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Adaptive cross-
parity (AXP) code
for a high-density
magnetic tape
subsystem

by Arvind M. Patel

This paper describes an error-correction system,
called adaptive cross-parity (AXP) code, for the
IBM 3480, a new high-density 18-track tape
storage subsystem. Redundancy is applied to
two interleaved sets of nine tracks in the same
proportion as that in the previous IBM 3420 tape
machines. The coding structure, however, is
simpler, for it avoids the complex computations
of Galois fields. The coding structure is based
on a concept of interacting vertical and cross-
parity checks, where the cross-parity checks
span both sets of tracks and are used in either
set in an adaptive manner. As a result, the
overall error-correcting capability is substantially
improved without increasing the redundancy.
Decoding, in which simple parity equations are
processed, is designed to progress iteratively.
By means of adaptive use of redundancy, the
new method corrects up to three known
erroneous tracks in any one set of nine tracks
and up to four known erroneous tracks in the
two sets together. The code also identifies the
first unknown erroneous track in each of the two

©Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

ARVIND M. PATEL

sets, and subsequently identifies the second
unknown erroneous track in one of the two sets
while providing correction for all these tracks.
The result is generalized for a system with any
number of tracks divided into a muitiple number
of unequal sets.

Introduction

The IBM 3480 Magnetic Tape Subsystem uses half-inch-
wide chromium dioxide tape in a compact cartridge, with a
storage capacity of 200 million bytes per cartridge. The data
are recorded at a linear density of 38 000 bytes per inch and
delivered at a rate of more than three million bytes per
second. The data density is six times that of its predecessor,
the IBM 3420 tape machine; and the delivery rate has been
more than doubled. The new product offers significantly
greater data reliability, with major reductions in space,
power, and maintenance requirements.

Tape storage products traditionally have made use of
various error control coding schemes in order to preserve
customer data integrity and provide high reliability. The
cyclic redundancy check (CRC) was introduced with IBM
2401 Models 1, 2, and 3 at a data density of 800 bpi, which
allowed correction of one erased track on the reread
operation [1]. The IBM 2401 Models 4, 5, and 6, at a data
density of 1600 bpi, used on-the-fly correction of an erased
track. The IBM 3420 Models 4, 6, and 8, at a data density of
6250 bpi, introduced an error correction scheme [2] which
provided on-the-fly correction of two erased tracks out of
nine recorded tracks. Later, a novel tape product, the IBM
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3850 Mass Storage System, with its new data format, used
error correction coding to correct up to two 16-byte sections
in each segment of 240 bytes of serial data [3].

In another scheme [4] for multitrack magnetic tape,
correction of two erased tracks was obtained with almost the
same redundancy as in the code for the IBM 3420, using two
parity checks in place of Galois field algebra. We used a
similar concept to obtain correction of three erased tracks in
a multitrack system with one vertical-parity check and two
cross-parity checks [5].

The IBM 3480 Magnetic Tape Subsystem introduces a
tape cartridge with 18-track data format which uses a new
coding scheme called adaptive cross-parity (AXP) code [6].
In this scheme, the 18 tracks are divided into two interleaved
sets of nine tracks, with each set consisting of seven data
tracks and two check tracks. The proportion of check tracks
is thus the same as in the nine-track scheme of the IBM
3420. However, by adaptive use of the checks in the two
interleaved sets, the new scheme corrects up to three erased
tracks in any one set of nine tracks and up to four erased
tracks in the two sets together. Going one step further, we
could use a Reed-Solomon code over GF(256) with the same
amount of redundancy and provide correction of ANY four
erased tracks. In that case, the decoding function for all
correctable combinations of errors and erasures is
substantially more complex. In contrast, the interleaving of
the sets with the aforementioned AXP capability provides
adequate protection against the more likely combinations of
errors and erasures, while keeping the decoding function
very simple.

The AXP code is convolutional. The coding structure is
based on the concept of interacting vertical- and cross-parity
checks [5]. The vertical-parity checks are applied
independently to each of the two sets of tracks, and the
cross-parity checks extend over both the sets, providing
adaptive usage of redundancy. The decoding procedure is
iterative and uses parity equations which involve only one
unknown variable at a time. The resulting implementation is
stmple and inexpensive.

During the iterative error correction process, the decoder
identifies an approaching new erroneous track and corrects
up to two erroneous tracks in any one of the sets and up to
three erroneous tracks in the two sets together. The third
erroneous track in one set and the fourth erroneous track of
the two sets together are corrected on-the-fly or on reread
when they are identified by external means as erasures.

This paper focuses on the case of two conventional nine-
track sets in an 18-track system. However, the general result
is applicable to systems with any number of tracks in which
the two sets need not have the same number of tracks.
Furthermore, the multitrack system could be divided not
only into two but also into three or more sets, each of which
could adaptively share the total capability of cross-parity
checks.
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Encoding equations

As shown in Figure 1, there are 18 parallel tracks recorded
along the tape. The tracks are grouped into two sets; set A
consists of any nine parallel tracks, and set B consists of the
remaining nine parallel tracks. In Fig. | the two sets are
shown side by side with a symmetrically ordered
arrangement of the tracks. This is done for convenience in
describing the code. In actual practice, however, the tracks
from two sets are interleaved and may be arranged in any
other order.

