
A prototype 
manufacturing 
knowledge  base 
in Syllog 

- 

by Craig  Fellenstein 
Charles 0. Green 
Lucinda M. Palmer 
Adrian  Walker 
David J. Wyler 

This  paper  describes  a  prototype  knowledge 
base for  manufacturing  planning,  which  we  have 
built  using a  knowledge  system  shell  called 
Syllog.  We  describe a  Tester  Capacity Planning 
and  Yield  Analysis  task,  knowledge  needed  for 
a  part of the  task,  and  the  use  of  the  knowledge 
in  the  Syllog  system.  We  report  that  the 
sometimes  difficult  process  of  knowledge 
acquisition  turned  out,  in  this case, to be 
straightforward.  Knowledge  acquisition  and 
knowledge  use  are  done  in  the  same  language 
in  Syllog. 

1. Introduction 
This  paper is about building  a manufacturing knowledge 
base and using the knowledge in  a system shell called Syllog 
[ 1-31. For present  purposes, we can  think of a knowledge 
base as a combination of a  relational  database and  an expert 
system, the  combination being  achieved by some  form of 
logic programming [4], possibly with access to a 
conventional  database [ 5 ] .  In a  relational  database [6], facts 
are stored  in  tables (so far as the user is concerned), and 
compound facts can be retrieved from  more  than  one table 
by noting  that  the tables have common entries. An expert 
system, on  the  other  hand, is mainly concerned with 
knowledge about how to use facts. It provides expert-level 
solutions to  important problems;  it is flexible in  integrating 

Wopyright 1985 by International Business Machines  Corporation. 
Copying  in  printed  form  for private use is permitted  without 
payment of royalty provided that ( I )  each reproduction is done 
without  alteration  and (2) the Journal reference and IBM copyright 
notice  are  included on  the first page. The title and  abstract,  but  no 
other  portions, of this  paper  may be copied or distributed royalty 
free without  further permission by computer-based  and  other 
information-service systems. Permission to republish any  other 
portion of this  paper  must be obtained from the Editor. 

new knowledge incrementally into its existing store of 
knowledge; it can show its knowledge in a comprehensible 
form; it  answers questions by using its knowledge; and  it 
provides explanations of its answers. An expert system is 
often  heuristic, in  the sense that  it  can reason with 
judgmental knowledge as well as with formal knowledge of 
established theories. 

Our  manufacturing task concerns  the testing  of  electronic 
items in  a production line before they are plugged into larger 
assemblies. We wish to plan the  numbers of various  types of 
testing  machines that  are needed to meet  a production 
target.  Accurate  estimates of the  numbers of machines  are 
important, since too little  capacity can cause production 
delays, while too much is wasteful. The  numbers of 
machines  needed, the  times when  they  should be available, 
and their  locations depend  in a  complex way on  the bill of 
materials  for the  items  to be manufactured,  on previous 
experience of the yields of good  items from testing, on 
previous  experience of the rates at which items  can  be tested, 
on  the space  available, and  on several other considerations. 

The  information needed  for planning consists of facts, and 
of equations  and rules  for using the facts. The facts are held 
in some  form of  database, and, increasingly, are collected 
automatically by manufacturing  instrumentation. An 
equation  or rule typically reads  as a piece of common-sense 
knowledge about  the  planning task. However, the ways in 
which the facts and rules combine  to give answers are 
complicated, and  our knowledge base allows us to keep a 
clear view of the process. 

application  programs  for our task. However,  as  rules  change, 
or  as new rules are  added, such  application  programs tend  to 
get out of  step with reality and  to become hard  to  maintain. 
In our tester  capacity planning task,  timely  expert  advice is 

One might  consider  writing conventional database 

413 

IBM J .  RES. DEVELOP. 1 i0L. 29 NO. 4 JULY 1985 CRAIG F'ELLENSTEIN ET AL. 



needed.  Since the users are  not programmers, the expertise is 
best captured  and  maintained without  programming. In 
addition, while the facts and rules may  be correct, the 
answers that they produce  may  sometimes  not  be obvious. 
Since responsibility for smooth  and timely  testing lies with 
the  planning  team, it is useful to have explanations of the 
answers  provided by a planning tool. If an answer  provided 
by such a planning tool is positive, an  explanation provides a 
means of checking the correctness of the rules that  produced 
the answer. If an answer  provided by a planning tool  is 
negative, an  explanation  can  help in determining what 
additional facts or rules are needed. 

We write knowledge for the Syllog shell in  the form of 
facts and syllogisms. Facts are like tuples in a relational 
table, but in Syllog a table  has an English-like heading. 
Syllogisms are English-like rules about how to use the facts. 
From  the user’s point of view, the syllogisms can be regarded 
as  declarative knowledge, in  the sense that  the  order  in 
which a set of syllogisms is  written down  does  not  matter. 
Since new facts and syllogisms can  be  added  at will (subject 
to  some consistency  checking by the system), new knowledge 
can be added incrementally. Because the knowledge consists 
of  tables  with English-like headings,  together with syllogisms 
consisting of simple English-like sentences, the system can 
show  its current knowledge in  human-understandable form. 
Syllog answers questions by reasoning logically and exactly 
with the knowledge provided.  However, the knowledge itself 
may  contain  judgmental phrases (e.g., the expected yield of 
. . .) which can  combine  to give a judgmental answer. 
Whenever Syllog answers a specific question,  either with a 
“yes” or with a “no,” it can provide an  explanation if 
needed. The  explanation is given in  terms of the English-like 
sentences in  the knowledge base. 

