number

Here, the conclusion below the line is established if all of the
premises above the line are true. The “eg_” items are
variables that make the rule general.

In Emycin, judgmental reasoning proceeds by chaining
rules together to form deductions, and by using a built-in
algorithm to combine the numerical confidences at each step
in the chain. Thus it is a design assumption that there should
be some way of assigning confidence numbers to rules so
that the built-in algorithm will give reasonable answer
confidences. The algorithm is a part of the Emycin shell, and
most of its operation is hidden from the user. In writing a
knowledge base it is not always easy to assign suitable
numbers to rules, perhaps because one cannot easily tell
without experimentation just what their effect will be on the
answer confidences. [35] describes an interesting approach to
this problem.

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

In Syllog, there is no built-in algorithm for judgmental
reasoning. When needed, judgments are written and used
explicitly (and usually symbolically) rather than implicitly
and numerically in the Emycin style. For example, the
phrases “suitable form” and “some evidence” in the Syllog
rule above carry judgment. If we carry the judgmental
reasoning explicitly in this way, we are not forced to assume
that there is a uniform method (e.g., Bayesian) for weighing
evidence; the way in which evidence is weighed may be quite
different from rule to rule. Although the lack of a built-in
algorithm for combining numerical confidences appears at
first sight to be a disadvantage, it seems very natural in
practice to use judgmental English phrases in the syllogisms,
and to show in explanations how the judgments are
combined at each step.

For the Prospector system [36], knowledge is written
down as a net with nodes and arcs. The nodes represent
geological evidence or hypotheses, and the arcs represent
causal linkages among the nodes. We can think of part of a
net as represented inside the computer by the logical facts,
such as

arc(favorable_level_of_erosion,
favorable_environment, 5700, 0.0001)

arc(preintrusive_throughgoing_fault_system,
favorable_environment, 5, 0.7)

This describes two arcs in a net. The first arc is from a node
called “favorable level of erosion” to one called “favorable
environment,” and it bears numbers for judgmental
reasoning. The second arc is similar, and both arcs can
provide evidence to support the conclusion “favorable
environment.” For another method of representing
knowledge in networks, see [37].

We can think of a frame [38] as something like a form
that we can fill in, which may have a place in a hierarchy of
forms. For example, a form about a kind of house might be
filled in like this:

house has
street_name : main
number._of_bathrooms : 2
wall_color : white

Then we might fill in a form about a more particular kind of
house like this,

type—_A_house has
number_of_bedrooms : 8

and about an individual house like this,

housel has
street_name : delaware
wall_color : green

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

Now given that house! is a type A house, and that a type A
house is a kind of house, we can reason that house! has 8
bedrooms and 2 bathrooms, and that, exceptionally, its walls
are green rather than white. The notation is a succinct one
for describing many houses, provided that the houses can be
grouped according to common features.

An object can be thought of as a process or agent that
receives a message, changes its internal state, and sends out a
message [39]. An object can also be used as a template to
generate other objects with similar properties. Objects form
an intuitively appealing way of representing knowledge in
situations where there are many agents (say, people and
computers) that work together on a task. In fact, there is a
language called Smalitalk [40] that is based on objects. In
our frames example, we looked at the description of a house,
and if we did not find a property there, we looked at the
descriptions of the kind of house. Similarly, if an object
receives a message, it may handle it according to its own
procedure, or it may look among more generic objects for a
suitable procedure. For example, Shapiro and Takeuchi [41]
use logic to describe a screen management program for a
computer terminal. Windows on the screen correspond to
objects that can send messages to one another; a window
with a caption is a special case of a window, which in turn is
a special case of a rectangular area of the screen.

We have seen that symbolic knowledge can be represented
in several ways, including rules, nets, frames, and objects,
and we have argued that logic provides a natural common
notation. Many kinds of knowledge that are largely symbolic
contain a few numbers, as in our examples above.
Sometimes it is useful to express knowledge, particularly
knowledge about how to search a space of possible actions
for the best action to take, almost purely numerically; see
[42]. In the numeric case logic is also a strong candidate
notation. However, numeric knowledge is traditionally
written down as functions rather than as logical relations—
that is, there is an implied direction of computation from
input numbers to an output number. Writing the same
knowledge in logic allows us, in principle, to also specify the
output and generate the corresponding sets of inputs. This
generalization is very powerful and often works directly in
Prolog for the symbolic case. However, in the numeric case
Prolog must usually be supported by extra knowledge about
how to solve equations. Thus the ability to treat symbolic
knowledge reversibly is to a large extent built into Prolog,
while the same ability for numeric knowledge must in most
cases be added by extra programming. For example, in [43]
it is shown how to isolate a variable in an equation
symbolically (and automatically) so that one can then use
the equation numerically in the usual way.

