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algorithms  for 
flexible flow lines 

This  paper  discusses  scheduling  algorithms  for 
a  certain  kind  of  manufacturing  environment, 
called  the  “flexible flow  line.”  Two  scheduling 
problems are considered.  “Loading”  decides 
when  each  part  should be loaded into  the 
system.  “Mix  allocation”  selects  the  daily  part 
mix.  The  goals are to maximize  throughput  and 
reduce WIP. New  heuristic  algorithms  specially 
suited  to  solve  these  problems  in  the  context of 
a  flexible  flow  line  are  described.  The  paper  also 
discusses  experience with  the use of an 
experimental  implementation of these  algorithms 
to  solve  such  problems  arising  in  a real 
production  line. 

1. Introduction 
Automated scheduling algorithms can be  used to improve 
productivity in various manufacturing environments. This 
paper considers one such environment, called the “flexible 
flow line.” Two scheduling problems are considered. 
“Loading” decides when  each part should be loaded into  the 
system. “Mix allocation” selects the daily part mix. The 
goals are  to maximize throughput and reduce work-in- 
process inventory (WIP). New heuristic algorithms specially 
suited to solve  these problems in the context of a flexible 
flow line are described. The paper also discusses experience 
with the use  of an experimental implementation of  these 
algorithms to solve such problems arising in a real 
production line. 
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A flexible  flow line can be defined as follows.  Several part 
types must be produced each day. There are several banks of 
identical machines. Each part must be processed by at most 
one machine in each bank. (It may skip a bank.) Each part 
visits the machine banks in the same order. The time  it takes 
a machine to process a part depends on the part type and  the 
machine bank, but not on the sequence in  which the parts 
are processed. There is no setup time for a machine 
switching from one part type to another. In front of each 
individual machine, there is a buffer  which has a large 
capacity and operates on a first-in,  first-out  basis. There are 
machines to load and unload parts into  and  out of the 
system. Finally, there is an automated transport system to 
move parts from any machine to any other. 

As an example, Figure 1 schematically portrays the 
machine configuration of an actual production line. The 
function of this line is to insert components into printed 
circuit cards. The line has both numerically controlled tools 
and robots. There are three banks of machines: two  so-called 
“DIP” inserters, three ‘‘SIP’’ inserters, and three robots, 
which do  “MODULE” insertions. (The terms “DIP” and 
“SIP” refer to types  of components called “Dual Inline 
Packages” and “Single Inline Packages,”  respectively.) A card 
is transported through the system on a “camer,” which holds 
four cards of the same type. After  being loaded into  the 
system, a camer visits one of the two DIP machines, or skips 
them both. It then visits one of the three SIP machines (or 
skips them). Finally, it  visits one of the three robots (or skips 
them) and is then unloaded from the system.  Before  visiting 
a machine, the camer may  wait in the machine’s  buffer  if it 
is  busy.  Each  buffer can hold up to 25 camers. 

To date, this scheduling environment does not appear to 
have  been  given much attention in the literature, although 
certain special  cases  of  it  have. For example, if there is only 
one machine in each bank, and each part visits  every bank, 
the flexible  flow line becomes the “flow shop” environment. 
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1 Reaction to machine  failures  (static  routing). 

If there is one  machine in  each bank,  but  some  parts skip 
some banks,  it is a special case of the  “job  shop” 
environment. In this case, all parts  must visit the  machines 
in  the  same order, whereas in a general job  shop each part is 
allowed to visit the  machines in  a different order. The only 
well-studied case in which the  banks  contain  more  than  one 
machine is the “identical parallel machine”  environment. 
This is the case of one  machine  bank. Various  optimizing 
and heuristic  algorithms  have  been  developed  for all these 
cases. For a survey, see [ 11. 

2. Loading 
The first problem to be discussed is that of  scheduling 
exactly when to load  each part. A new algorithm was 
developed for this kind of  loading, called FFLL (Flexible 
Flow Line Loading). 

There  are  two goals in the loading  problem. The  main 
goal is to maximize throughput, Le., minimize  the 
makespan, or total completion  time, of the whole day’s mix. 
A secondary goal is to  minimize  the  amount of buffer space 
used. One reason to do  this is to  minimize WIP. The  other 
reason is to  minimize  the possibility of overflowing a buffer. 
FFLL effectively assumes that buffer capacity is infinite, so 
by minimizing  the  amount of buffer space  actually used, the 
possibility of  violating any real buffer capacity constraint is 
minimized. (To consider buffer capacity as  an explicit 
constraint would be a much  harder scheduling  problem.) 

It is useful to divide the loading  problem into  three 
subproblems. The first subproblem is called “machine 
allocation.” Recall that a part needs to be processed by only 
one  machine in  each machine  bank.  Machine allocation is 
the problem  of  choosing  which machine  in each bank will 
process each part.  The second subproblem, “sequencing,”  is 
to  determine  the  order  in which the parts enter  the system. 
The  third problem,  “timing,” is to determine  the exact times 
at which the  parts should be loaded into  the system. FFLL 
handles these  problems in  the  order given above: machine 
allocation,  sequencing, and  then timing.  However, for ease 
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of  exposition, timing is discussed first, followed by machine 
allocation and  then sequencing. 

complex optimization problems. There  do  not  appear  to be 
any reasonably fast algorithms  for  finding optimal solutions 
to such  problems. For this reason, FFLL uses fast heuristic 
algorithms to find good (but  not usually optimal) solutions 
to  the subproblems. 

uses “periodic  scheduling” to  do  the sequencing and  timing. 
The basic idea  of  periodic  scheduling is to schedule  a  small 
representative sample of the day’s mix and repeat  this 
schedule at regular intervals  until the whole day’s mix  has 
been produced.  Hitz [2] has developed  a  periodic  scheduling 
algorithm based on implicit enumeration.  The periodic 
scheduling approach of FFLL is based on heuristics. 

