392

Short-term
production
scheduling of an
automated
manufacturing
facility

by Stanley B. Gershwin
Ramakrishna Akella
Yong F. Choong

We describe a new implementation of the
Kimemia-Gershwin hierarchical policy for the
real-time scheduling of fiexible manufacturing
systems. Major improvements result at all three
levels of the policy. The algorithm simplification,
resulting in substantial reductions of off-line and
on-line computation time, is reported, as is the
improvement in performance through the
elimination of chattering. Simulation results
based on a detailed model of a printed circuit
card assembly facility are summarized.

1. Introduction

This paper describes major progress in the work reported by
Kimemia [1] and Kimemia and Gershwin [2] on the on-line
scheduling of flexible manufacturing systems. Major
improvements to all levels of the hierarchical policy are
reported and simulation results are summarized. The test
bed used to evaluate the policy is a printed circuit card
assembly facility. The results indicate that the approach is

©Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

practical, well-behaved, and robust. A full description of the
results appears in {3, 4].

A flexible manufacturing system (FMS) is one in which a
family of related parts can be made simultaneously. It
consists of a set of computer-controlled machines and
transportation elements. The changeover time between
different operations at a machine is small compared with
operation times.

Processing a mix of parts makes it possible to utilize the
machines more fully than otherwise. This is because different
parts spend different amounts of time at the machines. Each
part type may use some machines heavily and others very
little or not at all. If complementary part types are selected
for simultaneous production, the machines that are lightly
used by some parts can be loaded with others that use them
heavily.

In principle, balancing can keep several machines busy at
the same time. However, scheduling such a system is difficult
because there are several machines, several part types, and
many parts. In addition, like all manufacturing systems, an
FMS is subject to random disturbances in the form of
machine failures and repairs, material unavailability, “hot”
items or batches, and other phenomena. These disruptive
effects complicate an already difficult optimization problem.

The short-term hierarchical scheduler is outlined in Figure
1. Its purpose is to mitigate the effects of major disruptions.
It is assumed that production requirements are specified at a
higher level of the hierarchy, which also provides initial data

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

on the mean time between failures (MTBF) and the mean
time to repair (MTTR). The scheduler’s key features are that
it respects the capacity constraints of the system and
provides for production losses due to machine failures by
building up inventory.

In Kimemia and Gershwin’s formulation, the top level of
the algorithm required the solution of a difficult partial
differential equation (Bellman’s equation). Here we show
that a simple heuristic procedure works well enough that a
numerical solution is not necessary.

The middle level of the algorithm formerly required the
solution of a linear programming problem at every time
instant. While this was a burden on the computer resources,
its more serious consequence was “chattering,” the rapid
switching of control parameters (here, the production rates
of parts) from one value to another. This reduced the
effectiveness of the algorithm, in terms of both performance
and computation time. Now we need to solve the linear
program only at machine fatlure and repair times, and
chattering is entirely eliminated.

In the earlier work, the lower level of the algorithm
sometimes caused the accumulation of material in the
system. A new lower level has been devised which eliminates
this problem and which is far simpler to program.

The paper is organized as follows. In Section 2, we
describe Kimemia and Gershwin’s continuous time
formulation of the short-term scheduling problem. We also
comment on the nature of the off-line and on-line
computational issues. In Section 3, we describe the
simplification that can be achieved in the computation of the
off-line parameters. The modifications to achieve reduced
computation and chattering in generating the production
rates on line are described in Section 4. Section 5 describes
the lower level that effectively translates production rates
into part dispatch times. The manufacturing system that was
used as test bed for our simulations is presented in Section 6.
In Section 7, we describe the simulation results, concluding
in Section §.

2. Overview of hierarchical policy
The purpose of the short-term FMS scheduling algorithm is
to solve the following problem: When should parts (whose
operation times at machines are on the order of seconds or
minutes) be dispatched into an FMS whose machines are
unreliable (with mean times between failures and mean
times to repair on the order of hours) to satisfy production
requirements that are specified for a week? Kimemia and
Gershwin decomposed the problem into two parts: a high-
level continuous dynamic programming problem to
determine the instantaneous production rates, and a
combinatorial algorithm to determine the dispatch times at
the bottom level.