We have looked briefly at some of the useful ways of
representing knowledge in a computer, and we have argued
that logic is a useful common notation (see also [44, 45]).
Next we shall turn to methods for transferring knowledge 7

ADRIAN WALKER

from people to the machine. Before doing so, however, it is
important to note that a choice of representation sets the
framework in which the machine acquires knowledge. An
unsuitable representation can make the task very difficult,
while a suitable one can allow acquisition techniques that
work well for one task to work for an entirely new subject;
see, e.g., [46].

6. Some trends in knowledge acquisition

As we mentioned, expert systems are also known as
knowledge systems, and it is clear that they are useful only
insofar as they contain knowledge. For a person it is an open
question how much knowledge is innate and how much is
acquired. For a computer, however, the answer is clear. All
knowledge must be acquired, since nothing significant is
built in during manufacture.

If we think for a moment about human learning, it is
clearly difficult for a person to acquire a full slate of
commonsense and specialized knowledge; it takes about a
quarter of a lifetime, and this fact may influence our
research approaches to machine learning [47]. We can
calculate that, roughly speaking, a person may be able to
change the information in his or her brain at a rate (in bits
per second) that is at least comparable to, and may be much
greater than, the rate at which the fastest current computer
can change its information. So, if the human potential is in
fact used for learning, and if artificial methods are no faster
than the natural ones, we may expect the task of general
knowledge acquisition for computers to be very difficult. It
could require substantially faster computers than we now
possess.

However, it already seems clear that we can write useful
knowledge acquisition programs that can help us to build
expert systems. We can set up some useful forms of machine
learning, although what is currently practical falls far short of
the kinds of learning that people can do. Once we have
chosen to represent knowledge so that it is easy to examine
and change, we can set up several methods by which a
machine can acquire it. It is useful to group the methods like
this:

e Learning by being told.
& Learning by induction from examples.
o Learning by observation and discovery.

In the following subsections we look at each of these
methods of knowledge acquisition.

& Learning by being told

This is the simplest form of knowledge acquisition, and it
can be surprisingly useful. We simply tell the system facts
and rules about the task at hand. For example, in the
knowledge system shell Syllog [48], we can simply add

ADRIAN WALKER

English-like syllogisms that contain knowledge about a
particular subject, such as airline reservations or
manufacturing planning [49]). We can easily examine the
knowledge, and when the system answers a question, it can
also provide an explanation of its answer. The implemented
Syllog system does partial checking of the incoming
knowledge. Checking can also be done in Emycin-style
systems that use numbers for judgmental reasoning [50].

We can make learning by being told more helpful, and
thus hopefully use up less of the time of a human expert, by
having an expert system assist in pinpointing faulty or
missing rules. This process has been called “interactive
transfer of expertise” [51]. Once a faulty rule has been
found, it can be specialized (e.g., by adding a premise) or
generalized. If a rule is missing, it can be very useful if the
system can suggest what kind of premises and conclusions
should be added. Shapiro [52] describes some methodical
techniques for computer-assisted debugging of Prolog
programs that essentially interview a person at the terminal
to find out, by example, what he or she has in mind.
Notably, Shapiro’s techniques are not only implemented as a
program but also have a clear theory, based on models in
logic, to back them up. The techniques extend to inductive
inference of programs from examples, as discussed in the
next subsection.

In principle we would like an expert system to check what
it is told thoroughly. Basically, there are three things that can
happen when we present a system with a new item of
knowledge [53]:

a. The new item is already deducible from the current
knowledge. Efficiency issues aside, we may set up the
system to reject the item, with a suitable message to the
user.

b. The new item is inconsistent with the current knowledge.
Either the item is to be rejected, or the knowledge is to be
changed before the item is accepted. Rejection is
straightforward. Alternatively, we can set up the system to
add the item automatically as an exception to the
knowledge, or to hold a dialog about what action to take
with the person providing the knowledge.

¢. The new item is neither deducible from the current
knowledge, nor inconsistent with it. The item is added to
the knowledge. However, there may now be
redundancies, e.g., if we have added a general rule that
covers a number of facts. So we may wish to edit these
out of the new knowledge.

