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This paper describes a prototype knowledge
base for manufacturing planning, which we have
built using a knowledge system shell called
Syllog. We describe a Tester Capacity Planning
and Yield Analysis task, knowledge needed for
a part of the task, and the use of the knowledge
in the Syllog system. We report that the
sometimes difficult process of knowledge
acquisition turned out, in this case, to be
straightforward. Knowledge acquisition and
knowledge use are done in the same language
in Syllog.

1. Introduction

This paper is about building a manufacturing knowledge
base and using the knowledge in a system shell called Syllog
[1-3]. For present purposes, we can think of a knowledge
base as a combination of a relational database and an expert
system, the combination being achieved by some form of
logic programming [4], possibly with access to a
conventional database [5]. In a relational database [6], facts
are stored in tables (so far as the user is concerned), and
compound facts can be retrieved from more than one table
by noting that the tables have common entries. An expert
system, on the other hand, is mainly concerned with
knowledge about how to use facts. It provides expert-level
solutions to important problems; it is flexible in integrating
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new knowledge incrementally into its existing store of
knowledge; it can show its knowledge in a comprehensible
form; it answers questions by using its knowledge; and it
provides explanations of its answers. An expert system is
often heuristic, in the sense that it can reason with
judgmental knowledge as well as with formal knowledge of
established theories.

Our manufacturing task concerns the testing of electronic
items in a production line before they are plugged into larger
assemblies. We wish to plan the numbers of various types of
testing machines that are needed to meet a production
target. Accurate estimates of the numbers of machines are
important, since too little capacity can cause production
delays, while too much is wasteful. The numbers of
machines needed, the times when they should be available,
and their locations depend in a complex way on the bill of
materials for the items to be manufactured, on previous
experience of the yields of good items from testing, on
previous experience of the rates at which items can be tested,
on the space available, and on several other considerations.

The information needed for planning consists of facts, and
of equations and rules for using the facts. The facts are held
in some form of database, and, increasingly, are collected
automatically by manufacturing instrumentation. An
equation or rule typically reads as a piece of common-sense
knowledge about the planning task. However, the ways in
which the facts and rules combine to give answers are
complicated, and our knowledge base allows us to keep a
clear view of the process. ‘

One might consider writing conventional database
application programs for our task. However, as rules change,
or as new rules are added, such application programs tend to
get out of step with reality and to become hard to maintain.
In our tester capacity planning task, timely expert advice is
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needed. Since the users are not programmers, the expertise is
best captured and maintained without programming. In
addition, while the facts and rules may be correct, the
answers that they produce may sometimes not be obvious.
Since responsibility for smooth and timely testing lies with
the planning team, it is useful to have explanations of the
answers provided by a planning tool. If an answer provided
by such a planning tool is positive, an explanation provides a
means of checking the correctness of the rules that produced
the answer. If an answer provided by a planning tool is
negative, an explanation can help in determining what
additional facts or rules are needed.

We write knowledge for the Syllog shell in the form of
facts and syllogisms. Facts are like tuples in a relational
table, but in Syllog a table has an English-like heading.
Syllogisms are English-like rules about how to use the facts.
From the user’s point of view, the syllogisms can be regarded
as declarative knowledge, in the sense that the order in
which a set of syllogisms is written down does not matter.
Since new facts and syllogisms can be added at will (subject
to some consistency checking by the system), new knowledge
can be added incrementally. Because the knowledge consists
of tables with English-like headings, together with syllogisms
consisting of simple English-like sentences, the system can
show its current knowledge in human-understandable form.
Syllog answers questions by reasoning logically and exactly
with the knowledge provided. However, the knowledge itself
may contain judgmental phrases (e.g., the expected yield of
...) which can combine to give a judgmental answer.
Whenever Syllog answers a specific question, either with a
“yes” or with a “no,” it can provide an explanation if
needed. The explanation is given in terms of the English-like
sentences in the knowledge base.

