
422 

Large-scale 
scient if ic 
application 

by G. Corongiu 
J. H. Detrich 

programs In 
chemistry  and 
physics on an 
experimental 
parallel  computer 
system 
We present  and  discuss  an  experimental 
distributed system  consisting  of two IBM 4341s, 
an IBM 4381, and  ten FPS-164 attached 
processors,  configured to allow  parallel 
execution  of  a  single  large-scale  calculation  on 
multiple  processors. A number  of  our  application 
programs  have  been  converted to run  on this 
system,  and  the  strategy  for this conversion is 
outlined in sufficient detail to facilitate the 
development  of tests using  other scientific and 
engineering  computer  application  programs. Our 
tests,  though limited to certain  biochemical  and 
physicochemical  problems,  demonstrate  the 
versatility,  flexibility,  and  accessibility  of this 
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system,  and  we find performance  comparable to 
that  of  today’s  supercomputers,  which  suggests 
that  our  approach  can  provide  a practical 
answer to many large-scale  computer 
applications. 

1. Introduction 
Scientific and engineering computer applications are rich 
and varied, but share some common needs.  Success in these 
applications invariably  gives impetus to the development of 
more elaborate calculations, so there is constant pressure to 
expand to the limits of currently available computer 
resources and beyond.  In  response to this demand, 
somewhat specialized hardware and software  have  been 
developed to extend the range of  feasible  calculations. One 
example  is the advent of array processors,  which  emerged to 
handle signal and image  processing but have found use in 
many other applications. Another example is the 
development of  very fast,  powerful,  vector-oriented 
processors  such as the CRAY 1s or X-MP and the CDC 
CYBER 205. One result of the successful  use  of  these 
resources has been to bring into view scientific and 
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engineering calculations that are beyond the capability of 
even  these supercomputers. 

Our laboratory has always participated in this process, 
since our research interests center on problems in theoretical 
chemistry and biophysics that can only be  resolved  with the 
help of  large-scale computer calculations. Hence computer 
hardware and software are crucial resources for our research, 
and we naturally strive to upgrade and expand them as 
much as possible. This is a primary motivation for the 
experiments in parallel  systems that we report in this paper. 
Our goal  is a computer system that is 1) at least as fast and 
possibly  faster than supercomputers such as the CRAY 1s or 
CDC CYBER  205,  2)  more  flexible and versatile, 3) 
extendable to very  high capability, and 4) not too expensive. 

The idea of parallel computer structures is certainly not 
new. It has  already  been the subject of numerous research 
projects and a very  vast literature [ 11; even a system 
intended specifically for computational chemistry has been 
proposed  before  [2]. By these standards we can claim  little in 
terms of sophistication or originality. In fact, we  have 
deliberately  chosen the path of  least  resistance at many 
points in the development of this project. This pragmatic 
approach is in no way critical of more ambitious attempts. 
Rather, we have  different  priorities,  namely the quick 
migration of our large-scale  scientific applications to parallel 
execution. This “consumer orientation” is the most 
distinctive feature of our project. 

Many of the characteristics of our parallel  strategy  follow 
from these  priorities.  These characteristics are 1) parallelism 
based on few (less than 20) but very  powerful array 
processors,  with  64-bit  hardware; 2) architecture as simple as 
possible, but extendable; 3) system  software that varies as 
little as possible from that used for normal sequential 
programming; 4) initial application programming entirely in 
FORTRAN, since this is the most widely  used scientific 
application language; 5) migration of old sequential code to 
parallel code with minimal modifications. 

It should be noted that all of our current hardware and 
most of our system  software are standard products available 
“off the shelf”; this is an important factor in the rapid and 
cost-effective development of our system.  Specifically, we 
have  selected the Floating Point Systems FPS- 164 for the 
array processors. This choice  is dictated by the fact that these 
are the only  64-bit array processors currently being 
marketed. For the host computer, we use an IBM 434 1 or 
IBM 438 1. Additional description of our hardware 
configuration is provided in  Section  2. 

hardware, but rather application software. We want to 
present our system in sufficient detail to facilitate 
understanding of our experiments in conversion of 
applications to parallel execution, and to support at least 
some idea of  how other applications might be converted to 
parallel execution on our system. Thus, in Section 3 we 

As already indicated, our principal interest here  is not 

present the strategies we have  developed to modify our 
application programs for  effective  parallel execution on our 
system.  In order to more precisely understand how these 
strategies are implemented, we describe the system  in 
Section  4.  We include in this section the details of the 
communication software  packages we  use, since our system 
is one of the few  places where a FORTRAN-accessible 
implementation of parallel  processing  is currently being 
tested, and we expect our experiments to yield  useful  insights 
concerning how such software should look in order to best 
serve the needs of the user. 

Section 5 studies performance of our system  in  practical 
applications. Finally, in Section  6, we wrap up  our current 
experience  with our system and discuss further 
developments, particularly those which  have to  do with our 
system’s  serving as a testing ground for parallel execution of 
application programs. 

2. Present  configuration 
The computer configuration presently  working in our 
laboratory consists of ten FPS- 164 attached processors  (AP); 
seven are attached to an IBM 438 1 host and  the remaining 
three are attached to an IBM 29 14 T-bar connection so that 
they  can  be  switched  between an IBM 4341  host and the 
IBM 4381  host. The FPS-164  processors are attached to the 
IBM hosts through IBM three-megabyte-per-second channels 
available on these  hosts. A second IBM  434  1, connected to a 
graphics station, completes the host  processor  pool. The 
three IBM systems are interconnected, channel to channel, 
via an IBM 3880 connector. A schematic diagram of the 
configuration appears in Figure 1. 