The “representative sample” is called the  “minimal part 
set”  (MPS). The  MPS is the smallest possible set of parts in 
the  same  proportion  as  the whole day’s mix. For example, if 
the mix is 3000 parts of type A, 2000 of B, and 1000 of C, 
the  MPS is three parts  of type A, two  of B, and  one of C. By 
using periodic  scheduling, the problem  of  sequencing is 
reduced to finding  a good order in which to load  each part in 
the MPS. The problem  of timing is reduced to  determining 
the  times  at which to load each part  in the first MPS and 
determining  the  time interval  after which the schedule is to 
be periodically repeated. This  time interval is called the 
“period” of the schedule  (denoted by P). The  number of 
times  the  minimal  part set must be repeated  in order to 
complete  the whole day’s mix is called the “frequency” 
(denoted by F).  In the example, F = 1000. 

The periodic  schedule is determined in  such  a way that 
each machine processes all of its assigned parts  for one MPS 
before processing any  parts of the next  MPS. Once  the 
sequence and loading times for the  minimal part set have 
been determined,  the best period  for the schedule is easy to 
compute. Define the  “MPS work span” of  a machine to be 
the elapsed time between the  time it starts processing its first 
part  in the MPS and  the  time it  completes  work on its last 
part in the MPS. The best period  for  such  a  schedule is 
simply the  maximum  MPS work  span among all the 
machines. A longer  period than  this would  result  in 
unnecessary idle time  on all the machines, while a  shorter 
period  would  result  in unnecessary queuing  in  the buffers. 

With the period  defined as above, the makespan  for the 
whole day’s mix is  a  little more  than F X P. A small amount 
of time  (the  transient interval) is spent getting the  parts  into 
the system. Essentially, the makespan can be minimized by 
finding  a  schedule that minimizes the period P. 

For each machine, define  its “MPS work load”  to be the 
total time  it  must spend processing parts assigned to it  in the 
MPS. Thus a  machine’s  MPS  work span is equal  to its  MPS 
work load plus  any idle time it incurs processing the MPS. 
Define the  machine with the greatest MPS work  load to be 

The various subproblems of the loading  problem are 

Suppose  a machine allocation  has  been determined. E L L  
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the bottleneck. Clearly the period cannot be less than  the 
bottleneck work load.  Notice that  the bottleneck  work  load 
does  not  depend  on  the  timing or sequencing and  can 
therefore be precomputed. 

schedule whose period is equal to  the bottleneck work load, 
i.e., a minimum period  schedule.  A  simple way to  do this  is 
as follows. Suppose  a  sequence  for the MPS  has  been  chosen. 
Conceptually, let all the parts of the  MPS  enter  the system as 
rapidly as possible. Consider the machines, one  at a time, in 
an  order consistent with the “flow,” Le., the  order in which 
parts visit the  machine banks. At each  machine, process the 
parts  in the  order  in which they amve. Begin processing each 
part as soon  as the  machine is available. After considering all 
parts  of the  MPS  that visit the  machine, if the work span of 
the  machine exceeds its  work  load, delay processing the first 
part by the difference. All subsequent  parts are still processed 
in  order, starting as  soon as the  machine is available. Then 
proceed to  the next  machine. 

The key to  the  above procedure  is the delaying. The 
difference between a machine’s work span and its work load 
is idle time. Delaying the first part  may also delay some of 
the  subsequent parts, but  the delay ultimately  cancels out 
with the idle time. Consequently, the work span of the 
machine after  delaying is exactly equal to its  work  load. 
Thus  the period  resulting  from this  method is simply the 
largest (i.e., bottleneck) work load. The work loads depend 
on  the  machine allocation, but  not  on  the sequence  in which 
the  MPS is loaded. It follows that this method of timing 
achieves the  minimum period (= bottleneck  work load), 
regardless of the sequence. 

method, modified to reduce queuing  in  the buffers. (For 
example,  it does  not load the  MPS  as rapidly as possible.) 
How FFLL chooses the sequence for the MPS is explained in 
Section 3 .  

Now  consider the problem of machine allocation. In the 

Fortunately, in  a flexible flow line, it is easy to find a 

The “timing”  algorithm of  FFLL is a version of the  above 

context of periodic  scheduling, machine allocation is the 
problem  of  choosing which machine in  each bank will 
process each part in  the MPS. This is done before the 
sequencing and timing, to allow the latter  two subproblems 
to be solved with known  MPS  work  loads  for  each  machine. 
The sequencing method described  in  Section 3 depends 
critically on this, as  does  the  timing  method described above. 

The makespan of the schedule is determined by the 
minimum period, which is equal  to  the  maximum MPS 
work load. Thus  the goal of machine allocation is, for  each 
bank of machines, to  minimize  the  maximum work  load 
among all the  machines  in  that  bank. 

machine  bank would be  obtained if all of the machines  in 
the  bank were given equal work loads, but  this is usually not 
possible. To find n e d y  balanced  work loads, FFLL uses the 
following heuristic,  Each machine  bank is  considered 

The lowest conceivable maximum work  load  for a 

separately. At each bank,  the “Longest Processing Time 
First”  (LPT) heuristic is applied. This  approach sorts  parts in 
order of  decreasing processing time  on  the  machine bank. 
(This sorting  is only  to  aid  the allocation. It does  not 
determine  the loading sequence.) The algorithm then 
allocates the  machines in the  bank  to  one  part  at a  time, in 
this  order. When a machine is  allocated to a part, its 
cumulative work  load is increased by the processing time of 
that  part.  For  each  part considered, the  machine with the 
smallest cumulative work  load is allocated to it. 

In another  context,  Graham [ 3 ]  has  shown that  the  LPT 
rule results in  a maximum work  load that is never more 
than 33.3% worse than  the  optimal solution. More typically, 
as  in  the case discussed in  Section 4, it came within 0.5%. 