Let 4, (1) and B,,(7) denote the mth bit in the track ¢ of set
A and set B, respectively. The track number ¢ takes on
values from O to 8 in each set. The bit position m takes on
values from 0 to M. Tracks labeled 0 and 8 in each set are
check tracks.

Each check bit in track 0O of set A provides a cross-parity
check along the diagonal with positive slope, involving bits
from both sets as seen in Fig. 1. The mth cross-parity check
of set A is given by the encoding equation

A4,0)=8 4, ()@ & B, 50 (1)
=1 =0

(In this and subsequent equations, a circle superimposed on
the summation symbol or plus sign—i.e., B or ®—indicates
modulo-2 sum.)

Each check bit in track 0 of set B provides a cross-parity
check along the diagonal with negative slope, involving bits
from both sets, as seen in Fig. 1. The mth cross-parity check
of set B is given by the encoding equation

B, (0) = ? B, ()& é)AmH_H(t). 2)

Equations (1) and (2) can be rewritten in a more convenient
symmetrical form as

;
go [Am_[(l) & Bm+l—15(t)] =0, (3)
% [B,_ ()@ A, ()] =0. 4)

Note that at the beginning of the record, computations of
the cross-parity check bits for positions 0 to 15 involve data
bit values from void positions (with negative position
numbers). For convenience, these data bit values are
considered to have zero binary value. At the end of the
record, in order to provide diagonal checks to all bits in each
track, the zero check track in each set is extended 15
positions. The check bits on the extended positions also
involve some data bit values from void positions which are
assumed to have zero binary value.

Each check bit in the eighth track of set A is a vertical
parity over the bits of same position number 7 in set A. The
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Data format: 18 tracks grouped into two sets.

é A (1) = 0. (5) of thc? encoder. The decoding algorithm and hardware
=0 remain the same.
Another data format, which is used in the IBM 3480

Similarly, the mth vertical-parity check of set B is given by storage subsystem, is shown in Figure 3. In this format, the
the equation 18-track record is partitioned into blocks, each of which

contains 14 data bytes and four check bytes placed along the
é B ()= 0. 6) tracks. In this arrangement there are still four check tracks as
- " in Fig. 1: however, the conventional eight-bit bytes are used

in the encoding and decoding process and are recorded as

Other data formats “bytes along the tracks.” In the IBM 3480 application, these
The two cross-parity checks can be obtained in various ways.  bytes-along-the-tracks are further coded into nine-bit
We have presented one data format in Fig. 1 in which the patterns using a run-length-limiting modulation code which

cross-parity check bits appear in two check tracks. Thus, the limits the run length of consecutive Os in the coded sequence
vertical characters 4, and B, consist of seven data bits and to zero, one, two, and three only. Unique mapping of this
two check bits. This is different from the conventional nine- (0, 3) 8/9 modulation code is realized [7] through simple
track recording of half-inch magnetic tape where the vertical ~ logic equations and includes two additional features:
characters are bytes consisting of eight data bits and a
vertical-parity check bit. In Figure 2 we present a data
format that is compatible with such a convention. In this
format Ay, Ag, A4 A,,, - - - provide the cross-parity check
with positive slope, and B, By, B ¢, B,,, - - - provide the
cross-parity check with negative slope. All other bytes are
data bytes consisting of the conventional eight data bits with

1. Each code word possesses opposite parity relation with
the corresponding data byte.

2. The pattern S = 100010001 is not a code word and also
does not occur anywhere in the coded sequence; S is used
as a synchronization pattern at selected positions in the
data stream to identify format boundaries.

a vertical-parity check bit. The encoding and decoding The coded sequences are then recorded as waveforms on
equations are not affected by this change in the format. The tracks of set A and set B which are interleaved in their
548 encoding process is slightly changed in the input and output  physical positions on the tape.
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Generation of cross-parity check bits for set A.

implementation of the encoding process

The encoding equations (1), (2), (5), and (6) are simple
parity equations. These can be implemented by means of
exclusive-OR circuits receiving inputs of appropriate data bit
values stored in a random-access buffer memory prior to
recording on the magnetic tape.

The computation of cross-parity checks for the mth bit
position in the data format of Fig. 1 requires prior bit values
ranging from bit positions m — 1 to m — 15. Alternatively,
we could use a shift register, as shown in Figure 4. The shift
register processes the incoming data characters 4, and B,
and produces the mth cross-parity check A,,(0) of set A at
the output. At the same time, the partial computations of
the cross-parity checks A4,,, ,(0) through 4, , ,(0) are being
collected in its storage positions | through 13, respectively.