The continuous part is treated as a dynamic programming
problem. As such, it is naturally divided further into two

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

System Requirements Machine parameters
configuration o
(Operation times,
MTBE, MTTR)
Generate
decision
parameters Top
level
off-line
Machine
parameter
Calculate updates
short-term Machine status
production [Status of
rates requirements Middle
level
on-line
Schedule times
at which to Part .
dispatch parts locations Lower
level
on-line
i 4
Machines. and
wansport | Syslem status_ |
system

Short-term production hierarchy.

levels. The top level calculates a value or cost-to-go function
and is executed off-line. The middle level is the realization of
the maximum principle. It uses the cost-to-go function to
determine instantaneous flow rates and part mixes.

Assume that the production requirements are stated in the
form of a demand rate vector d(f). Let the instantaneous
production rate vector be denoted u(¢). Define x(¢) to be
production surplus. It is the cumulative difference between
production and demand and satisfies

dx _

7 u(t) — d(1). (n

If x(?) is positive, more material has been produced than is
currently required. This surplus or safety stock helps to
ensure that material is always available over the planning
horizon. However, it has a cost. Expensive floor space and
material-handling systems must be devoted to storage. In
addition, working capital has been expended in the
acquisition and processing of stored materials. This capital is
not recovered until the processing is complete and the
inventory is sold.

If x(t) is negative, there is a backlog, which is even more
costly. Backlog represents either starved machines
downstream or unsatisfied customers. In the former case,
valuable capital is under-utilized; in the latter, sales and
goodwill may be lost.

A cost g(x) representing both the inventory and backlog
costs can be assigned. The objective of the policy is to

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

393

394

X
E——

(3 T,

T
o tw , : 1o+ T, +T,
)
1 1
H=dT, -ommemeee tg+T,

e

Simplified trajectory.

compute production rates to meet production targets while
minimizing the total cost.

However, the choice of the production rate is not
unconstrained. The production rate vector u is limited by
the capabilities of the machines. Let part type j require time
7,; for all of its operations on machine /. (Note that the order
in which parts go to machines is not relevant to this
calculation, nor is the number of times a part visits a
machine. For simplicity, we assume here that there is only
one path for each part.) Then

DESTCERTON (2a)

where a,(¢) is 1 if machine / is operational and O if it is
down. More generally, if there is a set of identical type-i
machines, «,(¢) is the number of these that are operational at
time . Note also that

u,= 0. (2b)
Inequalities (2a) and (2b) can also be written as
u(?) € Qa(t)]. (2)

These requirements and constraints on the production
rates can be expressed as a dynamic optimization problem

[3]:

J[x(0), «(0)] = min E {f glx(®)]dt | x(0), a(O)}

)
subject to (1), (2), and initial
conditions x(0) and «(0). 3)

The scheduling policy that results from solving (3) can be
decomposed into the three levels shown in Fig. 1:

1. Top level: Evaluation of J(-, -) off-line.

2. Middle level: The on-line computdtion of the
instantaneous production rates is achieved at this level. It
can be shown [3] that the solution is given by solving

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

aJ(x, a) 5
ox
subject to u € Q). 4)

minimize

Note that this requires the results of the computation at
the top level.

3. Lower level: The production rates u are translated into
actual part dispatch times.

Kimemia and Gershwin [2] describe a method of
computing the required quantities at each of the three levels.
At the top level, they suggest a decomposition by which the
nth-order Bellman partial differential equation for J(x, «) is
replaced by n first-order ordinary differential equations
(where 7 is the number of part types, i.c., the dimensionality
of x, u, and d). However, the solution is computation-
intensive. In the next three sections, we describe new,
computationally effective approximations of the three levels.

3. Top level: Cost-to-go function

We present a quadratic approximation for the value function
of the dynamic programming problem (3). Not only does
this reduce data requirements, but it also simplifies the
middle-level (maximum principle) computation. As a result,
the cost-to-go function is

J(x, @) = % xXTA(a)x + bla)"x + cla), 5)

where A(«) is a positive definite diagonal matrix, b(«a) is a
vector, and ¢(«) is a scalar. In this section, we describe a
method for choosing these coefficients for some values of «.

The function J{x(t), «] is a decreasing function of t when
« remains constant. The hedging point is the value of x that
minimizes J(x, «) for a fixed «. It is the value that x reaches
if a stays constant for a long time and if d is feasible, i.e., if
d € Q(a). The hedging point is imporlzint to the behavior
and performance of the algorithm because it is the point that
X spends most of its time either moving toward or resting at.
Intuitively, it is the level to which one builds up inventory to
compensate for future production losses due to machine
failures.