Although Syllog works with English-like sentences, there is
no need to build a dictionary or a grammar when new parts
of English (e.g., for law or manufacturing) are needed. One
simply types in sentences, and the system is immediately
ready to use them. In fact, the language used can equally
well be French, German, most other natural languages, or
even an artificial language. Syllog makes logically correct
inferences based on what it is told. However, it “knows”
little of the language concerned, when compared with
normal natural language systems, such as [7]. This lack of
knowledge has both advantages and disadvantages. The
advantages are that one can easily add knowledge to the
system in the language of one’s choice, and that one need
not instruct the system about the details of the language one
is using. The disadvantages are that one is limited to simple
declarative sentences, and these use special “example” words
[8]. Also, one must either consistently use the same sentence
to mean the same thing, or provide syllogisms to say that
different sentences have the same meaning. Syllog supports
this approach by prompting with the sentences that are in
the knowledge base.
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Some simple sets of syllogisms can be thought of as
English-like forms of expressions in relational algebra [6],
with some arithmetic processing allowed. However,
syllogisms can be recursive, and they sometimes need to be.
In our manufacturing knowledge base, we define a parts
explosion hierarchy, and the definition is recursive.
Recursion allows us to express concepts that cannot be
written down in the nonrecursive relational algebra [9].
Although recursive syllogisms are quite readable and have a
simple common-sense meaning (corresponding to their
models in mathematical logic), it is not entirely
straightforward to interpret them both declaratively (i.e.,
order does not matter) and efficiently. For example, it is not
enough to compile recursive syllogisms into the language
Prolog {10] and then execute them using Prolog’s built-in
inference engine, for the reasons set out in {1, 11].

Therefore, the Syllog system, which is written in Prolog,
contains its own inference engine. This engine computes
correctly with many sets of recursive syllogisms that are
outside the scope of Prolog itself. Some related ways of
computing with recursive logic statements are given a formal
treatment in [12]. Although the present paper is self-
contained, more detail about Syllog is to be found in [3].

The next section describes our manufacturing planning
task. In Section 3, we show the process of building a part of
a knowledge base for the task, in Syllog. Then we describe
how the knowledge can be used for manufacturing planning
by asking questions, by trying “what-if” questions, and by
getting explanations.

2. The tester capacity planning and yield
analysis task

In this section, we describe the task for which we have built
part of a knowledge base. The two subsections describe a
simplified version of the task and outline the actual task.
Then, in Section 3, we give a Syllog knowledge base for the
simplified task, and we show how it is used to plan the
number of test machines that are needed to meet a
production target.

o A simplified tester capacity planning task
This section describes a simplified version of a planning task
that is of importance to manufacturing test engineers.

A major step in electronics manufacturing is the testing of
individual cards before they are plugged into a larger
assembly (e.g., a controller), generally called a product, or
box. Typically, a flow of cards must be checked on a battery
of specialized test machines. Another important step is to
test the components, such as resistors and chips, that will be
placed on a card. For this step, test machines are also
needed. In each step, some of the items (cards or
components) that are tested fail.

So, if there is a production goal to manufacture, say, 1000
boxes during the third quarter of the year, we must plan to

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985




allocate enough test machines of the right kinds. This is the
tester capacity planning problem. To solve the problem, we
need three kinds of knowledge.

First, we need a bill of materials for a box, showing the
number of each type of card needed and the number of each
type of component needed for each card. Second, we need
an estimate of the percentage of each batch of items that will
pass testing. Third, we need to know the capacity of each
kind of tester on each kind of item, that is, the rates at which
items can be tested.

The bill of matenials for a box can be supplied as a table
showing, for each item, how many subitems of a given type
there are. From this, we need to find how many components
of eacn kind are in a box, using the information about how
many components are on a card and how many cards of
each kind are in a box. This is the well-known “parts
explosion™ hierarchy. In addition, we need to estimate the
larger numbers of each component and card that are actually
needed for a batch of boxes, on the basis of expected yields
of good items (cards and components) during the two levels
of testing.