We have spoken so far about adding an item to a knowledge
base. In relational database systems [54] items are also
deleted, and this presents some additional theoretical and
practical problems. Indeed, Kowalski and Sergot [55]
propose that, rather than deleting an item, one can add to
the knowledge base the fact that the item ceased to be true at

IBM J. RES, DEVELOP. VOL. 30 NO. | JANUARY 1986

some point in time. This is intuitively appealing, perhaps
because people do not automatically forget past facts or
knowledge. It also has far-reaching consequences for
database normalization theory. However, in practice it needs
very large archival memories, and it may have to be
combined with some measures to limit the amount of
knowledge that is stored.

The steps a—c above can be written as a logic program that
assimilates new information into a knowledge base. The
declarative version of the program is short and clear, about a
page of Prolog, and it works well for small knowledge bases.
However, it is not efficient in general for large knowledge
bases. There are some techniques available for writing a
longer, more procedural logic program that is more efficient
[56]. However, for certain knowledge bases, some of the
checking that the program does is combinatorially hard.

In this situation the natural choice is to only do partial
checking, or (equivalently) to run the full checking program
with a resource bound on steps a and b, and to do step ¢ if
the resources are used up. This can result in an inconsistent
knowledge base. In principle, any answer to any question
can be obtained from a logic knowledge base that is
inconsistent. Fortunately, most logic programming
interpreters and compilers, including the Prolog and Syllog
inference engines, impose relevance conditions that prevent
a local inconsistency from causing a global one.

So there is really a continuum here. Some knowledge
systems provide no checking of the incoming knowledge at
all, placing the entire burden on the users. Some, such as
Syllog, do some checking, thus moving part of the burden
from users to the machine. In future, additional machine
speed, as well as more efficient methods, should allow us to
increase the amount of checking that is done by the
machine. We mentioned that, even with a consistent
knowledge base, it is important that a system be able to
explain the answers that it gives to questions. In the absence
of full checking, explanations also give us a way of verifying
the knowledge while a system is being built and when a
system is in use.

& Learning by induction from examples

It is now generally accepted that people often have expertise
that they find difficult to write down explicitly. A person
may be very good at a task, but may find it difficult to tell
someone else, or a knowledge system shell, how to do the
task. One reason for making the language of a system shell
declarative and English-like, and for providing explanations,
is that some experts may actually experiment directly with
the shell and thus may be able to make their implicit
knowledge explicit.

On the other hand, an expert can usually provide a wealth
of examples about how to do a task for which we would like
to build a knowledge base. A particular experimental study
[57] found that a knowledge base induced automatically

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

from examples of expert behavior gave better advice than
one that was built “by being told” by the expert. In general,
the difficulty is to make the leap from examples containing
some underlying pattern to general rules that summarize the
examples and are capable of dealing with new examples that
have not been seen before. Logically, this is not a deduction
(given K, and that K implies E, conclude E), but an
induction (given E, find a “suitable” K such that K implies
E). Here, the exampiles are represented by E, and the
knowledge base that is to be found is K.

In thinking about criteria for “suitable” knowledge bases
K, we can immediately rule out two particular inductive
inferences from the examples E. A case that is much simpler
than a real knowledge induction problem helps to illustrate
this. Suppose we are given as examples E just the numbers

1491625364964

and we are asked for a K which generalizes this. Most people
would say

K consists of the squares of the integers.

Intuitively, this is suitable. However, it is much easier to
recognize suitability in particular cases than to capture it as a
general concept. At least we can avoid two kinds of
induction that are almost always unsuitable. The first is that
K is just E, i.e., the induced knowledge base is just a look-up
table of the examples that have been seen. This is
unsatisfactory because we usually want a knowledge base
that is smaller than the examples from which it was induced,
and because no new examples can be handled. (In our
simple case above, K would not imply 81.) The second
inductive inference is that K is the most general possible
knowledge base that implies E; that is, it implies everything
in the domain from which E is a sample. (In our simple case,
K would consist of all of the integers.) Although such a
knowledge base is often much smaller than the examples, it
tends to be vacuous, in the sense that it indicates that
anything is possible.

Shapiro [52] shows how to induce Prolog programs
automatically from examples of their desired behavior.
There can be many programs that cover a set of examples,
but which one to choose is not the only concern. The
number of examples needed to produce a program and the
computer time needed for the induction process must also
be weighed. Shapiro gives an induction algorithm that can be
used with different search strategies. In one case a strategy
that needs many examples yields a short program, while a
strategy that sometimes needs fewer examples can (with an
adverse ordering of the examples) yield an arbitrarily long
program. Kitakami et al. [58] describe a way of combining
knowledge acquisition by being told with the inductive
approach of Shapiro. 9