Here, the hedging point is given by

be)

) = 3@

(©)

In order to estimate the hedging point, consider Figure 2,
which demonstrates a typical trajectory of x (). Assume that
X; has reached H (a), the hedging point corresponding to the
machine state before the failure. Then # is chosen to be d
and x; remains constant.

A failure occurs at time ¢, that forces u; to be 0. This
causes x, to decrease at rate —d,. In fact, if the failure lasts
for a length of time T, the minimum value of x; is

H-dT,. M

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

Recall that T, the repair time, is a random variable. Just
after the repair (at time ¢, + T.), is assigned the value U.
Assuming that this value is greater than that of demand dj,
X, increases at rate U, — d; until it reaches the hedging point
H,. At that time, u; resumes its old value of d; and x, stays
constant until the next failure, at time ¢, + 7, + T;. T} is also
a random variable.

To simplify the analysis, we assume that

1. The value of , is constant between the repair (4, + ;)
and when x; reaches H,.

2. T, and T;can be replaced by their expected values, the
MTTR and MTBF.

3. The cost function g(.) in (3) penalizes positive areas in
Fig. 2 with weight g and negative areas with weight b,
where ¢ and b are positive scalars.

The objective of this is to obtain an approximation to
J(-, -). We do this by choosing H to minimize the total area
under the positive and above the negative parts of the
trajectory in Fig. 2. We obtain

. TAeU, ~ ad) = Tad(U, ~ &)
4 (a+ by, '

®)

This approach cannot be applied for machine states in
which the demand is not feasible. Either there is no hedging
point for such a state, or it is larger than (8).

A, () must be positive in order for J to be convex. Iis
value reflects the relative priority of part type j. Parts that
have great value, or that would cause great difficulty if
backlogged, or that pass through relatively unreliable
machines should have large values of 4. For example, in
our simulations we let 4, be the number of machines
through which part j passed. This was because we treated all
parts as equally valuable and because all machines had the
same reliability parameters.

4. Middle level: Maximum principle
In this section we describe a computationally effective
method of computing the instantaneous production rates.

o Chattering

The optimal production rate vector u(¢) satisfies the
following linear programming problem at every time
instant #:

aJ(x, a)u
ax
subject to u € Ua). 9)

minimize

This is a feedback law, since the problem is specified only
when x and « are determined. The numerical solution of (9)
is implemented on-line at the middle level of the hierarchical
algorithm.

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

For every a, x-space is divided into a set of regions (open,
connected sets) and the boundaries between them. Each
region is associated with a corner of («). When x is in the
interior of region R, the value of u that satisfies (9) is the
corresponding corner P,.

Gershwin, Akella, and Choong [3] show that when J is
quadratic, the R, regions are cones.

Kimemia and Gershwin [2] implemented (9) in a
simulation by solving it every time step (one minute). This
worked well while x was in the interior of a region R, .
However, when x crossed certain boundaries between
regions, this approach worked poorly. After x(¢) crossed such
a boundary, which we call artractive, the value of u
corresponding to the new region R,, was such that the
derivative (1) pointed toward R,. When x(¢) crossed the
boundary back into R,, the derivative pointed again to R,,.
Thus, u(f) jumped between the adjacent corners P, and P,
of Nw).

This kind of behavior is called chattering and is well
known in the optimal control literature. Here, it causes the
flow rate to change more frequently than parts are loaded
into the system. As a result, if the demands on the system
are near its capacity, it will fail to meet the demands. This
was observed by Kimemia [1].

o Linear program
Linear program (9) can be written

minimize C(x)Tu
subject to Du = e,

uz=0, (10)

where u has been expanded with slack variables so that the
inequality constraint (2a) can be written as an equality, and

C(x)=Ax+ b= A(x — H).

(Note that arguments « and ¢ are suppressed.) The standard
solution of (10) [5] breaks u into basic (1) and nonbasic
(uy) parts, with C(x) and D broken up correspondingly. The
basic part of D is a square, invertible matrix. By using the
equality in (10), 1, can be eliminated, and the problem
becomes

minimize Cg(x) uy
subject to uy = 0,

(n
where the constraint on ug has been suppressed, and where
Ce(x)" = Cyx)" = Co(x)'Dy~' Dy

is the reduced cost. If all components of Cy, are positive,
there is a solution to (11): u, = 0. This and the
corresponding u, form an optimal solution to (10).
Otherwise, (11) does not have a bounded optimal solution
and (11) is not equivalent to (10).

