
422

Large-scale
scient if ic
application

by G. Corongiu
J. H. Detrich

programs In
chemistry and
physics on an
experimental
parallel computer
system
We present and discuss an experimental
distributed system consisting of two IBM 4341s,
an IBM 4381, and ten FPS-164 attached
processors, configured to allow parallel
execution of a single large-scale calculation on
multiple processors. A number of our application
programs have been converted to run on this
system, and the strategy for this conversion is
outlined in sufficient detail to facilitate the
development of tests using other scientific and
engineering computer application programs. Our
tests, though limited to certain biochemical and
physicochemical problems, demonstrate the
versatility, flexibility, and accessibility of this

OCopyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

G. CORONGIU AND J. H. DETRICH

system, and we find performance comparable to
that of today’s supercomputers, which suggests
that our approach can provide a practical
answer to many large-scale computer
applications.

1. Introduction
Scientific and engineering computer applications are rich
and varied, but share some common needs. Success in these
applications invariably gives impetus to the development of
more elaborate calculations, so there is constant pressure to
expand to the limits of currently available computer
resources and beyond. In response to this demand,
somewhat specialized hardware and software have been
developed to extend the range of feasible calculations. One
example is the advent of array processors, which emerged to
handle signal and image processing but have found use in
many other applications. Another example is the
development of very fast, powerful, vector-oriented
processors such as the CRAY 1s or X-MP and the CDC
CYBER 205. One result of the successful use of these
resources has been to bring into view scientific and

IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

engineering calculations that are beyond the capability of
even these supercomputers.

Our laboratory has always participated in this process,
since our research interests center on problems in theoretical
chemistry and biophysics that can only be resolved with the
help of large-scale computer calculations. Hence computer
hardware and software are crucial resources for our research,
and we naturally strive to upgrade and expand them as
much as possible. This is a primary motivation for the
experiments in parallel systems that we report in this paper.
Our goal is a computer system that is 1) at least as fast and
possibly faster than supercomputers such as the CRAY 1s or
CDC CYBER 205, 2) more flexible and versatile, 3)
extendable to very high capability, and 4) not too expensive.

The idea of parallel computer structures is certainly not
new. It has already been the subject of numerous research
projects and a very vast literature [11; even a system
intended specifically for computational chemistry has been
proposed before [2]. By these standards we can claim little in
terms of sophistication or originality. In fact, we have
deliberately chosen the path of least resistance at many
points in the development of this project. This pragmatic
approach is in no way critical of more ambitious attempts.
Rather, we have different priorities, namely the quick
migration of our large-scale scientific applications to parallel
execution. This “consumer orientation” is the most
distinctive feature of our project.

Many of the characteristics of our parallel strategy follow
from these priorities. These characteristics are 1) parallelism
based on few (less than 20) but very powerful array
processors, with 64-bit hardware; 2) architecture as simple as
possible, but extendable; 3) system software that varies as
little as possible from that used for normal sequential
programming; 4) initial application programming entirely in
FORTRAN, since this is the most widely used scientific
application language; 5) migration of old sequential code to
parallel code with minimal modifications.

It should be noted that all of our current hardware and
most of our system software are standard products available
“off the shelf”; this is an important factor in the rapid and
cost-effective development of our system. Specifically, we
have selected the Floating Point Systems FPS- 164 for the
array processors. This choice is dictated by the fact that these
are the only 64-bit array processors currently being
marketed. For the host computer, we use an IBM 434 1 or
IBM 438 1. Additional description of our hardware
configuration is provided in Section 2.

hardware, but rather application software. We want to
present our system in sufficient detail to facilitate
understanding of our experiments in conversion of
applications to parallel execution, and to support at least
some idea of how other applications might be converted to
parallel execution on our system. Thus, in Section 3 we

As already indicated, our principal interest here is not

present the strategies we have developed to modify our
application programs for effective parallel execution on our
system. In order to more precisely understand how these
strategies are implemented, we describe the system in
Section 4. We include in this section the details of the
communication software packages we use, since our system
is one of the few places where a FORTRAN-accessible
implementation of parallel processing is currently being
tested, and we expect our experiments to yield useful insights
concerning how such software should look in order to best
serve the needs of the user.

Section 5 studies performance of our system in practical
applications. Finally, in Section 6, we wrap up our current
experience with our system and discuss further
developments, particularly those which have to do with our
system’s serving as a testing ground for parallel execution of
application programs.

2. Present configuration
The computer configuration presently working in our
laboratory consists of ten FPS- 164 attached processors (AP);
seven are attached to an IBM 438 1 host and the remaining
three are attached to an IBM 29 14 T-bar connection so that
they can be switched between an IBM 4341 host and the
IBM 4381 host. The FPS-164 processors are attached to the
IBM hosts through IBM three-megabyte-per-second channels
available on these hosts. A second IBM 434 1, connected to a
graphics station, completes the host processor pool. The
three IBM systems are interconnected, channel to channel,
via an IBM 3880 connector. A schematic diagram of the
configuration appears in Figure 1.

One attractive feature of this system is the possibility of
switching one, two, or three FPS- 164s from the IBM 434 1
host to the IBM 438 1 host. This gives us the flexibility of a
“production system” with seven APs and an “experimental”
system with three APs. The latter system is used during
“prime time” for program development, experimentation
with new hardware, debugging of system and/or application
programs, etc. During off-prime time and weekends, we
typically work with two systems of four APs each and a third
system with two APs. Clearly, depending upon user demand,
we can use all ten APs for a single job, or, at the opposite
extreme, each one of the ten APs independently on ten
different jobs.

