
annealing 

It is  shown  that  simulated  annealing, a  statistical 
mechanics  method  recently  proposed as a tool 
in  solving  complex  optimization  problems,  can 
be  used  in  problems  arising  in  image 
processing.  The  problems  examined are  the 
estimation of the  parameters  necessary  to 
describe  a  geometrical  pattern  corrupted by 
noise,  the  smoothing  of bi-level  images, and  the 
process of  halftoning a  continuous-level  image. 
The  analogy  between  the  system  to  be 
optimized  and  an  equivalent  physical  system, 
whose  ground state is  sought, is put  forward  by 
showing  that  some  of these  problems  are 
formally  equivalent  to  ground state problems  for 
two-dimensional king spin  systems.  In  the case 
of  low signal-to-noise  ratios  (particularly  in 
image smoothing),  the  methods  proposed  here 
give  better  results  than  those  obtained  with 
standard  techniques. 

Introduction 
Simulated annealing is a technique recently introduced [ 1, 21 
to solve very complex optimization problems. A quick 
description  of this  method is given here to  make this  paper 
self-contained, but  the reader is referred to [ 11 for a  complete 
discussion. 

Consider the problem of minimizing the  function E ( x , )  of 
the  many variables x,, Le., of  looking  for the values of x, that 
yield the absolute minimum of the  function E(x,) .  The basic 
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idea of  simulating annealing consists of treating the system 
to be optimized  as  a physical system described by the degrees 
of  freedom x,, with the energy given by E = E&). One  then 
looks for the  state of minimum energy of the physical 
system, i.e., what physicists call the ground state. 

With  simulated  annealing, the ground state is reached by 
simulating  a slow cooling of the physical system,  starting 
from  a very high temperature T down to T = 0. The cooling 
must be slow enough that  the system does  not get stuck into 
thermodynamically metastable  states that  are local minima 
of E(x, ) .  This slow cooling process (called annealing  from 
the analogy with metallurgic processes) is simulated using a 
standard  method proposed by Metropolis  et  al. [3]. 

For a given temperature,  the Metropolis method is a way 
to sample  states  of the physical system with the Boltzmann 
distribution 

" 

E 

,/= P T ,  (1) 

which is the distribution that properly describes the state of 
thermodynamical equilibrium  for  a given temperature T. 
One starts with a random configuration x,. One  then chooses 
(again, randomly) a  small perturbation A x ,  in the system and 
calculates the energy change AE caused by the  perturbation 

AE = E(x, + AX,) - E(x,). (2) 

If AE < 0, then  the perturbation is "accepted," for it means 
that it is energetically favorable  for the system; otherwise, it 
is accepted with probability  When the  perturbation is 
accepted, one  continues  the process with the perturbed  state 
x, + Ax, replacing the old one; otherwise a new perturbation 
Ax, is attempted. It can be shown that  the sequence of states 
obtained  in  this way is distributed  according to ( I ) .  The 
Metropolis method is widely used in physics to study 
numerically the  thermodynamical properties of large systems 
that  cannot be treated with analytical  methods. 
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In simulated  annealing, one starts with a high value of T, 
so that  the probability of the system being in  a given state is 
independent of the energy of that state. One  then slowly 
reduces T. by making sure that  at each new value of T 
enough  steps of the Metropolis  procedure are  made  to 
guarantee  that  thermodynamical equilibrium  has been 
reached. One  continues  the procedure  until T = 0. If the 
cooling has been slow enough,  the final state  reached is the 
ground  state of the physical system being considered; i.e., the 
values of x, so obtained realize the absolute minimum of the 
function E.  In practice,  in many cases one is not really 
interested  in  finding the absolute minimum.  Rather, in 
many interesting situations  the  minimum configuration is 
highly degenerate. In other words, there  are  many  minima 
with values of E very close to its absolute minimum value, 
and  one looks  for one of the very many of them. 

