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It is shown that simulated annealing, a statistical
mechanics method recently proposed as a tool
in solving complex optimization problems, can
be used in problems arising in image
processing. The problems examined are the
estimation of the parameters necessary to
describe a geometrical pattern corrupted by
noise, the smoothing of bi-level images, and the
process of halftoning a continuous-level image.
The analogy between the system to be
optimized and an equivalent physical system,
whose ground state is sought, is put forward by
showing that some of these problems are
formally equivalent to ground state problems for
two-dimensional Ising spin systems. In the case
of low signal-to-noise ratios (particularly in
image smoothing), the methods proposed here
give better results than those obtained with
standard techniques.

Introduction

Simulated annealing is a technique recently introduced [1, 2]
to solve very complex optimization problems. A quick
description of this method is given here to make this paper
self-contained, but the reader is referred to [1] for a complete
discussion.

Consider the problem of minimizing the function E(x;) of
the many variables x;, i.e., of looking for the values of x, that
yield the absolute minimum of the function £(x;). The basic
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idea of simulating annealing consists of treating the system
to be optimized as a physical system described by the degrees
of freedom x;, with the energy given by E = E(x,). One then
looks for the state of minimum energy of the physical
system, i.e., what physicists call the ground state.

With simulated annealing, the ground state 1s reached by
simulating a slow cooling of the physical system, starting
from a very high temperature 7 down to T = 0. The cooling
must be slow enough that the system does not get stuck into
thermodynamically metastable states that are /ocal minima
of E(x,). This slow cooling process (called annealing from
the analogy with metaliurgic processes) is simulated using a
standard method proposed by Metropolis et al. [3].

For a given temperature, the Metropolis method is a way
to sample states of the physical system with the Boltzmann

distribution
_E
f=eT, (1

which is the distribution that properly describes the state of
thermodynamical equilibrium for a given temperature 7.
One starts with a random configuration x;. One then chooses
(again, randomly) a small perturbation Ax; in the system and
calculates the energy change AE caused by the perturbation

AE = E(x; + Ax;) — E(x)). (2)

If AE < 0, then the perturbation is “accepted,” for it means
that it is energetically favorable for the system; otherwise, it
is accepted with probability e %7 When the perturbation is
accepted, one continues the process with the perturbed state
X, + Ax, replacing the old one; otherwise a new perturbation
Ax, is attempted. It can be shown that the sequence of states
obtained in this way is distributed according to (1). The
Metropolis method is widely used in physics to study
numerically the thermodynamical properties of large systems

that cannot be treated with analytical methods. 569
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In simulated annealing, one starts with a high value of T,
so that the probability of the system being in a given state is
independent of the energy of that state. One then slowly
reduces 7, by making sure that at each new value of T
enough steps of the Metropolis procedure are made to
guarantee that thermodynamical equilibrium has been
reached. One continues the procedure until 7 = 0. If the
cooling has been slow enough, the final state reached is the
ground state of the physical system being considered; i.e., the
values of x; so obtained realize the absolute minimum of the
function E. In practice, in many cases one is not really
interested in finding the absolute minimum. Rather, in
many interesting situations the minimum configuration is
highly degenerate. In other words, there are many minima
with values of F very close to its absolute minimum value,
and one looks for one of the very many of them.

For problems of constrained minimum, the method can
still be applied. One simply has to make sure that all the
perturbations Ax, that are generated during the Metropolis
procedure continue to satisfy the constraints of the problem.
In partiéular, the constraints could consist of prescribing
discrete values for the x;. Thus, simulated annealing applies
as well in problems of discrete optimization (as shown by
Kirkpatrick [1] in his various examples).

In this paper, we study the application of simulated
annealing to various optimization problems arising in image
processing. The method seems to be well suited for problems
involving very low signal-to-noise ratios. In addition, we
show that the analogy between the system to be optimized
and a physical system can be even stronger than that implied
by the process of simulated annealing. In particular, we show
that various problems involving bi-level images (bitmaps) are
formally equivalent to ground state problems for two-
dimensional Ising spin systems imbedded in an external
field.

