
Scheduling by Robert J. Wittrock

algorithms for
flexible flow lines

This paper discusses scheduling algorithms for
a certain kind of manufacturing environment,
called the “flexible flow line.” Two scheduling
problems are considered. “Loading” decides
when each part should be loaded into the
system. “Mix allocation” selects the daily part
mix. The goals are to maximize throughput and
reduce WIP. New heuristic algorithms specially
suited to solve these problems in the context of
a flexible flow line are described. The paper also
discusses experience with the use of an
experimental implementation of these algorithms
to solve such problems arising in a real
production line.

1. Introduction
Automated scheduling algorithms can be used to improve
productivity in various manufacturing environments. This
paper considers one such environment, called the “flexible
flow line.” Two scheduling problems are considered.
“Loading” decides when each part should be loaded into the
system. “Mix allocation” selects the daily part mix. The
goals are to maximize throughput and reduce work-in-
process inventory (WIP). New heuristic algorithms specially
suited to solve these problems in the context of a flexible
flow line are described. The paper also discusses experience
with the use of an experimental implementation of these
algorithms to solve such problems arising in a real
production line.

Topyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

A flexible flow line can be defined as follows. Several part
types must be produced each day. There are several banks of
identical machines. Each part must be processed by at most
one machine in each bank. (It may skip a bank.) Each part
visits the machine banks in the same order. The time it takes
a machine to process a part depends on the part type and the
machine bank, but not on the sequence in which the parts
are processed. There is no setup time for a machine
switching from one part type to another. In front of each
individual machine, there is a buffer which has a large
capacity and operates on a first-in, first-out basis. There are
machines to load and unload parts into and out of the
system. Finally, there is an automated transport system to
move parts from any machine to any other.

As an example, Figure 1 schematically portrays the
machine configuration of an actual production line. The
function of this line is to insert components into printed
circuit cards. The line has both numerically controlled tools
and robots. There are three banks of machines: two so-called
“DIP” inserters, three ‘‘SIP’’ inserters, and three robots,
which do “MODULE” insertions. (The terms “DIP” and
“SIP” refer to types of components called “Dual Inline
Packages” and “Single Inline Packages,” respectively.) A card
is transported through the system on a “camer,” which holds
four cards of the same type. After being loaded into the
system, a camer visits one of the two DIP machines, or skips
them both. It then visits one of the three SIP machines (or
skips them). Finally, it visits one of the three robots (or skips
them) and is then unloaded from the system. Before visiting
a machine, the camer may wait in the machine’s buffer if it
is busy. Each buffer can hold up to 25 camers.

To date, this scheduling environment does not appear to
have been given much attention in the literature, although
certain special cases of it have. For example, if there is only
one machine in each bank, and each part visits every bank,
the flexible flow line becomes the “flow shop” environment.

ROBERT J. WITTROCK

402

- ROBOT,
f \ - - ROBOT, .If:

10 OOO 15 OOO 20 000 2s 000

Elapsed time (s)

1 Reaction to machine failures (static routing).

If there is one machine in each bank, but some parts skip
some banks, it is a special case of the “job shop”
environment. In this case, all parts must visit the machines
in the same order, whereas in a general job shop each part is
allowed to visit the machines in a different order. The only
well-studied case in which the banks contain more than one
machine is the “identical parallel machine” environment.
This is the case of one machine bank. Various optimizing
and heuristic algorithms have been developed for all these
cases. For a survey, see [11.

2. Loading
The first problem to be discussed is that of scheduling
exactly when to load each part. A new algorithm was
developed for this kind of loading, called FFLL (Flexible
Flow Line Loading).

There are two goals in the loading problem. The main
goal is to maximize throughput, Le., minimize the
makespan, or total completion time, of the whole day’s mix.
A secondary goal is to minimize the amount of buffer space
used. One reason to do this is to minimize WIP. The other
reason is to minimize the possibility of overflowing a buffer.
FFLL effectively assumes that buffer capacity is infinite, so
by minimizing the amount of buffer space actually used, the
possibility of violating any real buffer capacity constraint is
minimized. (To consider buffer capacity as an explicit
constraint would be a much harder scheduling problem.)

It is useful to divide the loading problem into three
subproblems. The first subproblem is called “machine
allocation.” Recall that a part needs to be processed by only
one machine in each machine bank. Machine allocation is
the problem of choosing which machine in each bank will
process each part. The second subproblem, “sequencing,” is
to determine the order in which the parts enter the system.
The third problem, “timing,” is to determine the exact times
at which the parts should be loaded into the system. FFLL
handles these problems in the order given above: machine
allocation, sequencing, and then timing. However, for ease

ROBERT J . WITTROCK

of exposition, timing is discussed first, followed by machine
allocation and then sequencing.

complex optimization problems. There do not appear to be
any reasonably fast algorithms for finding optimal solutions
to such problems. For this reason, FFLL uses fast heuristic
algorithms to find good (but not usually optimal) solutions
to the subproblems.

uses “periodic scheduling” to do the sequencing and timing.
The basic idea of periodic scheduling is to schedule a small
representative sample of the day’s mix and repeat this
schedule at regular intervals until the whole day’s mix has
been produced. Hitz [2] has developed a periodic scheduling
algorithm based on implicit enumeration. The periodic
scheduling approach of FFLL is based on heuristics.