For problems of constrained minimum,  the method can 
still be applied. One simply has to  make sure that all the 
perturbations A x ,  that  are generated during  the Metropolis 
procedure continue  to satisfy the  constraints of the problem. 
In partifular,  the  constraints could consist of prescribing 
discrete values for the x,. Thus, simulated annealing applies 
as well in problems of discrete optimization (as  shown by 
Kirkpatrick [ 11 in his various examples). 

In this  paper, we study the application  of  simulated 
annealing  to various optimization problems arising in  image 
processing. The  method seems to be well suited  for  problems 
involving very low signal-to-noise ratios. In  addition, we 
show that  the analogy between the system to be optimized 
and a physical system can be even stronger than  that implied 
by the process of  simulated  annealing. In particular, we show 
that various  problems  involving bi-level images (bitmaps) are 
formally  equivalent to  ground state  problems  for two- 
dimensional  king spin  systems imbedded in an external 
field. 

In the following section we analyze the problem  of the 
recognition of a regular pattern of rectangles out of an initial 
configuration corrupted by noise. The next section is 
devoted to  the process of smoothing a bi-level image by 
means of the  annealing procedure. In this context we find 
that  the “cost function” for  this  problem can  be easily 
related to  the energy of a  statistical  model defined on a 
lattice (the given bitmap), known  as the  king model. As we 
have  already mentioned, this  procedure works remarkably 
well in the presence  of high noise levels. Finally, in the 
fourth  section we generalize this analogy by showing that  the 
problem  of  halftoning  a gray-level image  is  again  equivalent 
to a  spin system in which the internal  interaction is of  a 
different nature  than  the previous one. Correspondingly, the 
annealing procedure  has to be a  bit more accurate, since the 
physical system turns  out  to have a more complex ground 
state. We are also able to provide quantitative estimates  of 
the gray and spatial  resolutions  in terms of the physical 
quantities involved  in the spin  system. 
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Estimation of parameters 
The first problem of image processing we want to solve using 
simulated annealing is that of parameter estimation. 

Suppose we have an image represented by the rectangular 
array of real numbers  CY,^. with 1 5 i 5 N,. 1 5; 5 N,. In 
addition,  assume  that a parametric model for the  image is 
available. In other words, we know that  the given image 
represents  a  scene containing objects of shapes and sizes that 
are partially known and  that  can be precisely described in 
terms of the  parameters x/( 1 5 I 5 N,,). This model is 
assumed to be  well known, so that, given any set of values 
x/, it  is possible to calculate the corresponding  image 
01,~ = CY,;(X/) that would be observed,  in the absence of noise, 
for a  scene described by the values x, for the parameters. 

The problem  then consists of  estimating  “good” values x, 
that describe the given image. Since noise or other sources of 
error  can be present, it cannot be expected that a precise fit 
of the observed image can be obtained: Le., in general one 
will not be able to find a set of values x: such that 
CY,;(X:) = CYo. ( 3 )  

Rather,  one will introduce a  measure E of the difference 
between the left and  the right side of ( 3 )  and minimize it. 

For example,  choosing the L2 norm  to measure the 
distance between (Y and C Y ’ ,  one has 

Nx  Ny 

m , )  = c c [a,;(x/) - 4 2 3  (4) 
, = I  J = I  

whereas the expression for E in the case that  an L 1  norm is 
preferred is 

N x  N y  

E(-Y,) = c c I .,;(x,) - qll . ( 5 )  
, = I  ,=I 

Thus  the problem of parameter estimation is a minimization 
problem that can be solved using simulated  annealing. 

the following parameter estimation  problem. The given 
image  CY,^ is assumed to be a bi-level image (bitmap); i.e., it 
can only  have the values 0 and 1, with 0 conventionally 
representing  white (or background) and I black (or 
foreground). The image is a  square one, with N, = N v  = N .  
The scene observed is assumed to be a white sheet of paper, 
with an  unknown  number of black rectangles on it. The 
rectangles are  at  unknown positions on  the sheet and their 
sizes are also unknown.  The rectangles are allowed to 
overlap each other.  To simplify the programming, it is 
assumed that  the rectangles have  their sides parallel to  the 
sides of the image. In this way, the  Ith rectangle is a black 
area composed of the pixels with x:!” 5 i 5 ,Y:L and v:!” 5 j 
5 .v% and each rectangle is described by the  four parameters 

rectangles, the image a,; corresponding to a given set of 
rectangles is given by 