3. Sequencing 
In  the  context of  periodic  scheduling,  sequencing is the 
problem of determining a  good order  in which to load the 
MPS. As explained  in  Section 2, the  minimum period can be 
achieved by appropriate timing, regardless of the MPS 
sequence. Thus, choosing a sequence for the  MPS  does  not 
have a significant effect on  the makespan. The goal of 
sequencing is therefore to  minimize  the  amount of queuing. 

FFLL uses a new heuristic to choose  a  sequence for the 
MPS, called “dynamic balancing.” It is heuristic in two ways. 
The goal of minimizing  queuing is difficult to deal with 
when  choosing  a  sequence,  since this requires  knowing the 
loading  times, which have not yet been determined.  For this 
reason, dynamic balancing replaces the real objective with a 
heuristic objective. It then applies  a “myopic” heuristic to 
minimize  this new objective. 

The heuristic  objective in  dynamic balancing is based on 
the following intuitive  observations.  Parts tend  to  queue  up 
in the buffer of a machine if a  lot  of  work  is sent  to  that 
machine  in a short period  of time.  This occurs if there is an 
interval in  the loading  sequence  consisting of  many parts 
with large processing times all on  the  same machine. In 
contrast, a loading  sequence  which keeps the  cumulative 
work  loads of all machines roughly equal at all times  tends 
to avoid queuing.  The heuristic objective of dynamic 
balancing attempts  to achieve  this. 

To be precise, let 

n = the  number of parts in the MPS, 
m = the  number of  machines  (including all banks), 
z ~ , ~  = process time of part g on  machine k. 

When  the loading  sequence is being determined,  the  machines 
have  already  been  allocated, so  for each  part g, rg.k = 0, for all 
but  one  machine in  each bank. Let 

n 

‘k = tg ,k .  
g= I 

That is, 1, is the  MPS work  load  of machine k. 403 
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Suppose a loading sequence has been determined. For 
each part g in the MPS,  let Sg be the set  of parts in the 
sequence up through part g. That is, the set Sg consists of 
part g and those parts which precede part g in the sequence. 
The problem of  choosing a loading sequence can be viewed 
as determining Sg for each part g. 

all machines k, 
Suppose, for part g, there is some number ag such that for 

Then 0 5 ag 5 1. ag is the fraction of the work load for 
machine k that has entered the system by the  time part g has 
been loaded. Since ag does not depend on k, Eq. (1) asserts 
that this fraction is the same for all machines. This is the 
“dynamic balance” condition that should be achieved by a 
good loading sequence, for  all g. Unfortunately, this 
condition cannot be achieved, since it implies t g , , k  > 0 for all 
parts g’. This, in turn, would imply that each part visits  all 
machines, whereas actually each part visits only one 
machine in each bank. Thus (1)  represents an ideal, and the 
dynamic balancing heuristic tries to come as close as possible 
to this ideal. 

To see  how to  do this, let 
rn 

n r n  n In 

T = f g , k  = 1 tg = 1,. 

Equation ( 1 )  implies that 

g=l k=l  g=I k=l 

rn 

‘g’,k ‘g’ 
k=l g’ES8 k ” q  

a =  ” - 
rn 

‘k 
T 

k= I 

Thus (1 )  is equivalent to 

The left-hand side of (2) is the cumulative work  load  of 
machine k when part g enters the system. The right-hand 
side is the “ideal” value  for this. 

Let 

and 

Then (2) is equivalent to 404 
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Hg,k = 0. (3) 

Thus, H g , k  measures how overloaded machine k is  when part 
g enters the system. If H g , k  > 0, machine k has  been  given 
too much work  when part g enters. If Hg,k < 0, machine k 
has  been  given too little work. If H g , k  = 0, machine k has 
been  given the ideal amount of  work. 

The dynamic balancing heuristic uses the following 
objective function: 

Minimize 1 H : , k ,  

n r n  

g=I k=l 

where 

H i , k  = max(Hg,k, 01. 

This objective seeks to minimize the sum of all the machine 
overloads throughout the whole sequence. Notice that 

rn 

so 
rn 

Hg,k = O. 
k= I 

Thus, by minimizing (4), the heuristic is  really trying to get 
as close as possible to (3). 

Finding a sequence which minimizes (4) seems to be a 
very hard problem. Instead of  finding its absolute minimum, 
the dynamic balancing approach applies a myopic heuristic 
to this objective. This approach simply adds one part at a 
time to the  end of the sequence, always choosing the part 
which minimizes the objective at that point in the sequence. 

Specifically, suppose part g* is the last part in the partial 
sequence determined so far. The myopic heuristic adds to 
the  end of the sequence the part g, which minimizes 

rn rn 

H i , k  = (Hg*,k  + hg,k)+. 
k= I k= I 

By ( 5 ) ,  H g . , k  is  positive  for some k‘s and negative  for others. 
The same holds for h g . k .  The heuristic tends to choose a part 
g such that hg,k  is  negative  when Hg.+k is positive.  Now h , ,  is 
most negative if machine k has not been allocated to part g. 
Thus  the heuristic tends to add to  the sequence a part that 
avoids the machines that  are currently overloaded. 

4. Loading: Results 
The FFLL algorithm consists of three major steps: 

1. Allocate machines to MPS (LPT heuristic). 
2. Sequence MPS (dynamic balancing heuristic). 
3. Compute loading times for  MPS. 
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To test the algorithm, FFLL was implemented in an 
experimental PL/I  code  on  an IBM 308 1. This was then 
used to  determine schedules  for typical daily mixes for the 
card line described in Section 1. CPU  run  times were under 
one second. One typical day’s mix is given in Table 1. 