The “representative sample” is called the “minimal part
set” (MPS). The MPS is the smallest possible set of parts in
the same proportion as the whole day’s mix. For example, if
the mix is 3000 parts of type A, 2000 of B, and 1000 of C,
the MPS is three parts of type A, two of B, and one of C. By
using periodic scheduling, the problem of sequencing is
reduced to finding a good order in which to load each part in
the MPS. The problem of timing is reduced to determining
the times at which to load each part in the first MPS and
determining the time interval after which the schedule is to
be periodically repeated. This time interval is called the
“period” of the schedule (denoted by P). The number of
times the minimal part set must be repeated in order to
complete the whole day’s mix is called the “frequency”
(denoted by F). In the example, F = 1000.

The periodic schedule is determined in such a way that
each machine processes all of its assigned parts for one MPS
before processing any parts of the next MPS. Once the
sequence and loading times for the minimal part set have
been determined, the best period for the schedule is easy to
compute. Define the “MPS work span” of a machine to be
the elapsed time between the time it starts processing its first
part in the MPS and the time it completes work on its last
part in the MPS. The best period for such a schedule is
simply the maximum MPS work span among all the
machines. A longer period than this would result in
unnecessary idle time on all the machines, while a shorter
period would result in unnecessary queuing in the buffers.

With the period defined as above, the makespan for the
whole day’s mix is a little more than F X P. A small amount
of time (the transient interval) is spent getting the parts into
the system. Essentially, the makespan can be minimized by
finding a schedule that minimizes the period P.

For each machine, define its “MPS work load” to be the
total time it must spend processing parts assigned to it in the
MPS. Thus a machine’s MPS work span is equal to its MPS
work load plus any idle time it incurs processing the MPS.
Define the machine with the greatest MPS work load to be

The various subproblems of the loading problem are

Suppose a machine allocation has been determined. E L L

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

the bottleneck. Clearly the period cannot be less than the
bottleneck work load. Notice that the bottleneck work load
does not depend on the timing or sequencing and can
therefore be precomputed.

schedule whose period is equal to the bottleneck work load,
i.e., a minimum period schedule. A simple way to do this is
as follows. Suppose a sequence for the MPS has been chosen.
Conceptually, let all the parts of the MPS enter the system as
rapidly as possible. Consider the machines, one at a time, in
an order consistent with the “flow,” Le., the order in which
parts visit the machine banks. At each machine, process the
parts in the order in which they amve. Begin processing each
part as soon as the machine is available. After considering all
parts of the MPS that visit the machine, if the work span of
the machine exceeds its work load, delay processing the first
part by the difference. All subsequent parts are still processed
in order, starting as soon as the machine is available. Then
proceed to the next machine.

The key to the above procedure is the delaying. The
difference between a machine’s work span and its work load
is idle time. Delaying the first part may also delay some of
the subsequent parts, but the delay ultimately cancels out
with the idle time. Consequently, the work span of the
machine after delaying is exactly equal to its work load.
Thus the period resulting from this method is simply the
largest (i.e., bottleneck) work load. The work loads depend
on the machine allocation, but not on the sequence in which
the MPS is loaded. It follows that this method of timing
achieves the minimum period (= bottleneck work load),
regardless of the sequence.

method, modified to reduce queuing in the buffers. (For
example, it does not load the MPS as rapidly as possible.)
How FFLL chooses the sequence for the MPS is explained in
Section 3 .

Now consider the problem of machine allocation. In the

Fortunately, in a flexible flow line, it is easy to find a

The “timing” algorithm of FFLL is a version of the above

context of periodic scheduling, machine allocation is the
problem of choosing which machine in each bank will
process each part in the MPS. This is done before the
sequencing and timing, to allow the latter two subproblems
to be solved with known MPS work loads for each machine.
The sequencing method described in Section 3 depends
critically on this, as does the timing method described above.

The makespan of the schedule is determined by the
minimum period, which is equal to the maximum MPS
work load. Thus the goal of machine allocation is, for each
bank of machines, to minimize the maximum work load
among all the machines in that bank.

machine bank would be obtained if all of the machines in
the bank were given equal work loads, but this is usually not
possible. To find n e d y balanced work loads, FFLL uses the
following heuristic, Each machine bank is considered

The lowest conceivable maximum work load for a

separately. At each bank, the “Longest Processing Time
First” (LPT) heuristic is applied. This approach sorts parts in
order of decreasing processing time on the machine bank.
(This sorting is only to aid the allocation. It does not
determine the loading sequence.) The algorithm then
allocates the machines in the bank to one part at a time, in
this order. When a machine is allocated to a part, its
cumulative work load is increased by the processing time of
that part. For each part considered, the machine with the
smallest cumulative work load is allocated to it.

In another context, Graham [3] has shown that the LPT
rule results in a maximum work load that is never more
than 33.3% worse than the optimal solution. More typically,
as in the case discussed in Section 4, it came within 0.5%.

3. Sequencing
In the context of periodic scheduling, sequencing is the
problem of determining a good order in which to load the
MPS. As explained in Section 2, the minimum period can be
achieved by appropriate timing, regardless of the MPS
sequence. Thus, choosing a sequence for the MPS does not
have a significant effect on the makespan. The goal of
sequencing is therefore to minimize the amount of queuing.