The input to the last stage in this shift register is B, (0),
which is the mth cross-parity check for set B as computed at
the output of a similar shift register for set B. All stages of
the shift register are initially set to 0. The shift register
produces the cross-parity check 4, (0) at the output, as the
data characters 4,, and B,, and the check bit B, (0) are
entered at the input. The process is continuous as m is
incremented from O to the last bit position value M of the
record. At the end, the contents of the shift register are
shifted out and stored in the extended 15 positions of track
zero in set A.

In the data format of Fig. 2, the computation of any cross-
parity check byte A, , requires bit values ranging from data
byte positions 8% — 7 to 87 + 7 in set A, and byte positions
8n — 15 to 8n — 1, including the previously computed check
byte By, _, in set B. In this case also, we can devise a shift
register to process the incoming bytes to compute the check
bits in an iterative manner. However, a buffer memory is
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required in any case, since the computation requires data
bytes from positions preceding and following the check byte.

In the data format of Fig. 3, the incoming bytes are the
characters G and H along the tracks. Here also, a buffer
memory is required to compute and arrange the check
characters in proper order.

Error syndromes
Let /im(t) and 3”,([) denote the bit values corresponding to
A, (1) and B, (1), respectively, as they are read from the tape.
These readback bits may be corrupted by errors. The result
of the parity checks of Eqs. (3-6) applied to the readback
data is called the syndrome of error. A nonzero syndrome is
a clear indication of the presence of an error.

The mth cross-parity check of set A yields the syndrome

7

Sdlrzn = E /‘im—l(l) @ Emﬂ—ls([)' (7)
=0

The mth cross-parity check of set B yields the syndrome

7 A

Sd':" = Q Bm_,(t) @ /im+1—l5([)' ®

The mth vertical check for set A yields the syndrome

Sup = é A, (0. 9

=0

The mth vertical check for set B yields the syndrome
b 8
Sv,, = 8 B, (1) (10)
=0

The modulo-2 difference between the read /im(t) and the
written 4, (¢) is called the error pattern ¢ (¢) in the mth
position of track 7 in set A.
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So for set A we have
(1) = 4,(0) @ A,(0). (1)
Similarly, for set B
ety = B, (1) ® B, (). (12)

Now combine Eqgs. (3) and (7). (4) and (8), (5) and (9), and
(6) and (10): and substitute % () and ¢ (1) of Eqs. (11) and
(12) to obtain relations between errors and syndromes as
follows:

7

Sy = B €n (D) ® € D). (13)
=0
7

Sd’,’n =g efn_,(l) & efnﬂ_u(l), (14)
=0
8

Suy, = B e (1), (15)
=0

b LA

Sv,, = & e, (16)

=0

Many different types of errors can be corrected by
processing these syndromes. In tapes the predominant errors
are track errors caused by large-size defects in the magnetic
medium. The erroneous track may be identified by detecting
loss of signal, excessive phase error, inadmissible recording
pattern, or any other similar external pointer. In the absence
of such external pointers, the erroneous track can be
identified by processing the syndromes. We show that any
one of the following combinations of track errors can be
corrected by processing the syndromes:

1. Up to three known erroneous tracks in one set; and up to
one known erroneous track in the other set.

2. Up to one unknown or two known erroneous tracks in
each of the two sets.

3. Up to one known and one unknown erroneous track in
one set; and up to one known erroneous track in the
other set.

Correction of errors in known erroneous tracks

o Three-track correction in set A

Errors confined to three known tracks in set A are
correctable if set B is error-free or has only one known
erroncous track. The erroneous tracks are indicated by track-
error pointers /, j, kin set A and y in set B. If y is undefined,
then set B is assumed to be error-free.

For convenience in decoding, / is the lowest and k is the
highest track index among the erroneous tracks from track
number O to 7. Track j is the remaining erroneous track so
that either ( <j< k)or (j = 8 and / < k).

Since set B has only one known erroneous track, the
vertical-parity-check syndromes Svf,, yield the error patterns
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for this track. On eliminating the known zero-error patterns
corresponding to the error-free tracks, Eq. (16) can be
rewritten as

Sot = el (). (17)

Assume that all errors are corrected up to byte (m — 1)
and the syndrome equations are adjusted for all corrected
error patterns. Then. as shown in Figure 5, the error patterns
for the mth position of tracks /, j, and k of set A can be
determined from the syndromes Sd* . Sd°,,,_,. and Sv’ .
We can write the equations for these syndromes from Eqgs.
(13-135). On eliminating the known zero-error patterns
corresponding to the error-free tracks and the corrected error
patterns up to position (/# — 1) in each track, these

equations can be written as

Sde,,, = i), (18)
(k) @ ():’n+15~_\-—k if y <8
Sd, 15~k = :
m+ ¢ (k) if y=8 orset B

is error-free, (19)
Sv,, = €,(1) @ €,(j) ® €, (k). (20)
From Eq. (17) we have
Svfn+15—y—k = efn+15—y—k(y)' (21)
If Svfnﬂs_r,,_k in Eq. (21) is nonzero for some 0 < y < 7 and y

is unknown, then set B must be processed first to identify the
unknown erroneous track.
Equations (18-21) yield the error patterns

en(i)y=8d .., (22)
Sdh s ® Svh sy V<8,
enlk) = Sdf,,+15—k ify=8orsetB
is error-free, (23)
) = St @ el () B 6 (k). (24)