In the following section we analyze the problem of the
recognition of a regular pattern of rectangles out of an initial
configuration corrupted by noise. The next section is
devoted to the process of smoothing a bi-level image by
means of the annealing procedure. In this context we find
that the “cost function™ for this problem can be easily
related to the energy of a statistical model defined on a
lattice (the given bitmap), known as the Ising model. As we
have already mentioned, this procedure works remarkably
well in the presence of high noise levels. Finally, in the
fourth section we generalize this analogy by showing that the
problem of halftoning a gray-level image is again equivalent
to a spin system in which the internal interaction is of a
different nature than the previous one. Correspondingly, the
annealing procedure has to be a bit more accurate, since the
physical system turns out to have a more complex ground
state. We are also able to provide quantitative estimates of
the gray and spatial resolutions in terms of the physical
quantities involved in the spin system.
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Estimation of parameters
The first problem of image processing we want to solve using
simulated annealing is that of parameter estimation.

Suppose we have an image represented by the rectangular
array of real numbers o, with 1 =/i= N, 1 =j=N_.In
addition, assume that a parametric model for the image is
available. In other words, we know that the given image
represents a scene containing objects of shapes and sizes that
are partially known and that can be precisely described in
terms of the parameters x,(1 = /= N,). This model is
assumed to be well known, so that, given any set of values
X,, it is possible to calculate the corresponding image
@, = a/(x;) that would be observed, in the absence of noise,
for a scene described by the values x, for the parameters.

The problem then consists of estimating “good” values x,
that describe the given image. Since noise or other sources of
error can be present, it cannot be expected that a precise fit
of the observed image can be obtained: i.c., in general one
will not be able to find a set of values x¥ such that

afxF) = a. (3)

Rather, one will introduce a measure E of the difference
between the left and the right side of (3) and minimize it.
For example, choosing the L? norm to measure the

distance between « and «’, one has

Ny N,
E(x) =% ¥ [aj(x) — o, (4)

i=1 j=1
. . 1 .
whereas the expression for F in the case that an L norm is
preferred is

N, Ny
E(x) =% X laj(x) = a,l. (%)

i=1 j=1
Thus the problem of parameter estimation is a minimization
problem that can be solved using simulated annealing.

As an example, we chose to apply simulated annealing to
the following parameter estimation problem. The given
image «,, is assumed to be a bi-level image (bitmap); i.e., it
can only have the values 0 and 1, with 0 conventionally
representing white (or background) and 1 black (or
foreground). The image is a square one, with N, = N, = N.
The scene observed is assumed to be a white sheet of paper,
with an unknown number of black rectangles on it. The
rectangles are at unknown positions on the sheet and their
sizes are also unknown. The rectangles are allowed to
overlap each other. To simplify the programming, it is
assumed that the rectangles have their sides parallel to the
sides of the image. In this way, the /th rectangle is a black
area composed of the pixels with x < i < x% and y¥ <
=y and each rectangle is described by the four parameters
xth x®  v¥ and y . If Ny is the (unknown) number of
rectangles, the image «;; corresponding to a given set of
rectangles is given by

Mr
o= 3 8 = XL, — DG = YENOL ~ ) (6)
=1
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where the sum is understood to be a boolean sum (OR) and
6 is a step function of integer argument defined to be O if the
argument is negative and | otherwise.

The unknowns of the problem are NV, and the 4N,
parameters describing the rectangles. Using (4) or (5) to
define E is equivalent, since for these bi-level images we have
(@’ — a)’ =]’ ~ «|. Thus one obtains

Nr
2l = X 0 — xB)oxh, — i)
j=1 I=1

E=

I =

.

X 00 = Vo) yi, — j)’ -

Note that this expression represents nothing other than the
number of pixels on which « and o’ are in disagreement.
However, this expression for E is useless because of the
variable number of degrees of freedom (which is 4N, + 1).
By taking a large enough number of rectangles, one can
obtain a solution with E = 0 for any given « (in fact, one
such solution consists of having a 1 X | rectangle for each
black pixel of the given image). To overcome this problem,
one needs to penalize solutions involving too many
rectangles, in such a way that if two solutions give the same
value of F using (7), the solution with the smaller N, is to be
preferred. This is easily achieved by adding to the expression
for E a term proportional to N,. The new expression for E

then becomes
N N Ny
E=xNg+ ¥ Zla, = ¥ 8 — xG)b(xl, i)