The expected yield of each of the items, based on previous
testing, can be extracted from detailed reports of test batches
in earlier production runs.

Finally, in order to estimate the number of test machines
needed to meet a production goal, we need to know the rate
at which each tester can test each type of item. We usually
have an estimate of the capacity of a tester from earlier
experience, and this estimate improves with time. However,
the capacity is not fixed for a given item, but depends on
how we choose to test. For example, we may choose to test
some percentage of items with a “burn in” period, which
takes longer but gives better results. We get this knowledge
by summarizing previous test records for the same items
where available.

What we have described so far is a simplified form of the
actual task. This form is convenient for illustrating the kinds
of knowledge and reasoning that are needed. In Section 3,
we describe this simplified task knowledge as a set of
syllogisms and tables, and we show how “what if " tester
capacity estimates can be made by using the Syllog system to
apply the knowledge. We also show how the knowledge and
estimates can be checked using Syllog’s built-in explanation
mechanisms.

The actual task for which we have built part of a
knowledge base is more complicated.

o The actual tester capacity planning task

The tester capacity problem occurs throughout the life cycle
of any product. Capacities are a factor in capital planning—
planning for the quantities of test machines needed to meet
the future production schedules of some new product. Later
on in the life cycle of the product, tester capacities are a
factor in the planning of daily workload and machine
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loading. As the product nears the end of its life cycle, tester
capacities are a factor in the problem of reallocating tester
resources to new products. The test machines may be
switched from one task to another, but a given machine does
not cover all testing tasks, and switching from one task to
another takes a certain amount of setup time.

For example, suppose that a new product is under
development. The circuit card test engineers in
manufacturing begin planning for test equipment to meet
the production schedules for the cards. They know that the
new product has 20 cards which must be tested on a
particular tester that will also be used for testing other
products in production at the same time. Each of the 20
cards requires different times for various kinds of testing,
e.g., for successful testing and for test-analysis-repair and
retesting. To plan for suitable tester capacities, we must be
able to answer questions such as the following:

1. How many testers will be required for the new and
concurrent production of other products?

2. When will these quantities of testers be required?

3. How many more testers will be required, and when, just
for the new product?

Answers to these question can lead to further questions,
such as

4. When are the new testers to be acquired, considering the
time required to install and program them?

5. How much floor space and rearrangement will be
required for the new testers?

6. Is there sufficient floor space and sufficient time to
acquire the new testers to meet the production schedules?

7. Should the new testers be placed at a vendor shop, or
should some of the test workload be placed with a vendor
who already has testers?

The answers become part of a final manufacturing plan for
the new product.

3. Acquiring and using tester and yield
knowledge in Syllog
In Section 2, we described a simplified tester capacity and
yield task, and we outlined the corresponding real task. In
this section, we show how knowledge for the simplified task
of Section 2 is written down for Syllog. Syllog is then used to
answer the question “How many test machines of each type
will be needed to support the manufacture of a certain
number of boxes over a given time period?” We also show
how “what-if” questions about tester capacity are posed and
answered in Syllog.

To answer these kinds of questions, facts are needed,
together with knowledge about how to use the facts. We
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Syllog is task-independent; that is, different tasks within a
certain range can be performed just by loading different sets
of facts and rules. So we do not need to change the Syliog
system itself in order to work with facts and knowledge

about tester capacities.
We mentioned that for our simplified tester capacity and

yield analysis task, we need knowledge of three kinds. We
need to know about the parts hierarchy (bill of materials) for
the box to be manufactured, about the expected yield of
each item from testing, and about test machines and their
individual capacities.

o The parts hierarchy
First, we write the facts and syllogisms for the parts
hierarchy, using the Syllog language of facts and rules.