FFLL uses a new heuristic to choose a sequence for the
MPS, called “dynamic balancing.” It is heuristic in two ways.
The goal of minimizing queuing is difficult to deal with
when choosing a sequence, since this requires knowing the
loading times, which have not yet been determined. For this
reason, dynamic balancing replaces the real objective with a
heuristic objective. It then applies a “myopic” heuristic to
minimize this new objective.

The heuristic objective in dynamic balancing is based on
the following intuitive observations. Parts tend to queue up
in the buffer of a machine if a lot of work is sent to that
machine in a short period of time. This occurs if there is an
interval in the loading sequence consisting of many parts
with large processing times all on the same machine. In
contrast, a loading sequence which keeps the cumulative
work loads of all machines roughly equal at all times tends
to avoid queuing. The heuristic objective of dynamic
balancing attempts to achieve this.

To be precise, let

n = the number of parts in the MPS,
m = the number of machines (including all banks),
z ~ , ~ = process time of part g on machine k.

When the loading sequence is being determined, the machines
have already been allocated, so for each part g, rg.k = 0, for all
but one machine in each bank. Let

n

‘k = tg ,k .
g= I

That is, 1, is the MPS work load of machine k. 403

ROBERT I. Wl?TROCK IBM J . RES. DEVELOP. \ rOL. 29 NO. 4 JULY 1 985

Suppose a loading sequence has been determined. For
each part g in the MPS, let Sg be the set of parts in the
sequence up through part g. That is, the set Sg consists of
part g and those parts which precede part g in the sequence.
The problem of choosing a loading sequence can be viewed
as determining Sg for each part g.

all machines k,
Suppose, for part g, there is some number ag such that for

Then 0 5 ag 5 1. ag is the fraction of the work load for
machine k that has entered the system by the time part g has
been loaded. Since ag does not depend on k, Eq. (1) asserts
that this fraction is the same for all machines. This is the
“dynamic balance” condition that should be achieved by a
good loading sequence, for all g. Unfortunately, this
condition cannot be achieved, since it implies t g , , k > 0 for all
parts g’. This, in turn, would imply that each part visits all
machines, whereas actually each part visits only one
machine in each bank. Thus (1) represents an ideal, and the
dynamic balancing heuristic tries to come as close as possible
to this ideal.

To see how to do this, let
rn

n r n n In

T = f g , k = 1 tg = 1,.

Equation (1) implies that

g=l k=l g=I k=l

rn

‘g’,k ‘g’
k=l g’ES8 k ” q

a = ” -
rn

‘k
T

k= I

Thus (1) is equivalent to

The left-hand side of (2) is the cumulative work load of
machine k when part g enters the system. The right-hand
side is the “ideal” value for this.

Let

and

Then (2) is equivalent to 404

ROBERT J . WITTROCK

Hg,k = 0. (3)

Thus, H g , k measures how overloaded machine k is when part
g enters the system. If H g , k > 0, machine k has been given
too much work when part g enters. If Hg,k < 0, machine k
has been given too little work. If H g , k = 0, machine k has
been given the ideal amount of work.

The dynamic balancing heuristic uses the following
objective function:

Minimize 1 H : , k ,

n r n

g=I k=l

where

H i , k = max(Hg,k, 01.

This objective seeks to minimize the sum of all the machine
overloads throughout the whole sequence. Notice that

rn

so
rn

Hg,k = O.
k= I

Thus, by minimizing (4), the heuristic is really trying to get
as close as possible to (3).

Finding a sequence which minimizes (4) seems to be a
very hard problem. Instead of finding its absolute minimum,
the dynamic balancing approach applies a myopic heuristic
to this objective. This approach simply adds one part at a
time to the end of the sequence, always choosing the part
which minimizes the objective at that point in the sequence.

Specifically, suppose part g* is the last part in the partial
sequence determined so far. The myopic heuristic adds to
the end of the sequence the part g, which minimizes

rn rn

H i , k = (Hg*,k + hg,k)+.
k= I k= I

By (5) , H g . , k is positive for some k‘s and negative for others.
The same holds for h g . k . The heuristic tends to choose a part
g such that hg,k is negative when Hg.+k is positive. Now h , , is
most negative if machine k has not been allocated to part g.
Thus the heuristic tends to add to the sequence a part that
avoids the machines that are currently overloaded.

4. Loading: Results
The FFLL algorithm consists of three major steps:

1. Allocate machines to MPS (LPT heuristic).
2. Sequence MPS (dynamic balancing heuristic).
3. Compute loading times for MPS.

IBM I. RES. DEVELOP, 1 rOL. 29 NO. 4 JULY I 985

To test the algorithm, FFLL was implemented in an
experimental PL/I code on an IBM 308 1. This was then
used to determine schedules for typical daily mixes for the
card line described in Section 1. CPU run times were under
one second. One typical day’s mix is given in Table 1.

The single-letter part types in the first column of Table 1
are pseudonyms for the real part numbers. The numbers in
Table 1 are numbers of camers’ worth of cards, i.e., four-
card units. The second column indicates how many camers
of each card type are to be produced in the day. The third
column indicates how many camers of each card type are
contained in one minimal part set. Thus the first row
indicates that 300 camers’ worth of cards of type A (i.e.,
1200 cards) are to be produced in the day, and this translates
to 12 camers’ worth for one MPS. The results of scheduling
this mix with FFLL are summarized in Tables 2 and 3.

After the initial transient interval of 5 minutes and 49
seconds, one MPS is produced every 28 minutes and 44
seconds (the period). After 25 periods (the frequency), the
whole day’s mix is produced. The total time to do this is 12
hours, 4 minutes, and 9 seconds.