Each AP contains an independent CPU and its own
memory and disk drives. The CPU on the FPS- 164 runs at
5.5 million instructions per second, and several concurrent
operations can take place on each instruction cycle. In
particular, one 64-bit floating-point addition and one 64-bit
floating-point multiplication can be initiated each cycle, so
that peak performance is about 11 million floating-point
operations per second (I 1 megaflops). Of course, one must
make the distinction between peak performance
(a characteristic of the machine hardware) and realized 423

IND J. H. DETRICH IBM J. RES. DEVELOP, VOL. 29 NO. 4 JULY 1985 G. (ZORONGIU A

Schematic diagram of the current loosely coupled array of processors. Numbers refer to IBM devices; i .e . , IBM 2914 T-bar switch, IBM 4341 and
4381 computers, IBM 3830 and 3880 disk storage control units, IBM 3350 and 3380 disks, IBM 3088 multisystem channel adapter unit, IBM
3203 printer, IBM 3803 tape control unit, IBM 3420 and 3411 tape drives, and IBM 3705 telecommunication network control unit.

performance (depending on the application and the code
which implements it as well as the hardware). Nevertheless,
the FPS- 164 tends to be quite effective for the specialized
“number crunching” that constitutes a large part of scientific
and engineering computer applications.

Communication between the host computer and the
attached FPS- 164 is handled by hardware and software
provided and supported by Floating Point Systems as a
standard feature. An optimizing FORTRAN compiler and
supporting utilities (including disk 110) are also standard
products for the FPS- 164. The compiler is capable of
reasonably effective use of the special architecture of the
FPS- 164, so that it is practical to run programs written
entirely in FORTRAN. An extensive library of subroutines
is also provided, and these can be combined with
FORTRAN code for additional gains in execution time.

random access memory; two have more: eight and ten
megabytes, respectively. The memories on the IBM 434 1
Model M2 and Model P2 are eight and sixteen megabytes,
respectively. The IBM 438 1 has sixteen megabytes. Thus,
taken as a whole, there is 90 megabytes of real storage
available in our system.

Each AP also has four 135-megabyte disks, for a total of
5.4 gigabytes. In addition there are banks of IBM 3350 and
IBM 3380 disks accessible to the host computers totaling

Each of our FPS- 164s has at least four megabytes of real

424

G. CORONGIU AND J. H. DETRICH

about 25 gigabytes of disk storage. Tape drives, printers, and
communications network interface complete our system.

Very recently, Floating Point Systems announced the FPS-
164/MAX. This configuration consists of special-purpose
boards that can be added to the FPS- 164 to augment
performance, particularly on matrix operations. Each MAX
board contains two additional adders and two additional
multipliers, and so adds 22 megaflops to peak attainable
performance. Up to 15 boards can be placed in a single FPS-
164, converting it to a machine with a peak performance of
34 I megaflops. Special software is required to utilize the
MAX boards, and one must carefully examine the extent to
which a particular scientific or engineering calculation can
be organized to make effective use of this hardware and
software.

Acquisition of two FPS- 164/MAX boards for each of our
ten APs, which is under consideration, would upgrade our
system from its current 1 1 0-megaflop peak performance to
550 megaflops. Ultimately our system could grow to 3410
megaflops peak capability, but (recalling the distinction
between peak performance and realized performance) it is
clearly desirable first to explore the gains that one can
realistically obtain with only a few 164/MAX boards per AP,
so we shall settle at 550 megaflops.

It should be noted that such upgrades have no effect on
the parallel programming strategy outlined in the next

IBM 1. RES, I 3EVELOP. VOL. 29 NO. 4 JULY 1985

section. The strategy is equally effective for APs of any
architecture or computational speed. In principle, we could
substitute ten vector-oriented supercomputers for our ten
FPS- 164s, but since a supercomputer costs several million
dollars compared with a few hundred thousand for an FPS-
164, the cost of this option would be unrealistically high.

In our current configuration, each AP can communicate
only with its host computer; there is no possibility of direct
communication between two different APs. Furthermore,
communication between host and AP is limited by channel
speeds. These communication characteristics are important,
and motivate us to describe our system as a loosely coupled
array of processors (LCAP). We can, of course, accomplish
AP-to-AP communication indirectly by having an AP
communicate with the host, which then communicates with
the second AP. However, communication overhead is a
serious consideration in some applications, so the lack of
direct AP-to-AP communication is a genuine limitation. Our
system would acquire substantial additional flexibility and
power if we could move toward a better-coupled
configuration in which the APs could communicate with one
another directly through a common fast bus and/or shared
memory. We will report more on these aspects of our system
as soon as data become available.

3. Programming strategy
Several aspects of our approach to parallel programming
have already been mentioned in the introduction. Over a
period of time our group has developed a substantial
collection of scientific application codes, almost entirely
written in FORTRAN, and one of the motivations for
developing our parallel system was to run these applications
for cases that would be too slow and unwieldy on a normal
sequential system. Thus we have adopted a simple,
pragmatic approach that permits migration of existing
sequential code to our parallel system with minimal
modification and implements this migration in FORTRAN.
Of course, there are some system utilities required (which are
accessible through FORTRAN subroutine calls), but we
postpone discussion of these to the next section. Here we are
concerned with the development of our general
programming strategy.

We begin with the observation that large-scale, typically
CPU-bound calculations almost invariably involve loops that
are traversed many times. Most of the CPU time is
consumed in such loops, so that if we adapt the tasks
contained in these loops to parallel execution, we find that
we actually have most of the code (as measured by execution
time) running in parallel.