The mth bits in tracks /, j, and k are then corrected, using
these error patterns as

A, (i) = A,() ® &,0), (25)
A,0) = 4,0)) ® €,()), (26)
A, (k) = 4,(k) & &(k). 7N

Before proceeding to the correction of the next position,
we must modify the syndromes affected by these corrections.
The modification is shown by an arrow pointing from the
previous value of a syndrome (with its modification) to its
new value:

Sd,,.. — Sd,.. ® &,(), (28)
Sdlr‘nﬂ « Sd:m—j @ efn(j) lfj < 85 (29)
Sds ., «— Sdi., ® & (k), ' (30)
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Example of three-track correction in set A.

Sdfnﬂs—: — Sd,:rrHS—i ® e{rln(i)* 30
Sy, s, — Sdy, s, ® () ifj <8, (32)
Sdfn+|5—k — Sdfn-HS—k @ e:ln(k)~ (33)

Now the decoding procedure can be applied to the next bit
position by incrementing the value of m by 1. At the new bit
position m, we have met the required condition that all
errors up to bit position (m — 1) are corrected and the
syndromes are adjusted for corrected error patterns. In
particular, all error patterns affecting the syndrome value
Sd,,_, are corrected. Consequently, we expect that
Sdd _ =0. (34)

m—1

A nonzero value of Sd¢,_, indicates the presence of
uncorrected ervors. This provides a partial check on the
uncorrectable multitrack errors that are beyond the
correction capability of the code.

o Two-track correction in set A
Errors in two known tracks in set A can be corrected if set B
has at the most one unknown or two known erroneous
tracks. The erroneous tracks in set A are indicated by track-
error pointers / and j, where i <.

The correction procedure for two known erroneous tracks
is similar to that for three known erroneous tracks, except

ARVIND M. PATEL

for the fact that the error pattern ¢, (k) corresponding to the
track-error pointer k is presumed to be zero. The error
patterns ¢} (i) and €. () for the tracks i and j can be

a

calculated from the local syndromes Sd% ,, and Sv;, as may
be seen from Egs. (22) and (24). Thus, the two-track
correction can be processed as a special case of the
procedure for correction of three known erroneous tracks.

e One-track correction in set A

Errors confined to only one known track in set A can be
corrected by using just the vertical-parity-check syndrome
Suf,, of set A. Since the check Sv?, ranges over set A only,
this correction capability 1s not affected by the error
conditions in set B. The erroneous track in set A is indicated
by a track-error pointer j.

The procedure for correction of one known erroneous
track can also be integrated into the procedure for correction
of three known tracks. In this case the error patterns €', (i)
and ¢ (k) are presumed to be zero, and the error pattern
efn(j) for the known erroneous track j is obtained from Eq.
(24).

We pointed out before that the error conditions in set B
do not affect the correction of one known erroneous track in
set A. However, if set B is error-free or if it also has only one
known erroneous track, then both the diagonal checks are
available for detection of the beginning of errors in a new
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track. This generation of track-error pointers 1s discussed in
the following section.

Generation of track-error pointers

e Pointer 1o first erroneous track in set 4

Errors confined to only one unknown track in set A can be
detected and corrected if set B has, at most. one unknown or
two known erroneous tracks. It is assumed that errors in all
tracks in set B are corrected up to bit position (1 — 1), and
that the syndrome values are adjusted for all corrected error
patterns. When all tracks in set A are error-free, the parity-
check syndromes Sv;, and Sd",,, are equal to zero for

0 < i< 7. When any of these syndromes are found to be
nonzero, it is an indication that an error is present in at least
one of the tracks in the vicinity, that is, within the next
seven bit positions. Assuming that only one erroneous track
is affecting the syndromes, the index of the erroneous track
can be determined by examining syndromes Sd',,, and Sv,
as the bit position value m progresses. The following
assertion characterizes the generation of the first track-error
pointer in set A,

Assertion |
Let m, and m, denote the lowest values of bit positions such
that

Then track ¢ is in error at bit position m, and the track
index ¢ is given by

if m,=m

7= (my, — m,) 1

q =
8 otherwise. (37)

The proof of Assertion 1 follows from the geometrical
considerations depicted in Figures 6 and 7. Figure 6
considers the case in which m, is greater than or equal to m,.
Note that if the resulting value ¢ in this case is smaller than
zero, then the syndromes are affected by two or more
unknown erroneous tracks and the errors are uncorrectable.
Figure 7 considers the special case in which m, is not
determined, even when the bit position value exceeds m1,,
since an error in the vertical-parity-check track does not
affect the cross-parity-syndrome.