Table 3 shows, for each machine, the MPS work load, the
utilization, and the maximum number of camers queued in
the corresponding buffer. The machine allocation heuristic
has balanced the work loads very effectively. For each
machine bank, the work loads, which are nearly half an
hour, vary by only a few seconds. The bottleneck machine,
SIP,, has a work load of 28 minutes and 44 seconds, and this
determines the minimum period. The utilization of SIP, the
bottleneck tool bank, is nearly 100%. It is slightly less
because the machines cannot be fully utilized during the
transient interval. Very little buffer space is used, only two
camers per machine. This is due to the use of periodic
scheduling and to the dynamic balancing heuristic for
sequencing.

the use of simulation. Pasquier [4] has developed a RESQ-
based simulation system for flexible flow lines. This system
has the unique capability of accepting as input a detailed
loading schedule such as would be produced by FFLL or
some other algorithm. Pasquier used this system to compare
FFLL with simpler policies to deal with the various aspects
of the loading problem. He generally found that alternatives
to FFLL resulted in more queuing at the buffers, although
throughput could be maintained as long as some appropriate
periodic schedule was followed.

One of the advantages of using a periodic scheduling
policy like that produced by FFLL is its adaptability to
machine failures. Pasquier [4] used his simulation to
experiment with several ways to adapt FFLL‘s schedule in
response to machine failures. The results are summarized
below.

Another way in which these algorithms were tested was by

As a minimal response, any part which FFLL has routed
to a failed machine must be rerouted to a functional

Table 1 A typical day’s mix.

Part Day’s MPS
t v w mix

300
25

650
25

175
IO0

12
I

26
1
7
4

Table 2 Loading results (hours:minutes:seconds).

Frequency 25 periods

Period
Transient
Makespan

28:44
5:49

12:04:09

Table 3 Loading results by machine.

Machine Work Utilization Max.
load queue

DIP,
DIP,
SIP,
SIP,
SIP,
ROBOT,
ROBOT,
ROBOT,

25:3 I
25:32
28:27
28:44
28:36
2656
2656
27: 12

88
88
98
99
99
93
93
94

machine in the same bank. Also, the period must be
increased to reflect the reduced capacity. In order to
compute the new period, the MPS work load is recomputed
for each functional machine in each bank that contains a
failure. For this purpose, it can be assumed that the work
loads are the same for each machine in a bank. If the new
work load of any machine exceeds the old period, the period
is increased to this new value. To appropriately slow down
the loading of the parts into the system, the interarrival
times are increased by a factor of

P,,W

‘old ’

where PneW is the newly determined period and Pold is the
original period. When the machines are repaired, the FFLL
schedule is resumed.

Figure 2 shows the result of using this minimal adaptation
on a simulation of the mix from Table 1. It shows a plot of
queue length versus time for each of the robots. The
horizontal axis is elapsed time in seconds. (About four hours
are shown.) The vertical axis shows the number of parts (i.e.,
camers) waiting in the buffer or being processed by each 405

ROBERT J . WITTRCCK IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

1 Example machine configuration (schematic).

Elapsed time (s)

Reaction t o machine failurcs (dynamic routing)

robot. A queue of 0 means that the robot is idle. Robots 1
and 2 fail at time 12 000 and are repaired at time 15 000.
This is the worst case for a flexible flow line, in that the most
downstream machines have failed. Even though parts are
introduced into the system more slowly, the parts already in
the system proceed at the normal rate and pile up in front of
the one working robot. In spite of this, the buffer capacity of
25 carriers is never exceeded.

In one respect, this adaptation of the schedule is
unsatisfactory. After the two robots are repaired at time
15 000, a large queue remains in the buffer of robot 3. This is
unnecessary, since the other two robots are occasionally idle.
This behavior is due to “static routing,” i.e., routing parts
according to the machine allocation chosen in advance by
FFLL. Static routing is not appropriate after machines have
failed and been repaired, since the system is no longer in a
state predicted by the algorithm. Instead, Pasquier
experimented with several “dynamic routing” policies, which
routed parts according to the state of the system. The best
policy he found was as follows. When a part leaves one
machine, it is sent to the machine in the next bank with the
shortest completion time, i.e., the machine which will
soonest complete processing all the parts in its buffer. Figure
3 shows what happens when this dynamic routing is used.
When the robots are repaired at time 15 000, the queue on
robot 3 immediately returns to a normal level (as quickly as
it can process the parts).

5. Mix allocation
The second problem to be discussed is mix allocation.
During a planning horizon of, say, a week to a month, a set
of part types must be produced in given volumes. (In the
card line example, the planning horizon was a five-day
week.j The problem is to choose production volumes for
each part type on each day. In other words, the weekly or
monthly part mix is to be allocated to each day.

As in the loading problem, the main objective of mix
allocation is to minimize makespan, or total completion
time of each day’s mix. Specifically, the maximum of the

406 daily makespans in the planning horizon is to be minimized.

ROBERT J . WITTROCK

The purpose of minimizing the maximum makespan is to
maximize the amount of slack time available each day to
respond to unpredictable events such as machine failures.

maximum daily part type count, that is, the maximum
number of part types allocated to any day. This simplifies
logistics and decreases any off-line setup not explicitly
considered.