This is easy enough to accomplish. Let us suppose that
our sequential FORTRAN code has a DO-loop of the form

DO 500 I=l,N
.
. ,

with some computational kernel inside the loop (up to
statement 500). Then, if we suppose that NCPU is the
number of APs available for parallel execution, we can keep
the same computational kernel and modify the loop to read

DO 500 I=ICPU,N,NCPU

This portion of the program, with the computational kernel
and modified loop, is dispatched to each of the NCPU APs.
Each AP must, of course, have a different value for the index
ICPU, with 1 5 ICPU 5 NCPU.

This rather simple scheme has been applied to all the
application programs we have migrated to parallel execution;
it was effective in every case. Thus, after migration, typical
program flow consists of an initial sequential part handling
initial input, setup, etc., followed by a parallel part running
simultaneously on several APs. At the end of this portion,
the results from the parallel execution must be gathered up
and processed by another sequential portion. This may be a
prelude to another period of parallel execution, or,
ultimately, to development of final results and the end of the
run.

There is an obvious limit on this scheme: The
computational kernel for a particular value of I in the loop
example above must not depend on results computed in
earlier passes through the loop with a different value of I.
Our experience so far indicates that this is not a severe
restriction; indeed, we find that our code tends to fall
naturally into such a form. There are some exceptions, of
course, and we have simply left the ones we have
encountered in the sequential part of the code. This has had
only a mild effect on the overall performance of the resulting
program for parallel execution. However, we hope eventually
to develop more sophisticated strategies to deal with these
cases.

We also point out that this scheme is entirely unaffected
by the particular implementation of the computational
kernel contained in the loop. One can therefore immediately
transfer any improvement in the sequential version of the
code to the corresponding parallel version. Nor does
migration to a machine with a different architecture affect
the scheme, since again only the implementation of the
kernel changes.

Programming according to this scheme is presently done
“by hand”; there is no software to help with the bookkeeping
involved. Eventually we would like to have a compiler
and/or an optimizer which could handle some of these tasks
and also at least partially automate the use of the
communication facilities described in the next section. As a
first step, we are considering the possibility of writing a
simple precompiler to help with the rudiments of migrating
codes from sequential to parallel. 425

H. DETRlCH IBM 1. RES. DEVELOP. VOL. 29 NO. 4 JULY I 985 G. < 70RONGIU A ,ND J. I

The operation of loading the program and/or data in each
AP at the beginning of a parallel portion of the run is
overhead that does not appear in the corresponding
sequential code; so is the operation of gathering up results
from the APs at the end of parallel execution. To safeguard
efficiency, these operations should be minimized to the
extent possible. The most obvious way to do this is to group
the largest feasible portion of code together for a single
section to be run in parallel. Thus, in the example above, we
dispatch the entire loop to each AP once, rather than
dispatching the contents of the loop each time we pass
through it in the code. Moreover, the loop to which this
treatment is applied should be the outermost one, to the
extent possible. Sometimes further economies can be gained
by rearranging the code to yield fewer but larger single tasks
to dispatch to the APs.

transmitted to the APs and the amount of data to be
gathered from the APs at the end of a parallel part of the
program. When this is done, one frequently finds large
intermediate arrays that are used by the parallel part of the
program but need never be referenced in the sequential part.
Sometimes it is necessary to recreate such arrays each time
the AP runs one of the parallel tasks, but additional
economies are available if the array can be maintained on
the AP during the entire program run, spanning all the
parallel tasks. In our molecular electronic structure code [3],
this occurs for the two-electron integrals, which are parceled
out among the disks attached to the APs and read in as
required in parallel. For our Monte Carlo code [4] and our
molecular dynamics code [51, tabular material is set up in
AP memory at the beginning of the run and remains without
modification, to be used each time molecular interactions
are calculated in parallel.

One can break into two parts the total execution time T
for an application program running in parallel, so that T =
T, + T,, where T, is the total execution time for sequential
parts of the code and T, is the time spent on parallel
execution. Since there are usually several sequential portions
in a run, we write T, = Ziti, where the index i numbers the
different sequential portions. Similarly, we give T, = E f t j p ,
where tp is the time between dispatch of the parallel task to
various APs and the subsequent gather. To be more specific,
say that an AP indexed by a takes time ifN for its part of the
parallel execution. We then have a collection of times tjm,
one for each AP, and t,, is the longest of these. Ideally, T,
should be much smaller than T,, because no more than one
AP is used during this time; the others are idle. For the same
reason, each of the tja should be identical to all the others, or
nearly so; any difference means that at least one AP is
standing idle part of the time.

In practice, the requirement that all tja be identical cannot
be achieved exactly. In our loop example, we need N exactly

One should also carefully control the amount of data to be

426 divisible by NCPU, and this is not a normal occurrence in

general application runs where N (and possibly also NCPU)
varies from case to case. Moreover, having N exactly
divisible by NCPU does not guarantee an ideal case, because
the computational kernel may vary in run time for different
values of I (an example, which actually occurs in our SCF
code, would be stepping through an array where the
calculation is skipped when the array element is zero).
Sometimes it is possible to rearrange the computation in
terms of a new loop variable [4] to get the tja more nearly
identical, but this strategy has its limits, since it usually
involves developing more elaborate loop control code, and
executing this code takes time.

In our loop example, the difference among the various ijN
is essentially the execution time for one execution of the
computational kernel. This is a measure of the granularity of
the problem. We see at once that the ratio of the smallest tjN
to t,, tends to approach 1 as N increases. Moreover, the ratio
tj,/Ts is expected to increase as N increases. This exemplifies
a general tendency: As calculations get larger, the parallel
program becomes more efficient. Of course this is just the
trend we would like to see, since parallelism is intended to
handle cases too large for effective sequential execution.