Although Syllog works with English-like sentences, there is 
no need to build a dictionary or a grammar when new parts 
of English (e.g., for law or manufacturing)  are needed. One 
simply  types in sentences, and  the system is immediately 
ready to use them.  In fact, the language used can equally 
well be French,  German, most other  natural languages, or 
even an artificial language. Syllog makes logically correct 
inferences based on what it is told.  However, it “knows” 
little  of the language concerned, when compared with 
normal  natural language systems, such  as [7]. This lack of 
knowledge has both advantages and disadvantages. The 
advantages are  that  one  can easily add knowledge to  the 
system in the language of one’s  choice, and  that  one need 
not  instruct  the system about  the details of the language one 
is using. The disadvantages are  that  one is limited to simple 
declarative  sentences, and these use special “example”  words 
[SI. Also, one  must  either consistently use the  same sentence 
to  mean  the  same thing, or provide syllogisms to say that 
different  sentences  have the  same meaning. Syllog supports 
this  approach by prompting with the sentences that  are  in 
the knowledge base. 414 

CRAIG FELLENSTEIN ET AL 

Some simple sets of syllogisms can  be  thought of as 
English-like forms  of  expressions in relational algebra [6], 
with some  arithmetic processing allowed. However, 
syllogisms can be recursive, and they sometimes need to be. 
In our manufacturing knowledge base, we define a parts 
explosion  hierarchy, and  the definition is recursive. 
Recursion allows us to express concepts  that  cannot be 
written down  in  the nonrecursive  relational algebra [9]. 
Although recursive syllogisms are  quite readable and have a 
simple common-sense  meaning (corresponding to  their 
models  in mathematical logic), it  is not entirely 
straightforward to  interpret  them  both declaratively (i.e., 
order  does  not  matter)  and efficiently. For example,  it  is not 
enough  to compile recursive syllogisms into  the language 
Prolog [ 101 and  then execute them using Prolog’s built-in 
inference  engine,  for the reasons set out  in [ 1, 1 I]. 

Therefore, the Syllog system, which is  written in Prolog, 
contains  its own  inference  engine. This engine computes 
correctly with many sets  of recursive syllogisms that  are 
outside the scope of Prolog itself. Some related ways of 
computing with recursive logic statements  are given a formal 
treatment  in [ 121. Although the present paper is self- 
contained,  more detail about Syllog is to be found  in [3]. 

The next  section  describes our  manufacturing  planning 
task. In Section 3, we show the process of  building a part of 
a knowledge base for the task,  in Syllog. Then we describe 
how the knowledge can be used for manufacturing  planning 
by asking  questions, by trying “what-if” questions, and by 
getting explanations. 

2. The  tester  capacity planning  and  yield 
analysis  task 
In  this section, we describe the task for which we have  built 
part of a knowledge base. The two  subsections describe a 
simplified version of the task and  outline  the  actual task. 
Then, in  Section 3, we give a Syllog knowledge base for  the 
simplified task, and we show how it  is  used to plan the 
number of test machines  that  are needed to meet a 
production target. 

A simplified tester capacity planning  task 
This section  describes a simplified version of a planning task 
that is of importance  to  manufacturing test engineers. 

A major step in electronics manufacturing is the testing  of 
individual cards before they are plugged into a larger 
assembly (e.g., a controller), generally called a product, or 
box. Typically, a flow of cards  must be checked on a battery 
of specialized test  machines. Another  important step is to 
test the  components,  such  as resistors and chips, that will be 
placed on a card. For  this step, test machines  are also 
needed. In each  step, some of the  items (cards or 
components)  that  are tested fail. 

boxes during  the  third  quarter of the year, we must plan to 
So, if there is a production goal to  manufacture, say, 1000 

IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 



allocate  enough test machines  of the right kinds. This is the 
tester  capacity planning problem. To solve the problem, we 
need three  kinds of knowledge. 

First, we need  a bill of materials for a  box,  showing the 
number of each type  of  card  needed and  the  number of each 
type of component needed for  each  card.  Second, we need 
an  estimate of the percentage  of  each  batch  of items  that will 
pass testing. Third, we need to know the capacity  of each 
kind  of  tester on each  kind  of item,  that is, the rates at which 
items  can be tested. 

The bill of  materials  for  a box can  be supplied  as  a  table 
showing, for each item, how many  subitems of  a given type 
there are. From this, we need to find how many  components 
of eacn kind are in  a  box,  using the  information  about how 
many  components  are  on a card  and how many  cards of 
each kind  are in  a box. This is the well-known “parts 
explosion”  hierarchy. In addition, we need to  estimate  the 
larger numbers of each  component  and  card  that  are actually 
needed for a  batch  of boxes, on  the basis of  expected yields 
of  good  items (cards  and  components)  during  the  two levels 
of testing. 

The expected yield of  each  of the items, based on previous 
testing, can be extracted  from  detailed  reports of test batches 
in  earlier production runs. 

Finally, in order  to  estimate  the  number of test machines 
needed to meet  a production goal, we need to know the  rate 
at which each tester can test each  type of item. We usually 
have an  estimate of the capacity  of  a  tester from earlier 
experience, and this estimate improves with time. However, 
the capacity is not fixed for a given item,  but  depends  on 
how we choose to test. For example, we may  choose to test 
some percentage  of items with a “burn  in” period, which 
takes  longer but gives better results. We get this knowledge 
by summarizing previous test records for the  same items 
where available. 

What we have described so far  is  a simplified form  of the 
actual  task. This form is convenient for  illustrating the kinds 
of knowledge and reasoning that  are needed. In Section 3, 
we describe  this simplified task knowledge as a set of 
syllogisms and tables, and we show  how “what  if” tester 
capacity  estimates can be made by using the Syllog system to 
apply the knowledge. We also show how the knowledge and 
estimates  can  be checked using Syllog’s built-in explanation 
mechanisms. 

The actual task for which we have  built part of a 
knowledge base is more complicated. 

The actual tester capacity planning task 
The tester  capacity  problem  occurs throughout  the life cycle 
of any product.  Capacities are a  factor  in  capital planning- 
planning for the  quantities of test machines needed to meet 
the  future  production schedules  of some new product.  Later 
on in the life cycle of the  product, tester  capacities are a 
factor in  the  planning of daily workload and  machine 

loading. As the  product nears the  end of  its life cycle, tester 
capacities are a factor  in the problem  of reallocating tester 
resources to new products. The test machines may be 
switched from  one task to  another, but a given machine does 
not cover all testing tasks, and switching from one task to 
another takes  a  certain amount of setup time. 

development. The circuit card test engineers  in 
manufacturing begin planning for test equipment  to meet 
the  production schedules  for the cards. They know that  the 
new product  has  20  cards which must be tested on a 
particular  tester that will also be used for  testing other 
products in production  at  the  same time.  Each  of the  20 
cards requires different times for  various  kinds of testing, 
e.g., for successful testing and for test-analysis-repair and 
retesting. To plan  for  suitable  tester capacities, we must be 
able to answer  questions  such as  the following: 

For example,  suppose that a new product is under 

1. How many testers will be required  for the new and 

2. When will these quantities of  testers be required? 
3. How many  more testers will be required, and when, just 

concurrent  production of other products? 

for the new product? 