ADRIAN WALKER

10

Several criteria have been used to strike a balance between
small, overly general inductions on the one hand, and large,
overly specific ones on the other hand. In the Ockham
system [59], a Bayesian measure was used to steer a search
through a space of causal graphs. Quinlan [60] introduces a
system in which a decision tree is induced from examples,
and different trees are ranked by the amount of information
that is gained from the questions asked. Relational databases
can be compressed, as described in [61], by replacing several
entries by the name of the class to which they belong. For
example, “cat” and “dog” could be replaced by “mammal.”
However, they could also be replaced by “pet.” The resulting
compressed databases are inductive generalizations, and their
succinctness can be compared by running the compression
backward and seeing how close we get to the original
database. Mitchell’s version space technique [62] provides a
compact representation for all of the inductive hypotheses
that are compatible with a collection of examples and
nonexamples of a concept. The idea is to store the most
general hypotheses that do not imply any nonexample, and
the most specific hypotheses that do not exclude any
example. The admissible hypotheses then lie in a “version
space,” which is partially ordered by generality, between
these extremes. If a balance criterion is added, then the
hypotheses that satisfy it can be found from the version
space.

We noted in Section 5 that there are many different
representations of knowledge, but that logic is a useful
common notation. As we have seen, there are many different
criteria for judging the quality of an inductive inference. It
appears that further empirical work is needed to relate these
criteria and to try to find some useful common ground
amongst them.

o Learning by observation and discovery

So far, we have looked at learning by being told and at
learning by induction from examples, both of which are
techniques for acquiring knowledge for subsequent use in an
expert system. In this section, we look at the extent to which
a system can be said to discover new knowledge.

In learning by being told, the system is given facts plus
general rules about how to use the facts, which together
amount to a knowledge base K that implies the advice that
we wish it to give. Generally, K is very much smaller than
an explicit listing of the advice.

In learning by induction from examples, the knowledge
acquisition part of the system is given a collection of
examples of good and bad advice (so labeled) from which it
should induce a knowledge base K that implies the good
advice, refrains from implying the bad advice, and gives
correct advice on examples that are not in the original
collection. In order to do this, the knowledge acquisition
engine needs a guidance criterion (let us call it G) to choose
a “good” knowledge base K that implies sensible
consequences.

ADRIAN WALKER

For learning by discovery, we equip the knowledge
acquisition system with a minimal initial knowledge base k,
some operators O for adding information to k, and some
guidance G about what operators to apply in what
circumstances. We then let the acquisition system run,
applying O to k, guided by G. If we have chosen k, O, and G
well, the system will discover a larger knowledge base K
containing some conjectures that can turn out to be useful.
For example, in Lenat’s AM system [63], k consists of some
simple non-numerical knowledge about mathematical sets;
O contains some operators such as

iff(x, y) is a function in the knowledge base, add to the
knowledge base the function g(z) = f(z, z);

and the guidance G is a prioritized agenda.

Equipped in this way, the AM system produced a K
containing, amongst other conjectures (not all of which were
interesting), de Morgan’s laws and the unique factorization
theorem, although nothing resembling either of these was
present in k, O, or G. In fact, it also made some interesting
numerical conjectures that were unknown to Lenat at the
time he wrote AM. Unfortunately, when the program moved
away from the symbolic domain with which it had been
primed, and into the numeric domain, it made more
uninteresting conjectures as well.

Lenat then observed that, since the program could make
interesting conjectures in a domain such as mathematics, it
should also be able to discover useful new guidance
heuristics G. This led Lenat to formulate metaheuristics—
heuristics about how to find heuristics—such as

if a heuristic is occasionally useful but usually bad, then add
specializations of the heuristic,

and even to have the system apply this heuristic to itself.

In learning by being told, the expertise given to the system
usually contains rules that are general in the sense that they
contain variables. In learning by induction from examples,
the knowledge acquisition part of a system will often
generalize the examples it is given by replacing constants
with variables (perhaps with range restrictions). A notable
feature of learning by discovery is that variables ranging over
function or predicate names are sometimes used; that is,
viewed as logic, the process is second order. For example,
Lenat’s operator that specializes f(x, y) to f(z, z) is intended
to apply to any function of two variables. Another study [64]
describes a program that discovers the geographical concept
of an equator. The program is primed with some
geographical facts and also with some second-order logical
knowledge. McCarthy [65] gives a second-order logic
technique, called circumscription, that can be used to
discover some general properties of a situation. Thus, while
our first two kinds of learning can often be stated in first-
order logic, there is some evidence that guidance for

IBM J. RES. DEVELOP. VOL. 30 NO. i JANUARY 1986

discovery is naturally expressed in second-order logic. Since
we have little experience so far in practical computing with
second-order logic, it seems likely that simulation using
metalanguage techniques in first-order logic [53] will be
useful for learning by discovery.