One attractive feature of this system  is the possibility of 
switching one, two, or three FPS- 164s  from the IBM  434 1 
host to the IBM 438 1 host. This gives us the flexibility  of a 
“production system”  with  seven  APs and an “experimental” 
system  with three APs. The latter system  is  used during 
“prime time” for  program development, experimentation 
with new hardware,  debugging  of  system and/or application 
programs,  etc. During off-prime time and weekends,  we 
typically  work  with  two  systems  of four APs each and a third 
system  with  two  APs.  Clearly, depending upon user demand, 
we can use  all ten APs for a single job, or, at the opposite 
extreme, each one of the ten APs independently on ten 
different jobs. 

Each  AP contains an independent CPU and its own 
memory and disk  drives. The CPU on the FPS- 164 runs at 
5.5  million instructions per second, and several concurrent 
operations can take place on each instruction cycle.  In 
particular, one 64-bit  floating-point addition and one 64-bit 
floating-point multiplication can be initiated each  cycle, so 
that peak performance is about 11 million  floating-point 
operations per  second ( I  1 megaflops).  Of  course, one must 
make the distinction between  peak performance 
(a characteristic of the machine hardware) and realized 423 
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Schematic diagram of the  current loosely coupled array of processors. Numbers  refer  to  IBM devices; i .e . ,  IBM 2914 T-bar switch, IBM 4341 and 
4381 computers, IBM 3830 and 3880 disk storage  control units, IBM 3350 and 3380  disks, IBM 3088 multisystem channel adapter unit, IBM 
3203 printer,  IBM 3803 tape  control unit, IBM 3420 and  3411  tape drives, and  IBM 3705 telecommunication network  control unit. 

performance (depending on the application and the code 
which implements it as well as the hardware).  Nevertheless, 
the FPS- 164 tends to be quite effective  for the specialized 
“number crunching” that constitutes a large part of scientific 
and engineering computer applications. 

Communication between the host computer and the 
attached FPS- 164  is handled by hardware and software 
provided and supported by Floating Point Systems as a 
standard feature. An optimizing FORTRAN compiler and 
supporting utilities (including disk 110) are also standard 
products for the FPS- 164. The compiler is capable of 
reasonably  effective  use  of the special architecture of the 
FPS- 164, so that it  is practical to run programs written 
entirely in FORTRAN. An extensive  library of subroutines 
is  also  provided, and these can be combined with 
FORTRAN code  for additional gains in execution time. 

random access memory; two  have  more:  eight and ten 
megabytes,  respectively. The memories on the IBM  434 1 
Model  M2 and Model  P2 are eight and sixteen  megabytes, 
respectively. The IBM  438 1 has sixteen  megabytes. Thus, 
taken as a whole, there is 90 megabytes of real  storage 
available in our system. 

Each  AP  also has four 135-megabyte  disks,  for a total of 
5.4  gigabytes. In addition there are banks of  IBM 3350 and 
IBM 3380  disks  accessible to the host computers totaling 

Each of our FPS- 164s has at least four megabytes of real 

424 

G. CORONGIU AND J.  H. DETRICH 

about 25  gigabytes  of  disk  storage. Tape drives, printers, and 
communications network interface complete our system. 

Very recently, Floating Point Systems announced the FPS- 
164/MAX. This configuration consists of special-purpose 
boards that can be added to the FPS- 164 to augment 
performance, particularly on matrix operations. Each  MAX 
board contains two additional adders and two additional 
multipliers, and so adds 22  megaflops to peak attainable 
performance. Up  to 15 boards can be  placed in a single FPS- 
164, converting it to a machine with a peak performance of 
34 I megaflops.  Special  software  is required to utilize the 
MAX boards, and one must carefully examine the extent to 
which a particular scientific or engineering calculation can 
be  organized to make effective  use  of this hardware and 
software. 

Acquisition of two  FPS-  164/MAX boards for  each of our 
ten APs,  which  is under consideration, would  upgrade our 
system  from its current 1 1 0-megaflop  peak performance to 
550  megaflops. Ultimately our system could grow to 3410 
megaflops  peak capability, but (recalling the distinction 
between  peak performance and realized performance) it is 
clearly desirable first to explore the gains that one can 
realistically obtain with  only a few 164/MAX boards per  AP, 
so we shall  settle at 550 megaflops. 

It should be noted that such  upgrades  have no effect on 
the parallel programming strategy outlined in the next 
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section. The strategy  is equally effective  for  APs  of any 
architecture or computational speed. In principle, we could 
substitute ten vector-oriented supercomputers for our ten 
FPS- 164s, but since a supercomputer costs  several million 
dollars compared with a few hundred thousand for an FPS- 
164, the cost of this option would be unrealistically  high. 

In our current configuration, each AP can communicate 
only with its host computer; there is no possibility  of direct 
communication between  two  different APs. Furthermore, 
communication between  host and AP is limited by channel 
speeds. These communication characteristics are  important, 
and motivate us to describe our system as a loosely coupled 
array of  processors  (LCAP).  We can, of course, accomplish 
AP-to-AP communication indirectly by having an AP 
communicate with the host,  which then communicates with 
the second AP.  However, communication overhead is a 
serious consideration in some applications, so the lack  of 
direct AP-to-AP communication is a genuine limitation. Our 
system  would acquire substantial additional flexibility and 
power if  we could move toward a better-coupled 
configuration in which the APs could communicate with one 
another directly through a common fast bus and/or shared 
memory. We  will report more on these aspects of our system 
as soon as data become available. 