The single-letter part  types  in the first column of  Table 1 
are  pseudonyms for the real part numbers. The  numbers  in 
Table 1 are  numbers of camers’ worth of cards, i.e., four- 
card  units. The second column indicates how many  camers 
of each  card  type are  to be produced in the day. The third 
column indicates  how many  camers of each card  type  are 
contained in one  minimal  part set. Thus  the first row 
indicates that 300 camers’ worth  of cards of type A (i.e., 
1200  cards) are  to be produced in  the day, and  this translates 
to 12 camers’ worth  for one MPS. The results of scheduling 
this mix with FFLL  are  summarized  in Tables 2 and 3. 

After the initial  transient  interval  of 5 minutes  and 49 
seconds, one  MPS is produced every 28  minutes  and 44 
seconds (the period). After 25 periods (the frequency), the 
whole day’s mix is produced. The total time  to  do  this is 12 
hours, 4 minutes, and 9 seconds. 

Table 3 shows, for  each machine,  the  MPS work load, the 
utilization, and  the  maximum  number of camers  queued in 
the corresponding buffer. The  machine allocation  heuristic 
has balanced the work loads very effectively. For each 
machine bank, the work loads, which are nearly half an 
hour, vary by only a few seconds. The bottleneck machine, 
SIP,, has a work  load of 28 minutes  and 44 seconds, and this 
determines  the  minimum period. The utilization  of  SIP, the 
bottleneck  tool bank, is nearly 100%. It is slightly less 
because the  machines  cannot  be fully utilized during  the 
transient  interval. Very little buffer space is used, only two 
camers per machine. This is due  to  the use of  periodic 
scheduling and  to  the  dynamic balancing  heuristic  for 
sequencing. 

the use of  simulation.  Pasquier [4] has  developed a RESQ- 
based simulation system for flexible flow lines. This system 
has the  unique capability of accepting as  input a detailed 
loading  schedule  such as would be produced by FFLL or 
some  other algorithm.  Pasquier used this system to  compare 
FFLL with simpler policies to deal with the various aspects 
of the loading  problem. He generally found  that alternatives 
to  FFLL resulted in more  queuing  at  the buffers, although 
throughput  could be maintained  as long as  some  appropriate 
periodic  schedule was followed. 

One of the advantages of using a periodic  scheduling 
policy like that  produced by FFLL is its  adaptability to 
machine failures. Pasquier [4] used his simulation  to 
experiment with several ways to  adapt FFLL‘s schedule  in 
response to  machine failures. The results are  summarized 
below. 

Another way in which these  algorithms were tested was by 

As a minimal response, any  part which FFLL has  routed 
to a failed machine  must be rerouted to a functional 

Table 1 A typical  day’s mix. 

Part Day’s  MPS 
t v w  mix 

300 
25 

650 
25 

175 
IO0 

12 
I 

26 
1 
7 
4 

Table 2 Loading  results (hours:minutes:seconds). 

Frequency 25 periods 

Period 
Transient 
Makespan 

28:44 
5:49 

12:04:09 

Table 3 Loading  results by machine. 

Machine Work Utilization  Max. 
load queue 

DIP, 
DIP, 
SIP, 
SIP, 
SIP, 
ROBOT, 
ROBOT, 
ROBOT, 

25:3 I 
25:32 
28:27 
28:44 
28:36 
2656 
2656 
27: 12 

88 
88 
98 
99 
99 
93 
93 
94 

machine in the  same  bank. Also, the period must be 
increased to reflect the reduced  capacity. In order  to 
compute  the new period, the  MPS work load is recomputed 
for each functional  machine in  each bank  that  contains a 
failure. For this purpose,  it can be assumed that  the work 
loads are  the  same for each machine in a bank. If the new 
work load  of any  machine exceeds the old  period, the period 
is increased to  this new value. To appropriately slow down 
the loading  of the  parts  into  the system, the interarrival 
times  are increased by a factor of 

P,,W 

‘old ’ 

where PneW is the newly determined period and Pold is the 
original  period.  When the  machines  are repaired, the  FFLL 
schedule is resumed. 

Figure 2 shows the result of  using  this minimal  adaptation 
on a simulation of the mix from Table 1. It shows a plot  of 
queue length versus time for each  of the robots. The 
horizontal  axis  is elapsed time in  seconds. (About  four  hours 
are shown.) The vertical axis  shows the  number of  parts (i.e., 
camers) waiting in  the buffer or being processed by each 405 
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1 Example  machine  configuration  (schematic). 

Elapsed time (s) 

Reaction t o  machine failurcs  (dynamic  routing) 

robot. A queue of 0 means that  the robot is  idle. Robots 1 
and 2 fail at time 12 000 and are repaired at time 15 000. 
This is the worst  case  for a flexible  flow line, in that the most 
downstream machines have  failed.  Even though parts are 
introduced into the system more slowly, the parts already in 
the system  proceed at the normal rate and pile up in front of 
the  one working robot. In spite of this, the buffer capacity of 
25 carriers is  never  exceeded. 

In one respect, this adaptation of the schedule is 
unsatisfactory. After the two robots are repaired at time 
15 000, a large queue remains in the buffer  of robot 3. This is 
unnecessary, since the other two robots are occasionally  idle. 
This behavior is due to “static routing,” i.e., routing parts 
according to the machine allocation chosen in advance by 
FFLL. Static routing is not appropriate after machines have 
failed and been repaired, since the system  is no longer  in a 
state predicted by the algorithm. Instead, Pasquier 
experimented with  several “dynamic routing” policies,  which 
routed parts according to  the state of the system. The best 
policy  he found was as follows. When a part leaves one 
machine, it  is sent to the machine in the next bank with the 
shortest completion time, i.e., the machine which will 
soonest complete processing  all the parts in its buffer. Figure 
3 shows  what happens when this dynamic routing is  used. 
When the robots are repaired at time 15 000, the queue on 
robot 3 immediately returns to a normal level (as quickly  as 
it can process the parts). 