A second and less important objective is to minimize the

Finally, there is a requirement that each day’s production
level of each part type be a multiple of some given unit. This
is to allow parts to be produced and transported in batches.
For the card line example, the “unit” is 100 cards (although
they are transported four at a time).

The mix allocation problem was solved for a somewhat
more general environment than the flexible flow line, as
described in Section 1. The environment may be called a
“reconfigurable flexible flow line.” In this environment, the
set of machines within each bank can change from day to
day. Furthermore, the individual machines within each bank
may operate at different speeds. Just as in the ordinary
flexible flow line, a part visits only one machine in each
bank, since the machines within a bank perform the same
“type” of operation. The processing time of a machine on a
part is determined by the rate at which the machine
performs operations and by the number of operations the
part requires.

discussed previously, the card line described in Section 1 is
still a legitimate example. In this case, each machine type is
dedicated to one operation type. The rates at which the
machines perform their operations are given in Table 4.

Table 5 indicates production requirements and other
information for a typical mix allocation problem for the
example card line. There are 13 part types (letters A”)
to be produced during the planning horizon of five days.
Daily production levels are to be in multiples of 100.

Since this is a more general environment than that

6. Minimizing the makespans
A Linear Programming (LP) formulation was used to solve
this mix allocation problem. Let

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

H = the number of days in the planning horizon.
N = the number of part types.
A4 = the number of operation types.
d, = the total number of parts of typej to be produced

h,, = the number of operations of type i necessary for one

S,,r = the set of machines that perform operation i on day t.
rk = the number of operations that machine k can perform

uI,/ = the number of parts of type j allocated to day I.

during the planning horizon.

part of type j.

in one unit of time (say, an hour).

The u,,,’s are the quantities to be found. The LP model
allocates the total demand in a way that minimizes the
maximum of the daily makespans.

The makespan for a day’s mix cannot be computed
without scheduling the mix. Thus an approximation is used.
Define a machine’s work loud to be the total time it must
spend performing its share of the day’s mix. Define the work
load of an operation (type) to be the maximum work load of
all the machines performing it. The makespan of a day’s mix
is always greater or equal to the maximum operation work
load, and this maximum is used as the approximation to the
makespan.

The work load of an operation depends on how the work
is distributed among the machines performing it, i.e., the
machine allocation. It is assumed that the work load can be
distributed equally among the machines performing an
operation. This would minimize the operation work load. As
noted in Section 2, a nearly perfect machine allocation can
be found for a flexible flow line, by using the LPT heuristic.

The number of operations of type i to be performed on
day t is
N

Let g,,r be the number of operations of type i that can be
performed during one time unit on day I . Then

In the example of Section 5 , S,,! and therefore g,,r are
independent of t . Section 10 discusses a case in which these
quantities vary with t .

Let
N

Then w , , ~ is the work load of operation type i on day I ,
assuming that the load is distributed equally among all
machines performing the operation. The approximation to
the makespan for day t is the maximum work load among

IBM J RES. DEVELOP \ iOL. 29 NO. 4 JULY 1985

Table 4 Machine information.

Machine Operation Operations
type type per hour

DIP DIP 1180
SIP SIP 1471
ROBOT MODULE 810

The Operalfnns per hour column gives an average number of operations. This takes into account
the expected amount of down time for the machine, which otherwise behaves deterministically.

Table 5 Part type information.

Part type Operations required for one card Production
requirement

DIP SIP MODULE

A
B
C
D
E
F
G
H
I
J
K
L
M

9
3
5

54
9
3

33
0
6
4
5
3

14

3
8

16
1 1
7

20
19
8

11
17
20
20
13

2
8
9
0

12
8
0
2

11
5
6
8
5

I200
100

7000
200

1700
5000
700
700
600
400
500
400

1500

all operations on that day:

max w ~ , ~ .

This approximation is always a lower bound to the
makespan. This bound can be nearly achieved using FFLL.

is

w=maxw,,, i = 1, ..., M , t = 1, ..., H.

Let

I

Thus the approximation to the maximum daily makespan

w, = max w , , ~ ;
I

w, is the maximum work load of operation type i. The goal
is to minimize

w = maxw,.
I

The operation type i which achieves this maximum is the
bottleneck operation for the planning horizon.
Unfortunately, if one minimizes the maximum work load of
only the bottleneck operation, the nonbottleneck work loads
can fluctuate wildly from day to day, which is an undesirable
situation. Thus it is worthwhile to minimize the maximum
work load of all operations instead of just the bottleneck.

A preliminary LP formulation to do this is w, = w:.

But since w: was a lower bound to w, in (6), it follows that
any feasible solution to (8) simultaneously minimizes w, for
all i subject to the constraints of (6). That is, by finding a
feasible solution to (8), one is finding an optimal solution to
all objectives of (6). Thus (8) is an appropriate model for
mix allocation.

Equation (7) can be used to precompute the daily
makespan in (8) as

The first set of constraints define wi as the maximum work
load of operation type i. The second constraints force total
production to be at the demanded level 4 .

Equation group (6) is a multiobjective LP. It seeks to
minimize wi for all i. For general linear programming
problems, one cannot expect to minimize more than one
objective at the same time. Trade-offs must be made.
However, for this particular multiobjective LP, all objectives
can be simultaneously minimized. (This will be shown.)