As an example, we chose to apply  simulated  annealing to 

x;L, y&, and vL.  If N R  is the  (unknown)  number of 

N R  

a,; = O ( i  - x:!JO(x: - i)O(j - y:!”)O(-VL -;), (6) 
/ = I  
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where the  sum is understood to be a  boolean  sum (OR)  and 
0 is a  step  function of integer argument defined to be 0 if the 
argument is negative and I otherwise. 

The  unknowns of the problem are  NR  and  the 4N, 
parameters describing the rectangles. Using (4) or (5) to 
define E is equivalent, since for these bi-level images we have 
(a’ - a? = 1 0 1 ’  - a I .  Thus  one  obtains 

E = 1 ajJ - O(i - xi!n)O(xt~ - i) 
N N  N R  

I = !  /=I I= I 

Note that this expression represents  nothing other  than  the 
number of pixels on which a and a’ are in  disagreement. 

However, this expression for E is  useless because of the 
variable number of degrees of freedom  (which is 4N, + 1 ) .  
By taking  a large enough  number of rectangles, one  can 
obtain  a  solution with E = 0 for any given a (in fact, one 
such  solution  consists  of having a 1 x 1 rectangle for each 
black pixel of the given image). To overcome  this  problem, 
one needs to penalize  solutions  involving too  many 
rectangles, in  such  a way that if two solutions give the  same 
value of E using (7) ,  the solution with the smaller  NR is to be 
preferred. This is easily achieved by adding  to  the expression 
for E a term  proportional  to N,. The new expression for E 
then becomes 

E = .NR + 2 2 1 aIJ - O(i - x::n)O(& - i) 
N N  N R  

,=I ,=I I= I 

The  parameter K is interpreted  as follows: For small values of 
K, small rectangles present  in the  input image a are 
considered to be “real.”  When K is made larger, small 
rectangles start to be considered  as noise because their 
inclusion in the solution would increase E rather than 
decrease it. In fact, suppose the inclusion  of  a rectangle 
causes an  improvement of n pixels in the agreement between 
a and a’. Then  the second term of (8) decreases by n. 
However, the corresponding  change in E is K - n, and this is 
energetically favorable (negative) only if n > K.  Thus, only 
rectangles implying an  improvement of at least K pixels in 
the agreement between a and a’ are included  in the 
solution; K then  acts  as a control  parameter describing, 
roughly, how much noise one is willing to keep  in the 
solution. 

The solution  of the problem  of the rectangles using 
simulated annealing has been implemented for  a 128 X 128 
bitmap.  The  input image a,, has been constructed  starting 
from a noiseless configuration  including 50 rectangles 
(shown  in Figure 1) and  adding  random noise to it: Each 
pixel has been changed  from 0 to 1 (or vice versa) with 
probability r, r taking  the values 0.2, 0.3, and 0.4. The 
images obtained  in  this way are shown in Figure 2. 
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1 Parameter estimation: noiseless configuration with 50 rectangles. 

In each of  these images, the average value of a is r in 
originally white areas, 1 - r in originally black areas. The 
difference between the  two average values is I - 2r. The 
standard deviation  of a in both the originally white and 
originally black areas is given by Jr (  1 - r).  Thus we can 
define a signal-to-noise ratio  as the ratio of the difference 
between the two average values and  the  standard deviation, 
given by ( 1  - 2r ) / J r (  1 - r ) .  This gives signal-to-noise ratios 
of 1.5, 0.87, and 0.4 1 for the  three values of r considered. 

The  annealing process has been started using a random 
configuration of rectangles, like the  one shown  in Figure 3. 
At each step,  a  change  has been picked up  randomly  among 
the following classes of possible changes: 

Creation of a new rectangle at a random position and with 

Removal of an existing rectangle. 
Stretching  of one side of an existing rectangle in one 

a random size (smaller than a fixed maximum size). 

direction by a  small, random  number of pixels. 
Splitting of an existing rectangle into  two rectangles, 
leaving a one-pixel-wide strip between the two. The 
splitting can  occur  at a random point and  can be either  in 
the horizontal or in the vertical direction. 