Answers to these  question can lead to  further questions, 
such  as 

4. When are  the new testers to be acquired,  considering the 

5. How  much floor space and rearrangement will be 

6. Is there sufficient floor space and sufficient time  to 

7. Should  the new testers be placed at a vendor  shop, or 

time required to install and program them? 

required  for the new testers? 

acquire  the new testers to meet the  production schedules? 

should some of the test workload be placed with a vendor 
who  already has testers? 

The answers  become  part  of  a final manufacturing plan  for 
the new product. 

3. Acquiring  and  using  tester  and  yield 
knowledge  in  Syllog 
In Section 2,  we described a simplified tester  capacity and 
yield task, and we outlined  the corresponding real task. In 
this section, we show  how knowledge for the simplified task 
of  Section  2  is  written down for Syllog. Syllog is then used to 
answer the  question  “How  many test machines of each type 
will be needed to  support  the  manufacture of  a  certain 
number of boxes over  a given time period?” We also show 
how “what-if” questions  about tester  capacity are posed and 
answered in Syllog. 

To answer  these  kinds  of  questions, facts are needed, 
together with knowledge about how to use the facts. We 
express these  in the language  of the Syllog system shell. 415 

:RAG FELLENSTEIN ET AL. IBM J. RES. DEVELOP. \ iOL. 29 I VO. 4 JULY 1985 < 



Syllog  is task-independent; that is,  different tasks within a 
certain range can be performed just by loading different sets 
of  facts and rules. So we do not need to change the Syllog 
system  itself in order to work  with  facts and knowledge 
about tester capacities. 

We mentioned that for our simplified tester capacity and 
yield analysis task, we need  knowledge  of three kinds. We 
need to know about  the parts hierarchy (bill of materials) for 
the box to be manufactured, about  the expected  yield  of 
each item from testing, and about test machines and their 
individual capacities. 

The  parts hierarchy 
First, we write the facts and syllogisms  for the parts 
hierarchy, using the Syllog language of  facts and rules. 

a table. The table is like a table in a relational database, 
except that it is  headed by a sentence in English (or French, 
German, etc.), containing one or more “example elements.” 
Thus, we can enter (or load) the table 

A group of related facts is written for  Syllog in the form of 

eg-item  has eg-number o f  the  immediate  part   eg-subitem 

box I 2 
hox I 3 
c a r d l  5 
c a r d l  
c a r d l  6 

7 

card2  8 
card2  5 
card2  6 

c a r d l  
card2  
r e s i s t o r 1  
ch ip2  
c a p a c i t o r 1  
c h i p l  
r e s i s t o r 7  
c a ~ a c i t o r 2  

The English sentence has an example element eg-item, 
which we can think of as “an  item” or “some item”; likewise 
for eg-number and eg-subitem. So the whole sentence 
above the line can be read as “an item has a number of the 
immediate part some subitem.” The line separates the 
sentence, which  serves as a heading, from the body  of the 
table. The first  row  of the table can be read as the fact that 
“box 1 has a 2 of the immediate part cardl ,” and the other 
rows  similarly. So a row in a Syllog table corresponds to a 
fact in the ordinary sense. 

We  write down knowledge  for  Syllog in the form of 
syllogisms. A syllogism consists of one or more sentences, a 
line, then a single sentence, as in 

eg-item  has eg-4 o f  t h e   p a r t   e g - s u b i t e m  
eg  subitem  has eg-6 of  the   par t   eg-subsubi tem 
e914 ‘ eg-6 = eg-24 

eg-item  has  eg-24 of the   par t   eg-subsubi tem 
............................................. 

As for a classical  syllogism, the meaning is this: IF each  of 
the sentences above the line is true, THEN  the sentence 
below the line is true. In  each sentence the example elements 
serve as place  holders. Here eg-4 stands for some number, 
and it stands for the same number in two  places in the 
syllogism. (We could equally well have written eg-x for 
eg-4,  eg-y for  eg-6, and eg-z for eg-24; the choice is a 
matter of style.)  We  refer to a syllogism as a rule, for short. 
We can read the above rule as “if an item has x of some 416 

CRAIG FELLENSTEIN ET AL. 

subitem, each such subitem has y of some subsubitem, and x 
times y is z, then the item has z of the subsubitems.” (We are 
assuming for simplicity that each kind of item appears in 
just  one place in the parts hierarchy.) 

We need another similar rule. If an item has a number x 
of the immediate subitems of some kind, it has x subitems of 
that kind. In Syllog,  we write this as the rule 

eg-item  has eg-5 o f  the  immediate  part   eg-subitem 

eg-item  has eg-5 o f  the   par t   eg -sub i tem 
................................................. 

Once we have  typed the table of  facts and the two  rules into 
Syllog, the system responds with a prompt 

eg  i tem  has eg-5 o f  the   immediate   par t   eg-subi tem 
e g I i t e m   h a s  eg-4 o f  the   par t   eg-subi tern  

consisting of the sentences it  has  seen so far. (There are  just 
two sentences in the prompt, since the other important 
sentences in the knowledge can be obtained from these by 
renaming the “eg-” example elements.) If  we want to see 
how many of each card and component  are in box 1,  we 
select the second sentence 

eg-item  has eg-4 of t h e   p a r t   e g - s u b i t e m  

of the prompt, change eg-item to box 1, and underline the 
sentence thus: 

box1  has eg-4 of t h e   p a r t   e g - s u b i t e m  

Syllog understands this as a request to produce a table below 
the line. If  we press the appropriate key,  Syllog answers by 
changing the screen to 

box1  has eg-4 o f  t h e   p a r t   e g - s u b i t e m  
.................................... 