i=1 j=1 =1
X 6 — YLy, —il. 8

The parameter « is interpreted as follows: For small values of
«, small rectangles present in the input image « are
considered to be “real.” When « is made larger, small
rectangles start to be considered as noise because their
inclusion in the solution would increase E rather than
decrease it. In fact, suppose the inclusion of a rectangle
causes an improvement of # pixels in the agreement between
a and «’. Then the second term of (8) decreases by #.
However, the corresponding change in E is x — n, and this is
energetically favorable (negative) only if #n > «. Thus, only
rectangles implying an improvement of at least « pixels in
the agreement between « and «” are included in the
solution; « then acts as a control parameter describing,
roughly, how much noise one is willing to keep in the
solution,

The solution of the problem of the rectangles using
simulated annealing has been implemented for a 128 X 128
bitmap. The input image «,; has been constructed starting
from a noiseless configuration including 50 rectangles
(shown in Figure 1) and adding random noise to it: Each
pixel has been changed from O to 1 (or vice versa) with
probability r, r taking the values 0.2, 0.3, and 0.4. The
images obtained in this way are shown in Figure 2.
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Parameter estimation: noiseless configuration with 50 rectangles.

In each of these images, the average value of « is 7 in
originally white areas, 1 — r in originally black areas. The
difference between the two average values is | — 2r. The
standard deviation of « in both the originally white and
originally black areas is given by ¥r(1 — r). Thus we can
define a signal-to-noise ratio as the ratio of the difference
between the two average values and the standard deviation,
given by (1 — 2r)/¥r(1 — r). This gives signal-to-noise ratios
of 1.5, 0.87, and 0.41 for the three values of r considered.

The annealing process has been started using a random
configuration of rectangles, like the one shown in Figure 3.
At each step, a change has been picked up randomly among
the following classes of possible changes:

& Creation of a new rectangle at a random position and with
a random size (smaller than a fixed maximum size).

& Removal of an existing rectangle.

» Stretching of one side of an existing rectangle in one
direction by a small, random number of pixels.

& Splitting of an existing rectangle into two rectangles,
leaving a one-pixel-wide strip between the two. The
splitting can occur at a random point and can be either in
the horizontal or in the vertical direction.

Results of the simulated annealing process for the three
values of r considered are shown in Figure 4. Despite the low
signal-to-noise ratios considered, reconstruction of the
original image is quite good: Even for the almost hopeless
case r = 0.4 (corresponding to a signal-to-noise ratio of only
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0.41), many features of the original image are reconstructed
correctly.

Image smoothing and Ising spin systems
The second problem we want to study is that of smoothing
images in a sense to be made precise below. We show that a
large class of smoothing methods similar to those proposed
in [4] are equivalent to ground state problems for two-
dimensional Ising spin systems.

For an introduction on Ising spin systems, we refer the
reader to textbooks (such as, for example, [5] or {6]). Here

- we only mention some of the points we need for the

following.
Consider a two-dimensional network of points arranged in
a square lattice with each point, labeled by its integer
coordinates i, j, connected to its four nearest neighbors.
Suppose we place in each point a particle with a magnetic
moment (spin) and that each particle can be in one of two
states, conventionally labeled 4 = —1 and p = +1 or called
“spin down” and “spin up,” respectively. Suppose that each
particle interacts with its four neighbors, and assume that the
interaction is translation-invariant and isotropic. Then the
energy of the system can be written as
E=-1 3y ¢

L~ iyigiaia iy gy ®

hiaf2
where C, ;.. is a connection matrix which is 1 if the points
i), j, and i,, j, are nearest neighbors to each other and 0
otherwise. This is a very simplified but physically reasonable
model for a two-dimensional substance exhibiting
ferromagnetic behavior which was introduced by Ising [7] in
1925. If the system is infinite (or if border effects are
neglected), the expression for E can also be written as
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Parameter estimation: noise-corrupted configurations. The image in Fig. 1 has been corrupted by adding random noise as explained in the text.
Signal-to-noise ratios are 1.5, 0.87, and 0.41 in (a), (b), and (c), respectively.