We note that we have amved at a rough criterion by
which we can judge whether a particular task can be
effectively migrated to parallel mode: t j p must be
substantially greater than the sum of the lag time associated
with granularity and the transmission time for the task. An
interesting effect emerges when we consider how the
situation changes as more APs are added. This decreases t,,
and increases transmission time, while the granularity
remains constant. One concludes that, for a given
application, parallel execution becomes less efficient as the
number of APs increases. This effect is actually observed, so
that the ability to vary the number of APs used in a
particular application run is important. Our system has this
flexibility, and all our parallel programs incorporate it.

4. System considerations
As already indicated in the introduction, we are not
concerned with development of elaborate system software to
make our parallel system work. Instead, we use, to the extent
possible, “off-the-shelf” software. This approach has the
merit of reducing our programming overhead very
substantially and permitting us to use proven software
immediately in our applications.

On the IBM hosts, our operating system is the IBM
Virtual MachinefSystem Product (VM/SP). For the APs, we
use the software provided by Floating Point Systems for
hosts running under this system. We have not found it
necessary to modify either set of software in order to run our
applications in parallel.

VM/SP is a time-sharing system in which jobs run on
virtual machines (VM) created by the system; these VMs
simulate real computing systems. The standard software

G. CORONGIU AND J. H. DETRICH IBM 3. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

provided by Floating Point Systems for use on the FPS-164s
embodies the restriction that only one AP can be attached to
a VM. Of course, for a task running in parallel, more than
one AP is required. Our solution to this is to introduce extra
“slave” VMs to handle the extra APs we need. To make this
work, one must have a way to communicate between
different VMs; this is provided by the Virtual Machine
Communication Facility (VMCF), which is a standard
feature of VM/SP [6].

In general, then, a parallel task consists of several
FORTRAN programs, each running on a separate VM in
the host system, and each controlling a particular AP on
which additional FORTRAN code runs. On one of the VMs,
the “master,” is the part of the original FORTRAN code
intended to be run on the host, combined with utility
subroutines that handle communication with the slave VMs
and with the AP attached to the master VM. The programs
running on the slave VMs are much shorter, since the slave
VMs are nothing more than transfer points for
communication between the master program and the APs
attached to the slaves. In essence, the slave VM programs
consist of code to handle communication with the master
and utility subroutines to communicate with the AP
attached to the slave.

Since each VM is attached only to a single AP, the
standard utilities provided by FPS [7] for communication
between host and AP can be used without modification. We
have already described in the previous section the
development of code to run in parallel on the APs. As we
saw there, the code running on the various APs (including
the one attached to the master) is identical for each AP.
Accordingly, the programs running on each of the slave VMs
are also identical; it is up to the master program to see that
the slaves each get different data so that they control distinct
calculations.

It remains to describe the utilities that handle
communication between master and slave VMs. These
utilities are not “off-the-shelf” in the same way as the
utilities for communication between host and AP. As already
mentioned, the vehicle for communication between VMs is
provided as part of the VM/SP system, namely VMCF, so
that no real system programming is necessary. However, use
of VMCF requires calls to the system from assembler code.
It is desirable to package this code, once and for all, in utility
subroutines that can be invoked from normal FORTRAN
code; this considerably simplifies program migration to
parallel mode. Development of this set of utilities, which we
call VMFACS (Virtual Machine FORTRAN-Accessible
Communications Subroutines), was one of the first steps in
implementing our parallel system, and it has required
virtually no subsequent modification. It is therefore of
interest to describe VMFACS in detail, since it is one of the
very few packages to make parallel processing accessible to
the FORTRAN programmer, and our experiences with it

can be expected to be helpful in discovering how such
packages can best meet the needs of the FORTRAN
programmer.

One of these VMFACS utilities packages, SLVTEL, is
used by the slave VMs. This package contains four different
FORTRAN-callable subroutines. The first of these is
invoked by a call of the form

CALL SLVTEL (MASTER,RCVADD,RCVLEN,
ERRNUM,ERRBRN)

Here MASTER is an eight-byte character constant giving
the userid of the slave VM’s master, RCVADD is the
beginning address of the data the slave is expecting to receive
from the master, and RCVLEN is a four-byte integer giving
the length (in bytes) of the data. ERRBRN indicates the
FORTRAN statement which is the error return for the
subroutine, and ERRNUM is a four-byte integer where a
description of any error is placed by the SLVTEL package.
This call connects the slave VM to VMCF so that the master
can communicate with it, and then causes the VM to wait
until the master sends the data the slave is expecting to
receive in RCVADD. When the data have been successfully
placed in RCVADD, control returns to the calling program.
One effect of this call is to set ERRNUM aside for error
recording by the SLVTEL package, so the user should be
careful not to alter ERRNUM while the package is in use.
Of the possible error conditions, the most likely is an
attempt by the master to send data having a length different
from the length indicated by RCVLEN.

VM, it performs some task using the data and eventually
reports the result to the master. This is accomplished by a
call of the form

CALL SNDRCV (SNDADD,SNDLEN,RCVADD,
RCVLEN,ERRBRN) ,

where SNDADD is the beginning address of the data to be
sent to the master and SNDLEN is the integer length of the
data (in bytes). As in the call to SLVTEL, RCVADD is the
beginning address of the data expected from the master,
RCVLEN is the length of the data, and ERRBRN points to
the error return. The address of ERRNUM is retained from
the SLVTEL call, and this integer again contains a
description of any error encountered. After the data in
SNDADD have been sent to the master, SNDRCV waits for
data to be sent from the master to the slave for the slave’s
next task. When the data have been successfully placed in
RCVADD, control returns to the calling program.

The last task performed by the slave is simply the orderly
exit from the slave program. This does not involve sending
anything to the master but should include disengagement
from VMCF. The call to perform this disengagement is of
the form

After the slave VM receives its initial data from the master

CALL SLVOUT (ERRBRN) ,

IBM J. RES. DEVELOP. 1 IOL. 29 NO. 4 JULY 1985 G.