2   c a r d l  
3 card2  
10 r e s i s t o r l  
14 c h i p 2  
12 
24 

c a p a c i t o r 1  
c h i p l  

15 r e s i s t o r 7  
I8 c a p a c i t o r 2  

Thus, our question to Syllog is the sentence that we chose 
from a menu of sentences and specialized by typing box 1, 
plus the line that indicates that we want a table to be 
produced. Syllog then fills in the table below the line. 

that, among other things, box 1 contains 10  of resistorl. To 
get an explanation of the reasoning, we can change the 
screen to 

The system  has  used the table and  the two rules to reason 

box1  has 10 of  t h e   p a r t   r e s i s t o r l  

The system understands this as the yes-no question “does 
box 1 have 10  of the part resistor I?” and answers by 
changing the screen to 

IBM J. RES. DEVELDP. VOL. 29 NO. 4 JULY 1985 



box1 has 10 o f  t h e   p a r t   r e s i s t o r l  
.................................. 

Yes, t h a t ' s   t r u e  

Because 

box1 has 2 o f  t h e   D a r t   c a r d l  
c a r d l   h a s  5 of t h e   p a r t   r e s i s t o r 1  
2 " 5 = l O  
................................. 
box1  has 10 o f  t h e   p a r t   r e s i s t o r 1  

box1 +as 2 o f  t h e   i m m e d i a t e   p a r t   c a r d l  

box1  ' la5 2 o f  t h e   D a r t   c a r d l  
................................... 

c a r d l  has 5 o f  t h e   i m m e d i a t e   p a r t   r e s i s t o r 1  

c a r d l   h a s  5 of t h e   p a r t   r e s i s t o r 1  

The  explanation which follows "Because .. ." consists of the 
instances  of the rules that have been used to establish the 
answer. The first rule  instance gives the  main conclusion, 
while the last two  rule instances  show why the premises  of 
the first rule instance hold. In general, Syllog explanations 
may be longer than  one screen, so it is useful to see the  main 
reasoning first, and  then  to scroll to subsidiary  justifications 
as  needed. 

Now that  the system can reason about  the  numbers of 
cards  and  components in a box, we need to  add knowledge 
about  the  numbers actually  needed, given that  not all items 
will pass their tests. This  depends  on  the  number of boxes we 
plan to ship, the length of time we are given to  manufacture 
the boxes, and  the expected yield of each item  at each test. 
We can write the knowledge in Syllog as 

we p l a n   t o   s h i p  eg-100 of  e g - p r o d u c t   i n   q u a r t e r  eg-q 
eg-product  has  eg-2 o f  the   immed ia te   pa r t   eg -ca rd  

eg-100 + eg-2 = eg-200 
t h e   e x p e c t e d   y i e l d  o f  e g - c a r d   i s  eg-75 %, based on p a s t   e x p e r i e n c e  

eg -200   d i v ided   by   eg -75   (no rmahzed   and   rounded   up )   i s   e9 -267  

we s h a l l   s e t   u p   t e s t e r s  f o r  eg-267 of  eg-card I n  qua r te r   eg -q  
............................................................ 

we s h a l l   s e t   u p   t e s t e r s  f o r  eg-10 of  e g - c a r d   i n   q u a r t e r   e g - q  

e g I l O  ' eg-2  =-eg_20 
eg  card  has  eg 2 o f  t h e   i m m e d i a t e   p a r t  eg-comp 

t h e   e x p e c t e d   y i e l d  o f  eg-comp i s  eg-50 %, based on p a s t   e x p e r i e n c e  
eg -20   d i v ided   by   eg -50   (no rma l i zed   and   rounded   up )   i s   eg -40  

we s h a l l  s e t   u p   t e s t e r s  f o r  eg-40 of  eg-comp i n   q u a r t e r   e g - q  
.................................................... 

eg y - 1 = eg  y l  

e g - x I 0 0  + eg-y l  = eg_x IOO-p lus_y I  
e g I x  " 100 = ;g_x100 

eg_xIOO-plus-yI  / eg-y = eg-z 

eg-x d i v i d e d   b y  eg-y ( n o r m a l i z e d   a n d   r o u n d e d   u p )  I S  eg-r 
........................................................ 

The first rule tells us  how many  cards  to plan  tester  capacity 
for, given the  number of boxes we want to  ship  and  the 
expected yield of  good cards  from testing. The second rule 
does  the  same for  each component,  making use of the 
conclusion  of the first rule. The  third rule just  does 
normalized, rounded-up division. In  order  to use the first 
two rules, we need  know the expected yield of  each  item 
during testing, based on past experience. For  the  moment, 
we shall assume  that this is given as 

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY I 985 

t h e   e x p e c t e d   y i e l d  o f  e g - i t e m   i s  eg-y %, based on p a s t   e x p e r i e n c e  
................................................................. 

c a r d l  88 
c a r d 2  
r e s i s t o r 1   9 0  

95 

c h i p 2  
c a p a c i t o r 1   9 0  

85 

c h i p l  93 
r e s i s t o r 7  94 
c a p a c i   t o r 2  95 

Later, we shall  show how the yield information is extracted 
from  more detailed shop floor reports. 

If we now select the conclusion of our first rule and ask 
for a table, we get 

we s h a l l   s e t  u p   t e s t e r s  for  eg-267 of  e g - c a r d   i n   q u a r t e r  eg-q 
............................................................. 

2 2 7 3   c a r d l  3 
3158  card2 
12628 r e s i s t o r 1  

3 

18719 c h i p 2  
3 

1 5 1 5 4  c a p a c i t o r 1  
3 
3 

27166 c h i p l  
16798 r e s i s t o r 7  

3 
3 

1 9 9 4 6   c a p a c i t o r 2  3 

If we wish, Syllog will give us an  explanation of any row  of 
the table. If we pick the  fourth row, we get 

we s h a l l   s e t   u p   t e s t e r s  for  18719 o f  c h i p 2   i n   q u a r t e r  3 
........................................................ 