3. Programming  strategy 
Several aspects of our approach to parallel programming 
have already been mentioned in the introduction. Over a 
period  of time our group has developed a substantial 
collection of  scientific application codes, almost entirely 
written in FORTRAN, and one of the motivations for 
developing our parallel system  was to run these applications 
for cases that would be too slow and unwieldy on a normal 
sequential system. Thus we have adopted a simple, 
pragmatic approach that permits migration of  existing 
sequential code to our parallel  system  with minimal 
modification and implements this migration in FORTRAN. 
Of course, there are some system utilities required (which are 
accessible through FORTRAN subroutine calls), but we 
postpone discussion  of these to the next section. Here we are 
concerned with the development of our general 
programming strategy. 

We  begin with the observation that large-scale,  typically 
CPU-bound calculations almost invariably involve loops that 
are traversed many times. Most  of the CPU time is 
consumed in such loops, so that if  we adapt the tasks 
contained in these loops to parallel execution, we find that 
we actually have most of the code (as measured by execution 
time) running in parallel. 

This is  easy enough to accomplish. Let us suppose that 
our sequential FORTRAN code has a DO-loop of the form 

DO 500 I=l,N 
. . . . . .  
. . . . . . . , 

with some computational kernel inside the loop (up  to 
statement 500). Then, if  we suppose that NCPU is the 
number of  APs available for parallel execution, we can keep 
the same computational kernel and modify the loop to read 

DO 500 I=ICPU,N,NCPU 

This portion of the program, with the computational kernel 
and modified loop, is dispatched to each of the NCPU APs. 
Each  AP must, of course, have a different  value  for the index 
ICPU, with 1 5 ICPU 5 NCPU. 

This rather simple scheme has  been applied to all the 
application programs we have migrated to parallel execution; 
it was effective in every  case. Thus, after migration, typical 
program flow consists of an initial sequential part handling 
initial input, setup, etc.,  followed by a parallel part running 
simultaneously on several APs.  At the end of this portion, 
the results from the parallel execution must be gathered up 
and processed by another sequential portion. This may  be a 
prelude to another period  of  parallel execution, or, 
ultimately, to development of  final  results and  the end of the 
run. 

There is an obvious limit on  this scheme: The 
computational kernel for a particular value  of I in the loop 
example above must not depend on results computed in 
earlier passes through the loop with a different  value  of I. 
Our experience so far indicates that this is not a severe 
restriction; indeed, we find that our code tends to fall 
naturally into such a form. There are some exceptions, of 
course, and we have simply left the ones we have 
encountered in the sequential part of the code. This has had 
only a mild  effect on  the overall performance of the resulting 
program for parallel execution. However, we hope eventually 
to develop more sophisticated strategies to deal with  these 
cases. 

We also point out that this scheme is entirely unaffected 
by the particular implementation of the computational 
kernel contained in the loop. One can therefore immediately 
transfer any improvement in the sequential version of the 
code to the corresponding parallel  version. Nor does 
migration to a machine with a different architecture affect 
the scheme, since again only the implementation of the 
kernel changes. 

Programming according to this scheme is presently done 
“by hand”; there is no software to help  with the bookkeeping 
involved. Eventually we would  like to have a compiler 
and/or an optimizer which could handle some of  these tasks 
and also at least partially automate  the use of the 
communication facilities  described in the next section. As a 
first step, we are considering the possibility of writing a 
simple precompiler to help with the rudiments of migrating 
codes from sequential to parallel. 425 
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The operation of loading the program and/or data in each 
AP at the beginning of a parallel portion of the run is 
overhead that does not appear in the corresponding 
sequential code; so is the operation of gathering up results 
from the APs at the end of parallel execution. To safeguard 
efficiency,  these operations should be minimized to the 
extent possible. The most obvious way to  do this is to group 
the largest  feasible portion of code together for a single 
section to be run in parallel. Thus, in the example  above, we 
dispatch the entire loop to each  AP  once, rather than 
dispatching the contents of the loop each time we  pass 
through it in the code. Moreover, the loop to which this 
treatment is applied should be the outermost one, to the 
extent possible. Sometimes further economies can be gained 
by rearranging the code to yield  fewer but larger  single  tasks 
to dispatch to the APs. 

transmitted to the APs and  the  amount of data to be 
gathered from the APs at the end of a parallel part of the 
program.  When this is done, one frequently finds  large 
intermediate arrays that are used  by the parallel part of the 
program but need  never  be  referenced in the sequential part. 
Sometimes it is  necessary to recreate such arrays each time 
the AP runs one of the parallel  tasks, but additional 
economies are available if the array can be maintained on 
the AP during the entire program run, spanning all the 
parallel  tasks.  In our molecular electronic structure code [3], 
this occurs for the two-electron  integrals,  which are parceled 
out among the disks attached to the APs and read in as 
required in parallel. For our Monte Carlo code  [4] and our 
molecular dynamics code [ 51, tabular material is set up in 
AP memory at the beginning of the run and remains without 
modification, to be  used  each time molecular interactions 
are calculated in parallel. 