7. Summary
We have described some of the interplay between principles
and practice in expert systems.

Behind early work in the field, there was a thesis that
general problem solving engines could be built, and that it
would suffice to add declarative knowledge about a task to
an engine to get an expert system. However, the thesis did
not have a niche for procedural knowledge about how to do
a task efficiently. Consequently, the thesis led to very siow
computation on early machines and still cannot be
supported directly on current computers.

There followed the Feigenbaum antithesis that we should
collect declarative and procedural knowledge for a specific
task and be willing to write a new expert system for each
task. The antithesis has the first practical expert systems to
its credit and has been mainly responsible for the current
commercial interest in expert systems. However, the
antithesis approach is intellectually labor-intensive for task
experts and for knowledge engineers whose job it is to collect
and codify the expertise.

As computer power increased, a practical synthesis of the
two earlier approaches appeared. The common elements of
various ranges of expert system tasks are collected into
expert system shells. These shells each cover a range of tasks
efficiently, but no one shell is as general as the extreme form
of the original thesis. Together, the shells support a wide
range of tasks, so they can be collected together into toolkits
for building expert systems. Many of the shells and most
toolkits must still be primed by knowledge engineers, but the
time taken to build an expert system is reduced.

The original thesis had a strong flavor of mathematical
logic to it. About the time of the expert system shell
synthesis, the Prolog language for logic programming
appeared. Prolog is a restricted form of logic for which there
are efficient interpreter/compilers. It appears to be very
suitable for implementation on parallel machines. Although
it is a language, Prolog is at a conceptual level much closer
to a shell or a toolkit than to a conventional programming
language. Prolog is very simple, with few language features,
but an important technique called metalanguage
programming allows us to tailor expert system shells. This
technique provides separate niches for procedural and
declarative knowledge, and the separation further eases the
knowledge engineering task. Because of the connection with
logic, Prolog allows us to build useful bridges from theory to
the actual practice of building and using expert systems.

Even with the separation of declarative and procedural
knowledge, it is clear that more can be done to ease the

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

transfer of knowledge from human experts to expert systems.
A good choice of knowledge representation is important,
and, now that it can be supported efficiently enough, logic
seems to be a highest common notation for the
representations in current use. An expert system can acquire
knowledge by being told (in which case we like it to help us
by checking the consistency of what we say), by induction
from examples, or by semi-autonomous learning from
observation and discovery. A problem with induction from
examples is that we usually cannot get explanations
automatically from an induced expert system. Learning by
being told or by induction from examples is normally a first-
order logic activity, while discovery is often guided by
statements in second-order logic. However, metalanguage
techniques allow us to handle some second-order logic at the
first-order level.

As expert systems become more useful, it may be good to
keep in mind that there are several levels of detail at which
they can be built. At the least detailed level, we supply
simple rules and facts that describe English (or other natural
language) abstractions that people use to make decisions. As
we go further into detail, we may wish to simulate certain
theories about our own cognitive processes (€.g., by using
situation-action rules) or we may wish to simulate
approximately some aspect of the real world (e.g., a
mechanical device that the expert system is to diagnose). At
the limits of feasible detail, we may actually simulate events
in our brains at the level of individual neurons, or the
detailed functioning of a mechanical device that we wish to
diagnose. We have achieved most of our expert system
successes so far with very little detail. It is a fascinating
question whether this trend will continue, or whether we
shall find it more useful to be more detailed in future.

The economically successful expert systems so far have
each addressed a specialized task, such as finding mineral
deposits. It is worth noting that most human experts
specialize too, in professions such as geology. However, each
human expert also has commonsense knowledge about the
world in general and knows how to consulit experts in
subjects other than his or her own. While we each find it
easy to do commonsense reasoning, no one so far has
produced an account of #ow we do so (or even of the
declarative knowledge we might be using) that is sufficient
for us to write a “commonsense expert system.” We can
speculate that, as in the case of specialized expert systems,
good progress will be made where there is an interplay
between theory (influenced by logic) and specific empirical
work in building prototype commonsense systems.

Acknowledgments

It is a pleasure to acknowledge that many conversations with

colleagues have helped to shape this paper. Three

anonymous referees, Se-June Hong, and John Sowa have

kindly taken the time to make detailed comments. Of 11

ADRIAN WALKER

12

course, debit for any remaining shortcomings belongs to the
author.