It is important to note that since C is a function of x, the

basic/nonbasic breakup of this problem depends on x. That 395

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

396

//

Hedging point

f ‘\"- Initial x

Trajectory

Regions of x-space.

is, the set of components of « that are treated as basic varies
as a function of x.

At every x in region R, , corner P, is the optimal value of
u for (10). In each region, then, there must be a basic/
nonbasic breakup of (10) which is constant. Consequently,
Cr{x) must be positive everywhere in its own region and it
must have some negative components elsewhere. The
boundaries of the regions are determined by some
components of Ci(x) being equal to zero.

The boundaries of the regions are portions of hyperplanes

because C(x) is linear in x. Consequently CN(x)T and CB(x)T

and therefore C(x) are also linear in x.

o Qualitative behavior
After a machine state change, x(7) is almost always in the
interior of a region. Since u is constant throughout a region,
dx/dt is also constant. Thus, x travels along a straight line in
the interior of each region. As indicated in Figure 3, such
lines may intersect with one or more boundaries of the
region. When x reaches a boundary, # (and therefore dx/dt)
changes.

If the boundary is not attractive, x(t) moves into the

interior of the next region until it reaches the next boundary.

The production rate vector # jumps to an adjacent corner.
This behavior continues until x(z) encounters an attractive
boundary. At this time, the trajectory begins to move along
the boundary and u(¢) jumps to a point on the edge of Q(a)
between the corners corresponding to the regions on either
side of the boundary.

This behavior continues: x(#) moves to lower-dimensional
boundaries and #(¢) jumps to higher-dimensional faces. It
stops when either the machine state changes (that is, a repair
or failure takes place) or u(¢) becomes constant. If the
demand is feasible, the constant value for u is 4. When that
happens, x also becomes constant and its value is the

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

hedging point. If the demand is not feasible, x does not
become constant. Instead, some or all of its components
decrease without limit.

Consequently, the future behavior of x(¢) can be
determined from its current value if the machine state
remains constant. We call this future behavior the projected
trajectory.

e Calculation of the projected trajectory
Assume that the conditional future trajectory is to be
calculated at time ¢,. This may be due to a machine state
change. As soon as the machine state change occurs (at £;),
linear program (10) is solved. Thus the basic/nonbasic split
is determined and the Cy(x) function is known. In general, x
appears in the interior of a region, and therefore all
components of Cy(x) are strictly positive. One or more
components are zero on a boundary of a region.

The production rate vector at ¢ = t, is denoted u,. The
production rate remains constant at this value until 1 = ¢,
which is to be determined. In (¢, ¢,), x is given by

X(1) = x(tp) + (uy — dXt — £,),

where x(¢,) is on a boundary. Then ¢, is the smallest value of
t for which some component of C[x(#)] is zero. It is easy to
calculate this quantity since Cy is linear in x and x is linear
in £. Once ¢, is found, x(¢,) is known. Define A[x(f)] to be the
component of Ci[x(#)] that reaches zero at ¢ = ¢,. Because &
is a linear scalar function of x, we can write

hIx(6)] = f'Ix(t) = x(2)],

where f"is a vector of coeflicients.

For ¢ > t,, there are two possibilities. The trajectory may
enter the neighboring region and travel in the interior until it
reaches the next boundary. Alternatively, it may move along
the boundary it has just reached. To determine whether or
not the boundary is attractive, we must consider the
behavior of A[x(r)] in its neighborhood.

We know that A(x) is negative in the region across the
boundary since this is how the regions are defined. We must
determine whether 4 is increasing or decreasing on
trajectories inside that region. If 4 is decreasing, x moves
away from the boundary (where /4 is zero) into the interior.
If 4 is increasing, trajectories move toward the boundary,
which must therefore be attractive.

One value of x which is just across the boundary is

X" = x(t,) + (uy = d)t, + e — 1)

= x(1,) + (4, — d)e.

This is the value x would have if u were allowed to be u,
until 7, + e.

Let u#” be the solution to (10) in the adjacent region. That
is, (10) is solved with x given by x”. (This can be performed
efficiently.) Let x™ be the value of x at ¢, + ¢ if u” were
used after ¢,. That is,

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

x = x(t) + (W = d)e
Then
h(x") = (" — d)e.

Therefore 4 is increasing and the boundary is attractive if
and only if

M - dy> 0.