One can break into two parts the total execution time T 
for an application program running in parallel, so that T = 
T, + T,, where T, is the total execution time for sequential 
parts of the code and T, is the time spent on parallel 
execution. Since there are usually  several sequential portions 
in a run, we write T, = Ziti, where the index i numbers the 
different sequential portions. Similarly, we  give T, = E f t j p ,  
where tp is the time between dispatch of the parallel  task to 
various APs and the subsequent gather. To be more specific, 
say that an AP  indexed by a takes time ifN for its part of the 
parallel execution. We then have a collection of times tjm, 
one for each  AP, and t,, is the longest of these.  Ideally, T, 
should be much smaller than T,, because no more than one 
AP  is  used during this time; the others are idle. For the same 
reason,  each of the tja should be identical to all the others, or 
nearly so; any difference means that at least one AP  is 
standing idle part of the time. 

In practice, the requirement that all tja be identical cannot 
be  achieved  exactly.  In our loop example, we  need N exactly 

One should also  carefully control the amount of data to be 

426 divisible by NCPU, and this is not a normal occurrence in 

general application runs where N (and possibly  also NCPU) 
varies  from  case to case.  Moreover,  having N exactly 
divisible by NCPU does not guarantee an ideal  case,  because 
the computational kernel may  vary in run time for different 
values of I (an example, which actually occurs in our SCF 
code,  would  be stepping through an array where the 
calculation is skipped  when the array element is  zero). 
Sometimes it is  possible to rearrange the computation in 
terms of a new loop variable  [4] to get the tja more nearly 
identical, but this strategy has its limits, since it usually 
involves  developing more elaborate loop control code, and 
executing this code takes time. 

In our loop example, the difference among the various ijN 
is essentially the execution time for one execution of the 
computational kernel. This is a measure of the granularity of 
the problem. We  see at once that the ratio of the smallest tjN 
to t,, tends to approach 1 as N increases.  Moreover, the ratio 
tj,/Ts is expected to increase as N increases. This exemplifies 
a general tendency: As calculations get  larger, the parallel 
program  becomes more efficient.  Of  course this is just the 
trend we would  like to see,  since  parallelism  is intended to 
handle cases too large  for  effective sequential execution. 

We note that we  have amved at a rough criterion by 
which  we can judge whether a particular task can be 
effectively  migrated to parallel  mode: t j p  must be 
substantially greater than the sum of the lag time associated 
with granularity and the transmission time for the task. An 
interesting effect emerges  when we consider how the 
situation changes as more APs are added. This decreases t,, 
and increases transmission time, while the granularity 
remains constant. One concludes that, for a given 
application, parallel execution becomes  less  efficient as the 
number of  APs increases. This effect is actually observed, so 
that the ability to vary the number of  APs  used in a 
particular application run is important. Our system has this 
flexibility, and all our parallel  programs incorporate it. 

4. System  considerations 
As already indicated in the introduction, we are not 
concerned with development of elaborate system  software to 
make our parallel  system  work. Instead, we use, to the extent 
possible, “off-the-shelf” software. This approach has the 
merit of reducing our programming overhead very 
substantially and permitting us to use proven software 
immediately in our applications. 

On the IBM hosts, our operating system  is the IBM 
Virtual MachinefSystem Product (VM/SP). For the APs,  we 
use the software  provided by Floating Point Systems for 
hosts running under this system. We have not found it 
necessary to modify either set of software in order to run our 
applications in parallel. 

VM/SP is a time-sharing system in which jobs run on 
virtual machines (VM) created by the system;  these  VMs 
simulate real computing systems. The standard software 
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provided by Floating Point Systems  for use on the FPS-164s 
embodies the restriction that only one AP can be attached to 
a VM.  Of course, for a task running in parallel,  more than 
one AP  is required. Our solution to this is to introduce extra 
“slave” VMs to handle the extra APs  we need. To make this 
work, one must have a way to communicate between 
different VMs; this is  provided by the Virtual Machine 
Communication Facility (VMCF), which  is a standard 
feature of VM/SP [6]. 

In  general, then, a parallel  task  consists of several 
FORTRAN programs,  each running on a separate VM in 
the host  system, and each controlling a particular AP on 
which additional FORTRAN code runs. On one of the VMs, 
the “master,” is the part of the original FORTRAN code 
intended to be run on the host, combined with  utility 
subroutines that handle communication with the slave  VMs 
and with the AP attached to the master VM. The programs 
running on the slave VMs are much shorter, since the slave 
VMs are nothing more than transfer points for 
communication between the master program and the APs 
attached to the slaves.  In  essence, the slave VM programs 
consist of code to handle communication with the master 
and utility subroutines to communicate with the AP 
attached to the slave. 

Since  each VM is attached only to a single  AP, the 
standard utilities provided by FPS [7] for communication 
between  host and AP can be  used without modification. We 
have already described in the previous section the 
development of code to run in parallel on the APs.  As  we 
saw there, the code running on the various APs (including 
the one attached to the master) is identical for each  AP. 
Accordingly, the programs running on each of the slave  VMs 
are also identical; it is up to the master program to see that 
the slaves  each  get  different data so that they control distinct 
calculations. 

It remains to describe the utilities that handle 
communication between master and slave VMs. These 
utilities are not “off-the-shelf” in the same way as the 
utilities for communication between  host and AP.  As already 
mentioned, the vehicle  for communication between  VMs  is 
provided as part of the VM/SP  system,  namely  VMCF, so 
that no real  system programming is  necessary.  However, use 
of VMCF requires calls to the system  from  assembler  code. 
It is desirable to package this code, once and for  all, in utility 
subroutines that can be  invoked  from normal FORTRAN 
code; this considerably  simplifies  program migration to 
parallel mode. Development of this set  of  utilities,  which we 
call VMFACS (Virtual Machine FORTRAN-Accessible 
Communications Subroutines), was one of the first  steps in 
implementing our parallel  system, and it has required 
virtually no subsequent modification. It is therefore of 
interest to describe  VMFACS in detail, since  it  is one of the 
very  few  packages to make  parallel  processing  accessible to 
the FORTRAN programmer, and our experiences  with  it 

can be expected to be helpful in discovering how such 
packages  can  best  meet the needs of the FORTRAN 
programmer. 