Results of the simulated annealing process for the three 
values of r considered are shown  in Figure 4. Despite the low 
signal-to-noise ratios  considered,  reconstruction of the 
original  image is quite good: Even for the  almost hopeless 
case r = 0.4 (corresponding to a signal-to-noise ratio of only 
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Parameter  estimation:  noise-cormpted configurations. The  image in Flg. 1 has been  cormpted by adding  random noise as explained  in the text. 
Signal-to-noise ratios are 1.5,0.87, and 0.41 in  (a), (b), and (c), respectively. 

0.4 I), many features  of the original  image are reconstructed 
correctly. 

image  smoothing  and king spin  systems 
The second  problem we want  to study is that of smoothing 
images in a sense to be made precise below. We show that a 
large class of smoothing  methods similar to those  proposed 
in [4] are equivalent to  ground  state  problems for two- 
dimensional Ising spin systems. 

For an  introduction  on Ising spin systems, we refer the 
reader to textbooks  (such  as,  for  example, [5] or [6]). Here 
we only  mention  some of the  points we need  for the 
following. 

a square  lattice with each point, labeled by its  integer 
coordinates i, j ,  connected  to its four nearest neighbors. 
Suppose we place in each point a particle with a magnetic 
moment (spin) and  that  each particle can be in  one of two 
states,  conventionally labeled p = - 1 and p = + I  or called 
“spin down”  and “spin up,” respectively. Suppose that each 
particle interacts with  its four neighbors, and  assume  that  the 
interaction is translation-invariant and isotropic. Then  the 
energy of the system can be written  as 

Consider a two-dimensional  network  of points arranged  in 

where CllJl 12’2, is a connection matrix which is 1 if the  points 
i, , j ,  and i2, J~ are nearest  neighbors to each other  and 0 
otherwise. This is a very simplified but physically reasonable 
model for a two-dimensional  substance  exhibiting 
ferromagnetic  behavior which was introduced by Ising [ 7 ]  in 
1925. If the system is infinite (or if border effects are 

572 neglected), the expression for E can also be written  as 

E = -J C ( ~ l J ~ l + l . j  + F ~ J F ~ , J + I ) ?  (10) 
,J 

from which it is clear that J (a positive constant) is the 
contribution  to  the total energy given by a pair of adjacent 
spins, the sign of the  contribution being negative if the  two 
adjacent  spins are aligned (both  up or both down)  and 
positive otherwise. The system,  in order  to  minimize its 
energy, tends  to align all its spins in the  same direction. 
Therefore, the  ground  state configuration is very simple, with 
all the spins  of the lattice  pointing  in one direction (up or 
down).  Antiferromagnetic  models are also possible, in which 
J is negative, and they are considered in  the following 
section. 

An additional feature one  can include in Ising models is 
the presence of an external  magnetic field y,J which tends  to 
align the spins  in the direction prescribed by its sign. This 
introduces  an  additional  term -:yopo for  each  spin  in the 
expression for the energy, so that we have 

or 
1 

E = -- C Y ~ ; P O  - J C ( ~ , , ~ i + l . ~  + (12) 
2 ,  iJ 

The factor  has  been introduced simply  for  convenience and 
its  only effect is to change the  units in which the field is 
measured. It is clear that each  spin  is under  the influence  of 
two (possibly competing) forces: one  due  to  the interaction 
with its  neighbors and  that  tends  to align the spin with its 
neighbors; the second, due  to  the external field, which tends 
to align the spin with the external field (in  fact, the external 
field contribution  to E is negative, i.e., energetically 
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favorable,  for spins which have p with the  same sign as y). 
The  introduction of  such an external field strongly increases 
the complexity  of the model under  study; in particular, it 
may be very difficult to find the  ground state if the value of 
y, changes significantly with the position on  the lattice. 