E=—=J % (ki ; + Byt jr)s (10)
s
from which it is clear that J (a positive constant) is the
contribution to the total energy given by a pair of adjacent
spins, the sign of the contribution being negative if the two
adjacent spins are aligned (both up or both down) and
positive otherwise. The system, in order to minimize its
energy, tends to align all its spins in the same direction.
Therefore, the ground state configuration is very simple, with
all the spins of the lattice pointing in one direction (up or
down). Antiferromagnetic models are also possible, in which
J is negative, and they are considered in the following
section.

An additional feature one can include in Ising models is
the presence of an external magnetic field v, which tends to
align the spins in the direction prescribed by its sign. This
introduces an additional term —%7,.].%. for each spin in the
expression for the energy, so that we have

! J
E= —5 E Yihy —2- R 2 . Ciﬂﬂﬂz"ﬁj.”l';j; (l 1)
¥ ivhizh
or
1
E= —5 > Yijhy J Z (#U#H-I,j + “U”’i,j+l)' 12)
g ij

The factor % has been introduced simply for convenience and
its only effect is to change the units in which the field v is
measured. It is clear that each spin is under the influence of
two (possibly competing) forces: one due to the interaction
with its neighbors and that tends to align the spin with its
neighbors; the second, due to the external field, which tends
to align the spin with the external field (in fact, the external
field contribution to E is negative, i.e., energetically
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favorable, for spins which have u with the same sign as v).
The introduction of such an external field strongly increases
the complexity of the model under study; in particular, it
may be very difficult to find the ground state if the value of
v,; changes significantly with the position on the lattice.

An additional generalization could consist of introducing
an interaction that does not involve only pairs of nearest
neighbor points in the lattice. In this case the expression for
E would contain a contribution for every pair of points that
are close enough to each other. This can be obtained simply
by keeping all the above expressions as they are, but allowing
the connection matrix C, ; ; . to have values different from 0
(and not constrained to be 1) if the points (i, j,) and (i,, j,)
are close enough to each other. If one wants to keep an
interaction term which is translation invariant, C must be of
the form

ivivinh = C(ll - iz, j] -jz)w (13)
with the function C being nonzero only for sufficiently low
values of its arguments.

Since their introduction in the literature [7], a large
amount of work has been done on these models. Onsager [8]
found an exact analytical solution for the model described
by (10) for all values of the coupling constant J; he also
showed the existence of a critical temperature (for which an
expression, depending only on J, can be written) at which a
phase transition occurs. This has important physical
interpretations, and is consistent with the behavior of
ferromagnetic systems as a function of the temperature, in
particular the existence of the Curie temperature at which
ferromagnetism is known to disappear. Unfortunately,
efforts to find analytical solutions for the model with an
external field have been so far unsuccessful; even for the
uniform case (v, position independent) only approximate
solutions are available.

1

Parameter estimation: initial random configuration of rectangles.

We now turn to the problem of smoothing an image. We
consider a bi-level (0, 1) square image o, with | <i = Nand

1 =j = N. Given o, we want to find a smoothed image 8,,.
Following the approach suggested in [4], 3 is chosen to be
the image that minimizes a two-part cost function. The first
part of the cost function, R, measures the “roughness” of the
smoothed image 3: Ideally the smoothed image should not
be “rough” at all. The second part of the cost function, D, is
a measure of the discrepancy between the smoothed image 8
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Parameter estimation: results of simulated annealing on images of Fig. 2.
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Image smoothing: noiseless bitmap.

and the original image «, and has the effect of preventing the
solution g from differing too much from the given image to
be smoothed. The cost function to be minimized is then
taken to have the form

E =R+ AD, (14)

where X is a number that parametrizes the desired trade-off
between roughness and discrepancy for the smoothed image
B.

For D we can take either the L' or the L’ distance
between o and 8: As we have already mentioned, they are
equivalent for these bi-level images since, for any values for
aand 8 in (0, 1), one has trivially |« — 8| = (a — 8). Thus
we can choose

D=7 (a, =8, (15)

For R, the two simplest choices proposed in [4] (the digital
Laplacian and the digital gradient magnitude) happen to be
equivalent. Both choices result in

N N N N

R=Y ¥ % 3C,

i=1 =1 Q=1 j=I

(8.5, = B,,) (16)

iz iz

where, as in (9), C,.I i is a connection matrix. In this way
the problem of finding 3 is well defined, and consists of
minimizing E given by (14) for given &, and A, with D and
R defined as in (15) and (16).