The implementation of the above assertion fits in the
general iterative decoding procedure as the bit position value
m is incremented in an iterative manner. A counter is set to
7. when Sd ., # 0 is detected for the first time at m =
m,. The counter counts down by one each time m is
incremented forward until bit position m, is reached, where
Sv;, # 0. The resultant count value gives the index of the
erroneous track. If the count goes below the value of zero,
then the error is spread in more than one track and is
uncorrectable. If Sv # 0 is detected first, and vet Sd,,,, = 0,
then track 8 is in error.

Sd,,.#0 form=m and =7, (35)
Once we have the index value of the erroneous track, the
Sl #0 for m = m,. (36) errors can be corrected by applying the procedure for
Bit position m, 5, #0 Sd %0
J [
A N A AT AN
| Z AU LB A U9, SN AU A I AA U A Y %%
1 !
2 ;
SetA< 3 ! =+ + 4+ ++ + + + + + -+ + Unknown erroneous track ¢ \
4 j ]
5 : T—q=m,—m,
(P
(N3 \
6
5
4
Set B < 3 \
2 \
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[ O A A A ke e X e de e
T NN 1 AN AR AN AT A

Generation of pointer to first erroneous track when g+ 8.
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Generation of pointer to first erroneous track when g=8.

correction of one track with the track-error pointer, as
discussed previously.

e Pointer to second erroneous track in set A

Consider the case in which set A is being corrected for errors
in a known erroneous track, and another unknown track in
set A begins to be affected by errors. This second unknown
erroneous track can be detected and both erroneous tracks of
set A can be corrected provided that set B has at the most
one known erroneous track.

For simplicity, we first explain the method for the case in
which tracks 0 to 7 in set B are error-free. Later it will be
easy 1o see how the equations can be modified to include the
effect of a known erroneous track in set B,

Let p denote the known erroneous track in set A; and
assume that, so far, all remaining tracks in set A have been
error-free. Also assume that all errors have been corrected up
to bit position (m - 1) and that the syndrome values have
been adjusted for all corrected error patterns.

First we consider the case in which p is not the vertical-
parity track, that is, p # 8. The error pattern of the mth
position of track p affects the syndromes Sd,, . Sa’fnm_p,
and Sv’ . In the absence of errors in any other tracks, we
have
= Sd’

m+15-p

Sd;,

m+p

= S, =€ (p). (38)

However, as any one of the other tracks begins to be
affected by an error, the syndrome relationship of Eq. (38)

ARVIND M. PATEL

no longer holds. We can make the following assertion by
observing the effect of the new erroneous track on this
relationship.

Assertion 2
Let p denote the known erroneous track where p # 8. Let m,
and m, denote the lowest bit positions such that

Sd? . # Svl, for m = m, and i = p, (39)
Sd’. o, # Sv’  for m=m,and k = p. (40)

Then track ¢ is in error starting at the bit position m, where
m is the greater of m, and m,; and index ¢ is given by

p—(m,—m,) if m, # m,,

9 8 if my =m,. 41)
The proof of Assertion 2 follows from the geometrical
considerations depicted in Figures 8, 9, and 10. Figure 8
considers the case in which m, is greater than m,. Note in
this case that if the resulting value g is smaller than 0, the
syndromes are being affected by two or more unknown
erroneous tracks and the errors are uncorrectable. Figure 9
considers the case in which m, is smaller than m,. Here, if
the resulting value ¢ is greater than 7, the unknown
erroneous track is in set B. This is detected and corrected
later by the decoder in set B. Figure 10 considers the case in
which m, is equal to m,. Here, erroneous track g is the
vertical-parity-check track of set A.
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The implementation of Assertion 2 fits into the general
iterative decoding procedure. As the bit position value m is
incremented, a synchronized counter counts up or down
from value p depending on which one of the two
inequalities, Eqs. (39) and (40), of Assertion 2 is satisfied
first. The counting from set value p starts when one of the
inequalities is satisfied and stops when the other inequality is
also satisfied. The resultant count determines the index ¢ = p
+ (m, - m,) or g = p — (m, — m,). The count value ¢ <0 is
an indication of uncorrectable error, and the count value
g > 7 is an indication that the unknown erroneous track is
in set B. If both inequalities (39) and (40) are satisfied at the
same bit position, track index ¢ is taken to be 8 and the
count value of the counter is ignored.

Next we consider the case in which the first unknown
erroneous track is the vertical-parity-check track in set A,
that is, p = 8. The error pattern of the mth position in track
pin this case affects the syndrome Sv’, only. In the absence
of errors in any other track in set A or set B, the cross-parity
syndromes must all be zero. However, as any other track in
set A begins to be affected by an error, the cross-parity
syndromes are no longer zero as the bit position value m is
incremented. We make the following assertion.