References

1. D. Michie, “Game Playing Programs and the Conceptual
Interface,” ACM Sigart Newsletter, No. 80, 64-70 (1982).

2. A. Newell, J. C. Shaw, and H. A. Simon, “Empirical
Explorations with the Logic Theory Machine: A Case Study in
Heuristics,” Computers and Thought, E. A, Feigenbaum and J.
Feldman, Eds., McGraw-Hill Book Co., Inc., New York, 1963,
pp. 109-133.

3. A. Newell and H. A. Simon, “GPS, A Program That Simulates
Human Thought,” Computers and Thought, E. A. Feigenbaum
and J. Feldman, Eds., McGraw-Hill Book Co., Inc., New York,
1963, pp. 279-293.

4. C. Green, “Application of Theorem Proving to Problem
Solving,” Proceedings of the First International Joint Conference
on Artificial Intelligence, 1969, pp. 219-239.

5. Edward Feigenbaum and Pamela McCorduck, The Fifth
Generation, Addison-Wesley Publishing Co., Reading, MA,
1983.

6. B. Buchanan and E. Feigenbaum, “DENDRAL and META-
DENDRAL: Their Applications Dimension,” Artif. Intell. 11,
5-24 (1978).

7. B. Buchanan and E. Shortliffe, Rule-Based Expert Systems,
Addison-Wesley Publishing Co., Reading, MA, 1984,

8. C. L. Forgy, “OPSS5 User’s Manual,” CMU-CS$-81-135,
Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA, July 1981.

9. L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming
Expert Systems in OPS5, Addison-Wesley Publishing Co.,
Reading, MA, in press.

10. P. Hirsch, M. Meier, S. Snyder, and R. Stillman, “PRISM:
Prototype Inference System,” AFIPS Conf. Proc. 54, 121-124
(1985).

11. P. Hirsch, W. Katke, M. Meier, S. Snyder, and R. Stillman,
“Interfaces for knowledge-base builders’ control knowledge and
application-specific procedures,” IBM J. Res. Develop. 30, No.
I, 29-38 (1986, this issue).

12. R. Fikes and T. Kehler, “The Role of Frame-Based
Representation in Reasoning,” Commun. ACM 28, No. 9,
904-920 (1985).

13. M. Stefik, D. G. Bobrow, S. Mittal, and L. Conway, “Knowledge
Programming in LOOPS: Report on an Experimental Course,”
The Artificial Intelligence Magazine, pp. 3-13 (Fall 1983).

14. J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and
M. L. Levin, Lisp 1.5 Programmer’s Manual, MIT Press,
Cambridge, MA, 1962,

15. R. A. Kowalski, “Predicate Logic as a Programming Language,”
Proceedings of IFIP 74, North-Holland Publishing Co.,
Amsterdam, 1974, pp. 569-574.

16. P. Roussel, Prolog: Manuel de Reference et d'Utilisation, Groupe
d’Intelligence Artificiel, Université d’Aix-Marseille, Luminy,
September 1975.

17. L. M. Pereira, F. C. M. Pereira, and D. H. D. Warren, “User’s
Guide to Decsystem-10 Prolog,” Occasional Paper No. 15,
Department of Artificial Intelligence, University of Edinburgh,
Scotland, 1978.

18. A. Colmerauer, “Metamorphosis Grammars,” Natural Language
Communication with Computers, Lecture Notes in Computer
Science, L. Bolc, Ed., Springer-Verlag New York, 1978, pp.
133-189.

19. Proceedings of the International Conference on Fifth Generation
Computer Systems, ICOT, Institute for New Generation
Computer Technology, Tokyo, Japan, 1981.

20. Proceedings of the International Conference on Fifth Generation
Computer Systems, 1COT, Institute for New Generation
Computer Technology, Tokyo, Japan, 1984.

21. J. A. Robinson, Logic: Form and Function, North-Holland
Publishing Co., Amsterdam, 1979.

ADRIAN WALKER

22

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43,

44.

. J. A. Robinson, “A Machine Oriented Logic Based on the
Resolution Principle,” J. ACM 12, 23-41 (1965).

M. H. van Emden and R. A. Kowalski, “The Semantics of
Predicate Logic as a Programming Language,” J. ACM 23, No.
4,733-742 (1976).

K. R. Apt and M. H. van Emden, “Contributions to the Theory
of Logic Programming,” J. ACM 29, No. 3, 841-862 (1982).
J.-L. Lassez and M. Mabher, “The Denotational Semantics of
Horn Clauses as a Production System,” Proceedings of AAAI
Conference, Washington, DC, 1983, pp. 229-231.

J. Jaffar, J.-L. Lassez, and J. Lloyd, “Completeness of the
Negation as Failure Rule,” Proceedings of the International Joint
Conference on Artificial Intelligence, Karlsruhe, W. Germany,
1983, pp. 500-506.