One of these  VMFACS  utilities  packages,  SLVTEL,  is 
used  by the slave  VMs. This package contains four different 
FORTRAN-callable subroutines. The first  of  these  is 
invoked by a call of the form 

CALL  SLVTEL (MASTER,RCVADD,RCVLEN, 
ERRNUM,ERRBRN) 

Here  MASTER is an eight-byte character constant giving 
the userid of the slave VM’s master, RCVADD is the 
beginning address of the data the slave  is  expecting to receive 
from the master, and RCVLEN  is a four-byte  integer  giving 
the length (in bytes) of the data. ERRBRN indicates the 
FORTRAN statement which  is the error return for the 
subroutine, and ERRNUM is a four-byte integer  where a 
description of any error is  placed by the SLVTEL  package. 
This call connects the slave  VM to VMCF so that the master 
can communicate with it, and then causes the VM to wait 
until the master sends the data the slave  is  expecting to 
receive  in  RCVADD.  When the data have  been  successfully 
placed  in RCVADD, control returns to the calling program. 
One effect  of this call  is to set ERRNUM aside  for error 
recording by the SLVTEL  package, so the user should be 
careful not to alter ERRNUM while the package is in use. 
Of the possible error conditions, the most  likely  is an 
attempt by the master to send data having a length  different 
from the length indicated by RCVLEN. 

VM, it performs some task  using the data and eventually 
reports the result to the master. This is accomplished by a 
call of the form 

CALL SNDRCV (SNDADD,SNDLEN,RCVADD, 
RCVLEN,ERRBRN) , 

where SNDADD is the beginning  address of the data to be 
sent to the master and SNDLEN is the integer  length  of the 
data (in  bytes). As  in the call to SLVTEL,  RCVADD  is the 
beginning address of the data expected  from the master, 
RCVLEN is the length of the data, and ERRBRN points to 
the error return. The address of ERRNUM is retained from 
the SLVTEL  call, and this integer again contains a 
description of any error encountered. After the data in 
SNDADD have  been  sent to the master, SNDRCV waits for 
data to be sent from the master to the slave for the slave’s 
next  task.  When the data have  been  successfully  placed in 
RCVADD, control returns to the calling  program. 

The last  task performed by the slave  is  simply the orderly 
exit from the slave  program. This does not involve  sending 
anything to the master but should include disengagement 
from  VMCF. The call to perform this disengagement  is of 
the form 

After the slave VM  receives its initial data from the master 

CALL SLVOUT (ERRBRN) , 
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where ERRBRN again points to the error return. It should 
be noted that  an error return occurs not only for errors 
encountered in executing SLVOUT, but also  for errors 
recorded for previous operations using the SLVTEL  package. 

VMCF is also used  by the utilities provided by FPS to 
attach an AP to or detach it from a VM, and this alters the 
VMCF setup used  by the SLVTEL package. To deal with 
this contingency, the SLVTEL  package contains  one more 
call,  of the form 

CALL RSLVTL (ERRBRN) ; 

here ERRBRN once again points to the error return. This 
call  merely restores the VMCF setup which the call to 
SLVTEL initiated. 

Use  of the SLVTEL package requires information about 
only one other VM, namely the master. On the  other  hand, 
the VMFACS  package  for the master VM,  MASTEL, must 
maintain information on all the slave  VMs attached to the 
job; hence  it is necessarily somewhat more complex. This 
package  is initiated by a call  of the form 

CALL MASTEL (N,SLVUID,ADDR,IND,ERRNUM, 
ERRBRN) 

Here N is a four-byte integer giving the number of slaves 
attached to the  run, and SLVUID is an array of eight-byte 
character constants set up so that SLVUID(1)  is the userid of 
the Zth slave  VM. ADDR and  IND are, respectively,  eight- 
byte and four-byte work arrays set  aside for the use  of the 
MASTEL  package; both arrays must have at least N 
elements. As in the SLVTEL call, ERRNUM is the integer 
describing any error condition, and ERRBRN gives the 
return point when an error occurs.  It is important to point 
out  that  the arrays SLVUID, ADDR, and  IND are used to 
help the MASTEL  package  keep track of its transactions, so 
these arrays must not be altered while the package is active. 
The same comment applies to ERRNUM, since a 
description of errors is kept there by the entire MASTEL 
package. 

slaves  has the form 

CALL SNDRCV (I,SNDADD,SNDLEN,RCVADD, 
RCVLEN,ERRBRN) , 
where I indicates the Ith slave VM and the remaining 
arguments are used the same as in the SNDRCV call  for the 
SLVTEL package.  However, the SNDRCV call  in the 
MASTEL  package causes a behavior considerably different 
from that caused by the SNDRCV call in the SLVTEL 
package. In the MASTEL  package, CALL SNDRCV does 
not cause a wait to occur until data amve in the array 
beginning with RECADD; in fact, there is not even a wait 
for the send transaction to be completed, so one can begin 
sending to another slave  immediately.’ Consequently, one 
must check to see that the send transaction has actually been 
completed before disturbing the SNDADD array. 