427

CORONGIU AND J. H. DETRICH

where ERRBRN again points to the error return. It should
be noted that an error return occurs not only for errors
encountered in executing SLVOUT, but also for errors
recorded for previous operations using the SLVTEL package.

VMCF is also used by the utilities provided by FPS to
attach an AP to or detach it from a VM, and this alters the
VMCF setup used by the SLVTEL package. To deal with
this contingency, the SLVTEL package contains one more
call, of the form

CALL RSLVTL (ERRBRN) ;

here ERRBRN once again points to the error return. This
call merely restores the VMCF setup which the call to
SLVTEL initiated.

Use of the SLVTEL package requires information about
only one other VM, namely the master. On the other hand,
the VMFACS package for the master VM, MASTEL, must
maintain information on all the slave VMs attached to the
job; hence it is necessarily somewhat more complex. This
package is initiated by a call of the form

CALL MASTEL (N,SLVUID,ADDR,IND,ERRNUM,
ERRBRN)

Here N is a four-byte integer giving the number of slaves
attached to the run, and SLVUID is an array of eight-byte
character constants set up so that SLVUID(1) is the userid of
the Zth slave VM. ADDR and IND are, respectively, eight-
byte and four-byte work arrays set aside for the use of the
MASTEL package; both arrays must have at least N
elements. As in the SLVTEL call, ERRNUM is the integer
describing any error condition, and ERRBRN gives the
return point when an error occurs. It is important to point
out that the arrays SLVUID, ADDR, and IND are used to
help the MASTEL package keep track of its transactions, so
these arrays must not be altered while the package is active.
The same comment applies to ERRNUM, since a
description of errors is kept there by the entire MASTEL
package.

slaves has the form

CALL SNDRCV (I,SNDADD,SNDLEN,RCVADD,
RCVLEN,ERRBRN) ,
where I indicates the Ith slave VM and the remaining
arguments are used the same as in the SNDRCV call for the
SLVTEL package. However, the SNDRCV call in the
MASTEL package causes a behavior considerably different
from that caused by the SNDRCV call in the SLVTEL
package. In the MASTEL package, CALL SNDRCV does
not cause a wait to occur until data amve in the array
beginning with RECADD; in fact, there is not even a wait
for the send transaction to be completed, so one can begin
sending to another slave immediately.’ Consequently, one
must check to see that the send transaction has actually been
completed before disturbing the SNDADD array.

The call used to send data from the master to one of the

To check the status of transactions with the slaves, there is
a call of the form

CALL MWAITO (INDFLG,ISLV,ERRBRN) ,

where INDFLG is a four-byte integer array controlling the
inquiry to be made, ISLV is the four-byte integer returned
by the call, and ERRBRN gives the error return point.
INDFLG should contain at least as many elements as there
are slaves. The integers in the INDFLG array must
correspond to the following requests:

-1
0

1
2

skip testing for that slave;
test for completed transaction; that is, slave ready for
next SNDRCV (and the response from any previous
SNDRCV is available in the appropriate RCVADD
array);
test for send to slave which is not complete;
test for completed send transaction to slave, but with no
reply from slave available in RCVADD array.

MWAITO tests the status of the slaves as requested and
returns the index of the first slave it finds with the requested
status as the value ISLV. If no slave has the status requested,
a wait occurs until a slave with the requested status can be
found, whereupon the index of that slave is again returned in
ISLV. Errors causing an error return originate from some
SNDRCV transaction rather than from the possible wait.
Some care must be exercised in setting up the INDFLG
array for a MWAITO call, since an indefinite wait occurs if
none of the specified conditions ever becomes true. It is safe
to have at least one element of INDFLG set to 0, and this
normally constitutes the most useful test. The test values 1
and 2 are not so safe, since the MASTEL package proceeds
with the transaction while the tests are in progress, and this
process may happen too fast for useful tests. If one can be
confident that the task being performed by the slave will take
enough time so that it will not suddenly finish and report
back, the test value 2 can be useful to wait for the SNDADD
array to become available for other use. The test value 1 is
included for completeness but is not normally useful,
because the send part of the transaction occurs very quickly.

checked by another call, which has the form

CALL CLRTEL (ERRBRN) ,

where, as usual, ERRBRN indicates the error return. This
call waits for pending send or receive transactions to be
completed, which corresponds to testing every slave to see
that it does not have test value 1 (either test value 0 or test
value 2 are acceptable). This call is the most convenient way
to ensure that the last data to be sent to the slaves have
actually been sent before the master disengages from VMCF
prior to the end of the run for the master program. One
should always do this, because premature disengagement

The status of transactions with the slaves can also be

428

G. CORONGIU A LND J. H. I 3ETRICH IBM J. RES. DEVELOP. \. ‘OL. 29 NO. 4 JULY 1985

from VMCF by the master prevents the slaves from
receiving their data, causing an error to emerge from the
SLVTEL package.

the use of the MASTEL package by a call of the form

CALL MASOUT (ERRBRN) ,

where ERRBRN again points to the error return.
It should be noted that the MASTEL package does not

actually start the slave programs running. This is done (on
the appropriate VM) by the person submitting the run at the
same time the master program is started. In reality, all the
slave programs should be started slightly before the master
program so that they are ready when the master program
attempts to send to them.

The VMFACS utilities were designed to provide the
required functions in the simplest fashion that would
provide sufficient flexibility. The result, especially for the
MASTEL package, is to provide only those functions that
cannot readily be provided by FORTRAN coding. For
example, several variants of the testfwait scheme provided
by MWAITO might be useful, but the FORTRAN
programmer is obliged to develop them on his own. Also,
there is no attempt to facilitate recovery from possible errors
in using these packages. This is deliberate, in order to allow,
and even encourage, the FORTRAN programmer to try
different strategies in migrating code to parallel execution.