If the boundary is not attractive, define «, = u”. Then the
process is repeated to find ¢,, x(1,), ¢;, x(1,), and so forth
until an attractive boundary is encountered. Recall that this
is an on-line computation that is taking place at time #,. The
future trajectory is now being planned.

If the boundary is attractive, a value of u must be
determined which will keep the trajectory on it. Otherwise
chattering will occur. For the trajectory to stay on the
boundary,

hlx()] = 0,

or, since Afx(¢,)] = 0,

%h[x(t)] =ffu—-d=0. (12)

Although u is an optimal solution to (10), it is no longer
determined by this linear program. In fact u,, «”, and any
convex combination of them are optimal. This is because
one or more of the reduced costs is zero while x ison a
boundary. Consequently, the new scalar condition (12) is
required to determine the solution. The linear program is
modified as follows:

minimize C(x)Tu
subject to Du = ¢,
u=90,

Su=1"d

The solution to (13) is the value of u that keeps the
trajectory on the boundary. As before, this value is
maintained until a new boundary is encountered.

New boundaries may still be attractive or unattractive.
The same tests are performed: x is allowed to move slightly
into the next region to determine the value of «. The time
derivative of the component of the reduced cost that first
reaches zero () is examined. If it is negative, the boundary is
unattractive and the trajectory enters the new region. If it is
positive, a new constraint is added to linear program (13).

Constraints, when added to (13), are not deleted. As the
number of constraints increases, « is found on surfaces in
Q(a) that increase in dimenston and x is found in regions of
decreasing dimension.

Since this is a finite dimensional system, this process must
terminate. The vector x(¢) is eventually of the form

(13)

x(1) = x(t) + (u — d).

NO. 4 JULY 1985

IBM J. RES. DEVELOP. VOL. 29

If d is feasible, when enough linearly independent
constraints (12) are added to (13), the only feasible solution
is # = d and x is constant. If d is not feasible, some or all of
the components of u — d are negative. The corresponding
components of x decrease without limit.

5. Lower level: Discrete part dispatch

The new part-loading scheme is based on the conditional
future trajectory [x(s), s = t]. Define the actual surplus of
part type j at time { to be

xf(t) = {number of parts of type j loaded during (0, ¢)}
—dt
J

Note that xf(t) is an irregular sawtooth function of time.
It jumps by 1 each time a part is loaded. At other times, it
decreases at rate d,.

The loading strategy ensures that xA(t) is near x(1). The
strategy is this: At each time step ¢, load a part of type j if

x}(1) < x(2). (14)

Do not load a part of type j otherwise. A rule is required to
resolve conflicts; it may not matter what that rule is since
conflicts do not arise very often.

6. An automated card assemby line

In this section, we describe a system to which the
hierarchical scheduler is applicable. Our purpose in using
this system is to assess the scheduler in a realistic setting.

e Purpose of system

An automated card assembly line is being built up in stages,
through a series of “minilines.” The portion of the system of
interest to us is the stage consisting of insertion machines.
Printed circuit cards from a storage area upstream arrive at
the loading area of the insertion stage. Each card is placed in
a workholder, which is introduced into the system. It goes to
the machines where the electronic components it requires
are inserted. It then leaves the system and goes to the
downstream stages, which consist of testing and soldering
machines.

There are several types of insertion machines, each of
which inserts one mechanically distinct type of component.
The common ones are SIPs (single in-line package inserters),
DIPs (dual in-line package inserters), MODIs (multiform
modular inserters) and VCDs (variable center distance
inserters). By loading different components, the line can be
used to assemble a variety of cards.

In order to concentrate on the operational issues of the
FMS, we assume that component loading has already been
determined. The changeover time is small among the family
of parts producible with a given‘ component loading. We also
restrict our attention to the Miniline 1300, whose schematic
is shown in Figure 4. This consists of a DIP, a VCD, and
two SIPs. Each of the machines also has an associated buffer,

which can hold 30 parts. 397

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

398

sxipz

S5 1
1 : 12
V

---0 4-—-10 .- --]

e mclomimlcelmie

2a-- 0 4---10 o1 @zl -ne3 o101 T

10 10

OO B OO

mimlo]mlo

307 308

----- - e -

b

304 | 05 i

®OG-
‘ DIP

n

A Machine
O Buffer

n Transportation element type

n
O Rotary conveyor

I Rectilinear conveyor

T e ! pesgumr~y

-~~~ Reference orientation of elements

§ Schematic of Miniline 1300.