5. Mix  allocation 
The second problem to be discussed  is  mix allocation. 
During a planning horizon of,  say, a week to a  month,  a set 
of part types must be produced in given  volumes. (In  the 
card line example, the planning horizon was a five-day 
week.j The problem is to choose production volumes for 
each part type on each day. In other words, the weekly or 
monthly part mix is to be allocated to each day. 

As in the loading problem, the main objective  of  mix 
allocation is to minimize makespan, or total completion 
time of each day’s  mix.  Specifically, the maximum of the 

406 daily makespans in the planning horizon is to be minimized. 
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The purpose of minimizing the maximum makespan is to 
maximize the  amount of  slack time available  each day to 
respond to unpredictable events such as machine failures. 

maximum daily part type count,  that is, the maximum 
number of part types allocated to any day. This simplifies 
logistics and decreases any off-line setup not explicitly 
considered. 

A second and less important objective is to minimize the 

Finally, there is a requirement that each  day’s production 
level  of  each part type  be a multiple of some given unit. This 
is to allow parts to be produced and transported in  batches. 
For the card line example, the “unit” is 100 cards (although 
they are transported four at a time). 

The mix allocation problem was  solved for a somewhat 
more general environment  than  the flexible  flow line, as 
described in Section 1. The environment may be called a 
“reconfigurable flexible  flow line.” In this environment, the 
set of machines within each bank can change from day to 
day. Furthermore, the individual machines within each bank 
may operate at different  speeds. Just as in the ordinary 
flexible  flow line, a part visits  only one machine in  each 
bank, since the machines within a bank perform the same 
“type” of operation. The processing time of a machine on  a 
part is determined by the rate at which the machine 
performs operations and by the number of operations the 
part requires. 

discussed  previously, the card line described in Section 1 is 
still a legitimate example. In this case,  each machine type  is 
dedicated to one operation type. The rates at which the 
machines perform their operations are given  in Table 4. 

Table 5 indicates production requirements and other 
information for a typical  mix allocation problem for the 
example card line. There are 13 part types (letters A”) 
to be produced during the planning horizon of  five days. 
Daily production levels are to be in multiples of 100. 

Since this is a more general environment than  that 

6. Minimizing  the  makespans 
A Linear Programming (LP) formulation was  used to solve 
this mix allocation problem. Let 
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H = the  number of  days  in the  planning horizon. 
N = the  number of part types. 
A4 = the  number of operation types. 
d, = the total number of  parts of typej  to be produced 

h,, = the  number of operations of type i necessary for one 

S,,r = the set of machines  that perform operation i on  day t. 
rk = the  number of operations  that  machine k can perform 

uI,/ = the  number of  parts of type j  allocated to  day I. 

during  the planning  horizon. 

part  of  type j. 

in  one  unit of time (say, an hour). 

The u,,,’s are  the  quantities  to be found.  The  LP model 
allocates the total demand  in a way that minimizes the 
maximum of the daily  makespans. 

The makespan  for a day’s mix cannot be computed 
without  scheduling the mix. Thus  an  approximation is used. 
Define a machine’s work loud to be the total time  it  must 
spend  performing  its  share  of the day’s mix. Define the work 
load of an operation (type) to be the  maximum work  load of 
all the machines  performing it.  The makespan  of  a day’s mix 
is always greater or equal to  the  maximum  operation work 
load, and  this  maximum is used as the  approximation  to  the 
makespan. 

The work load  of an operation depends  on how the work 
is distributed among  the machines  performing  it, i.e., the 
machine allocation. It is assumed that  the work  load can be 
distributed  equally among  the  machines performing an 
operation. This would minimize  the operation  work load. As 
noted  in  Section 2, a nearly perfect machine allocation can 
be found for  a flexible flow line, by using the  LPT heuristic. 

The  number of operations of type i to be performed on 
day t is 
N 

Let g,,r be the  number of operations of type i that  can be 
performed during  one  time  unit  on  day I .  Then 

In the example  of  Section 5 ,  S,,! and therefore g,,r are 
independent of t .  Section 10 discusses a case in which these 
quantities vary with t .  

Let 
N 

Then w , , ~  is the work  load of operation type i on  day I ,  
assuming that  the load  is  distributed  equally among all 
machines performing the operation. The  approximation  to 
the makespan  for day t is the  maximum work load among 
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Table 4 Machine information. 

Machine Operation Operations 
type type per hour 

DIP DIP 1180 
SIP SIP 1471 
ROBOT MODULE 810 

The Operalfnns per hour column gives an average number of operations. This takes into account 
the expected amount of down time for the machine, which otherwise behaves deterministically. 

Table 5 Part type information. 

Part type Operations required for one card Production 
requirement 

DIP  SIP  MODULE 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 

9 
3 
5 

54 
9 
3 

33 
0 
6 
4 
5 
3 

14 

3 
8 

16 
1 1  
7 

20 
19 
8 

11 
17 
20 
20 
13 

2 
8 
9 
0 

12 
8 
0 
2 

11 
5 
6 
8 
5 

I200 
100 

7000 
200 

1700 
5000 
700 
700 
600 
400 
500 
400 

1500 

all operations  on  that day: 

max w ~ , ~ .  

This  approximation is always a lower bound  to  the 
makespan.  This  bound  can  be nearly  achieved  using FFLL. 

is 

w=maxw,,, i =  1, ..., M , t =  1, ..., H. 

Let 

I 

Thus  the  approximation  to  the  maximum daily  makespan 

w, = max w , , ~ ;  
I 

w, is the  maximum work  load  of operation  type i. The goal 
is to  minimize 

w = maxw,. 
I 

The operation  type i which achieves this maximum is the 
bottleneck operation for the  planning horizon. 
Unfortunately, if one minimizes the  maximum work load  of 
only the bottleneck operation,  the nonbottleneck  work  loads 
can fluctuate wildly from  day  to day, which is an undesirable 
situation. Thus it  is  worthwhile to  minimize  the  maximum 
work  load  of all operations instead  of just  the bottleneck. 