The VMFACS utilities packages are experimental, as is
our entire parallel system. They may be expected to change
as our system undergoes further development. One
possibility is to replace or supplement the use of VMCF with
the Inter-User Communications Vehicle (IUCV), another
feature of VM/SP [6]. Another possibility under active
consideration is an MVS alternative to our VMfSP system.
Ultimately, one might expect to eliminate the need for these
communication packages by replacing the standard FPS
utilities with utilities that would allow many APs to be
attached and controlled by a single VM.

us rather well. Our tests indicate that VMCF
communications are no great burden on the system: They
amount to a small fraction (about one tenth) of the time
required for channel transmission between host and AP.
Clearly, substantial improvement in communication requires
improvement in our hardware, such as the common fast bus
or shared memory mentioned in Section 2.

An interesting sidelight of these developments emerges
when the code running on the APs is incorporated into the
slave or master programs, as appropriate, to yield an
application running entirely on the host but spread across
several VMs. This strategy is sometimes useful in developing
and debugging code to be run in parallel. For production
runs on a single-CPU machine this approach is pointless,
since it simply introduces additional system overhead, but

Finally, the master disengages from VMCF and terminates

On the other hand, these communications packages serve

I IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY I

this is no longer the case for runs on a multiple-CPU
machine such as the IBM 308 1. In this case, different VMs
can run on different CPUs, so the run becomes a parallel
one. Our tests of some of our parallel applications on an
IBM 308 1 under VMfSP demonstrate that the expected
parallel performance is actually achieved. Our parallel
applications have also been run under MVS [8] on an IBM
3084, and again the expected parallel performance was fully
achieved. In this case, the subroutines described above were
adapted to use MVS system facilities instead of VMCF.
Since the adaptation leaves the communication strategy
unaltered, the MVS implementation can execute the same
FORTRAN code used for the trials under VMfSP.

5. Practical tests
Our parallel system has developed with large-scale scientific
applications programs waiting to migrate to the system as
soon as possible. In fact, an important motive in
development of the system was to use it to extend the range
of our research in theoretical chemistry and biophysics.
Applications embodying a fairly broad range of
computational demands are now running on the system, and
this provides a basis for very realistic tests of its
performance.

We note that the first test of our system was in fact the
attempt to migrate existing applications to the system. As
already indicated, our system developed with the idea that
migration of old sequential code to parallel code should not
require extensive code modification, and we have in fact
followed this path. It is important to note that much of our
applications code was developed within our laboratory, so
we know the code well enough to implement effectively the
strategies outlined in Section 3. Provided this requirement is
satisfied, we have found that migration of good functional
sequential code to our parallel system is not much more
difficult than migration of such code from one sequential
computer system to another sequential computer system
with a different architecture. We can conclude that our
system is quite accessible, with good “user-friendliness.”

We consider here four applications currently running on
our system. Two of them, namely the integrals program and
the SCF program, are parts of our quantum molecular
program package. In addition, we have Monte Carlo codes
for simulation of statistical mechanics of liquids and
solutions, and molecular dynamics codes which provide
time-dependent simulations of liquids and solutions. Each of
these applications places different demands on our system,
and it is useful to describe these demands in more detail.

The integrals program repeatedly evaluates algebraic
expressions with various sets of parameters. Evaluation of
any one integral is fast, but any complete run includes huge
numbers of these integrals. The computed integrals are
stored on disk files which can be larger than a gigabyte in
size. Computation of any integral is independent of any

985 G. (

429

ZORONGIU AND J. H. DETRlCH

other integral, which makes it easy to run the integrals
program in parallel; one simply decides how the set of
integrals is to be divided among the available APs. Once the
run is set up, there is no communication between the tasks
running on the different APs, and even disk 1/0 takes place
entirely on the AP (parallel I/O). The time a particular task
runs without interruption on the AP is the elapsed time for
the entire run (a unique feature of this application), and this
is typically on the order of hours. The only obstacle to ideal
parallelism is that we have not found a way to divide the set
of integrals in the run that can guarantee perfectly even
distribution among the APs.

The SCF program iteratively improves on an initial guess
for molecular electronic structure until convergence is
achieved. Each iteration can be divided into several steps, of
which by far the most time-consuming is combining results
from the last iteration with the integrals file generated by the
integrals program to develop the current iteration. This step
is the only one running in parallel at present. It involves
heavy disk 1/0 (which again takes place in parallel) and also
very substantial CPU time. The time for this step running in
parallel is typically a fraction of an hour and requires
transmission of several hundred kilobytes of data between
host and AP. A more detailed description of both the
integrals program and the SCF program can be found in a
previous report [31.

Our Metropolis-Monte Carlo programs deal with liquids
or solutions one molecule at a time, and the main task is
evaluation of the change in the potential energy of the bulk
each time a molecule is moved. It is this task that runs in
parallel. All other tasks are so fast that they cannot benefit
from parallel execution. There are several versions of our
Monte Carlo code, depending on how elaborate (and hence
realistic) an energy expression is being used. Thus, the time a
task runs in an AP without interruption varies from a
fraction of a second up to several seconds. Data transmission
between host and AP is on the order of a hundred bytes per
task. For more detail concerning our Monte Carlo programs,
the reader is referred to our previous report [4].

Our molecular dynamics programs simulate the kinetic
motion of molecules in bulk liquid OJ solution over a period
of time divided into many time steps, with each time step
involving the evaluation of many molecular energies and
forces. This is the bulk of the computation, although we also
compute the resultant molecular motion in parallel for each
time step. Again, there are several versions of our molecular
dynamics code, depending on the energy expression being
used. The typical time for a task run in an AP without
interruption is a fraction of a minute, and this involves data
transmission between host and AP of as much as a few
megabytes. We again refer the reader elsewhere [SI for
additional details of these programs.