The call  used to send data from the master to one of the 

To check the status of transactions with the slaves, there is 
a call of the form 

CALL MWAITO (INDFLG,ISLV,ERRBRN) , 

where INDFLG is a four-byte integer array controlling the 
inquiry to be made, ISLV is the four-byte integer returned 
by the call, and ERRBRN gives the error return point. 
INDFLG should contain at least as many elements as there 
are slaves. The integers in the INDFLG array must 
correspond to the following  requests: 

-1 
0 

1 
2 

skip testing for that slave; 
test for completed transaction; that is,  slave  ready for 
next SNDRCV (and  the response from any previous 
SNDRCV is  available in the appropriate RCVADD 
array); 
test  for  send to slave  which is not complete; 
test  for completed send transaction to slave, but with no 
reply from slave available in RCVADD array. 

MWAITO tests the status of the slaves as requested and 
returns  the index of the first  slave  it finds with the requested 
status as the value  ISLV.  If no slave has the  status requested, 
a wait occurs until a slave  with the requested status can be 
found, whereupon the index of that slave is again returned in 
ISLV. Errors causing an error return originate from some 
SNDRCV transaction rather than from the possible  wait. 
Some care must be  exercised in setting up the INDFLG 
array for a MWAITO call, since an indefinite wait occurs if 
none of the specified conditions ever becomes true. It is safe 
to have at least one element of INDFLG set to 0, and this 
normally constitutes the most useful test. The test  values 1 
and 2 are not so safe, since the MASTEL  package proceeds 
with the transaction while the tests are in progress, and this 
process may happen too fast  for  useful tests. If one can be 
confident that the task  being performed by the slave will take 
enough time so that  it will not suddenly finish and report 
back, the test value 2 can be  useful to wait  for the SNDADD 
array to become available  for other use. The test  value 1 is 
included for completeness but is not normally useful, 
because the send part of the transaction occurs very quickly. 

checked by another call, which  has the form 

CALL CLRTEL  (ERRBRN) , 

where, as usual, ERRBRN indicates the error return. This 
call  waits  for pending send or receive transactions to be 
completed, which corresponds to testing every  slave to see 
that it does not have test value 1 (either test value 0 or test 
value 2 are acceptable). This call is the most convenient way 
to ensure that  the last data to be sent to the slaves have 
actually been sent before the master disengages from VMCF 
prior to the  end of the run for the master program. One 
should always do this, because premature disengagement 

The status of transactions with the slaves can also be 
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from VMCF by the master prevents the slaves from 
receiving their data, causing an error to emerge from the 
SLVTEL package. 

the use  of the MASTEL  package by a call  of the form 

CALL MASOUT (ERRBRN) , 

where ERRBRN again points to the error return. 
It should be noted that  the MASTEL  package does not 

actually start the slave programs running. This is done (on 
the appropriate VM) by the person submitting the run at the 
same time the master program is started. In reality, all the 
slave programs should be started slightly  before the master 
program so that they are ready  when the master program 
attempts to send to them. 

The VMFACS utilities were  designed to provide the 
required functions in the simplest fashion that would 
provide sufficient  flexibility. The result, especially  for the 
MASTEL  package, is to provide only those functions that 
cannot readily be provided by FORTRAN coding. For 
example, several variants of the testfwait scheme provided 
by MWAITO might be  useful, but the FORTRAN 
programmer is obliged to develop them on his own.  Also, 
there is no  attempt to facilitate  recovery from possible errors 
in  using  these  packages. This is deliberate, in order to allow, 
and even encourage, the FORTRAN programmer to try 
different  strategies in migrating code to parallel execution. 

The VMFACS utilities packages are experimental, as is 
our entire parallel  system. They may be expected to change 
as our system undergoes further development. One 
possibility  is to replace or supplement the use  of VMCF with 
the Inter-User Communications Vehicle (IUCV), another 
feature of VM/SP [6]. Another possibility under active 
consideration is an MVS alternative to our VMfSP system. 
Ultimately, one might expect to eliminate the need  for  these 
communication packages by replacing the standard FPS 
utilities with utilities that would  allow many APs to be 
attached and controlled by a single VM. 

us rather well. Our tests indicate that VMCF 
communications are no great burden on  the system:  They 
amount  to a small fraction (about  one  tenth) of the time 
required for channel transmission between  host and AP. 
Clearly, substantial improvement in communication requires 
improvement in our hardware, such as the common fast bus 
or shared memory mentioned in Section 2. 

An interesting sidelight  of these developments emerges 
when the code running  on  the APs  is incorporated into  the 
slave or master programs, as appropriate, to yield an 
application running entirely on  the host but spread across 
several  VMs. This strategy is sometimes useful in developing 
and debugging code to be run in parallel. For production 
runs  on a single-CPU machine this approach is pointless, 
since it simply introduces additional system overhead, but 

Finally, the master disengages from VMCF and terminates 

On the other hand, these communications packages  serve 
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this is no longer the case  for runs  on a multiple-CPU 
machine such as the IBM 308 1. In this case,  different VMs 
can run on different CPUs, so the run becomes a parallel 
one. Our tests of some of our parallel applications on  an 
IBM 308 1 under VMfSP demonstrate that  the expected 
parallel performance is actually achieved. Our parallel 
applications have also been run under MVS [8] on  an IBM 
3084, and again the expected  parallel performance was  fully 
achieved. In this case, the subroutines described above were 
adapted to use  MVS  system  facilities instead of  VMCF. 
Since the adaptation leaves the communication strategy 
unaltered, the MVS implementation can execute the same 
FORTRAN code used  for the trials under VMfSP. 