A preliminary LP formulation to  do this is w, = w:. 

But since w: was a lower bound to w, in (6), it  follows that 
any  feasible solution to (8) simultaneously minimizes w, for 
all i subject to the constraints of (6). That is,  by finding a 
feasible solution to (8), one is finding an optimal solution to 
all  objectives of (6). Thus (8) is an appropriate model  for 
mix allocation. 

Equation (7) can be  used to precompute the daily 
makespan in (8) as 

The first  set  of constraints define wi as the maximum work 
load of operation type i. The second constraints force total 
production to be at the demanded level 4 .  

Equation group (6) is a multiobjective LP. It  seeks to 
minimize wi for all i. For general linear programming 
problems, one cannot expect to minimize more than one 
objective at the same time. Trade-offs must be  made. 
However,  for this particular multiobjective LP, all  objectives 
can be simultaneously minimized. (This will  be shown.) 

The constraints of (6) can be used to precompute a lower 
bound, w:, on w,. That is, 

H H N  N 

c gi,,wi 2 c c hi,juj.l = C hi,jdj. 
1 = l  !=I  j - l  j =  I 

Also,  since the w,'s are precomputable, they  could  be 
treated as constants in (8). However; this would  simply 
introduce redundancy into the constraints, so the w,'s are 
treated as  variables. 

Suppose that the machine configuration does  not  change 
from  day to day (as in an ordinary flexible  flow line), so that 
g,,l is independent oft. In this case,  it is  easy to compute a 
feasible solution to (8), 

d. 
H' 

p 1  = A 

In general,  however, it is  possible that (8) is infeasible. 

so 
N 

hi,,', 
j -  I wi z 7 B w:. 

2 gi.1 
t = I  

The final LP formulation of mix allocation is 

N H  

Minimize C cj,ruj,z 
j - l  l = I  

Subject to 

This would happen in a pathological  case in which the &'s 
fluctuate so wildly that the production levels cannot be 
balanced.  In this case, one must  settle  for  achieving the load 

(7) balancing constraints as nearly as possible. This can be done 
by solving some single  objective  version of (6). [Notice that 
(6) is  always  feasible.] One way to  do this is to select W' as a 
cost  for  each wl,  i.e., 

Minimize 2 w:w,. 
H 

i= I 

This approach gives the most  priority to the bottleneck 
operation. 

In the sequel, (8) is assumed  feasible. 

The cost  coefficients c ~ , ~  are explained  in  Section 7. The 
critical difference  between (8) and (6) is that the constraints 
on w, are equalities in (8). Thus the work  load for each 
operation is required to be constant throughout the planning 
horizon. 

By a derivation exactly  parallel to (7), it can be seen that 
408 the constraints in (8) imply that 

7. Minimizing part type count 
A second  objective  for  mix allocation is to minimize 
maximum daily part type count. The part type count for  day 
t is the number of part types  allocated to day t ,  or in other 
words, the number of uj,l > 0 for fixed t. Since the optimal 
solution to (8) is a basic solution, it has no more than 
MH + N positive  variables. M of them are w,'s, and  the rest 
are allocated part types. Thus the average  daily part type 
count is 

M + -  
N" 

H '  

Of course, any one day could have a much higher part type 
count. 
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Strictly speaking, minimizing the maximum part type 
count involves counting the number of  positive  variables, 
and this appears to require the use  of integer variables. 
Instead of employing mixed integer programming, a 
heuristic approach is taken, by defining the  LP cost 
coefficients  in (8) so as to encourage an evenly  spread part 
type count. Let 

cJ,l = ( t  - j)modH. 

For example, if H = 5 and N = 13, 

[CJ,,I = 

Let 

-0 1 2 3 4 -  
4 0 1 2 3  
3 4 0 1 2  
2 3 4 0 1  
1 2 3 4 0  
0 1 2 3 4  
4 0 1 2 3  
3 4 0 1 2  
2 3 4 0 1  
1 2 3 4 0  
0 1 2 3 4  
4 0 1 2 3  
3 4 0 1 2 -  

T ( j )  = [ ( j  - l)modH] + 1. 

With the objective defined above, the LP tends to allocate 
part typej to day T ( j ) ,  since = 0. Any extra parts of 
type j tend to be allocated to days T ( j  + I ) ,  where I is as 
small as possible, since c~,,(~+,) = I for I < H. This should 
produce an evenly spread part type count, since T ( j )  
chooses  values from ( 1, . . . , H 1 with  nearly equal frequency. 

8. Producing in units 
There is also a requirement to produce in multiples of some 
unit, say, U. That is, uJ,!/U must be an integer.  Again, this is 
integer programming, but it is shown here  how to get  good 
answers from the LP solution by intelligent rounding. 

The rounded solution must satisfy the  demand constraints 
of (8). The demands d, are assumed to be multiples of U. On 
the  other  hand, requiring the equality work load constraints 
of (8) to be  satisfied  would almost certainly result  in no 
feasible solution. Thus (6), which  views these constraints as 
inequalities, is  used  for rounding purposes. 

At this point, a single,  scalar objective is required, but it 
need not be linear. The following quadratic objective is used: 

Minimize 2 wf. 

This objective tends to minimize all the work  loads,  with the 
greatest emphasis on  the bottleneck. Here again, the 
unrounded solution to (8) minimizes the objective. 

M 

, = I  

Let u be the vector of u,,~ values. The objective can be 
expressed  as a function of u: 

M N 

f(') = zl {my [?, (ht ,J/gi , l )uJ, l  I f  ' 
Define integers and real numbers v,,~ such that 

'J . /  = xJ. lu  + V J , 1 3  

0 I vj,l < u. 
Let 

H 

YJ = c V J J .  
r= I 

Then yJ is a multiple of U. For each part type j ,  y,/U of the 
uJ,/'s must be rounded up to ( , y 1  + 1) U and the rest rounded 
down to xj,r U. Of course, most of the u~,~'s are 0. 