Assertion 3

Let p denote the known erroneous track where p = 8. Let m,
be the lowest value of bit position such that
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Sd? .. #0 form=m andi=7, (42)

and let k be the smallest increment from bit position m, to
m, such that

Sa’fnﬂs_k #0 form=m,and k =7 — (m, — m,). (43)

Then track ¢ is in error beginning at bit position m,, and
index q is given by
q=k (44)

The proof of Assertion 3 follows from the geometrical
considerations depicted in Figure 11. Note that if the
resulting value of ¢ is smaller than zero, the syndromes are
affected by two or more unknown erroneous tracks and the
errors are uncorrectable.

The implementation of Assertion 3 also follows the
iterative decoding procedure. As the bit position value m is
incremented, a counter counts k down from 7. The counter
starts and stops counting when the inequalities (42) and (43),
respectively, of Assertion 3 are satisfied. The final count
determines the index of the unknown erroneous track. Note
that one side of the inequality (43) is a function of the
running-count value k in the counter at every bit-position
value m.

Now we show the modification for the more general case
in which set B has, at the most, one known erroneous track.
Let y be the erroneous track in set B. The error patterns for
this track are all known from the vertical-parity syndrome
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Su’ of set B. If y # 8. then these error patterns also affect the  Table 1 Assigned values for i and k in the pointer-generation

values of cross-parity-check syndromes Sd”,. In order to process.
account for the effect of these error patterns, we use the . ] ] N
adjusted value Sdl,’,, ® S'Uf,,__,» in place of Sdf,, for any required Pointer type Assertion  Assigned value of i and k
value of m. In particular, in Assertions 2 and 3, the First pointer 1 Running counter value.
syndrome Sd”,, ., from set B is replaced by a composite counting down from 7.
syndrome SB, given by Second pointer with p # § 2 First pointer value p.
b b . S .
S, o ® Sk iy <8 Second pointer with p = 8 3 Runmng counter value,
. : counting down from 7.
SB =< g )
m+15—k if y=28 orset B
is error-free. (45)
b . .
If SvmﬂS—J'—k is nonzero for some 0 = v =7 and-y 18 . Table 2 Corresponding variables in set A and set B.
unknown, then set B must be processed first to identify the
unknown erroneous track. The count value ¢ > 7 in Set A A, Sd° Svl SA ij ok e
Assertion 2 indicates this condition.
Note that the syndromes used in the generation of track- Set B B, Sdi% St SB x y = &

a

error pointers, namely Sd°, ., SB, and Sv’, are the same in

form as those used in Eqs. (22-24) for correction of errors.

Thus, with appropriate values for the variables / and &, the

same hardware can be used to generate syndromes for both set A by substitution of the corresponding variables as shown

processes. During the pointer-generation process, the in Table 2.

variables / and k are assigned values as shown in Table 1. Thus the following types of errors are correctable in set B
by applying the decoding process as described for set A:

Error correction in set B

The coding rules possess a built-in mirror-image symmetry 1. Up to three known erroneous tracks in set B when set A
around set A and set B. In particular, the encoding and 1s error-free or has at the most one known erroneous
decoding equations for set B can be obtained from those of track.
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Adaptive cross-parity decoder.

2. Up to two known erroneous tracks in set B when set A
has at the most one unknown or two known erroneous
tracks.

3. Up to one known erroneous track in set B independent of
set A.

4. Up to one unknown erroneous track in set B when set A
has at the most one unknown or two known erroneous
tracks.

5. Up to two erroneous tracks in set B (one of which is
known) when set A has at the most one known erroneous
track.

Implementation of the decoding process

The decoding process consists of two distinct functions: 1)
the detection and identification of the erroneous tracks, and
2) correction of errors in known erroneous tracks. The
internal pointer generator identifies the first erroneous track
in both sets, and subsequently a second erroneous track in
one of the two sets. Additional erroneous tracks may be
detected and identified by external signals; these signals
usually require some form of analog sensing of the playback
conditions of the data recorded on the various tracks. This
includes detection of loss of read signal, excessive phase
error, inadmissible recording code patterns, or any other
similar external indicators.
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Once an internal or external track-error pointer is
generated, it may be kept on for the entire remaining length
of the record. Similarly, any track-error pointer may be
turned off at an appropriate bit position in a record if the
error patterns corresponding to the indicated track turn out
to be zero consistently for a significant length of the
record—thus confirming that the track is error-free. This
allows replacement of the track-error pointer if and when
some other track becomes erroneous, particularly in the case
of long records.

It may be noted that the errors in a new erroneous track
start affecting the decoding process as much as 15 bit
positions ahead of the actual error. Thus the beginning of
each new external track-error pointer must be extended 15
bit positions earlier by means of a pointer look-ahead
function. For the same reason, in case of the internal
generation of track-error pointers, the beginning of two
erroneous tracks cannot always be detected successfully if
they occur in proximity.