This problem is formally equivalent to finding the ground
state of an Ising system imbedded in an external field. To
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show this, we have to reformulate the problem in terms of a
bi-level image with values (—1, 1) instead of (0, 1). Thus we
define

vy = e, — 1 (17)
and
w, =28, — L. (18)

Since « and 8 can only take the values 0 and 1, ¥ and ¢
correspondingly take the values —1 and +1. We need to
express D and R in terms of these new variables.

We first write the following identities, which can be easily
verified:

vi=1 (19)
Hy =L (20)
1 - Yk
(C(U - 6,‘,)2 = —_—2—:’——]9 (21)
U= ik
By = By =——— (22)

Using these identities, we get the following new expressions
for D and R:

D=

N | —

1
N* =3 % vy (23)
i

1

R= Z Cfnjl’zfz - E

i1z

2 Ciljl iZjZ'Bille

iy

24

bk’

b=

The first term in R is simply half the number of neighbor
pairs and equals NZ(N2 = 1). Thus,

1
R = NZ(]\/2 _ ]) - . 2 ilj;izfz'uiljxl’l'izfz' (25)
UYL 2]
Expression (14) now becomes
- A 26
E=—= v z C,-ljl,'zjzll','ljl#,'zjz - E 2 'Y,’jﬂ,ﬂ ( )
QUL Y] y

where we have dropped the constant terms which do not
depend on u. We can do that because addition of a term
independent of u does not change the point where E reaches
its absolute minimum. This is also consistent with the well-
known fact that the energy of a physical system can be
redefined by a constant (or by a quantity independent from
the degrees of freedom that describe the system) without
changing the physics. Moreover, we can also multiply the
energy by a positive constant without altering its physical
features; in our case, if we choose the factor 1/A, we obtain
the expression

1

1
E=—§Z%]MU—— Z (27)
i

2A C’l/liZjZ“iljl”iZjZ’

ijiiph
which is identical to (11) provided that J = 1/X. Thus we
have shown the complete equivalence of the smoothing
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and 0.41 in (a), (b), and (c), respectively.

Image smoothing: noise-corrupted bitmaps. The image in Fig. 5 has been corrupted by adding random noise. Signal-to-noise ratios are 1.5, 0.87,

Results of simulated annealing on images of Fig. 6 obtained with A=1.

problem and the ground state problem for an Ising system
imbedded in an external field. The image to be smoothed
determines v and thus plays the role of the external field.

The method has been tested using the original bitmap
shown in Figure 5 and corrupting it as in the problem of
parameter estimation previously described. Figure 6 shows
the corrupted versions corresponding to r = 0.2, r = 0.3, and
r = 0.4 (signal-to-noise ratios 1.5, 0.87, and 0.41). Figures 7
and 8 show the results of simulated annealing, with different
values of A.

For comparison, Figure 9 shows the results of applying the
usual image processing algorithms to the same bitmap.

IBM J. RES. DEVELOP. VOL. 29 NO. 6 NOVEMBER 1985

Image halftoning and antiferromagnetic systems
In the previous section we have shown how the process of
smoothing a bitmap is formally equivalent to a ground state
problem for a ferromagnetic Ising model imbedded in an
external field. In this section we show that the same
problem, but with a reversed sign for the spin-spin
interaction (antiferromagnetic coupling), is equivalent to the
problem of halfioning, i.e., of calculating a bi-level image
(bitmap) whose average density mimics the one of a given
continuous image.

Let v, be the given continuous image with values in the

interval (—1, 1) and g, the resulting bitmap with values —1, 575
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1. If one wishes to define the cost function for such a
problem, one may try to minimize the difference between
the contintious-level image and an average density of the
bitmap, which can be suitably defined through the
introduction of a filter V:

py; = 22 Vuk/“k/ . (28)
P

The general properties of V,, in order to deal with a proper
average, are the following:

D) Vi =1 Vi = 0. 29
ko1

Moreover, if we ask for an average operation which is the
same for the whole lattice, we have Vi = Vi jg- In
principle one can choose to extend the average over a large
spatial extent, but it is more practical to restrict it to a small
region around the spin ;. With this choice V'is a square
matrix whose dimension is related to the spatial size of the
average. The form of the cost function, choosing again the
L’ norm to measure the distance between the original image
and the average introduced, is the following:

E=3% (v;—n,). (30)
i
Developing this expression, neglecting terms which do not

depend on g, and rescaling the energy by a factor % (as in the
previous paragraph), we obtain

E= —% %: Vyky + : i.AEfzjz Ly iiybi iy (3D
where we defined

Yy = % ; Vi Yra (32)
and

Lijkl = % % V;jnm V omkd s (33)
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Results of simulated annealing on images of Fig. 6 obtained with A =2.

which is the convolution of the filter V7, with itself. We
recognize that the expression in (31) is of the general type
(11); in fact, 7, plays the role of the external field, L, is a
connection matrix, and the constant J has the value —1. This
shows the equivalence between image halftoning and the
ground state problem for an Ising system. Due to the sign of
J and to the properties of V,,,, this term in the energy is to
be regarded as an antiferromagnetic interaction, which tends
to align two neighboring spins in opposite directions. In the
context of image processing the two terms have a
straightforward interpretation: While the magnetic field term
has the function of keeping the bitmap as similar as possible
to the original image, the antiferromagnetic part of the
energy is intended to produce the diffusion effect proper of
halftoning. We performed the annealing on a 256 X 256
image with 256 gray levels; the resulting bitmaps for different
filters V" are shown in Figure 10. We discuss later the details
of the filters 7" used and the influence of the choice of the
filter on the result.

From the statistical mechanics point of view, we are in the
presence of a complex general interaction: an average
magnetic field, strongly depending on the position, which
would tend to align the spins according to its direction, and
the internal field which might be in conflict with it. In other
words, it is possible to observe for this system the frustration
effects already mentioned in [2]: A system subjected to
different physical constraints may show very peculiar
behavior in the annealing procedure; in fact, due to this
competition, low-energy states may be highly degenerate and
a great many local minima very near to the ground state
energy may appear.

This statistical model is interesting per se, so we devote
part of this section to the study of its thermodynamical
features. A discussion of the issues concerning image
processing follows.
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By applying the annealing procedure in the case v = 0 (no
magnetic field), we observed that no phase transition occurs
going from high to low temperature regardless of the filter 1/
used. This is quite a common feature in two-dimensional
antiferromagnetic spin systems.

To investigate the critical behavior of the system, we first
analyzed the simplified case of uniform magnetic fields (i.e.,

Image halftoning by simulated annealing. (a) Original 256 X 256,
8-bit/pel image; (b) result of haiftoning by the standard MECCA
algorithm [9]: (¢) result of simulated anncaling with a uniform 3 X 3
filter V; (d) result of simulated annealing with a uniform 5 X5 filter
V. Comparison of (¢) and (d) shows the trade-off between spatial
and tonal resolution.

R

. .g;lu-l:?;?z:um:;?n .
i v, = 7, constant over the whole lattice) and then observed

the implications of such analysis on a real image with

i ‘ fu e varying gray level.

: .<e i . ) A very useful parameter for understanding the response of

. i - . . .

———— - ;o the system to an applied magnetic field is the so-called order
@4) 4 parameter (also called net magnetization), which is defined

Pt T TR CEPRY L T

as

R YN TR R A

. (34)

B Vs b S

i
M=|2X—
i j N

If M equals 1, then the system is in a completely ordered
state, i.e., all spins point to the same direction; conversely, in
the absence of order, M would equal 0. We fixed v and
performed the annealing, bringing the system toward zero
temperature; thus we reached approximately the ground
state for the given y and we measured its magnetization.

,ynLmenn,

(@5

Image smoothing: application of standard algorithms. The bitmaps
in Fig. 6 have been smoothed using the following standard  Repeating this procedure for increasing values of v, we

algorithms: 3 X3 lJow-pass filter iterated three times (al, bl, 1) found the occurrence of a phase transition driven by the
3 X 3 median filter (a2, b2, ¢2): 3x 3 median filter iterated three field: . L. hich
times (a3, b3, ¢3); 5% 5 (a4. b4, c4), and 7 X 7 (a5, b5, ¢5) median external field: There is a critical value v, under which the

filters. Comparison of these results with those of Figs. 7 and 8  magnetization grows linearly with the strength of the field;
shows that in the presence of low signal-to-noise ratios, simulated  for 7y > v, there is an abrupt change in this response, and the

annealing yields comparatively better smoothing. . . . .
£y P Y = magnetization jumps to the maximum value, i.¢., M = 1