An additional generalization  could  consist of introducing 
an interaction that  does  not involve only pairs of nearest 
neighbor points in the lattice. In this case the expression for 
E would contain a contribution for  every  pair  of  points that 
are close enough to each  other. This  can be obtained simply 
by keeping all the  above expressions as they are, but allowing 
the  connection matrix C,l,l,2J2 to have values different from 0 
(and  not constrained to be 1) if the  points (i , , ; ,)  and ( i 2 , j 2 )  
are close enough  to each other. If one wants to keep an 
interaction term which is translation invariant, C must be of 
the form 

C,lJ,,2j2 = C(i, - i,, j ,  - J,), (13) 

with the function C being nonzero only  for sufficiently low 
values of  its arguments. 

amount of work has  been done  on these  models.  Onsager [SI 
found  an exact analytical  solution  for the model described 
by ( I O )  for all values of the coupling constant J; he also 
showed the existence  of  a critical temperature (for which an 
expression, depending only on J, can be written) at which a 
phase  transition  occurs. This has important physical 
interpretations, and is consistent with the behavior  of 
ferromagnetic  systems as a  function of the  temperature, in 
particular  the existence  of the  Curie  temperature  at which 
ferromagnetism is known  to disappear. Unfortunately, 
efforts to find analytical  solutions  for the model with an 
external field have  been so far unsuccessful; even for the 
uniform case (yo position independent) only approximate 
solutions  are available. 

Since their  introduction in the literature [ 7 ] ,  a large 

I “ 

Parameter estimation: initial random configuration of rectangles. 

We now turn  to  the problem  of smoothing  an image. We 
consider  a bi-level (0, I )  square image a,] with 1 5 i 5 N a n d  
I 5 j 5 N .  Given ail, we want  to find a smoothed image Po. 
Following the  approach suggested in [4], p is  chosen to be 
the image that  minimizes a two-part cost function.  The first 
part of the cost function, R, measures the “roughness”  of the 
smoothed image p: Ideally the  smoothed image  should not 
be  “rough”  at all. The second part of the cost function, D, is 
a measure  of the discrepancy between the  smoothed image p 

Parameter estimation:  results of simulated  annealing on images of Fig. 2 
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Irnape smoothing: noiselcss bitmap. 

and  the original image a,  and has the effect of preventing the 
solution /3 from differing too  much  from  the given image to 
be smoothed.  The cost function  to be minimized is then 
taken to have the form 

E = R i- AD, (14) 

where X is a number  that parametrizes the desired trade-off 
between roughness and discrepancy for the  smoothed image 
P. 

between CY and P: As we have  already mentioned, they are 
equivalent  for  these bi-level images since, for any values for 
a and P in (0,  I ) ,  one has trivially I CY - P I = ( a  - P)’. Thus 
we can  choose 

For D we can  take  either  the L’ or the Lz distance 

D = c (a,/ - P,?. ( 1 5 )  
J 

For R, the two simplest choices  proposed  in [4] (the digital 
Laplacian and  the digital gradient  magnitude) happen  to be 
equivalent. Both choices result in 

N N N N  

R = C C C C c ~ ~ J ~ , ~ J ~ ( ~ ~ ~ J ~  - P , ~ J ~ ) ~ >  (16) 
JI’ l  I 2 - I  J2-1  

where. as in (9), C,lJl,2J2 is a connection matrix. In this way 
the problem  of  finding /3 is well defined, and consists of 
minimizing E given by (14) for given CY,/ and X ,  with D and 
R defined as  in ( 1 5 )  and ( 16). 