Table 1 Transportation mechanism.

Transfer time of card from element to

element (straight or rotation) one second

Rotation time six seconds

one rotation and one
transfer

Number of movements to transfer card
via rotary mode

o Transportation system

The workholders are loaded at input station 301 and then
move to each of the required machines. Movement is along
straight or rotating elements. The straight elements are used
to move parts in a single, fixed direction and are represented
by rectangles. The rotating elements are for 90° turns and are
represented by circles. Representative movement times are
listed in Table 1.

Movement of cards in the vicinity of a work station
(insertion machine, associated buffer, and transport
elements) follows a common pattern. Cards arrive at a
rotating element such as 603 and either turn toward the
insertion machines or move straight on. The cards going to
machines (e.g., 101) either wait at input elements such as

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

605 or go into buffers such as 201. After all the required
components have been inserted, a similar movement takes
the card out of the insertion machine and onto output
element 305. After element 606 is rotated toward the work
station, the card is placed on it. Element 606 is rotated back
to its original position and the card is then loaded onto the
next transportation element (306). Finally, after going
through the entire system, the cards exit from output
element 324.

e Machine parameters and part data

The mean time between failures (MTBF) and mean time to
repair (MTTR) of the machines are listed in Table 2. The
average fraction of time a machine is available is the time it
is available for production divided by the total time. This
quantity, called the efficiency or availability of a machine, is
also listed in Table 2.

There are other random perturbations affecting the
system. These include machine tool jams, which occur when
a machine jams in trying to insert a component. Rather than
being regarded as a failure, this small but regular
(approximately once every 100 insertions) disturbance can
be modeled as part of the processing time.

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

Normally, there are several part (card) types being
processed in the system. We limit our experiment to only six
types to better examine the hierarchical policy. Typical
demand rates are listed in Table 3, with the operation times
required by each card type at each of the machines. These
include the processing time and the time to move in and out
of each machine.

e Loading

Loading describes how heavily the machines in a system
must be utilized to satisfy demand. The expected utilization
of a machine is equal to the ratio of the total machine time
required to the expected machine time available. The total
machine time required is the product of total demand and
processing time. The expected time a machine is available is
its time available multiplied by the total time period. Table 2
displays the average utilizations for the machines in the
configuration reported in the runs in Section 6. These data
were created to impose a heavy loading on the simulated
production system. The actual utilization in any sample
simulation run depends on the time history of machine
failures and repairs during that run. This time sequence
determines the actual amount of time a machine is available.

7. Simulation results

A detailed simulation of a flexible manufacturing system was
written to test the hierarchical scheduling policy and to
compare it with other reasonable policies. The simulation is
described in [6]). A full description of the results appears in
[4].

The simulation indicates that the method behaves very
well. The performance measures that were used were the
total production during a day, average work in process, and
production balance. The latter measured how well
production adhered to the specified ratio of production
requirements for different parts.

The hierarchical method was compared with a set of
simpler strategies. On all measures, the hierarchical method
was superior: production was greater; work in process was
less; and balance was closer to 100%, indicating that
material was produced in nearly the specified ratio.

It was more robust, in that it was less affected by
disruptive events. The difference between its performance on
good days and on bad days was less than the difference for
other strategies.

It was not vulnerable to parameter variations. A variety of
different A and b coefhicients chosen for J in (5) made almost
no difference in the performance of the algorithm.

8. Summary and conclusions

The hierarchical scheduling policy devised by Kimemia and
Gershwin for flexible manufacturing systems has been
further developed and tested. This policy is designed to
respond to random disruptions of the production process. In

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

Table 2 Machine parameters.

Machine MTBF MTTR Efficiency Expected
{min) (min) (%) utilization
(%)
1 600 60 90.91 97.68
2 600 60 90.91 91.10
3 600 60 90.91 96.03
4 600 60 90.91 96.58
Table 3 Operation times and demand rates.
Machine Operation times
(s)
Part type
1 2 3 4 5 6
1 40 40 0 0 20 60
2 0 0 60 30 40 40
3 0 100 0 0 70 0
4 0 0 0 80 0 80
Demand rates
(parts/s)
FPart type
1 2 3 4 5 6

0.0080 0.0070 0.0060 0.0070 0.0025 0.0040

its current formulation, it treats unpredictable changes in the
operational states of the machines: repairs and failures. All
levels of the policy have been improved, and the policy
shows great promise for practical application.