Suppose u ~ , ~ .  is to be rounded up. (How to choose; and t' 
is  described later.) To maintain the demand constraint, u,,l 
must be decreased  for some or all t # t ' .  To do this, each vj,l 
must be replaced by v; ,~ such that 

c v;,/ + u = Y,. 
r+r' 

The rounding technique decreases all the v,,~'s 

proportionately. That is,  for all t # t ', 

for some a. Thus 

a = -  / # l '  

' J J  
/#/' 

If yj  = U, (Y = 0 and  no more rounding needs to be done for 
part type j .  

The rounding technique iterates as follows: j and t ' are 
chosen such that vJ,/, > 0. is rounded up and uJ,r for t # 
t ' is decreased  accordingly. All  of the v, ,~,  and y j  are 
updated accordingly. In particular, yJ is  decreased by U. This 
is repeated until all yJ = 0, which implies that all are 
multiples of U. 

At each iteration, j and t ' are chosen in a heuristic 
attempt  to minimize the (ultimate) value off(u). Let u ( j ,  t ' )  
be the value of u corresponding to rounding up uJ,l. and 
adjusting u accordingly. Let 

v, = I t :  > 0) .  

Let 

409 
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~ ~~~~ 

Table 8 Unaided allocation. 

Pari type Production levels by  day Part type Produciion levels by  day 

Table 6 LP allocation. 

1 2 3 4 5 

A I200 - - - 

B - 100 - - - 

C - - 2600  2200  2200 
D 100 - - - 100 
E  500 1000 - - 200 
F 2600  2200 - - 200 
G - 400 - 100 200 
H 
I 500 100 
J 400 
K 500 
L 400 
M - - 1100 400 - 

- 

- - 600 100 - 

- - - 
- - - - 

- - - - 

- - - - 

I 2 3 4 5 

A 200  400 - - 600 
5 100 - - 
C 1000 3000 1000 1000 1000 
D 100 100 
E  600  500 - - 600 
F 1000 - 2000  2000 
G 100 - 300 - 300 
H 200 - 200 - 300 
I 200 - - - 400 
J 400 - 
K 100 - 400 
L 400 
M  500 - - 600 400 

- - 

- - - 

- 

- - - 
- - 
- - - - 

Part type 4  4  3 6 8 Part type 10 4  6  4 7 
count  count 

Table 7 Resulting work loads. 

Operation  Work  loads by  day (h) 
type 

I 2 3 4 5 Max. 

DIP 
SIP 

12.1 12.3 12.0 10.8 12.2 12.3 
13.6 13.5 13.8 13.3 13.9 13.9 

MODULE  12.0 12.5 12.4 12.6 12.4 12.6 

Makespan 13.6  13.5  13.8 13.3  13.9  13.9 

Values  of j and t ’ are chosen which achieve f *. 

over j instead of the  maximum. However, the above 
approach  seems  to work better empirically. (It gave better 
makespans  on several test cases similar to those given in 
Sections 9 and 10.) For an intuitive  explanation, observe 
that each  value of j must  be chosen y j / U  times, sooner or 
later.  Values  of j such  that  the  minimum over t ’ is high are 
those part types for which rounding necessarily causes an 
imbalance  in  the work  load.  Choosing  those values first 
allows the  imbalance  to be corrected by appropriately 
rounding  the  other  part types afterwards. 

A more  intuitive heuristic  would  choose the  minimum 

9. Mix  allocation:  Results 
This  LP allocation technique was applied to  the specific 
problem  defined in Section 5. The  method was implemented 
with a  PL/I  program which generates the  LP  matrix, calls 
IBM’s MPSX  to solve the  LP,  and  rounds  and  interprets  the 
solution.  Each run  took  under  one second  of CPU  time  on 
an IBM 308 1. 

The resulting  daily production levels ( u,,,) and  part type 
counts  are given in Table 6. The work  loads  for  each 

410 operation type for each day (w,,,) are given in Table 7 along 

Table 9 Resulting work loads. 

Operation  Work  loads by day (h) 
w e  

1 2 3 4 5 M a x .  

DIP 
SIP 

13.7 12.1 9.7 8.7 15.1 15.1 
12.4 12.2 16.3 16.3 10.8 16.3 

MODULE  12.6 13.9 11.5 12.8 11.0 13.9 

Makespan 13.7  13.9 16.3  16.3  15.1  16.3 

with the  maximum for the whole week ( wi). Table 7 also 
lists the  maximum  operation work  load for each day, which 
is the lower bound  on  the day’s makespan. 

The daily makespans vary by only 0.6 hours. Thus,  the 
rounding has not damaged the solution much. Also notice 
that  most  part types  have  been  allocated to  day T( j ) .  For 
example,  part  type H (index 8) has been  allocated to  day 3. 

For  comparison, Tables 8 and 9 show the  same 
information for an allocation  of the  same week’s mix 
determined by the  production manager without  the  aid of a 
model. 

The  LP  method improves the  makespans by up  to  three 
hours while simultaneously  achieving  better  part  type 
counts.  Notice that for the  LP allocation, the  SIP  operation 
is always the bottleneck, i.e., it always has the greatest work 
load, thus  determining  the makespan. This is efficient, since 
the  SIP  operation is the bottleneck to  the whole week’s 
production.  With  the  unaided allocation, the bottleneck 
operation  changes from  day  to day. Thus,  on days 1, 2, and 
5 ,  SIP capacity is underutilized. This explains why the  LP 
allocation achieves lower makespans. 

mix allocation  LP. 
The mix  shown  in Table 1 for FFLL was generated by the 
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10. Reassigning  a  machine 
Tables 10 and 11 give the results of  applying the  LP 
approach in the  same basic environment,  but with a different 
weekly requirement (indicated in Table IO). 