This problem is formally  equivalent to finding the  ground 
574 state of an  king system imbedded in an external field. To 

show this, we have to reformulate the problem in terms of a 
bi-level image with values (-1,  1) instead of (0, I ) .  Thus we 
define 

y,J = 2U,/ - 1 (17) 

and 

Since 01 and P can  only  take  the values 0 and I ,  y and p 

correspondingly take  the values - 1 and + 1. We need to 
express D and R in terms of these new variables. 

verified: 
We first write the following identities, which can be easily 

Using these  identities, we get the following new expressions 
for D and R: 

The first term in R is simply half the  number of neighbor 
pairs and equals N2(N2  - 1). Thus, 

Expression ( 14) now  becomes 

where we have dropped  the  constant  terms which do  not 
depend on p. We can  do  that because addition of a term 
independent of p does  not change the  point where E reaches 
its  absolute minimum.  This is also consistent with the well- 
known fact that  the energy of  a physical system can be 
redefined by a constant (or by a quantity  independent from 
the degrees of freedom that describe the system)  without 
changing the physics. Moreover, we can also multiply the 
energy by a positive constant without  altering  its physical 
features; in our case, if  we choose the factor l / X ,  we obtain 
the expression 

which is identical to ( 1  1) provided that J = ]/X. Thus we 
have shown the complete  equivalence of the  smoothing 
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Results of simulated  annealing on images of fig. 6 obtained  with A = 1 .  

problem and  the  ground state  problem  for an  king system 
imbedded in an external field. The image to be smoothed 
determines y and  thus plays the role of  the external field. 

The method has been tested using the original bitmap 
shown  in Figure 5 and  corrupting it as in the problem of 
parameter estimation previously described. Figure 6 shows 
the  corrupted versions corresponding to r = 0.2, r = 0.3, and 
r = 0.4 (signal-to-noise ratios 1.5, 0.87, and 0.41). Figures 7 
and 8 show the results of simulated  annealing, with different 
values of X. 

For comparison, Figure 9 shows the results of applying the 
usual  image processing algorithms to  the  same bitmap. 

image haiftoning and antiferromagnetic  systems 
In the previous  section we have  shown how the process of 
smoothing a bitmap is formally  equivalent to a ground  state 
problem  for  a  ferromagnetic Ising model imbedded in an 
external field. In this  section we show that  the  same 
problem, but with a reversed sign for the spin-spin 
interaction  (antiferromagnetic  coupling), is equivalent to  the 
problem of halftoning, i.e., of  calculating  a bi-level image 
(bitmap) whose average density  mimics the  one of a given 
continuous image. 

Let y ,  be the given continuous image with values in the 
interval (- 1, 1) and p,, the resulting bitmap with values -1, 
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Results of simulated annealing on images of Fig. 6 obtained with A = 2 

1. If one wishes to define the cost function for  such  a 
problem,  one  may try to  minimize  the difference between 
the continhous-level  image and  an average density of the 
bitmap, which can be suitably defined through  the 
introduction of a filter V: 

The general properties  of V,Jkl, in order  to deal  with  a  proper 
average, are  the following: 

Moreover, if we ask  for an average operation which is the 
same for the whole lattice, we have V,,,, = L'-k,J-/. In 
principle one can  choose to extend the average over  a large 
spatial extent,  but it is more practical to restrict it to a  small 
region around  the spin p,, . With  this  choice V is a  square 
matrix whose dimension is related to  the spatial size of the 
average. The form of the cost function, choosing again the 
Lz norm  to measure the distance between the original image 
and  the average introduced, is the following: 

E = C c (Y,J - P,J)2.  (30) 
I J  

Developing  this  expression, neglecting terms which do  not 
depend  on pL?, and rescaling the energy by a  factor (as in the 
previous  paragraph), we obtain 

where we defined 

k /  

and 
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which is the  convolution of the filter V,,k/ with itself. We 
recognize that  the expression in  (31) is of the general type 
( 1  1); in fact, i.,J plays the role of the external field, L,Jk, is a 
connection  matrix,  and  the  constant J has the value - 1. This 
shows the equivalence between image halftoning and  the 
ground state  problem  for an  king system. Due  to  the sign of 
J and  to  the properties  of T',k/, this term  in  the energy is to 
be regarded as an antiferromagnetic  interaction, which tends 
to align two neighboring spins in  opposite  directions. In the 
context of image processing the two terms have  a 
straightforward  interpretation:  While the magnetic field term 
has the  function of  keeping the  bitmap  as similar as possible 
to  the original  image, the antiferromagnetic  part of the 
energy is intended  to  produce  the diffusion effect proper  of 
halftoning. We performed the  annealing  on a  256 X 256 
image with 256 gray levels; the resulting bitmaps for different 
filters V are shown  in Figure 10. We discuss later the details 
of the filters V used and  the influence of the choice  of the 
filter on  the result. 