A group of related facts is written for Syllog in the form of
a table. The table is like a table in a relational database,
except that it is headed by a sentence in English (or French,
German, etc.), containing one or more “example elements.”
Thus, we can enter (or load) the table

eg_item has eg_number of the immediate part eg_subitem

box1 2 cardl

box1 3 card2
cardl 5 resistor]
cardl 7 chip2
cardl 6 capacitor]
card2 8 chipl
card2 5 resistor?
card2 6 capacitor2

The English sentence has an example element eg_item,
which we can think of as “an item” or “some item”; likewise
for eg__number and eg__subitem. So the whole sentence
above the line can be read as “an item has a number of the
immediate part some subitem.” The line separates the
sentence, which serves as a heading, from the body of the
table. The first row of the table can be read as the fact that
“box1 has a 2 of the immediate part card1,” and the other
rows similarly. So a row in a Syllog table corresponds to a
fact in the ordinary sense.

We write down knowledge for Syllog in the form of
syllogisms. A syllogism consists of one or more sentences, a
line, then a single sentence, as in

eg_item has eg 4 of the part eg subitem
eg_subitem has eg_6 of the part eg subsubitem
eg 4 * eg 6 = eg_24

eg_item has eg_24 of the part eg_subsubitem

As for a classical syllogism, the meaning is this: IF each of
the sentences above the line is true, THEN the sentence
below the line is true. In each sentence the exampie elements
serve as place holders. Here eg__4 stands for some number,
and it stands for the same number in two places in the
syllogism. (We could equally well have written eg__x for
eg_4, eg_y for eg_6, and eg_z for eg__24; the choice is a
matter of style.) We refer to a syllogism as a rule, for short.
We can read the above rule as “if an item has x of some
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subitem, each such subitem has y of some subsubitem, and x
times y is z, then the item has z of the subsubitems.” (We are
assuming for simplicity that each kind of item appears in
just one place in the parts hierarchy.)

We need another similar rule. If an item has a number x
of the immediate subitems of some kind, it has x subitems of
that kind. In Syllog, we write this as the rule

eg_item has eg 5 of the immediate part eg_subitem

eg_item has eg_5 of the part eg subitem

Once we have typed the table of facts and the two rules into
Syllog, the system responds with a prompt

eg_item has eg_5 of the immediate part eg subitem
eg_item has eg A4 of the part eg_subitem

consisting of the sentences it has seen so far. (There are just
two sentences in the prompt, since the other important
sentences in the knowledge can be obtained from these by
renaming the “eg__" example elements.) If we want to see
how many of each card and component are in box1, we
select the second sentence

eg_item has eg_k of the part eg_subitem

of the prompt, change eg_.item to box1, and underline the
sentence thus:

box1 has eg_4 of the part eg subitem

Syllog understands this as a request to produce a table below
the line. If we press the appropriate key, Syllog answers by
changing the screen to

box! has eg 4 of the part eg_subitem

2 cardl
3 card2
10 resistorl
14 chip2
12 capacitor]
24 chipl
15 resistor?
18 capacitor2

Thus, our question to Syllog is the sentence that we chose
from a menu of sentences and specialized by typing box1,
plus the line that indicates that we want a table to be
produced. Syllog then fills in the tabie below the line.

The system has used the table and the two rules to reason
that, among other things, box1 contains 10 of resistorl. To
get an explanation of the reasoning, we can change the
screen to

box1 has 10 of the part resistor}

The system understands this as the yes-no question “does
box1 have 10 of the part resistor1?” and answers by
changing the screen to
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box1 has 10 of the part resistor]

Yes, that's true
Because. ..

box1 has 2 of the part cardl
cardl has 5 of the part resistor!
2*5=10

box1 has 10 of the part resistort

box1 has 2 of the immediate part card!

box1 1as 2 of the part cardl

card) has 5 of the immediate part resistorl

cardl has 5 of the part resistor])

The explanation which follows “Because . . .” consists of the
instances of the rules that have been used to establish the
answer. The first rule instance gives the main conclusion,
while the last two rule instances show why the premises of
the first rule instance hold. In general, Syllog explanations
may be longer than one screen, so it is useful to see the main
reasoning first, and then to scroll to subsidiary justifications
as needed.