The constraints of (6) can be used to precompute a lower
bound, w:, on w,. That is,

H H N N

c gi,,wi 2 c c hi,juj.l = C hi,jdj.
1 = l !=I j - l j = I

Also, since the w,'s are precomputable, they could be
treated as constants in (8). However; this would simply
introduce redundancy into the constraints, so the w,'s are
treated as variables.

Suppose that the machine configuration does not change
from day to day (as in an ordinary flexible flow line), so that
g,,l is independent oft. In this case, it is easy to compute a
feasible solution to (8),

d.
H'

p 1 = A

In general, however, it is possible that (8) is infeasible.

so
N

hi,,',
j - I wi z 7 B w:.

2 gi.1
t = I

The final LP formulation of mix allocation is

N H

Minimize C cj,ruj,z
j - l l = I

Subject to

This would happen in a pathological case in which the &'s
fluctuate so wildly that the production levels cannot be
balanced. In this case, one must settle for achieving the load

(7) balancing constraints as nearly as possible. This can be done
by solving some single objective version of (6). [Notice that
(6) is always feasible.] One way to do this is to select W' as a
cost for each wl, i.e.,

Minimize 2 w:w,.
H

i= I

This approach gives the most priority to the bottleneck
operation.

In the sequel, (8) is assumed feasible.

The cost coefficients c ~ , ~ are explained in Section 7. The
critical difference between (8) and (6) is that the constraints
on w, are equalities in (8). Thus the work load for each
operation is required to be constant throughout the planning
horizon.

By a derivation exactly parallel to (7), it can be seen that
408 the constraints in (8) imply that

7. Minimizing part type count
A second objective for mix allocation is to minimize
maximum daily part type count. The part type count for day
t is the number of part types allocated to day t , or in other
words, the number of uj,l > 0 for fixed t. Since the optimal
solution to (8) is a basic solution, it has no more than
MH + N positive variables. M of them are w,'s, and the rest
are allocated part types. Thus the average daily part type
count is

M + -
N"

H '

Of course, any one day could have a much higher part type
count.

I ROBERT I. WllTROCK IBM 1. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

Strictly speaking, minimizing the maximum part type
count involves counting the number of positive variables,
and this appears to require the use of integer variables.
Instead of employing mixed integer programming, a
heuristic approach is taken, by defining the LP cost
coefficients in (8) so as to encourage an evenly spread part
type count. Let

cJ,l = (t - j)modH.

For example, if H = 5 and N = 13,

[CJ,,I =

Let

-0 1 2 3 4 -
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0
0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0
0 1 2 3 4
4 0 1 2 3
3 4 0 1 2 -

T (j) = [(j - l)modH] + 1.

With the objective defined above, the LP tends to allocate
part typej to day T (j) , since = 0. Any extra parts of
type j tend to be allocated to days T (j + I) , where I is as
small as possible, since c~,,(~+,) = I for I < H. This should
produce an evenly spread part type count, since T (j)
chooses values from (1, . . . , H 1 with nearly equal frequency.

8. Producing in units
There is also a requirement to produce in multiples of some
unit, say, U. That is, uJ,!/U must be an integer. Again, this is
integer programming, but it is shown here how to get good
answers from the LP solution by intelligent rounding.

The rounded solution must satisfy the demand constraints
of (8). The demands d, are assumed to be multiples of U. On
the other hand, requiring the equality work load constraints
of (8) to be satisfied would almost certainly result in no
feasible solution. Thus (6), which views these constraints as
inequalities, is used for rounding purposes.

At this point, a single, scalar objective is required, but it
need not be linear. The following quadratic objective is used:

Minimize 2 wf.

This objective tends to minimize all the work loads, with the
greatest emphasis on the bottleneck. Here again, the
unrounded solution to (8) minimizes the objective.

M

, = I

Let u be the vector of u,,~ values. The objective can be
expressed as a function of u:

M N

f(') = zl {my [?, (ht ,J/gi , l)uJ, l I f '
Define integers and real numbers v,,~ such that

'J . / = xJ. lu + V J , 1 3

0 I vj,l < u.
Let

H

YJ = c V J J .
r= I

Then yJ is a multiple of U. For each part type j , y,/U of the
uJ,/'s must be rounded up to (, y 1 + 1) U and the rest rounded
down to xj,r U. Of course, most of the u~,~'s are 0.

Suppose u ~ , ~ . is to be rounded up. (How to choose; and t'
is described later.) To maintain the demand constraint, u,,l
must be decreased for some or all t # t ' . To do this, each vj,l
must be replaced by v; ,~ such that

c v;,/ + u = Y,.
r+r'

The rounding technique decreases all the v,,~'s

proportionately. That is, for all t # t ',

for some a. Thus

a = - / # l '

' J J
/#/'

If yj = U, (Y = 0 and no more rounding needs to be done for
part type j .

The rounding technique iterates as follows: j and t ' are
chosen such that vJ,/, > 0. is rounded up and uJ,r for t #
t ' is decreased accordingly. All of the v, ,~, and y j are
updated accordingly. In particular, yJ is decreased by U. This
is repeated until all yJ = 0, which implies that all are
multiples of U.

At each iteration, j and t ' are chosen in a heuristic
attempt to minimize the (ultimate) value off(u). Let u (j , t ')
be the value of u corresponding to rounding up uJ,l. and
adjusting u accordingly. Let

v, = I t : > 0) .

Let

409

ROBERT 1. WITTROCK IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

~ ~~~~

Table 8 Unaided allocation.