Yes, t h a t ' s   t r u e  

Because . . .  

we s h a l l   s e t   u p   t e s t e r s  for 2273 of  c a r d l   i n   q u a r t e r  3 
c a r d l   h a s  7 o f  t h e   i m m e d i a t e   p a r t   c h i p 2  
2273 * 7 = 15911 
t h e   e x p e c t e d   y i e l d  of c h i p 2   i s  85 %, based on p a s t   e x p e r i e n c e  
15911 d i v i d e d   b y  85 ( n o r m a l i z e d   a n d   r o u n d e d  u p )  i s  18719 

we s h a l l   s e t  up t e s t e r s  for 18719 o f  c h i p 2   i n   q u a r t e r  3 

we p l a n   t o   s h i p  1000 of  box1 i n   q u a r t e r  3 
box1   has  2 o f  t h e   i m m e d i a t e   p a r t   c a r d l  
t h e   e x p e c t e d   y i e l d  of  c a r d l   i s  88 %, based on p a s t   e x p e r i e n c e  

2000 d i v i d e d   b y  88 ( n o r m a l i z e d   a n d   r o u n d e d   u p )   i s   2 2 7 3  

we s h a l l   s e t  up t e s t e r s  for  2273 o f  c a r d l   i n   q u a r t e r  3 

1000 * 2 = 2000 

............................................................. 

The  bottom of the  explanation also contains  the reasons  for 
the  rounded division  result; we omit such  details  from 
explanations  from now on.  They  are always available  in 
Syllog by scrolling down  through  the screens  of the full 
explanation. 

At this point, we can predict the  numbers of items  that we 
shall need to test, based on  some assumed yield figures. 
Next, we show how the yield figures are found. Then, we add 
knowledge about testers, so that we can find out how many 
testers  of  each type  are needed. 

Yield analysis 
In  the previous  section, we used the assumed yield figures 

t h e   e x p e c t e d   y i e l d  o f  e g - i t e m  1 5  eg-y %, ba5ed on p a s t   e x p e r i e n c e  
................................................................. 

c a r d l  88 
card2  95 

c h i p 2  
r e s i s t o r 1   9 0  

c a p a c i t o r 1   9 0  
c h i p l  93 
r e s i s t o r 7  94 
c a p a c i t o r 2  95 

85 

417 

CRAIG FELLENSTEIN  ET AL. 



These are actually found from shop floor reports of earlier 
test runs. The kinds of facts that are available are about test 
jobs. A job has some number of items (cards or 
components). Some of these items fail test, and the number 
of failures is noted. Also, the day on which  each job is 
started and  the day on which  it is finished are tabulated. So 
the kinds of facts that are available are 

j ob   eg - j  has eg-number 
....................... 

I IO0 
2 200 

4 
3 500 

700 
5  600 
6 800 
7 500 
8 600 

of   eg- i tem 

c a r d l  
card2 
r e s i s t o r 1  
ch ip2 
c a p a c i t o r 1  
c h i p l  
r e s i s t o r 7  
c a p a c i t o r 2  

i n  j o b   e g - j   t h e   f a l l o u t  was eg-f  items 

I I 2  

6 
5 55 

50 
7 28 
8 30 

of each item that we shall test. It remains to plan the 
number of test machines. 

0 Planning the number of test machines 
We can now predict the number of items that we shall need 
to test  in quarter 3 on the basis of shop floor reports of  yields 
in earlier production runs. We  still  need to add knowledge 
about  the test machines themselves, and facts about how 
many items will  be burnt in during testing, so that we can 
plan the actual number of each kind of test machine. 

the rates 
We start with the facts. We shall plan to  bum in items at 

eg-p % o f   e g - i t e m   a r e   b u r n t   i n  

50 c a r d l  
60 card2 
50 r e s i s t o r l  
70 
60 

ch ip2 
c a p a c i t o r 1  

40 c h i p l  

60 
50 

c a ~ a c i t o r ?  
r e s i s t o r 7  

j ob   eg - j  was completed  dur ing  the  days  eg-dl   through eg-d2 
and later we shall try some “what if” questions about  the 

........................................................... 
^ .  effects  of these rates on  the testers needed. Testing an item 

I 11 
I 
3 

3 
20 

I I 
3 I 2  
5 1  70 
I 365 
I 365 

These facts are summarized by using the two rules 

i n  days  eg-d l   thru  eg_d2  y ie ld   o f   eg- i tem was eg-y % i n   j o b   e g - j  

t h e   e x p e c t e d   y i e l d   o f   e g - i t e m   i s  eg-y %, based  on  past  exper ience 

.................................................................... 

on a machine takes different times, depending on whether or 
not we bum in the item: 

t es t   o f   eg - i t em on eg-m machine  takes  t imes eg-11 ( n b )  and  eg-12 ( b )  

c a r d l  
card2 

a50 20 
120 

40 
36  62 

r e s i s t o r 1   c r l O  2 10 
chip2  nb40 3 20 
capac i to r1   cc20 .! 
c h i p l  

1 5  
nb5O 

r e s i s t o r 7   c r 2 0  
5 50 

capac i to r2   cc30 
2 9 
3 20 

..................................................................... 

job  eg- j  was completed  dur ing  the  days  eg-d l   through eg-d2 Here, “eg-tl (nb)”  and “eg-t2 (b)” are the times for testing 
job  eg- j   has eg-number o f   eg- i tem 
i n   j o b   e g - j   t h e   f a l l o u t  was eg-f  items without and with bum in, respectively. The table consists of 
eg-number - eg-f = eg-net 
eg-net i s  eg-y  as a p e r c e n t   o f  eg  number estimates that we normally obtain by using  rules to - ..................................................................... 
in days eg-dl thru eg-d2 yield O f  eg-item eg_y in job eg_j summarize more detailed reports. For example, with a little 

more detail on  the  time taken to complete each job (see the 
Once we have entered these three tables and two rules into section on yield analysis), the times given  in the above table 

the system, we can ask  for an explanation of  how the first could be found from shop floor reports about individual 
row  of the expected  yield table was found: jobs. 