Now that the system can reason about the numbers of
cards and components in a box, we need to add knowledge
about the numbers actually needed, given that not all items
will pass their tests. This depends on the number of boxes we
plan to ship, the length of time we are given to manufacture
the boxes, and the expected yield of each item at each test.
We can write the knowledge in Syllog as

we plan to ship eg 100 of eq product in quarter eg q

eg_product has eg_2 of the immediate part eg card

the expected yield of eg card is eg_75 %, based on past experience
eg 100 * eg 2 = eq_200

eg_200 divided by eg_75 {normalized and rounded up) is eg_267

we shall set up testers for eg_267 of eg card in quarter eg q

we shall set up testers for eq 10 of eg_card in quarter eg q
eg_card has eg 2 of the immediate part eg_comp

eq 10 * eg 2 = eg_20

the expected yield of eg comp is eg_50 %, based on past experience
eg_20 divided by eg_50 (normalized and rounded up} is eg 40

we shall set up testers for eg 40 of eg _comp in quarter eg_q

eg y - 1 = eg yl
eg x ¥ 100 = eg_x100

eg_x100 + eg_yl = eg_x100 _plus_yl
eg_x100 pius_y! / eg_y = eg_ z

eg x divided by eg_y (normalized and rounded up) is eq_z

The first rule tells us how many cards to plan tester capacity
for, given the number of boxes we want to ship and the
expected yield of good cards from testing. The second rule
does the same for each component, making use of the
conclusion of the first rule. The third rule just does
normalized, rounded-up division. In order to use the first
two rules, we need know the expected yield of each item
during testing, based on past experience. For the moment,
we shall assume that this is given as
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the expected yield of eg_item is eg_y %, based on past experience

cardl 88
card2 95
resistor1 90
chip2 85
capacitor! 90
chipl 93

resistor7 94
capacitor2 95

Later, we shall show how the yield information is extracted
from more detailed shop floor reports.

If we now select the conclusion of our first rule and ask
for a table, we get

we shall set up testers for eg_267 of eg card in quarter eg g

2273 cardl 3
3158 card2 3
12628 resistor] 3
18719 chip2 3
15154 capacitor! 3
27166 chipl 3
16798 resistor? 3
19946 capacitor2 3

If we wish, Syllog will give us an explanation of any row of
the table. If we pick the fourth row, we get

we shall set up testers for 18719 of chip2 in quarter 3

Yes, that's true
Because. ..

we shall set up testers for 2273 of cardl in quarter 3

cardl has 7 of the immediate part chip2

2273 * 7 = 15911

the expected yield of chip2 is 85 %, based on past experience
15911 divided by 85 (normalized and rounded up) is 18719

we shall set up testers for 18719 of chip2 in gquarter 3

we plan to ship 1000 of box! in quarter 3

box1 has 2 of the immediate part card)

the expected yield of cardl is 88 %, based on past experience
1006 * 2 = 2000

2000 divided by 88 (normalized and rounded up) is 2273

we shall set up testers for 2273 of card! in quarter 3

The bottom of the explanation also contains the reasons for
the rounded division result; we omit such details from
explanations from now on. They are always available in
Syllog by scrolling down through the screens of the full
explanation.

At this point, we can predict the numbers of items that we
shall need to test, based on some assumed yield figures.
Next, we show how the yield figures are found. Then, we add
knowledge about testers, so that we can find out how many
testers of each type are needed.