(Figure 11). To determine the location of this transition, we 577
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Magnetization

Net magnetization versus external field at T7=0. This plot has been
obtained by simulated annealing using a position-independent y
and a uniform 3 X 3 filter V.

present the following argument. Let us consider a magnetic
field v very near to 1, i.e., v = | — 2¢, with ¢ very small and
positive (due to the symmetry of the problem, we could have
chosen y = —1 + 2¢ with identical results). We can argue on
intuitive grounds that if ¢ is chosen very near to 0, the state
with all ¢, = 1 is the most favorable energetically; i.e., it is
the ground state of the system. To confirm this picture, we
compare the energy L of this configuration with that of the
state with a single spin reversed, £, (this is often indicated as
an elementary excitation of the system); to be definite, we
say that p, = —11f i = j= 0and p; = 1 otherwise, but
translational symmetry guarantees the generality of the
argument. Using Eq. (30) to compute the two energies, we
find

ME=E ~E=2~-33V,. (35)
i

Thus AE<0ife<3 3,5, Vi defininge, =3 3, 3, V7, we
have v = 1 — 2¢. In fact, when v > v_ the state with all
u,; = 1 is the stable phase of the system, and M = 1; when v
is lowered under v, this configuration becomes energetically
unstable with respect to an elementary excitation, so we
must conclude that the ground state will have a more
complex structure, due to the increasing relevance of
antiferromagnetic interaction. We notice that the critical
field is nearto I as ¥, ¥, V,ZJ gets smaller. For the case in Fig.
11. where Vis a uniform 3 X 3 filter, one obtains v, = 0.89,

P. CARNEVALIL L. COLETTIL. AND S. PATARNELLO

which agrees with the result in the figure. obtained by
simulating annealing.

Let us see what this analysis implies for image processing.
A uniform region of the original image with a gray level very
near to black (white) corresponds to a subset of the spin
lattice under the influence of a field very near to | (—1). The
location of the phase transition (and its dependence on the
specific filter used) tells us to which extent intermediate
levels may be controlled: Thus a gray region very near to
black (v > v,) will be converted by the annealing procedure
into a region of the bitmap completely black (with all
u,; = 1): in other words, the expression ¥, %, L; is a measure
of the tonal resolution of the filter.

For a given spatial extent of the filter (that is to say. for a
given dimension of the matrix 1), the best filter in terms of
tonal resolution is the one in which the average is equally
weighted for all the neighboring pixels, i.e., a matrix } with
all the elements equal. In this case we have ¢ = 1/2m2
(where m is the size of 1), from which we can deduce that
the tonal resolution increases quadratically with the spatial
extent of the average (or linearly with the number of pixels

- involved in the average). Of course. one is forced to pay a

price in terms of spatial resolution of the image. The loss of
spatial resolution due to the averaging can be measured by

=T XV + ) (36)

o
we obtain for this class of filters

(m+1)

—

Thus, spatial resolution decreases when tonal resolution
increases and vice versa. For large m. spatial resolution is
inversely proportional to tonal level resolution. Difficulties
deriving from this trade-off could be overcome by using a
modified filter (with larger m) only in regions for which

v 1>,

o =2m (37)

Conclusions

It has been shown that seemingly unrelated problems in
image processing, such as smoothing or halftoning a bitmap,
are analogous to ground state problems for spin systems with
different kinds of interaction: ferromagnetic and
antiferromagnetic, respectively. Simulated annealing is a
good tool to solve these problems, as well as other problems
in image processing, such as the one of parameter estimation
described in this paper. In the case of highly noise-corrupted
bitmaps (both in parameter estimation and image smoothing
problems), this technique gives better results than existing
methods. As far as halftoning is concerned, results are
comparable with those of standard algorithms. The main
drawback of the annealing procedure is that computer
requirements are larger and, in general, not easily
predictable. On the other hand, the connection between
image processing and Ising spin systems is important
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because the extensive results on Ising spin systems might
provide useful hints when approaching the corresponding
problems in image processing.
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