t h e   e x p e c t e d   y i e l d   o f   c a r d l   i s  88 %, based on past   exper ience 
We  use the facts with some rules that tell us how many 

.............................................................. test machines we shall  need: 
Yes, t h a t ’ s   t r u e  

Because . . .  
we s h a l l   s e t  up t e s t e r s   f o r  eg-num o f  eg - i t em  i n   qua r te r  eg-q 
eg-num d i v i d e d   b y  60 (and  rounded  up) i s   eg - ra te  
............................................................... 

i n  days 1 t h r u  31 y i e l d   o f   c a r d l  was 88 Z i n   j a b  I t h e   d a i l y   g o i n g   r a t e   f o r   e g - i t e m   f o r   q u a r t e r  eg-q i s   e g - r a t e  

t h e   e x p e c t e d   y i e l d   o f   c a r d l   i s  88 %, based an past   exper ience 

j o b  I w a s  completed  dur ing  the  days I through 3 1  
fob I has 100 o f   c a r d l  
i n  j o b  I t h e   f a l l o u t  was  12 items 

88 i s  88 as a percent  o f  100 
100 - I 2  = 88 

i n  days I t h r u  31 y i e l d   o f   c a r d l  was 88 % i n   j o b  I 

So far, we have  knowledge about  the parts hierarchy, 
about  the number of items we shall need to test, about  the 
number of components needed, and about  the expected yield 

Here, we are assuming that there are 60 working days per 
quarter. 

eg-p % o f   e g - i t e m   a r e   b u r n t   i n  
tes t   o f   eg - i t em on eg-m machine  takes  t imes  eg-t1  (nb)  and eg-12 ( b )  

the  rounded eg-p % we igh t i ng   o f   eg - t1  and eg- t2   is   eg- t  
480 d iv ided  by  eg- t   (and  rounded  up)   is  eg-c 

can  handle eg-c of   eg- i tem  pd,   wi th  eg-p % b u r n i n ,  on eg-m machine 

.................................................................. 

The 480 in this rule is the  number of minutes in a working 
day. 



t h e   d a i l y   g o i n g   r a t e  for eg-item for q u a r t e r  eg-q i s   eg - ra te  
can  handle eg-c of   eg- i tem pd, w i t h  eg-p % b u r n i n ,  on eg-testm  machine 
eg- ra te   d iv ided  by  eg-c (and  rounded  up)  is  eg-number 

we need  eg number o f   the   eg- tes tm  tes t   mach ine   in   quar te r  eg-q 
..................................................... 

job 6 was completed  dur ing  the  days 5 1  through 70 
j o b  6 has 800 o f   c h i p l  

800 - 50 = 750 
i n   j o b  6 t h e   f a l l o u t  was 50 items 

750 i s  93  as a percent  of 800 

i n  days 5 1  t h r u  70 y i e l d  o f  c h i p l  w a s  93 % i n   j o b  6 
.................................................. 

In  the first rule, the sentence 
i n  days I t h r u  3 q i e l d   o f   c a r d 2  was  95 % i n   j o b  2 

we s h a l l   s e t  up t e s t e r s   f o r  eg-num o f   eg - i t em  i n   qua r te r  eg-q 

refers to  the rules, described above,  for the  volume of  items 
for which test machines  are needed. In  the second rule, the 
first and second  sentences refer to tables. The last rule  makes 
use of the first two to tell us how many test machines of each 
type we need. 

If we now select the conclusion of the last rule, Syllog fills 
in a table 

we need eg-number o f  the  eg- testm  test   machine  in   quar ter  eg-q 
................................................ 

3 a50 
6 t 2 0  
3 
10 

c r l O  
nb40 

6 cc20 
22  nb50 
4 
9 

cr20 
cc30 

3 
3 
3 
3 
3 
3 
3 
3 

showing the  numbers of each test machine needed. To see 
how the knowledge in  the system has  contributed  to  the 
table, we can ask  for an explanation of the sixth row: 

we need 22 o f   t h e  nb50 tes t   mach ine   i n   qua r te r  3 
...................................... 

Yes, t h a t ' s   t r u e  

Because 

can  handle 21 o f   c h i p l  pd, w l t h  40 % b u r n i n ,  on nb50  machine 
t h e   d a i l y   g o i n g   r a t e   f o r   c h l p l  f o r  q u a r t e r  3 i s  453 

4 5 3  d i v i d e d   b y  21 (and  rounded u p )   i s  22 

we need 22 of the   nb50  tes t   mach ine   in   quar te r  3 

we sha l t   se t   up   t es te rs  for  27166 of  c h i p l   i n   q u a r t e r  3 
27166 d iv ided  by  60  (and  rounded  up)  i s  453  

t h e   d a i l y   g o i n g   r a t e  f o r  c h i p l  for  q u a r t e r  3 i s  4 5 3  

40 % o f  c h i p l  a r e   b u r n t   i n  
t e s t   o f   c h i p l  on nb50  machine  takes  times 5 (nb)  and 50 

the  rounded 40 % we igh t i ng   o f  5 and 50 i s  23 
480 d i v i d e d   b y  23 (and  rounded  up)  is  21 

can handle 21 o f   c h i p l  pd, w i t h  40 % b u r n i n ,  on nb50  machine 

we s h a l l   s e t   u p   t e s t e r s   f o r   ? I 5 8  o f  card2 ~n q u a r t e r  3 
card2  has 8 o f   t he   immed ia te   pa r t   ch ip l  
3158 * 8 = 25264 