Note  that  the  DIP operation is a serious  bottleneck, while 
the robots, which do  the  MODULE operations, are greatly 
underutilized. It turns  out  that  the robots can  do  DIP or SIP 
operations  as well as  the  MODULE  operations  they  are 
already  doing. The  only restriction is that each  robot  should 
only do  one type  of operation per day  (to avoid  substantial 
midday setups). Moreover,  even  when it  does  DIP or SIP 
operations,  a robot still operates at  the  rate of 8 I O  operations 
per hour.  This is the case of the “reconfigurable” flexible 
flow line. 

There seems to  be a potential to decrease the makespans 
by reassigning one or more robots to  the  DIP  operations  on 
one  or  more days. In  terms of the LP,  such  a  reassignment 
would  alter the Si , r ’~ ,  and  through  them  the gl,,‘s, so that they 
depend  on t .  On  some days, the set St,l of machines  doing 
DIP  operations includes  a robot,  and  other  days it does  not. 
The corresponding gl,t values are greater on  the days  for 
which the robot is reassigned than  on  the  other days. The 
effect of such a reassignment can easily be determined by 

Table 10 LP  allocation  (second  case). 

Part type Production levels by  day Require- 

I 2 3  4 5 

A 1000 - - - - 1000 
B 100 
C - - 2300  2400  2300  7000 
D  200 - - 200 - 400 
E 
F 

700  400 - - 400  1500 
1900  I100 - - - 3000 

G 300 900 300 600 800  2900 
H 500 - 500 
I 800 - 
J 

300 - 1100 
300  300 

K 300 - - 300 
L  500 - 500 
M - 1400 - - 1400 

ment 

- 100 - - - 

- - - 
- 
- - - - 

- - 
- - - 

- 

Part type 6 6  3 5 4 
count 

Table 11 Resulting work loads. 

Operation  Work  loads  by day (h) 
type 

I 2 3 4 5 M a u .  

DIP 
SIP 

18.3 18.3 17.4 18.8 18.1 18.8 
13.5 13.9 13.8 13.4 13.6 13.9 

MODULE 11.3 11.2 11.4 10.7 11.1 11.4 

Makespan 18.3  18.3  17.4  18.8  18.1  18.8 
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computing  the daily  makespan  (of the  unrounded solution) 
using (9). There  are really only  a few sensible ways to  do this 
reassignment, and by exhaustive  search, the  minimum value 
of w* = 15.1 was found for assigning one robot to  DIP 
operations on three  days ( 1, 2 ,  and 3) ,  and  to  MODULE 
operations  on  the  other  two days. The  other  two robots are 
always assigned to  MODULE operations. Tables 12 and 13 
show the result of  applying the  LP  method  to  this reassigned 
configuration. 

The  makespans  are reduced by an average of three  hours 
per day,  a  substantial saving. This has been achieved by 
reallocating  parts with high DIP  requirements (e.g., part  type 
G) to  the first three days, and those with high MODULE 
requirements (e.g., part type I) to  the last two days. Thus  the 
LP  approach  determines how to  take  maximum advantage 
of the reassignment of machines. The choice of how to 
reassign was done by a hand calculation, but  this could be 
automated. 

Finally, suppose that  the robots  could do all types of 
operations without  setup. In this case, a  line  consisting  only 
of  robots could be used. Each  part  would  only visit one 
machine.  Since there is only one  bank of machines, mix 
allocation is trivial. Assuming that eight robots are used 

Table 12 LP  allocation  (reassigned configuration). 

Part type Production levels by  day 

I 2 3 4 5 

A 1000 - - - - 
B 
C - - 1800  2700 2500 
D 300 - - 100 
E 300 500 - - 700 
F 1900 1100 
G 400  I100  700 200  500 
H 
I - 300 - 800 
J 
K 300 - - - 
L 
M 

- 100 - - - 

- 

- - - 

- - 500 - - 
- 

- - - - 300 
- 

- 500 - - - 
- - I100  300 - 

Pari type 6  6  4  5  4 
count 

Table 13 Resulting work loads. 

Operation  Work  loads by  day (h) 
type 

I 2 3 4 5 M a u .  

DIP 
SIP 

15.2 15.0 14.6 15.5 15.1 15.5 
13.6 13.7 13.7 13.8 13.5 13.8 

MODULE  14.0 14.1 14.0 14.2 13.3 14.2 

Makespan 15.2  15.0  14.6 15.5 15.1  15.5 
41 1 
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instead of the eight specialized machines, (9) can be used to 
compute  the corresponding  makespans. For  the  production 
requirement of Table IO, the makespan is w* = 20.1. This is 
substantially worse than  the 15.1 for Table 13, since the  DIP 
and  SIP inserters are  much faster than  the robots. To achieve 
a comparable makespan  would  require I 1 robots, with 
w* = 14.6. 

11. Concluding  remarks 
The experience with FFLL  and with the  LP  method for mix 
allocation  indicates that these methods  are valuable tools  for 
a flexible flow line. Future research on  this subject will 
proceed in  two directions. The  methods will be extended to 
other scheduling environments. Most importantly,  setup 
time for a machine switching from  one  part  type  to  another 
must be considered. It seems that  in  many  production 
environments, part  types are grouped into a few families 
such that a machine  incurs  setup  time only  when it switches 
from  one family to  another. Also, nonperiodic scheduling 
must be developed  for environments  in which the processing 
time for a single part is so long as  to  make periodic 
scheduling  impractical.  Finally, an  implementation of these 
algorithms will be developed  for online use. Since the  CPU 
and storage requirements of the algorithms are  minimal,  the 
implementation  can be on a  PC. 
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