& Yield analysis
In the previous section, we used the assumed yield figures

the expected yield of eg item is eg_y %, based on past experience

card! 88
card? 95
resistor 90
chip2 85
capacitorl 90
chip! 93

resistor7 94
capacitor2 95
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These are actually found from shop floor reports of earlier
test runs. The kinds of facts that are available are about test
jobs. A job has some number of items (cards or
components). Some of these items fail test, and the number
of failures is noted. Also, the day on which each job is
started and the day on which it is finished are tabulated. So
the kinds of facts that are available are

job eg_j has eg_number of eg item

1 100 card]

2 200 card2

3 500 resistor]
4 700 chip2

5 600 capacitor]
6 800 chipl

7 500 resistor?
8 600 capacitor2

in job eg_j the fallout was eg f items
12
10
50
100
55
50
28
30

NV EW N —

job eg_j was completed during the days eg_dl through eg_d2

1 1 31
2 1 3

3 3 20
4 ! 1

5 3 12
[ 51 70
7 1 365
8 ! 365

These facts are summarized by using the two rules

in days eg di thru eg d2 yield of eg_item was eg_y % in job eg_j

the expected yield of eg item is eg y %, based on past experience

job eg_j was completed during the days eg_dl through eg_d2
job eg_j has eg_number of eg_item

in job eg_j the fallout was eg_f items

eg_number - eg f = eg_net

eg_net is eg_y as a percent of eg_number

in days eg_dl thru eg_d2 yield of eg item was eg y % in job eg_j

Once we have entered these three tables and two rules into
the system, we can ask for an explanation of how the first
row of the expected yield table was found:

the expected yield of cardl is 88 %, based on past experience

Yes, that's true
Because...

in days | thru 31 yield of cardl was 88 % in job 1

the expected yield of cardt is 88 %, based on past experience

job 1 was completed during the days 1 through 31
job 1 has 100 of cardl

in job 1 the fallout was 12 items

100 - 12 = 8

88 is 88 as a percent of 100

in days | thru 31 yield of card! was 88 % in job 1

So far, we have knowledge about the parts hierarchy,
about the number of items we shall need to test, about the
number of components needed, and about the expected yield
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of each item that we shall test. It remains to plan the
number of test machines.

e Planning the number of test machines
We can now predict the number of items that we shall need
to test in quarter 3 on the basis of shop floor reports of yields
in earlier production runs. We still need to add knowledge
about the test machines themselves, and facts about how
many items will be burnt in during testing, so that we can
plan the actual number of each kind of test machine.

We start with the facts. We shall plan to burn in items at
the rates

eg p % of eg_item are burnt in

50 cardl

60 card2

50 resistorl

70 chip2

60 capacitorl
40 chipl

50 resistor?

60 capacitor2

and later we shall try some “what if” questions about the
effects of these rates on the testers needed. Testing an item
on a machine takes different times, depending on whether or
not we burn in the item:

test of eg_item on eg_m machine takes times eg_t! {nb) and eg_t2 (b)

cardl a50 20 4o
card2 t20 36 62
resistor! crl0 2 10
chip2 nbk40 3 20
capacitorl cc20 2 15
chipl nb50 5 S0
resistor7 cr20 2 9

capacitor2 c¢c30 3 20

Here, “eg_tl1 (nb)” and “eg_t2 (b)” are the times for testing
without and with burn in, respectively. The table consists of
estimates that we normally obtain by using rules to
summarize more detailed reports. For example, with a little
more detail on the time taken to complete each job (see the
section on yield analysis), the times given in the above table
could be found from shop floor reports about individual
jobs.

We use the facts with some rules that tell us how many
test machines we shall need:

we shall set up testers for eg num of eg_item in quarter eg q
eg_num divided by 60 (and rounded up) is eg_rate

the daily going rate for eg_item for quarter eg q is eg rate

Here, we are assuming that there are 60 working days per
quarter.

test of eg item on eg_m machine takes times eg_t1 (nb) and eg_t2 (b)
eg p ¥ of eg_item are burnt in

the rounded eg_p % weighting of eg_t) and eg t2 is eg_t

480 divided by eg_t (and rounded up) is eg_c

can handle eg_¢ of eg_item pd, with eg p % burnin, on eg m machine

The 480 in this rule is the number of minutes in a working
day.
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the daily going rate for eg_item for quarter eg q is eg_rate
can handle eg ¢ of eg_item pd, with eg p % burnin, on eg_testm machine
eg_rate divided by eg_c (and rounded up) is eg number

we need eg number of the eg testm test machine in quarter eg q

In the first rule, the sentence

we shall set up testers for eg_num of eg_item in quarter eg q

refers to the rules, described above, for the volume of items
for which test machines are needed. In the second rule, the
first and second sentences refer to tables. The last rule makes
use of the first two to tell us how many test machines of each
type we need.