Pari type Production levels by day Part type Produciion levels by day

Table 6 LP allocation.

1 2 3 4 5

A I200 - - -

B - 100 - - -

C - - 2600 2200 2200
D 100 - - - 100
E 500 1000 - - 200
F 2600 2200 - - 200
G - 400 - 100 200
H
I 500 100
J 400
K 500
L 400
M - - 1100 400 -

-

- - 600 100 -

- - -
- - - -

- - - -

- - - -

I 2 3 4 5

A 200 400 - - 600
5 100 - -
C 1000 3000 1000 1000 1000
D 100 100
E 600 500 - - 600
F 1000 - 2000 2000
G 100 - 300 - 300
H 200 - 200 - 300
I 200 - - - 400
J 400 -
K 100 - 400
L 400
M 500 - - 600 400

- -

- - -

-

- - -
- -
- - - -

Part type 4 4 3 6 8 Part type 10 4 6 4 7
count count

Table 7 Resulting work loads.

Operation Work loads by day (h)
type

I 2 3 4 5 Max.

DIP
SIP

12.1 12.3 12.0 10.8 12.2 12.3
13.6 13.5 13.8 13.3 13.9 13.9

MODULE 12.0 12.5 12.4 12.6 12.4 12.6

Makespan 13.6 13.5 13.8 13.3 13.9 13.9

Values of j and t ’ are chosen which achieve f *.

over j instead of the maximum. However, the above
approach seems to work better empirically. (It gave better
makespans on several test cases similar to those given in
Sections 9 and 10.) For an intuitive explanation, observe
that each value of j must be chosen y j / U times, sooner or
later. Values of j such that the minimum over t ’ is high are
those part types for which rounding necessarily causes an
imbalance in the work load. Choosing those values first
allows the imbalance to be corrected by appropriately
rounding the other part types afterwards.

A more intuitive heuristic would choose the minimum

9. Mix allocation: Results
This LP allocation technique was applied to the specific
problem defined in Section 5. The method was implemented
with a PL/I program which generates the LP matrix, calls
IBM’s MPSX to solve the LP, and rounds and interprets the
solution. Each run took under one second of CPU time on
an IBM 308 1.

The resulting daily production levels (u,,,) and part type
counts are given in Table 6. The work loads for each

410 operation type for each day (w,,,) are given in Table 7 along

Table 9 Resulting work loads.

Operation Work loads by day (h)
w e

1 2 3 4 5 M a x .

DIP
SIP

13.7 12.1 9.7 8.7 15.1 15.1
12.4 12.2 16.3 16.3 10.8 16.3

MODULE 12.6 13.9 11.5 12.8 11.0 13.9

Makespan 13.7 13.9 16.3 16.3 15.1 16.3

with the maximum for the whole week (wi). Table 7 also
lists the maximum operation work load for each day, which
is the lower bound on the day’s makespan.

The daily makespans vary by only 0.6 hours. Thus, the
rounding has not damaged the solution much. Also notice
that most part types have been allocated to day T(j) . For
example, part type H (index 8) has been allocated to day 3.

For comparison, Tables 8 and 9 show the same
information for an allocation of the same week’s mix
determined by the production manager without the aid of a
model.

The LP method improves the makespans by up to three
hours while simultaneously achieving better part type
counts. Notice that for the LP allocation, the SIP operation
is always the bottleneck, i.e., it always has the greatest work
load, thus determining the makespan. This is efficient, since
the SIP operation is the bottleneck to the whole week’s
production. With the unaided allocation, the bottleneck
operation changes from day to day. Thus, on days 1, 2, and
5 , SIP capacity is underutilized. This explains why the LP
allocation achieves lower makespans.

mix allocation LP.
The mix shown in Table 1 for FFLL was generated by the

ROBERT J. WITTROCK IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

10. Reassigning a machine
Tables 10 and 11 give the results of applying the LP
approach in the same basic environment, but with a different
weekly requirement (indicated in Table IO).

Note that the DIP operation is a serious bottleneck, while
the robots, which do the MODULE operations, are greatly
underutilized. It turns out that the robots can do DIP or SIP
operations as well as the MODULE operations they are
already doing. The only restriction is that each robot should
only do one type of operation per day (to avoid substantial
midday setups). Moreover, even when it does DIP or SIP
operations, a robot still operates at the rate of 8 I O operations
per hour. This is the case of the “reconfigurable” flexible
flow line.

There seems to be a potential to decrease the makespans
by reassigning one or more robots to the DIP operations on
one or more days. In terms of the LP, such a reassignment
would alter the Si , r ’~ , and through them the gl,,‘s, so that they
depend on t . On some days, the set St,l of machines doing
DIP operations includes a robot, and other days it does not.
The corresponding gl,t values are greater on the days for
which the robot is reassigned than on the other days. The
effect of such a reassignment can easily be determined by

Table 10 LP allocation (second case).

Part type Production levels by day Require-

I 2 3 4 5

A 1000 - - - - 1000
B 100
C - - 2300 2400 2300 7000
D 200 - - 200 - 400
E
F

700 400 - - 400 1500
1900 I100 - - - 3000

G 300 900 300 600 800 2900
H 500 - 500
I 800 -
J

300 - 1100
300 300

K 300 - - 300
L 500 - 500
M - 1400 - - 1400

ment

- 100 - - -

- - -
-
- - - -

- -
- - -

-

Part type 6 6 3 5 4
count

Table 11 Resulting work loads.