25264 d i v i d e d  by 93 (normal ized and rounded u p )   i s  27166 
the  expected y i e l d  o f   c h i p l   i s  93 %, based on past  exper ience 

we s h a l l   s e t  up t e s t e r s   f o r  27166 o f   c h i p l   i n   q u a r t e r  3 

we p l a n   t o   s h i p  1000 o f  box1 i n   q u a r t e r  3 
box1  has 3 o f  the  immediate  par t   card2 
the   expec ted   y ie ld   o f   card2  i s  95 %, based on past   exper ience 
1000 ' 3 = 3000 
3000 d i v i d e d   b y  95 (normal ized  and  rounded  up)  is  3158 

we s h a l l   s e t  up t e s t e r s   f o r  3158 o f   c a r d 2   i n   q u a r t e r  3 

i n  days 5 1  t h r u  70 y i e l d   o f   c h i p l  was 93 % i n   j o b  6 

t h e   e x p e c t e d   y i e l d   o f   c h i p l   i s  93 %, based on past   exper ience 

the   expec ted   y ie ld  of ca rd2   i s  95 %, based on past   exper ience 

j o b  2 was completed  dur ing  the  days I through 3 
j o b  2 has 200 of   card2 
i n   j o b  2 t h e   f a l l o u t  was 10 items 
200 - 10 = I90 
190 i s  95  as a percent   o f  200 

i n  days I t h r u  3 y i e l d  o f  card2 was  95 % i n   j o b  2 

Once we have  checked the knowledge in the rules by 
looking at several such  explanations, we can  start  to ask 
"what-if"  questions. Recall that  the present  answers are 
based on  the  bum  in percentages: 

eg-p % o f   eg - i t em  a re   bu rn t   i n  

50 c a r d l  
60  card2 
50 r e s i s t o r 1  
70 
60 

ch1p2 
c a p a c i t o r 1  

40 c h i p l  
50 
60 

r e s i s t o r 7  
c a p a c i t o r 2  

............................ 

If we have this table on  the screen, we can increase the  bum 
in  percentages for  the  cards  to 

eg-p % o f  eg - i t em  a re   bu rn t   i n  

70 c a r d l  
80 card2 
70 r e s i s t o r  I 
YO 
80 

ch1p2 
c a p a c i t o r 1  

60 
70 

c h i p l  
r e s i s t o r 7  

............................. 

80 c a p a c i t o r 2  

and ask  again  how many test machines  are needed. For the 
new burn in percentages: 

we need  eg number of the eg tes tm  tes t   mach ine   in   quar te r  eg-q 
............................................................. 

3 
6 
4 
I 2  
7 
31 
5 
12 

a50 3 
120 3 
c r  10 3 
nb40 3 
cc20  3 
nb50 3 
c r 2 0  3 
cc30 3 

Once again, we can ask for  an  explanation, if  we so wish. 
We have  written down  some knowledge in Syllog. For the 

simplified task described in  Section 2, we have  written a bill 
of  materials and parts  hierarchy, an  estimate of the yield of 
items  from each  phase of testing, and  an  estimate of the  rate 
at which each  item can  be tested on a given test machine. 
The Syllog system  has  applied the knowledge to plan the 
number of test machines of each  type  needed, and also to 
plan an  inventory  requirements list of components  to be 
purchased to meet the  production goal. 419 

CRAIG FELLENSTEIN ET AL. IBM 1. RES. DEVELOP. 1 IOL. 29 NO. 4 JULY 1985 



4. Conclusions 
Without knowledge, a shell  system  such as Syllog  is just 
that-a shell; the development of such a system  raises  two 
related questions. The first question is “How easy  is it to 
acquire knowledge for the shell?” The second is “What are 
the mathematical and engineering characteristics of the 
internals of the shell?”  Clearly, the second question can be 
answered more precisely than the first. 

Knowledge acquisition is an extensive topic in its own 
right. The main concerns are how to inform a system  of the 
concepts it  needs, and then how to instruct it in the use  of 
the concepts. Knowledge acquisition can take the form of 
being told, of computer-assisted debugging, of conversation, 
or of inductive inference. Indeed, these methods can be 
combined. 

For the present Syllog system, the approach is acquisition 
by being told, with  two techniques for  assisting the person 
who  is providing the knowledge. A measure of the success  of 
the first technique is that  the person should not notice it! 
Syllog supports the acquisition of declarative knowledge. 
This means that the person putting in knowledge  is  largely 
freed  from considerations about how the knowledge  will  be 
used in a computation. By contrast, programming in a 
conventional language (and even, to some extent, in Prolog) 
is a procedural activity, in which  we  tell the computer a 
sequence of steps it is to take. The second technique is the 
automatic provision of explanations. Since  knowledge  may 
be  supplied in any order, perhaps by different  people, the 
answers produced from the knowledge can be  unexpected. 
So explanations are useful both for  checking the answers and 
for checking the knowledge on which the answers are based. 

We  have noticed that, in Syllog, the combination of 
declarative English-like  language  with explanations tends to 
encourage direct interactive experimentation with sample 
knowledge  bases  relatively  early in the process of  knowledge 
acquisition. Our prototype manufacturing knowledge  base 
has been  written  essentially  as a spare time activity by the 
authors, and knowledge acquisition has  been straightforward. 

translation of the language  seen on the screen to and from 
logic; of an inference  engine; and of an explanation 
generation component. The inference  engine  allows one to 
write  recursive  syllogisms  declaratively, as in the parts 
explosion  hierarchy in our manufacturing knowledge  base. 
The engine  answers a question by combining a form of on- 
the-fly compilation (essentially a top-down  symbolic 
execution of the rules  relevant to a question) with a form of 
forward-chaining evaluation [3]. The explanation 
component contains some task-independent heuristics to 
select a helpful explanation from  several alternatives [ 1 I]. 

the last section, it is clear that the facts and knowledge are 
complicated enough to make Syllog an attractive 

The internals of the Syllog shell  consist of a simple 

Even  for the simplified manufacturing knowledge  base in 

420 improvement over the existing planning methods known to 

CRAIG FELLENSTEIN  ET  AL. 

us, including treatment by pencil  plus  spreadsheet program, 
or by standard application programming over a database. In 
Syllog, the knowledge  is modular and self-documenting. 
Thus it  is  relatively  easy to change the knowledge  for  what-if 
studies, and to extend the knowledge. 