We have timed specific application runs for all four of
these programs running sequentially (one AP), and running

in parallel on three APs, six APs, and ten APs. One
objective, of course, is to see how successful we are in
exploiting our parallel system. We would also like to see how
close we come to supercomputer performance, and so we
have run these applications on a CRAY 1 S as well. The
application code for the CRAY was developed under
constraints analogous to the constraints for our parallel
application codes, that is, the minimum modifications
required to run properly under that system. Efforts to
modify the code to better exploit the vector architecture of
the CRAY would certainly have resulted in faster timings for
that machine, but, conversely, we could gain on our parallel
system by adapting our code to the architecture of the FPS-
164. As they stand, we believe our results are useful, even
though they cannot be regarded as anything like a definitive
comparison between the two systems.

Our timings can be found in Table 1. We find that for the
integral, Monte Carlo, and molecular dynamics programs,
the execution time on our system with six APs almost equals
that for the CRAY 1 S. For the SCF program, results are not
as good. We can attribute this to the sequential part of the
SCF code, which grows in significance as more APs are used
for the parallel part. We have already started improvement
of the SCF code, and we expect that this will bring its
performance into line with the other applications. In all
cases, we see some degradation from full parallelism. For
example, for the integrals run with 42 atoms we would
expect the three-AP result to be one third the execution time
with one AP, 67.8 minutes. The actual execution time for
three APs is 68.9 minutes, so we have a little over a minute
of “overhead time” in this case. Additional overhead shows
up as one progresses from three to six APs or from six to ten
APs. The causes of this overhead, and the strategies that can
be used to minimize it, have already been discussed in
Section 3. In addition, we are investigating hardware
modifications which should reduce system and
communications overhead.

6. Discussion
Although our experimental parallel system has been in
existence for only a rather short time, we believe it has
already established itself as a pragmatic answer to many
computer-intensive problems. The scientific applications that
have so far migrated to our system have already opened up
new vistas in our research in theoretical chemistry and
biophysics [3-5, 9, 101. There is no reason not to expect
similar benefits in other research areas. On the contrary, the
variety of our applications delineates the flexibility and
versatility of our system, and parallelism appears to be a
technique of broad applicability in the physical sciences and
related engineering fields.

In order to better appreciate this, let us examine why the
parallel programming strategy presented above, particularly
in Section 3, should be as effective as it proves to be. Of

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 G. CORONGIU AND J. H. DETRICH

Table 1 Comparison of execution times for our system with different numbers of APs versus the time needed on the CRAY IS
(applications code not optimized for either system), in minutes. Measurements for up to six APs were performed with an IBM 434 I host,
except for the molecular dynamics runs; all runs with ten APs took place with an IBM 4381 host.

Job One Three Six CRAY-1s Ten Host
AP APs APs APs

Integrals (27 atoms) 71.7 24.0 12.3 10.6 7.8 434 1
SCF (27 atoms) 46.7 21.0 17.5 8.6 12.0 434 1
Integrals (42 atoms) 203.4 68.9 38.3 32.3 21.2 434 I
SCF (42 atoms) 108.5 44.9 34.1 19.6 22.0 434 1
Integrals (87 atoms) 2163.0 730.0 380.0 309.0 247.0 434 1
Monte Carlo 162.1 57.8 32.0 28.4 22.0 434 1
Molecular dynamics 87.1 38.3 23.3 20.1 - 438 I

course, the simplest and perhaps the most natural way an
application run can achieve large scale and long run times is
by repeatedly passing through a loop with an extensive
computational kernel, but this is not enough to ensure that
our strategy will be successful. It is also necessary that the
kernels on different passes through the loop be sufficiently
independent of one another to be amenable to parallel
computation in a simple way. In our molecular dynamics
and Monte Carlo codes, parallel computation centers on
interactions among the particles in a system consisting of n
particles. In general, the computation of a given interaction
term (such as a two-body interaction between a particular
pair of particles) is independent of the computation of any
other distinct interaction term (e.g., another two-body
interaction between a different pair of particles). This yields
the computationally independent kernels we use to
implement parallel execution. The same situation occurs in
our calculations of molecular electronic structure, except
that electrons replace molecules as the particles in question,
and quantum mechanics applies instead of classical
mechanics. We may conclude that the type of computational
independence we have exploited in our applications is also
characteristic of the closely related computational
simulations in solid state physics, and, more generally, in
any area of the physical sciences where simulations track the
motions of some group of discrete particles.

We can bring no such experience to the area of physical
simulations of continuous media. However, we note that
there is much activity in this area by other investigators, and
recent work indicates good prospects for successful
application of parallel techniques. In addition, we look for
parallel computations to be applied in other fields, including
econometrics, graphics, etc., where computational
techniques analogous to those in the physical sciences are
employed.

to learn more about how to use our system, we wish to
extend our work to encompass applications from many
other fields. For this reason, we are implementing a “visiting
scientists” program where scientists from universities and

In order to study such questions in more depth, and also

other research institutions will be able to investigate at our
laboratory the possibility of adapting parallelism to other
scientific problems. In a few years, we expect these studies to
accumulate a much more comprehensive understanding of
the practical implementation of parallelism than is possible
at present.

of our system (scalar, vector, and parallel), its flexibility, its
high performance, and its “user-friendliness.” We note also
its high reliability: Any one of the IBM hosts can be used to
enter our system and it is most unlikely that all ten APs will
be down at the same time. Finally, the realistic possibility of
increasing peak performance from the current 1 10 megaflops
to 550 megaflops and eventually even much higher, with a
corresponding increase in practical performance, opens the
door to computational research that was previously
unreachable. However, this optimism should be tempered by
the realization that we are only at the beginning of our
explorations, and many aspects, both in hardware and in
software, may prove to be more of an obstacle than we
expect.