J. W. Lloyd, Foundations of Logic Programming, Springer-
Verlag New York, 1984.

D. Brough and A. Walker, “Some Practical Properties of Logic
Programming Interpreters,” Proceedings of the International
Conference on Fifth Generation Computer Systems, ICOT,
Institute for New Generation Computer Technology, Tokyo,
Japan, 1984, pp. 149-156.

K. R. Apt, H. Blair, and A. Walker, “Towards a Theory of
Declarative Knowledge,” Research Report, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1985, to
appear.

A. Walker, “Data Bases, Expert Systems, and Prolog,” Artificial
Intelligence Applications for Business, W. Reitman, Ed., Ablex
Publishing Co., Norwood, NJ, 1984.

Ghica van Emde Boas and Peter van Emde Boas, “Storing and
Evaluating Horn-Clause Rules in a Relational Database,” IBM
J. Res. Develop. 30, No. 1, 80-92 (1986, this issue).

A. Walker, “Automatic Generation of Explanations of Results
from Knowledge Bases,” Research Report RJ-3481, IBM
Research Laboratory, San Jose, CA, 1982.

H. Diel, N. Lenz, and H. M. Welsch, “An Experimental
Computer Architecture Supporting Expert Systems and Logic
Programming,” IBM J. Res. Develop. 30, No. 1, 102-111 (1986,
this issue).

R. L. Ennis, J. H. Griesmer, S. J. Hong, M. Karnaugh, J. K.
Kastner, D. A. Klein, K. R. Milliken, M. L. Schor, and H. M.
Van Woerkom, “A Continuous Real-Time Expert System for
Computer Operations,” IBM J. Res. Develop. 30, No. 1, 14-28
(1986, this issue).

William F. Eddy and Gabriel P. Pei, “Structures of Rule-Based
Belief Functions,” IBM J. Res. Develop. 30, No. 1, 93-101
(1986, this issue).

R. Duda, J. Gaschnig, and P. Hart, “Model Design in the
Prospector Consultant System for Mineral Exploration,” Expert
Systems for the Microelectronic Age, D. Michie, Ed., Edinburgh
Press, Scotland, 1979, pp. 153-167.

John F. Sowa and Eileen C. Way, “Implementing a Semantic
Interpreter Using Conceptual Graphs,” IBM J. Res. Develop. 30,
No. 1, 57-69 (1986, this issue).

M. Minsky, “A Framework for Representing Knowledge,” The
Psychology of Computer Vision, P. H. Winston, Ed., McGraw-
Hill Book Co., Inc., New York, 1975.

C. Hewitt, “Viewing Control Structures as Patterns of Passing
Messages,” Artif. Intell. 8 (1977).

A. Goldberg and D. Robson, “Smalltalk-80: The Language and
Its Implementation,” Addison-Wesley Publishing Co., Reading,
MA, 1983.

E. Shapiro and A. Takeuchi, “Object Oriented Programming in
Concurrent Prolog,” New Generation Computing 1, No. 1, 25—
48 (1983).

J. Pearl, Heuristics, Intelligent Search Strategies for Computer
Problem Solving, Addison-Wesley Publishing Co., Reading, MA,
1984.

A. Bundy and B. Welham, “Using Meta-Level Inference for
Selective Application of Multiple Rewrite Rules in Algebraic
Manipulation,” Artif. Intell. 16, 189-212 (1981).

Franz Guenthner, Hubert Lehmann, and Wolfgang Schonfeld,
“A Theory for the Representation of Knowledge,” /BM J. Res.
Develop. 30, No. 1, 39-56 (1986, this issue).

IBM J. RES. DEVELOP. VOL. 30 NO. | JANUARY 1986

45. Jean Fargues, Marie-Claude Landau, Anne Dugourd, and
Laurent Catach, “Conceptual Graphs for Semantics and
Knowledge Processing,” /BM J. Res. Develop. 30, No. 1, 70-79
(1986, this issue).

46. D. B. Lenat and J. S. Brown, “Why AM and Eurisko Appear to
Work,” Proceedings of the National Conference on Artificial
Intelligence (14A183), Washington, DC, 1983, pp. 236-240.

47. H. A. Simon, “Why Should Machines Learn?”, Machine
Learning, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
Eds., Tioga Publishing Co., Palo Alto, CA, 1983, pp. 25-37.

48. A. Walker, “Syllog: An Approach to Prolog for Non-
Programmers,” Logic Programming and Its Applications, M.
van Caneghem and D. H. D. Warren, Eds., Ablex Publishing
Co., Norwood, NJ, 1985.