We mentioned in Section 2 that our main task  is to 
answer some more complicated questions. Of these, the 
questions 

1. How many testers will  be required for the new and 

2. When will these quantities of testers  be  required? 
3. How many more testers will  be required, and when, just 

4. When are the new testers to be acquired, considering the 

concurrent production of other products? 

for the new product? 

time required to install and program them? 

can be answered by straightforward extensions of the 
simplified  knowledge  base. The questions 

5. How much floor  space and rearrangement will  be 

6. Is there sufficient  floor  space and sufficient time to 

7. Should the new testers be placed at a vendor shop, or 

required for the new testers? 

acquire the new testers to meet the production schedules? 

should some of the test workload be placed  with a vendor 
who  already  has  testers? 

are partly about constraint satisfaction (a kind of  knowledge 
that works well in a logic-based  system such as Syllog), and 
partly about the kind of  knowledge  we have  dealt  with in the 
simplified  knowledge  base. 

Our conclusion is that it is  reasonably  straightforward to 
acquire and use  knowledge  of our manufacturing task in 
Syllog, and that the resulting  knowledge  base  shows promise 
of practical usefulness. 

References 
I .  A. Walker, “Syllog: A Knowledge Based Data Management 

System,” Report No. 34, Department of Computer Science, New 
York University, New York, 198 1. 

2. A. Walker, “Data Bases,  Expert Systems, and Prolog,” Artifrcial 
Intelligence Applications for Business, W. Reitman, Ed., Ablex, 
Norwood, NJ, 1984. 

Programmers,” Logic Programming and its Applications, M. van 
Caneghem and D. H. D. Warren, Eds., Ablex, Norwood, NJ, 
1985. 

4.  D. S. Parker, M. Carey, F. Golshani, M. Jarke,  E. Sciore, and A. 
Walker, “Logic Programming and Databases,” to appear as a 
chapter  in  the book Expert Database  Systems, L. Kerschberg, 
Ed., Springer-Verlag New York, 1985. 

5 .  C. L. Chang and A. Walker,  “Prosql:  A  Prolog  Programming 
Interface  with SQLIDS,” Research Report “4314, IBM 
Research  Laboratory,  San Jose, CA, 1984. To appear as a 
chapter in the  book Expert Database  Systems, L. Kerschberg, 
Ed., Springer-Verlag New York. 1985. 

Sublanguages,” Courant Computer Science Symposium 6: Data 
Base Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971, 
pp. 65-98. 

3. A.  Walker, “Syllog: An  Approach to Prolog for Non- 

6 .  E. F. Codd, “Relational Completeness of Data Base 

IBM J.  RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 



7. A. Walker and A. Porto, ‘“301: A Knowledge Based Garden 
Store Assistant,” Research  Report RJ-3928, IBM Research 
Laboratory, San  Jose,  CA,  1983.  Also appears in Proceedings, 
Logic Programming Workshop, Portugal, June 1983. 

8. M.  M. Zloof,  “Query-by-Example: A Data Base Language,” 
IBM Syst. J. 16, 324-343 (1977). 

9. A.  V. Aho and J. D. Ullman, “Universality of Data Retrieval 
Languages,” Proceedings of the 6th Annual ACM Symposium on 
Principles of Programming Languages, 1979,  pp. 1 10- 1 19. 

10. W. F.  Clocksin and C. S. Mellish, Programming  in  Prolog, 
Springer-Verlag New York, 198 I .  

11.  A. Walker, ‘‘PrologJExI,  An Inference Engine  Which  Explains 
Both  Yes and No Answers,” Proceedings, 8th International  Joint 
Conference on Artificial  Intelligence, Karlsruhe, W. Germany, 
1983,  pp.  526-528. 

Programming Interpreters,” Proceedings,  Japan  FGCS84 
Conference, Tokyo, 1984,  pp.  149-156. 

12.  D.  Brough and A. Walker, “Some Practical Properties of  Logic 

Craig  Fellenstein IBM General  Products Division, Tucson, 
Arizona 85744. Mr.  Fellenstein joined IBM in  1980 and is an 
associate programmer in manufacturing systems.  He  is currently 
involved  with database systems and advanced information 
processing tools development. He is interested in  intelligent  systems 
in the industrial environment. Before joining IBM, Mr. Fellenstein 
was a member of the United States  Air  Force Tactical Air 
Command. 

Charles 0. Green IBM General  Products Division, Tucson, 
Arizona 85744. Mr. Green, who joined IBM in  1980,  is a 
manufacturing engineering  specialist.  He is currently working on the 
planning and development of advanced test  systems  strategies. Mr. 
Green is interested in advanced methodologies  for automated test 
equipment and in  artificial  intelligence approaches to information 
processing. Prior to joining IBM,  he graduated from the Technical 
Vocational Institute, Albuquerque, New Mexico,  where he studied 
electronic technologies. 

Received February 12, 1985; revised March 14, 1985 
Lucinda M. Paltrier IBM General  Products Division, Tucson, 
Arizona 85744. Ms. Palmer joined IBM in  1979  as a unit test 
technician following completion of the digital electronics program at 
the Technical Vocational Institute, Albuquerque, New  Mexico. She 
is currently a programmer in the Printed Circuit Business Operations 
Department in Tucson. 

Adrian  Walker IBM Research Division, P.O. Box 218, Yorktown 
Heights, New  York 10598. Dr. Walker  is manager of  principles and 
applications of  logic programming at the Thomas J. Watson 
Research Laboratory. He joined IBM at the San Jose Research 
Laboratory in  198 1, working on the R* distributed database system 
and on logic programming and expert  systems. He moved to 
Yorktown in 1984. Dr. Walker  received  his Ph.D. in computer 
science from the State University  of New York  in  1974; he  held the 
posts  of assistant professor at Rutgers University and member of the 
technical staff at Bell Laboratories, Murray  Hill, New Jersey,  before 
joining IBM. 

David J. Wyler IBM General  Products Division, Tucson, Arizona 
85744. Mr.  Wyler joined IBM in  1979; he is a staff  engineer  in 
manufacturing systems. He is currently involved  with database 
systems and manufacturing logistics  systems  in circuit card 
manufacturing. Before joining IBM, he  was a manufacturing 
engineer  for ten years at Hughes  Aircraft Company. He  received an 
M.S. in operations management from the University  of  Arizona, 
Tempe, in  1976. 

42 1 

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 CRAIG FELLENSTEIN ET AL. 