From  the statistical mechanics point of view, we are in the 
presence of a  complex  general  interaction: an average 
magnetic field, strongly depending on  the position, which 
would tend  to align the  spins according to its  direction, and 
the  internal field which might be in conflict with it. In other 
words, it is possible to observe  for  this system the frustration 
effects already mentioned  in [2]: A system subjected to 
different physical constraints may  show very peculiar 
behavior  in the  annealing procedure;  in  fact, due  to  this 
competition, low-energy states  may be highly degenerate and 
a great many local minima very near  to  the  ground state 
energy may appear. 

part  of this section to  the  study of its thermodynamical 
features. A discussion of the issues concerning  image 
processing follows. 

This statistical  model is interesting per se, so we devote 
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By applying the  annealing  procedure in the case y = 0 (no 
magnetic field), we observed that  no phase  transition  occurs 
going from high to low temperature regardless of the filter V 
used. This is quite a common feature  in  two-dimensional 
antiferromagnetic  spin systems. 

To investigate the critical behavior  of the system, we first 
analyzed  the simplified case of uniform  magnetic fields (i.e., 

... .- ....... ..l-. .. 

Image  smoothing:  application of standard  algorithms. The bitmaps 
i n  Fig.  6 have  been  smoothed  using  the  following  standard 
algorithms: 3 X 3  low-pass  filter  iterated  three  times ( a l .   b l ,  c l ) ;  
3 X 3 median  filter (a2,  b2, c2): 3 X 3 median  filter  iterated  three 
times (a3, b3, c3) ;  5 X 5 (a4. b4. c4), and 7 X 7 ( a s ,  bS, cS)  median 
filters.  Comparison of these result\ with  those o f  Figs. 7 and 8 
shows  that  in  the  presence  of low signal-to-noise  ratios.  slmulated 
annealing  yields  co1nparatwAy  better  smoothing. 

1 Image  halltonlng by simulated  annealmg. ( a )  Orlginal 256 X 256, 
t X-bitipcl  image; (b) result of halftoning by the  standard MECCA 1 algorithm 191: ( c )  result of simulated  annealing  with a uniform 3 X 3 

filtcr V ;  (d)  rcwlt o t  slrnulated  annealing  with  a  uniform 5 X 5 filter 
V. Compariwn o f  (c) and (d)  \hobs the trade-off  between  spatial 1 and  tonal  resolution. 

y,, = y, constant over the whole lattice) and  then observed 
the implications  of  such  analysis on a real image with 
varying gray level. 

A very useful parameter for understanding  the response of 
the system to  an applied  magnetic field is the so-called order 
parameter (also called net  magnetization), which is defined 
as 

If M equals 1, then  the system is in  a  completely  ordered 
state, i.e., all spins point  to  the  same direction; conversely, in 
the absence of order, M would  equal 0. We fixed y and 
performed the annealing, bringing the system toward  zero 
temperature;  thus we reached approximately the  ground 
state for the given y and we measured  its  magnetization. 
Repeating  this procedure for  increasing values of y, we 
found  the  occurrence of  a  phase  transition  driven by the 
external field: There is a critical value y, under which the 
magnetization grows linearly with the strength of the field; 
for y > yc there is an  abrupt change  in this response, and  the 
magnetization jumps to the  maximum value, i.e., M = 1 
(Figure 11). To determine  the location  of this  transition, we 
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Y 

Net magnetization versus external field at T=O. This plot has been 
obtained by simulated  annealing  using  a  position-independent y 
and a uniform 3 X 3 filter K 

. .. . 