5. Practical  tests 
Our parallel  system has developed with  large-scale  scientific 
applications programs waiting to migrate to the system as 
soon as possible. In fact, an  important motive in 
development of the system  was to use it to extend the range 
of our research in theoretical chemistry and biophysics. 
Applications embodying a fairly broad range  of 
computational demands  are now running on the system, and 
this provides a basis  for  very  realistic tests of its 
performance. 

We note that  the first  test  of our system  was in fact the 
attempt to migrate existing applications to the system. As 
already indicated, our system  developed  with the idea that 
migration of  old sequential code to parallel code should not 
require extensive code modification, and we have in fact 
followed this path. It is important to note that much of our 
applications code was developed within our laboratory, so 
we know the code well enough to implement effectively the 
strategies outlined in Section 3. Provided this requirement is 
satisfied, we have found that migration of  good functional 
sequential code to  our parallel  system  is not much more 
difficult than migration of such code from one sequential 
computer system to another sequential computer system 
with a different architecture. We can conclude that our 
system  is quite accessible,  with  good “user-friendliness.” 

We consider here four applications currently running on 
our system. Two of them, namely the integrals program and 
the SCF program, are parts of our quantum molecular 
program package. In addition, we have Monte Carlo codes 
for simulation of statistical mechanics of liquids and 
solutions, and molecular dynamics codes  which provide 
time-dependent simulations of liquids and solutions. Each of 
these applications places different demands on our system, 
and it  is  useful to describe these demands in more detail. 

The integrals program repeatedly evaluates algebraic 
expressions with various sets of parameters. Evaluation of 
any one integral is fast, but any complete run includes huge 
numbers of these integrals. The computed integrals are 
stored on disk  files  which can be larger than a gigabyte in 
size. Computation of any integral is independent of any 
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other integral,  which  makes  it  easy to run the integrals 
program in parallel; one simply decides how the set of 
integrals  is to be  divided among the available  APs. Once the 
run is  set up, there is  no communication between the tasks 
running on the different  APs, and even  disk 1/0 takes place 
entirely on the AP (parallel I/O). The time a particular task 
runs without interruption on the AP is the elapsed time for 
the entire run (a unique feature of this application), and this 
is typically on the order of hours. The only  obstacle to ideal 
parallelism  is that we  have not found a way to divide the set 
of integrals in the run that can guarantee perfectly  even 
distribution among the APs. 

The SCF program iteratively improves on an initial guess 
for molecular electronic structure until convergence  is 
achieved.  Each iteration can be  divided into several  steps, of 
which by far the most time-consuming is combining results 
from the last iteration with the integrals file generated by the 
integrals  program to develop the current iteration. This step 
is the only one running in parallel at present. It involves 
heavy  disk 1/0 (which  again takes place in parallel) and also 
very substantial CPU time. The  time for this step running in 
parallel is typically a fraction of an hour and requires 
transmission of several hundred kilobytes of data between 
host and AP. A more detailed description of both the 
integrals  program and the SCF program can be found in a 
previous report [ 31. 

Our Metropolis-Monte  Carlo  programs deal  with liquids 
or solutions one molecule at a time, and the main task  is 
evaluation of the change in the potential energy  of the bulk 
each time a molecule  is  moved. It is this task that runs in 
parallel. All other tasks are so fast that they cannot benefit 
from parallel execution. There are several  versions of our 
Monte Carlo code, depending on how elaborate (and hence 
realistic) an energy  expression  is  being  used. Thus, the time a 
task runs in an AP without interruption varies  from a 
fraction of a second up to several  seconds. Data transmission 
between  host and AP  is on the order of a hundred bytes  per 
task. For more detail concerning our Monte Carlo programs, 
the reader  is  referred to our previous report [4]. 

Our molecular dynamics programs simulate the kinetic 
motion of molecules in bulk liquid OJ solution over a period 
of time divided into many time steps,  with  each time step 
involving the evaluation of many molecular energies and 
forces. This is the bulk of the computation, although we also 
compute the resultant molecular motion in parallel  for  each 
time step.  Again, there are several  versions of our molecular 
dynamics code, depending on the energy  expression  being 
used. The typical time for a task run in an AP without 
interruption is a fraction of a minute, and this involves data 
transmission between  host and AP of as much as a few 
megabytes.  We  again  refer the reader  elsewhere [SI for 
additional details of these  programs. 

We  have timed specific application runs for all four of 
these programs running sequentially (one AP), and running 

in  parallel on three APs,  six  APs, and ten APs. One 
objective, of course,  is to see  how  successful  we are in 
exploiting our parallel  system. We  would also  like to see  how 
close  we come to supercomputer performance, and so we 
have run these applications on a CRAY 1 S as well. The 
application code  for the CRAY was developed under 
constraints analogous to the constraints for our parallel 
application codes, that is, the minimum modifications 
required to run properly under that system.  Efforts to 
modify the code to better exploit the vector architecture of 
the CRAY  would certainly have  resulted in faster timings for 
that machine, but, conversely, we could gain on our parallel 
system  by adapting our code to the architecture of the FPS- 
164. As they stand, we  believe our results are useful,  even 
though they cannot be  regarded as anything like a definitive 
comparison between the two  systems. 