The error correction is done at the mth bit position, which
progresses from the zero value to the last bit position value
M in a recurring manner. To compute error patterns at the
mth bit position, the syndrome values ranging from bit
position m up to (m + 15) are required. Furthermore, all
errors up to bit position (m — 1) must already be corrected
and the corresponding syndrome values must be modified to
account for the corrected error patterns.

Figure 12 shows the block diagram of the decoder, which
consists of a read data buffer, syndrome generator, syndrome
processor, error-pattern generator, error corrector, and
pointer generator (not shown) for each of the two sets of
nine parallel tracks. The functions and interrelationships of
these blocks in set A are explained in the following,

The read data buffer for set A receives the read character
A, for storage in its empty storage location while the
outgoing read character 4,, in the farthest storage location is
being corrected by the decoder. The syndrome generator for
set A is a shift-register circuit similar to the encoding register
shown in Fig. 4. The only difference is that the syndrome
generator has an additional exclusive-OR circuit before the
output for entering the read check bit from track zero. It
receives two nine-bit read characters, 4, ,,; and B, ., at the
input and produces the syndrome Sd,, ,; at the output. The
syndrome generator also has access to any other read
character in the buffer so that it can compute the modulo-2
sum of its components and deliver the corresponding
vertical-parity syndrome as required by the syndrome
processor.

The syndrome processor of set A is shown in Figure 13.
This is a shift register that stores the syndrome values Sd’,
through Sd7 , 5 in its storage positions 0 through 15,
respectively. The AND/OR circuits connected to stages 0
through 7 select the particular syndrome Sd” . for the given

m+i

pointer value / among the pointers /, j, and k for set A. The
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syndrome Sd’,, , is forwarded to the error-pattern generator
for set A. The AND/OR circuits connected to stages 8
through 15 select the syndrome Sd,. 15—, for the given
pointer value z among the pointers x, v, and z for set B.

A composite syndrome SA is created by combining
Sty 15— With Sd;, s, The syndrome S4 is forwarded to
the error-pattern generator for set B. A corresponding
composite syndrome SB is created by combining Svfm Smymk
with Sdfw s_, in the syndrome processor for set B. The
syndrome SB is forwarded to the error-pattern generator for
set A. The syndrome processor also modifies the stored
syndrome values by applying the computed error-pattern
values at the inputs of the appropriate stages as the value of
m is incremented by shifting in a new value of Sd7, . After
modification, the outgoing value of Sd?, is expected to be
zero in the absence of any uncorrectable errors.

With appropriate assigned values of i and k in accordance
with Table 1, the syndrome processors for set A and set B
also provide syndromes for generation of the track-error
pointers. The pointer generator (not shown in Fig. 12) for set
A receives the syndromes Sd% , , SB, and Sv; and generates
the internal track-error pointers as described previously
under “Generation of track-error pointers.” The pointer
generator continually updates the status of pointers by
combining any external pointers, and creates the pointer
vectors 1, j, k for set A. It also provides pointer status signals
such as “j < 8,” “more than one track in error,” and “three
tracks in error.”

The error-pattern generator for set A is shown in Figure
14. It receives the syndrome Sv?, from the syndrome
generator for set A, and the syndromes Sd; ,, and SB from
syndrome processors for set A and for set B, respectively. By
appropriately combining these syndromes, it generates the
error patterns e. (i), €’ (j), and ¢, (k) for the mth bit position
in tracks /, j, and k, respectively, in set A. The subsequent
ANDY/OR circuit directs these error-pattern values to their
appropriate track indexes according to the given pointer
values i, j, and k. The input SB is inhibited and the error
pattern efn(k) is forced to zero value by means of an AND
gate when less than three tracks are in error. In addition, the
input Sd, ., is inhibited and error pattern €7 (/) is set to a
zero value when less than two tracks are in error. The output
of the error-pattern generator is forwarded to the error-
corrector network, where it is combined with A4,, to produce
the corrected character. It is also forwarded to the syndrome
processor, where it modifies the stored syndrome values as
mentioned before.

The decoding process progresses in synchronism with the
incoming read data characters. The actual correction of each
received data character is delayed by 15 bit positions.

The general case

Thus far, we have focused on the special case of two sets of
nine tracks in an 18-track system. However, it is easy to
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generalize the result to a system with any number of tracks
in which the two sets may not have the same number of 559
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tracks. Here, we give the encoding equations for such a
system.

hardware for the two sets by time-multiplexing the decoding
process.
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Suppose set A has (T, + 2) tracks and set B has (7, + 2)
tracks. The encoding equations (3-6) can be written for this
general case as

T, T,

§ Am—t(t) @ 5 Bm+l—T1-Tz—I(l) = O* (46)
=0 =0

7 T

B B (D) ® B Ay (D) = 0, (47)
=0 =0

T)+1

B 4,(0=0, (48)
=0

Ty+l

g2 B, ()=0. (49)

=0

The decoding equations can be formulated for the general
case in a similar manner. If T, is not equal to T, the
decoding equations still remain substantially similar for set
A and set B, which allows use of the same decoding
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One effect of the increased number of tracks is the fact
that the encoding and decoding processes involve
corresponding numbers of bit positions along the tracks.
This, in turn determines the size of the encoding and
decoding buffers and the processing time delay. Another
effect of the increased number of tracks is the corresponding
increase in the number of additional check bits at the end of
the record in order to complete the two cross-parity checks.
In general, the two cross-parity check tracks are extended by
T, + T, additional positions.