present the following argument. Let us consider  a  magnetic 
field y very near to I ,  i.e., y = 1 - 2t, with c very small and 
positive (due  to  the  symmetry of the problem, we could have 
chosen y = - 1 + 2t with identical results). We can  argue on 
intuitive grounds  that if e is chosen very near to 0, the state 
with all p,, = 1 is the most  favorable energetically; Le.. it is 
the  ground state of the system. To confirm  this  picture, we 
compare  the energy E, of this configuration with that of the 
state with a single spin reversed, E,  (this is often  indicated as 
an elementary  excitation  of the system): to be definite, we 
say that p,, = - 1 if i = j = 0 and p,, = 1 otherwise, but 
translational symmetry guarantees the generality of the 
argument. Using Eq. (30) to  compute  the two energies, we 
find 

Thus AE I 0 if t 5 x, x, V t :  defining c, = 2, x, Vf,, we 
have y, = 1 - 2e,. In fact, when y > y, the state with all 
p,, = 1 is the stable  phase  of the system, and M = I ;  when y 
is lowered under yc,  this  configuration  becomes energetically 
unstable with respect to  an elementary  excitation, so we 
must conclude that  the  ground state will have a more 
complex  structure, due  to  the increasing relevance of 
antiferromagnetic  interaction. We notice that  the critical 
field  is near to 1 as x, x, V t  gets smaller. For  the case in Fig. 
1 1. where Vis a  uniform 3 X 3 filter, one  obtains yc = 0.89, 578 

P. ( 

which agrees with the result in the figure. obtained by 
simulating  annealing. 

Let us see what  this analysis implies for image processing. 
A uniform region of the original image with a gray level ven 
near to black (white) corresponds to a subset of the spin 
lattice under the influence of a field  very near to 1 (-1). The 
location of the phase transition (and its dependence on the 
specific filter used) tells us to which extent  intermediate 
levels may be controlled: Thus a gray region very near to 
black (y > y,) will be converted by the  annealing procedure 
into a region of the  bitmap completely black (with all 
p,/ = I ): in other words. the expression x, 1, L7E is a  measure 
of the  tonal  resolution of the filter. 

For a given spatial extent of the filter (that is to say. for a 
given dimension of the matrix L'). the best filter in terms of 
tonal  resolution is the  one in which the average is equally 
weighted for all the neighboring pixels. i.e.. a  matrix I'with 
all the  elements equal. In  this case we have tr = 1/2m2 
(where m is the size of L'). from which we can deduce that 
the tonal  resolution  increases  quadratically with the spatial 
extent of the average (or linearly with the  number of pixels 
involved in the  average).  Of course. one is forced to pay a 
price in terms of spatial resolution  of the image. The loss of 
spatial resolution due  to  the averaging can be measured by 

u2 E 2 V(,( i2 + ;2): (36 )  
J i  

we obtain for this class of filters 

u2 = 2 m  ~ 

( m  + 1) 
3 .  (37) 

Thus.  spatial  resolution decreases when tonal  resolution 
increases and vice versa. For large m. spatial resolution is 
inversely proportional  to  tonal level resolution. Difficulties 
deriving from this trade-off could be overcome by using a 
modified filter (with larger m )  only in regions for which 
I Y l > Y , .  

Conclusions 
It has been shown that seemingly unrelated  problems  in 
image processing, such  as smoothing or halftoning  a bitmap, 
are analogous to ground  state  problems for spin systems with 
different kinds of interaction:  ferromagnetic and 
antiferromagnetic, respectively. Simulated annealing is a 
good tool to solve these  problems.  as well as other problems 
in image processing, such as  the one of parameter estimation 
described in  this  paper. In the case of highly noise-corrupted 
bitmaps  (both in parameter estimation and image smoothing 
problems),  this technique gives better results than existing 
methods. As far as  halftoning is concerned, results are 
comparable with those of standard algorithms. The main 
drawback  of the  annealing procedure is that  computer 
requirements  are larger and, in general. not easily 
predictable. On  the  other  hand,  the  connection between 
image processing and  king spin systems is important 
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because the  extensive  results on Ising  spin  systems  might 
provide useful hints  when  approaching  the  corresponding 
problems in image  processing. 
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