Acknowledgments

Research support was provided by the Manufacturing
Research Center of the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, and by the U.S. Army
Human Engineering Laboratory, under Contract No.
DAAKI11-82-K-0018.

References

1. J. G. Kimemia, “Hierarchical Control of Production in Flexible
Manufacturing Systems,” Report No. LIDS-TH-1215, Laboratory
for Information and Decision Systems, Massachusetts Institute of
Technology, Cambridge, MA, 1982.

2. 1. G. Kimemia and S. B. Gershwin, “An Algorithm for the
Computer Control of Production in Flexible Manufacturing
Systems, IIE Trans. 15, No. 4, 353-362 (December 1983).

3. S. B. Gershwin, R. Akella, and Y. C. Choong, “Short Term
Production Scheduling of an Automated Manufacturing Facility,”
Report No. LIDS-FR-1356, Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA, 1984.

4. R. Akella, Y. Choong, and S. B. Gershwin, “Performance of
Hierarchical Production Scheduling Policy,” IEEE Trans.
Components, Hybrids, Manuf. Technol. CHMT-7, No. 3, 225-

240 (September 1984). 399

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

5. D. Luenberger, Introduction to Linear and Nonlinear
Programming, Addison-Wesley Publishing Co., Reading, MA,
1977.

6. R. Akella, J. P. Bevans, and Y. Choong, “Simulation of a Flexible
Electronic Assembly System,” Report No. LIDS-R-1485,
Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA, 1985.

Received December 19, 1984; revised March 14, 1985

Ramakrishna Akella Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139. Dr. Akella received the B.Tech. degree in
electronics from the Indian Institute of Technology, Madras, in
1976, and the Ph.D. degree in systems engineering from the School
of Automation, Indian Institute of Science, Bangalore, in 1981.
During 1982, he was a CSIR Research Associate at the Indian
Institute of Science, and spent the summer as a Postdoctoral Visitor
with the Decision and Control Group, Division of Applied Sciences,
Harvard University, Cambridge, Massachusetts. Since 1983, he has
been a Postdoctoral Associate at the Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology. His

400

STANLEY B. GERSHWIN, RAMAKRISHNA AKELLA, AND YONG F. CHOONG

research interests include computer-aided manufacturing and the
hierarchical control of large-scale systems. In particular, through
interaction with IBM, he has been active in the modeling,
simulation, and real-time scheduling of flexible manufacturing
systems. Recent interests include scheduling and other issues for
quick-turnaround VLSI systems. Dr. Akella is listed in the
International Who's Who in Engineering, International Biographical
Centre, Cambridge, England. He received the 1984 IBM
Postdoctoral Fellow Award from the Manufacturing Research Centre
at IBM, Yorktown Heights, New York. Other awards and honors
have included a CSIR Research Associateship, an Indian Institute of
Science Research Fellowship, the National Merit Scholarship, and a
National Science Talent Scholarship.

Yong F. Choong Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139. Mr. Choong is a graduate student
in the Department of Mechanical Engineering. He received the B.Sc.
and M.Sc. degrees in mechanical engineering from the Massachusetts
Institute of Technology in 1981.

Stanley B. Gershwin Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139. Dr. Gershwin received the B.S. degree in
engineering mathematics from Columbia University, New York, in
1966 and the M.S. and Ph.D. degrees in applied mathematics from
Harvard University, Cambridge, Massachusetts, in 1967 and 1971,
respectively. He is a Principal Research Scientist at the MIT
Laboratory for Information and Decision Systems and a Lecturer in
the MIT Department of Electrical Engineering and Computer
Science. He is Assistant Director of the MIT Laboratory for
Information and Decision Systems, and President of Technical
Support Software, Inc. (TSSI). In 1970-1971, he was employed by
the Bell Telephone Laboratories in Holmdel, New Jersey, where he
studied telephone hardware capacity estimation. At the Charles Stark
Draper Laboratory in Cambridge, Massachusetts, from 1971-1975,
he investigated problems in manufacturing and transportation. His
interest in these areas, as well as control, optimization, and
estimation, continues at MIT and at TSSI. Dr. Gershwin is a
member of the American Association for the Advancement of
Science, the IEEE Control Systems Society, the Institute of Industrial
Engineers, the Operations Research Society of America, the Society
of Manufacturing Engineers Manufacturing Management Council,
and Tau Beta Pi.

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