A further generalization is also possible in which a
multitrack system is divided into three or more sets. Let T,
T,, T, - - - denote the number of data tracks in set A, set B,
set C, - .., respectively. Each set has its own vertical-parity-
check track. Two additional check tracks provide overall
cross-parity checks along the diagonals with positive and
negative slope, encompassing all data tracks. The total
number of tracks in the system is, then,
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T,
2+ (T, + D+ (T, + D)+ (Ty+ D+ - AT 4 1) = QIA,,,(& 52)
We illustrate the concept by giving the parity-check =0
equations for a system of three sets. The geometrical
representation of this system is shown in Figure 15.
The parity check along the diagonal with positive slope, 7
called the &, check, is recorded in track 0 on the side of the C(T,+1)=8 C,). (54)

first set. The corresponding encoding equation is given by ' =0 ) )
These parity checks provide the following error-correction

7,
B (T,+ 1)=38 B,(1), (53)
=1

T, T capability:
Am(o) = E Am—l([) @ Q Bm—l——Tl([)
=1 =1
7 1. The vertical-parity check in each set provides correction
&8 C, . rpn0) (50 of one known erroneous track in that set.

=1 . . . . - .
2. The vertical-parity check of a set in conjunction with one

of the two cross-parity checks provides correction of two
known erroneous tracks in that set.

3. The vertical-parity check of a set in conjunction with one
of the two cross-parity checks provides detection and

The parity check along the diagonal with negative slope,
called the d,, check, is recorded in track 0 on the side of the
last set. The corresponding encoding equation is given by

L I correction of one unknown erroneous track in that set.
Cul0) = ,g. Corrr-rm (1) @ E, Bri-rrp-i(1) 4. The vertical-parity check of a set in conjunction with
Ty both the cross-parity checks provides correction of up to
@ f Aprirg-rp-1,-1 (0 G three known erroneous tracks in that set.
5. The vertical-parity check of a set in conjunction with
The vertical-parity check is recorded in a separate check both cross-parity checks provides correction of one
track for each set. The corresponding encoding equations are known and another unknown erroneous track in that set.
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Each of the two cross-parity checks can aid in the error
detection and/or correction in one set only. Thus the error-
correction capability, as described in items 4 and 5 above, is
available to any one set only. Similarly, the error-correction
capability, as described in items 2 and 3 above, is available
to any two sets only. The decoding equations can be
formulated by considering various track-error combinations,
as was done for the special case.

The proof for this generalization follows from Assertions
1, 2, and 3 and the three-track-correction procedure. In
particular, if there are no errors in any set other than the one
being corrected, Assertions 1, 2, and 3 and the three-track-
correction procedure remain unaffected by the number of
sets in the scheme. In case of a known erroneous track in
any of the other sets, the vertical-parity check in that set
provides correction for the erroneous track and the cross-
parity syndromes are adjusted for these corrections. Thus
Assertions 1, 2, and 3 and the three-track-correction
procedure use composite syndromes [see Eqs. (23) and (45))
which include vertical-parity adjustments from all other sets
affecting the cross-parity syndromes. Furthermore, both
cross-parity syndromes require such adjustments depending
on the relative placement of the set being corrected and the
other sets.

In this general case, we have changed the method of
ordering the tracks as compared to the one used in the
special case of Fig. 1. Also, we have made use of the two
cross-parity checks independently of each other by excluding
one from the calculations of the other. These changes are
made for mathematical convenience. Furthermore, Fig. 15 is
only a geometrical representation of tracks corresponding to
the algebraic coding equations. Any other suitable order can
be used for the actual placement of the tracks on the tape.

Conclusions

In this report we have presented a scheme of coding data in
an [8-track tape system that meets the main objective of
providing substantially improved error-correction capability
without a corresponding increase in redundancy or
implementation cost as compared to that in Models 4, 6,
and 8 of the IBM 3420 tape machines. The concept of
adaptive usage of redundancy provides the necessary
extension of the error-correction capability, and the concept
of iterative decoding of interacting vertical- and cross-parity
checks provides a simple and inexpensive implementation.
The three different data formats described herein illustrate
how the data and check bits can be arranged in various
ways—both along and across the tracks. A general system is
developed in which the redundancy is applied to a multiple
number of unequal sets in an adaptive manner.
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