Operation Work loads by day (h)
type

I 2 3 4 5 M a u .

DIP
SIP

18.3 18.3 17.4 18.8 18.1 18.8
13.5 13.9 13.8 13.4 13.6 13.9

MODULE 11.3 11.2 11.4 10.7 11.1 11.4

Makespan 18.3 18.3 17.4 18.8 18.1 18.8

IBM 1. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

computing the daily makespan (of the unrounded solution)
using (9). There are really only a few sensible ways to do this
reassignment, and by exhaustive search, the minimum value
of w* = 15.1 was found for assigning one robot to DIP
operations on three days (1, 2 , and 3) , and to MODULE
operations on the other two days. The other two robots are
always assigned to MODULE operations. Tables 12 and 13
show the result of applying the LP method to this reassigned
configuration.

The makespans are reduced by an average of three hours
per day, a substantial saving. This has been achieved by
reallocating parts with high DIP requirements (e.g., part type
G) to the first three days, and those with high MODULE
requirements (e.g., part type I) to the last two days. Thus the
LP approach determines how to take maximum advantage
of the reassignment of machines. The choice of how to
reassign was done by a hand calculation, but this could be
automated.

Finally, suppose that the robots could do all types of
operations without setup. In this case, a line consisting only
of robots could be used. Each part would only visit one
machine. Since there is only one bank of machines, mix
allocation is trivial. Assuming that eight robots are used

Table 12 LP allocation (reassigned configuration).

Part type Production levels by day

I 2 3 4 5

A 1000 - - - -
B
C - - 1800 2700 2500
D 300 - - 100
E 300 500 - - 700
F 1900 1100
G 400 I100 700 200 500
H
I - 300 - 800
J
K 300 - - -
L
M

- 100 - - -

-

- - -

- - 500 - -
-

- - - - 300
-

- 500 - - -
- - I100 300 -

Pari type 6 6 4 5 4
count

Table 13 Resulting work loads.

Operation Work loads by day (h)
type

I 2 3 4 5 M a u .

DIP
SIP

15.2 15.0 14.6 15.5 15.1 15.5
13.6 13.7 13.7 13.8 13.5 13.8

MODULE 14.0 14.1 14.0 14.2 13.3 14.2

Makespan 15.2 15.0 14.6 15.5 15.1 15.5
41 1

ROBERT 1. WITTROCK

instead of the eight specialized machines, (9) can be used to
compute the corresponding makespans. For the production
requirement of Table IO, the makespan is w* = 20.1. This is
substantially worse than the 15.1 for Table 13, since the DIP
and SIP inserters are much faster than the robots. To achieve
a comparable makespan would require I 1 robots, with
w* = 14.6.

11. Concluding remarks
The experience with FFLL and with the LP method for mix
allocation indicates that these methods are valuable tools for
a flexible flow line. Future research on this subject will
proceed in two directions. The methods will be extended to
other scheduling environments. Most importantly, setup
time for a machine switching from one part type to another
must be considered. It seems that in many production
environments, part types are grouped into a few families
such that a machine incurs setup time only when it switches
from one family to another. Also, nonperiodic scheduling
must be developed for environments in which the processing
time for a single part is so long as to make periodic
scheduling impractical. Finally, an implementation of these
algorithms will be developed for online use. Since the CPU
and storage requirements of the algorithms are minimal, the
implementation can be on a PC.

Acknowledgments
I wish to thank C. Abraham of the IBM Yorktown
Manufacturing Research Center for his guidance in this
research and in the preparation of the paper, and J . Pasquier,
also of the IBM Yorktown Manufacturing Research Center,
for his contribution to the research. Thanks also to K. Joshi
and W. White, R. Kofira, S. Cooper, and R. Groves of the
IBM Tucson Printed Circuit Board Manufacturing
Organization for the encouragement and information they
have provided which made the research possible.

References
1. E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Recent

Developments in Deterministic Sequencing and Scheduling: A
Survey,” Deterministic and Stochastic Scheduling, M. A. H.
Dempster et al., Eds., D. Reidel Publishing Company, Boston,
MA, 1982.

2. K. L. Hitz, “Scheduling of Flexible Flow Shops-11,” Technical
Report LIDS-R-1049, Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA,
1980.

3. R. L. Graham, “Bounds on Multiprocessing Timing Anomalies,”

4. J. Pasquier, “High-Level Simulation of Flexible Card Assembly
Lines,” Research Report RC-10881, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1984.

SIAM J. Appl. Math. 17,416-429 (1969).

Received December 19, 1984; revised February 12, 1985

412

ROBERT I. WITTROCK

Robert J. Wittrock IBM Thomas J. Watson Research Center,
P.0. Box 218. Yorktown Heights. New York 10598. Dr. Wittrock is a
research staff member in the manufacturing logistics group of the
Manufacturing Research Department at Yorktown, where he joined
IBM in 1983. Currently he conducts research in mathematical
models for logistics for IBM manufacturing environments. He
received his B.S. in mathematics in 1978 from the University ofthe
Pacific, Stockton, California. He received his M.S. and his Ph.D. in
operations research in 1979 and 1983, both from Stanford
University, California. He is a member of the Operations Research
Society of America.

IBM J. RES. DEVELOP. VI 3L. 29 NO. 4 JULY 1985