Our timings can be found in Table 1. We  find that for the 
integral, Monte Carlo, and molecular dynamics programs, 
the execution time on our system  with  six  APs almost equals 
that for the CRAY 1 S. For the SCF program, results are not 
as good. We can attribute this to the sequential part of the 
SCF  code,  which  grows in significance as more APs are used 
for the parallel part. We  have already started improvement 
of the SCF code, and we expect that this will bring its 
performance into line  with the other applications. In  all 
cases,  we  see some degradation from  full  parallelism. For 
example, for the integrals run with 42 atoms we would 
expect the three-AP  result to be one third the execution time 
with one AP, 67.8 minutes. The actual execution time for 
three APs  is 68.9 minutes, so we  have a little over a minute 
of “overhead time” in this case. Additional overhead  shows 
up as one progresses from three to six  APs or from six to ten 
APs. The causes of this overhead, and the strategies that can 
be  used to minimize it, have  already  been  discussed in 
Section 3. In addition, we are investigating  hardware 
modifications which should reduce  system and 
communications overhead. 

6. Discussion 
Although our experimental parallel  system has been in 
existence  for  only a rather short time, we  believe it has 
already  established  itself as a pragmatic answer to many 
computer-intensive problems. The scientific applications that 
have so far migrated to our system  have  already opened up 
new  vistas in our research in theoretical chemistry and 
biophysics [3-5, 9, 101. There is no reason not to expect 
similar benefits in other research  areas. On the contrary, the 
variety of our applications delineates the flexibility and 
versatility  of our system, and parallelism appears to be a 
technique of broad applicability in the physical  sciences and 
related  engineering  fields. 

In order to better appreciate this,  let us examine why the 
parallel programming strategy  presented above, particularly 
in Section 3, should be as effective as it  proves to be.  Of 
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Table 1 Comparison of execution times for our system with  different  numbers of APs  versus  the time needed on the CRAY IS 
(applications code not optimized for  either system), in minutes. Measurements for up to six  APs  were  performed  with  an IBM 434 I host, 
except for  the molecular dynamics runs;  all  runs  with ten APs  took  place  with  an IBM 4381 host. 

Job One Three Six  CRAY-1s Ten Host 
AP APs APs APs 

Integrals (27 atoms) 71.7 24.0 12.3 10.6 7.8  434 1 
SCF (27 atoms) 46.7 21.0 17.5 8.6 12.0 434 1 
Integrals (42 atoms) 203.4 68.9 38.3 32.3 21.2  434 I 
SCF (42 atoms) 108.5 44.9 34.1 19.6 22.0  434 1 
Integrals (87 atoms) 2163.0 730.0 380.0 309.0 247.0  434 1 
Monte Carlo 162.1 57.8 32.0 28.4 22.0  434 1 
Molecular dynamics 87.1 38.3 23.3 20.1 - 438 I 

course, the simplest and perhaps the most natural way an 
application run can  achieve  large  scale and long run times is 
by repeatedly  passing through a loop with an extensive 
computational kernel, but this is not enough to ensure that 
our strategy will  be  successful. It is also  necessary that the 
kernels on different  passes through the loop be  sufficiently 
independent of one another to be amenable to parallel 
computation in a simple way. In our molecular dynamics 
and Monte Carlo codes,  parallel computation centers on 
interactions among the particles in a system  consisting of n 
particles.  In  general, the computation of a given interaction 
term (such as a two-body interaction between a particular 
pair of particles)  is independent of the computation of any 
other distinct interaction term (e.g., another two-body 
interaction between a different pair of particles). This yields 
the computationally independent kernels we use to 
implement parallel execution. The same situation occurs in 
our calculations of molecular electronic structure, except 
that electrons replace  molecules as the particles in question, 
and quantum mechanics applies instead of  classical 
mechanics. We may conclude that the type of computational 
independence we have  exploited in our applications is  also 
characteristic of the closely  related computational 
simulations in  solid state physics, and, more generally,  in 
any area of the physical  sciences  where simulations track the 
motions of some group of discrete  particles. 

We can bring no such experience to the area of  physical 
simulations of continuous media.  However, we note that 
there is much activity in this area by other investigators, and 
recent  work indicates good prospects  for  successful 
application of parallel  techniques.  In addition, we look  for 
parallel computations to be applied in other fields,  including 
econometrics, graphics,  etc.,  where computational 
techniques analogous to those in the physical  sciences are 
employed. 

to learn  more about how to use our system, we  wish to 
extend our work to encompass applications from many 
other fields. For this reason, we are implementing a “visiting 
scientists”  program  where  scientists  from  universities and 

In order to study such questions in more depth, and also 

other research institutions will  be able to investigate at our 
laboratory the possibility of adapting parallelism to other 
scientific  problems. In a few  years,  we expect  these studies to 
accumulate a much more comprehensive understanding of 
the practical implementation of parallelism than is  possible 
at present. 

of our system  (scalar,  vector, and parallel), its flexibility, its 
high performance, and its “user-friendliness.” We note also 
its high reliability: Any one of the IBM hosts can be  used to 
enter our system and it  is  most  unlikely that all ten APs  will 
be  down at the same time. Finally, the realistic  possibility of 
increasing  peak performance from the current 1 10 megaflops 
to 550 megaflops and eventually  even much higher,  with a 
corresponding increase in practical performance, opens the 
door to computational research that was previously 
unreachable.  However, this optimism should be tempered by 
the realization that we are only at the beginning of our 
explorations, and many  aspects, both in hardware and in 
software,  may  prove to be more of an obstacle than we 
expect. 

We conclude by stressing the rather exceptional versatility 
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