If we now select the conclusion of the last rule, Syllog fills
in a table

we need eg _number of the eg testm test machine in quarter eg _q
3 a50 3
[ t20 3
3 crl0 3
10 nb40 3
6 cc20 3
22 nb50 3
4 €r20 3
9 cc30 3

showing the numbers of each test machine needed. To see
how the knowledge in the system has contributed to the
table, we can ask for an explanation of the sixth row:

we need 22 of the nb50 test machine in quarter 3

Yes, that's true
Because. ..

the daily going rate for chipl for quarter 3 is 453
can handle 21 of chip! pd, with 40 % burnin, on nb50 machine
453 divided by 21 (and rounded up) is 22

we need 22 of the nb50 test machine in quarter 3

we shall set up testers for 27166 of chipl in quarter 3
27166 divided by 60 (and rounded up) is 453

the daily going rate for chip! for quarter 3 is 453

test of chip! on nb50 machine takes times 5 {nb) and 50 (b)
40 % of chipl are burnt in

the rounded 40 % weighting of 5 and 50 is 23

480 divided by 23 (and rounded up) is 21

can handle 21 of chipl pd, with 40 % burnin, on nb50 machine

we shall set up testers for 2158 of card2 in quarter 3

card2 has 8 of the immediate part chipl

3158 * 8 = 25264

the expected yield of chipl is 93 %, based on past experience
25264 divided by 93 (normalized and rounded up) is 27166

we shall set up testers for 27166 of chip! in quarter 3

we plan to ship 1000 of box! in quarter 3

box1 has 3 of the immediate part card2

the expected yield of card2 is 95 %, based on past experience
1000 * 3 = 3000

3000 divided by 95 (normalized and rounded up) is 3158

we shall set up testers for 3158 of card2 in quarter 3

in days 51 thru 70 yield of chipl was 93 % in job 6

the expected yield of chipl is 93 %, based on past experience
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job 6 was completed during the days 51 through 70
job 6 has BOO of chip!

in job 6 the fallout was 50 items

800 - 50 = 750

750 is 93 as a percent of 800

in days 51 thru 70 yield of chipl was 93 % in job 6

in days 1 thru 3 yield of card2 was 95 % in job 2

the expected yield of card2 is 95 %, based on past experience

job 2 was completed during the days 1 through 3
job 2 has 200 of card?

in job 2 the fallout was 10 items

200 - 10 = 190

190 is 95 as a percent of 200

in days 1 thru 3 yield of card2 was 95 % in job 2

Once we have checked the knowledge in the rules by
looking at several such explanations, we can start to ask
“what-if” questions. Recall that the present answers are
based on the burn in percentages:

eg p % of eg_item are burnt in

50 cardl

60 card2

50 resistor]

70 chip2

60 capacitorl
40 chipl

50 resistor?

60 capacitor2

If we have this table on the screen, we can increase the burn
in percentages for the cards to

eg p % of eg_item are burnt in

70 cardl

80 card2

70 resistorl

90 chip2

80 capacitorl
60 chipl

70 resistor?