We conclude by stressing the rather exceptional versatility

Acknowledgment
It is our pleasure to thank E. Clementi for his helpful
comments on this paper and for his directions; and D. Meck
and H. Khanmohammadbaigi for many discussions on
parallel programming. We also wish to thank Arthur G.
Anderson and Earl F. Wheeler for their interest in our effort
aimed at hardware and software parallelism.

References and note
(a) Proceedings, International Conference on Parallel Processing,
R. H. Kuhn and D. A. Padue, Eds., Bellaire, MI, August 25-28,
198 I . (b) R. W. Hockney, in Parallel Computers: Architecture,
Programming and Algorithms, R. W. Hockney and C. R.
Jesshope, Eds., Adam Hilger, Ltd., Bristol, UK, 198 I .
(c) Parallel Processing Systems, J. Evans, Ed., Cambridge
University Press, New York, 1982. (d) Y. Wallach, “Alternating
Sequential/Parallel Processing,” Lecture Notes in Computer
Science 124, Springer-Verlag New York, 1982.
K. R. Wilson, in Computer Networking and Chemistry, P.
Lykos, Ed., ACS Symposium Series 19, American Chemical
Society, 1975.

(OL. 29 NO. 4 JULY 1985 G. (

431

ZORONGIU AND J. n. DETRICH IBM J. RES. DEVELOP. \

3. E. Clementi, G. Corongiu, J. Detrich, S. Chin, and L. Domingo,
“Parallelism in Quantum Chemistry: Hydrogen Bond Study in
DNA Base Pairs as an Example,” Int. J. Quant. Chem.
(Quantum Chemistry Symposium) 18,601 (1984).

4. J. H. Detrich, G. Corongiu, and E. Clementi, “Monte Carlo
Liquid Water Simulations with Four-Body Interactions
Included,” Int. J. Quant. Chem. (Quantum Chemistry
Symposium) 18, 701 (1984).

5. H. L. Nguyen, H. Khanmohammadbaigi, and E. Clementi, J.
Comput. Chem. (in press).

6. Virtual MachinelSystem Product System Programmer’s Guide,
Third Edition, Order No. SC19-6203-2, available through IBM
branch offices.

7. FPS-164 Operating System Manual, Vols. 1-3, Publication No.
860-749 I-OOOB, Floating Point Systems, Inc., Beaverton, OR,
January 1983.

8. D. L. Meck, “Parallelism in Executing FORTRAN Programs on
the 308X: System Considerations and Application Examples,”
Technical Report POK-38, IBM Information Systems and
Technology Group, Poughkeepsie, N Y , April 2, 1984. For
another set of FORTRAN-callable communications subroutines
to support parallel execution on the IBM 308X under MVS, see
IBM Program Offering 5798-DNL, developed by P. R. Martin;
the Program Description Operations Manual for this program
offering is Order No. SB21-3124 (release date May 4, 1984).

9. J. H. Detrich, G. Corongiu, and E. Clementi, “Monte Carlo
Liquid Water Simulation with Four-Body Interactions
Included,” Chem. Phys. Lett. 112, 426 (1984).

Khanmohammadbaigi, S. Chin, L. Domingo, A. Laaksonen,
and H. L. Nguyen, “Parallelism in Computational Chemistry:
Applications in Quantum and Statistical Mechanics,” in
Structure and Motion: Membranes. Nucleic Acids and Proteins,
E. Clementi, G. Corongiu, M. H. Sarma, and R. H. Sarma, Eds.,
Adenine Press, Guilderland, N Y , 1984.

10. E. Clementi, G. Corongiu, J. H. Detrich, H.

Received September 7, 1984; revised October 31, 1984

432

G. CORONGIU AND J. H. DETRICH

Giorgina Corongiu IBM Dala Systems Division, Neighborhood
Road, Kingston, New York 12401. Dr. Corongiu received the
doctoral degree in theoretical chemistry from the University of Pisa,
Italy, in 1976. Her doctoral dissertation was on quantum mechanical
interaction potentials for amino acids and water molecules. In 1977
she joined the G. Donegani Research Institute in Novara, Italy, and
later came to the United States, working from 1979 to 1982 at IBM
Poughkeepsie with a fellowship from the National Foundation for
Cancer Research. In 1982, she joined IBM at Poughkeepsie, moving
in 1984 to Kingston. Dr. Corongiu’s research interest is in computer
simulation of complex chemical systems, in particular biological
systems, using both quantum and statistical mechanics. Her
scientific work is documented in more than 40 publications in
international journals. Since 1983 she has contributed to the
development of the parallel research project for scientific engineering
applications. Dr. Corongiu is a member of the American Chemical
Society, the American Physical Society, the International Society of
Quantum Biology, and the New York Academy of Science.

John H. Detrich IBM Data Systems Division, Neighborhood
Road, Kingston, New York 12401. Dr. Detrich received his Ph.D.
degree in theoretical physics from the University of Chicago in 197 I ,
and has held postdoctoral fellowships at the University of Chicago
and the University of Wisconsin. He held a National Academy of
Sciences-National Research Council Senior Resident Research
Associateship at the NASA Langley Laboratory in Hampton,
Virginia, from 1981 to 1983. Dr. Detrich joined IBM in 1983. His
current interests include development of the LCAP parallel
processing configuration and computer simulations of biological
systems using quantum mechanics and statistical mechanics.

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