49. C. Fellenstein, C. O. Green, L. M. Palmer, A. Walker, and D. J.
Wyler, “A Prototype Manufacturing Knowledge Base in Syllog,”
IBM J. Res. Develop. 29, No. 4, 413-421 (July 1985).

50. M. Suwa, A. C. Scott, and E. H. Shortliffe, “Completeness and
Consistency in a Rule-Based System,” Rule-Based Expert
Systems, B. Buchanan and E. Shortliffe, Eds., Addison-Wesley
Publishing Co., Reading, MA, 1984, pp. 159-170.

S1. R. Davis, “Interactive Transfer of Expertise,” Rule-Based Expert
Systems, B. Buchanan and E. Shortliffe, Eds., Addison-Wesley
Publishing Co., Reading, MA, 1984, pp. 171-205.

52. E. Shapiro, Algorithmic Program Debugging, MIT Press,
Cambridge, MA, 1982,

53. K. A. Bowen and R. A. Kowalski, “Amalgamating Language
and Metalanguage in Logic Programming,” Report 4/81, School
of Computer and Information Science, Syracuse University,
New York, 1981.

54. E. F. Codd, “Relational Completeness of Data Base
Sublanguages,” Courant Computer Science Symposium 6: Data
Base Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971,
pp. 65-98.

55. R. Kowalski and M. Sergot, “A Logic-Based Calculus of
Events,” Report, Department of Computing, Imperial College,
London, 1985.

56. A. Walker and S. Salveter, “Automatic Modification of
Transactions to Preserve Database Integrity Without Undoing
Updates,” Report 81/026, Department of Computer Science,
State University of New York at Stony Brook, 1981.

57. R. S. Michalski and R. L. Chilausky, “Learning by Being Told
and Learning from Examples: An Experimental Comparison of
the Two Methods of Knowledge Acquisition in the Context of
Developing an Expert System for Soybean Disease Diagnosis,”
Policy Analysis and Information Systems 4, No. 2 (June 1980).

58. H. Kitakami, S. Kunifuji, T. Miyachi, and K. Furukawa, “A
Methodology for Implementation of a Knowledge Acquisition
System,” Proceedings of the 1984 International Symposium on
Logic Programming, Atlantic City, NJ, pp. 131-142.

59. A. Walker, “On the Induction of a Decision Making Systern
from a Database,” Report CBM-TR-80, Department of
Computer Science, Rutgers University, NJ, 1977.

60. J. R. Quinlan, “Learning Efficient Classification Procedures and
Their Application to Chess End Games, Machine Learning, R.
S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds., Tioga
Publishing Co., Palo Alto, CA, 1983, pp. 463-482.

61. A. Walker, “On Retrieval from a Small Version of a Large Data
Base,” Proceedings of the Sixth International Conference on Very
Large Data Bases, Montreal, Canada, 1980, pp. 47-54.

62. T. M. Mitchell, P. Utgoff, and R. Banerji, “Learning by
Experimentation: Acquiring and Refining Problem-Solving
Heuristics,” Machine Learning, R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell, Eds., Tioga Publishing Co., Palo Alto, CA,
1983, pp. 163-190.

63. D. B. Lenat, “The Role of Heuristics in Learning by Discovery:
Three Case Studies,” Machine Learning, R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, Eds., Tioga Publishing Co., Palo
Alto, CA, 1983, pp. 243-306.

64. W. Emde, C. U. Habel, and C.-R. Rollinger, “The Discovery of
the Equator, or Concept Driven Learning,” Proceedings of the
International Joint Conference on Artificial Intelligence,
Karlsruhe, W. Germany, 1983, pp. 455-458.

IBM J. RES. DEVELOP. VOL. 30 NO. 1 JANUARY 1986

65. J. McCarthy, “Circumscription—A Form of Non-Monotonic
Reasoning,” Artif. Intell. 13, 27-39 (1980).

Received June 7, 1985; revised August 1, 1985

Adrian Walker /BM Research Division, P.O. Box 218, Yorkiown
Heights, New York 10598. Dr. Walker is manager of principles and
applications of logic programming at the Thomas J. Watson
Research laboratory in Yorktown Heights. He joined IBM at the San
Jose, California, Research laboratory in 1981, and worked on the R*
distributed database system and on logic programming and expert
systems. He moved to Yorktown in 1984, Dr. Walker obtained his
Ph.D. in computer science from the State University of New York in
1974, and held the posts of assistant professor at Rutgers University
and member of technical staff at Bell Laboratories, Murray Hill,
New Jersey, before joining IBM.

ADRIAN WALKER

13