80 capacitor2

and ask again how many test machines are needed. For the
new burn in percentages:

we need eg_number of the eg_testm test machine in quarter eg q

3 a50 3
6 120 3
4 crlQ 3
12 nb40 3
7 cc20 3
31 nb50 3
5 cr20 3
12 cc30 3

Once again, we can ask for an explanation, if we so wish.
We have written down some knowledge in Syllog. For the
simplified task described in Section 2, we have written a bill
of materials and parts hierarchy, an estimate of the yield of
items from each phase of testing, and an estimate of the rate
at which each item can be tested on a given test machine.
The Syllog system has applied the knowledge to plan the
number of test machines of each type needed, and also to
plan an inventory requirements list of components to be

purchased to meet the production goal. 419
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4, Conclusions

Without knowledge, a shell system such as Syllog is just
that—a shell; the development of such a system raises two
related questions. The first question is “How easy is it to
acquire knowledge for the shell?” The second is “What are
the mathematical and engineering characteristics of the
internals of the shell?” Clearly, the second question can be
answered more precisely than the first.

Knowledge acquisition is an extensive topic in its own
right. The main concerns are how to inform a system of the
concepts it needs, and then how to instruct it in the use of
the concepts. Knowledge acquisition can take the form of
being told, of computer-assisted debugging, of conversation,
or of inductive inference. Indeed, these methods can be
combined.

For the present Syllog system, the approach is acquisition
by being told, with two techniques for assisting the person
who is providing the knowledge. A measure of the success of
the first technique is that the person should not notice it!
Syllog supports the acquisition of declarative knowledge.
This means that the person putting in knowledge is largely
freed from considerations about how the knowledge will be
used in a computation. By contrast, programming in a
conventional language (and even, to some extent, in Prolog)
is a procedural activity, in which we tell the computer a
sequence of steps it is to take. The second technique is the
automatic provision of explanations. Since knowledge may
be supplied in any order, perhaps by different people, the
answers produced from the knowledge can be unexpected.
So explanations are useful both for checking the answers and
for checking the knowledge on which the answers are based.

We have noticed that, in Syllog, the combination of
declarative English-like language with explanations tends to
encourage direct interactive experimentation with sample
knowledge bases relatively early in the process of knowledge
acquisition. Our prototype manufacturing knowledge base
has been written essentially as a spare time activity by the
authors, and knowledge acquisition has been straightforward.

The internals of the Syllog shell consist of a simple
translation of the language seen on the screen to and from
logic; of an inference engine; and of an explanation
generation component. The inference engine allows one to
write recursive syllogisms declaratively, as in the parts
explosion hierarchy in our manufacturing knowledge base.
The engine answers a question by combining a form of on-
the-fly compilation (essentially a top-down symbolic
execution of the rules relevant to a question) with a form of
forward-chaining evaluation [3]. The explanation
component contains some task-independent heuristics to
select a helpful explanation from several alternatives [11].

Even for the simplified manufacturing knowledge base in
the last section, it is clear that the facts and knowledge are
complicated enough to make Syllog an attractive
improvement over the existing planning methods known to
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us, including treatment by pencil plus spreadsheet program,
or by standard application programming over a database. In
Syllog, the knowledge is modular and self-documenting.
Thus it is relatively easy to change the knowledge for what-if
studies, and to extend the knowledge.

We mentioned in Section 2 that our main task is to
answer some more complicated questions. Of these, the
questions

1. How many testers will be required for the new and
concurrent production of other products?

2. When will these quantities of testers be required?

3. How many more testers will be required, and when, just
for the new product?

4. When are the new testers to be acquired, considering the
time required to install and program them?

can be answered by straightforward extensions of the
simplified knowledge base. The questions

5. How much floor space and rearrangement will be
required for the new testers?

6. Is there sufficient floor space and sufficient time to
acquire the new testers to meet the production schedules?

7. Should the new testers be placed at a vendor shop, or
should some of the test workload be placed with a vendor
who already has testers?

are partly about constraint satisfaction (a kind of knowledge
that works well in a logic-based system such as Syllog), and
partly about the kind of knowledge we have dealt with in the
simplified knowledge base.

Our conclusion is that it is reasonably straightforward to
acquire and use knowledge of our manufacturing task in
Syllog, and that the resulting knowledge base shows promise
of practical usefulness.
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