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We  describe  a  new  implementation  of  the 
Kimemia-Gershwin  hierarchical  policy  for  the 
real-time  scheduling  of  flexible  manufacturing 
systems.  Major  improvements  result at  all  three 
levels of  the  policy. The algorithm  simplification, 
resulting  in  substantial  reductions  of  off-line  and 
on-line  computation  time,  is  reported, as  is  the 
improvement  in  performance  through  the 
elimination of chattering.  Simulation  results 
based on a  detailed model of a  printed  circuit 
card  assembly  facility  are  summarized. 

1. Introduction 
This paper describes major progress  in the work reported by 
Kimemia [ 11 and Kimemia and Gershwin [2] on  the on-line 
scheduling of  flexible manufacturing systems. Major 
improvements to all levels  of the hierarchical policy are 
reported and simulation results are summarized. The test 
bed  used to evaluate the policy  is a printed circuit card 
assembly  facility. The results indicate that the approach is 
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practical, well-behaved, and robust. A full description of the 
results appears in [3, 41. 

A flexible manufacturing system (FMS) is one in which a 
family  of related parts can be made simultaneously. It 
consists  of a set of computer-controlled machines and 
transportation elements. The changeover time between 
different operations at a machine is small compared with 
operation times. 

Processing a mix  of parts makes it  possible to utilize the 
machines more fully than otherwise. This is  because  different 
parts spend different amounts of time at the machines. Each 
part type may use some machines heavily and others very 
little or not at all. If complementary part types are selected 
for simultaneous production, the machines that  are lightly 
used  by some parts can be loaded with others that use them 
heavily. 

In principle, balancing can keep  several machines busy at 
the same time. However, scheduling such a system  is  difficult 
because there are several machines, several part types, and 
many parts. In addition, like all manufacturing systems, an 
FMS is subject to random disturbances in the form of 
machine failures and repairs, material unavailability, “hot” 
items or batches, and other phenomena. These disruptive 
effects complicate an already difficult optimization problem. 

The short-term hierarchical scheduler is outlined in Figure 
1. Its purpose is to mitigate the effects  of major disruptions. 
It  is assumed that production requirements are specified at a 
higher  level  of the hierarchy, which also provides initial data 
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on  the  mean  time between failures (MTBF)  and  the mean 
time  to repair (MTTR).  The scheduler's key features are  that 
it respects the capacity constraints of the system and 
provides  for production losses due  to  machine failures by 
building up inventory. 

the algorithm  required the solution  of a difficult partial 
differential equation (Bellman's equation). Here we show 
that a simple  heuristic  procedure  works well enough  that a 
numerical solution  is not necessary. 

The middle level of the algorithm  formerly  required the 
solution of a linear programming problem at every time 
instant. While this was a burden on  the  computer resources, 
its more serious  consequence was "Chattering," the rapid 
switching of control  parameters (here, the  production rates 
of parts) from  one value to  another.  This reduced the 
effectiveness of the algorithm, in  terms of both performance 
and  computation  time. Now we need to solve the linear 
program  only at  machine failure and repair  times, and 
chattering is entirely  eliminated. 

In  the earlier  work, the lower level of the algorithm 
sometimes caused the  accumulation of  material  in the 
system. A new lower level has been devised which eliminates 
this problem and which is far  simpler to program. 

describe Kimemia  and Gershwin's continuous  time 
formulation of the short-term  scheduling problem. We also 
comment  on  the  nature of the off-line and on-line 
computational issues. In Section 3, we describe the 
simplification that  can be achieved in  the  computation of the 
off-line parameters. The modifications to achieve  reduced 
computation  and  chattering  in generating the  production 
rates on line are described in Section 4. Section 5 describes 
the lower level that effectively translates production rates 
into  part dispatch  times. The  manufacturing system that was 
used as test bed for our  simulations is presented in Section 6. 
In Section 7, we describe the  simulation results, concluding 
in Section 8. 

In  Kimemia  and Gershwin's formulation,  the  top level of 

The paper  is  organized  as follows. In Section 2, we 

2. Overview of hierarchical  policy 
The purpose  of the short-term FMS scheduling  algorithm is 
to solve the following problem:  When  should  parts (whose 
operation  times  at  machines  are  on  the  order of  seconds or 
minutes) be dispatched  into an FMS whose machines  are 
unreliable  (with mean  times between failures and  mean 
times  to repair on  the  order of  hours) to satisfy production 
requirements  that  are specified for a week? Kimemia  and 
Gershwin  decomposed the problem into two parts: a high- 
level continuous  dynamic  programming problem to 
determine  the  instantaneous  production rates, and a 
combinatorial algorithm to  determine  the dispatch times  at 
the  bottom level. 

The  continuous part is treated as a dynamic  programming 
problem. As such, it is naturally  divided further  into two 
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levels. The  top level calculates a value or cost-to-go function 
and is executed off-line. The middle level is the realization  of 
the  maximum principle. It uses the cost-to-go function  to 
determine  instantaneous flow rates and part mixes. 

form of a demand  rate vector d(t) .  Let the  instantaneous 
production  rate vector be denoted u(t).  Define x( t )  to be 
production surplus. It is the  cumulative difference between 
production  and  demand  and satisfies 

Assume that  the  production  requirements  are stated in  the 

- = ~ ( t )  - d(t) .  
dx 
dt 

If x( t )  is positive, more material  has been produced than is 
currently  required. This  surplus or safety stock  helps to 
ensure  that material is always available  over the  planning 
horizon.  However,  it  has a cost. Expensive floor space and 
material-handling  systems must be devoted to storage. In 
addition, working  capital has been  expended  in the 
acquisition and processing of stored  materials. This capital is 
not recovered until the processing is complete and  the 
inventory is sold. 

costly. Backlog represents either starved machines 
downstream or unsatisfied customers. In  the  former case, 
valuable capital is under-utilized;  in the latter, sales and 
goodwill may be lost. 

costs  can be assigned. The objective of the policy is to 

If x( t )  is negative, there is a backlog, which is even more 

A cost g(x) representing  both the inventory and backlog 
393 
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8 Simplified trajectory 

compute  production rates to meet production targets while 
minimizing  the total cost. 

unconstrained.  The  production rate vector u is  limited by 
the capabilities of the machines. Let part type j require time 
7 i j  for all of  its operations on machine i. (Note  that  the  order 
in which parts go to  machines is not relevant to  this 
calculation, nor is the  number of times a part visits a 
machine. For simplicity, we assume here that  there is only 
one  path for  each part.) Then 

However, the choice  of the  production  rate is not 

where ai( t )  is 1 if machine i is operational  and 0 if it is 
down.  More generally, if there is  a set of  identical  type-i 
machines, ai(t) is the  number of  these that  are operational at 
time t. Note also that 

uj 2 0. (2b) 

Inequalities  (2a) and  (2b)  can also be written  as 

u( t )  E fi[a(t)l. (2) 

These requirements  and  constraints  on  the  production 
rates can be expressed as a dynamic  optimization problem 

i 
[31: 

WO), ~ ( O ) I  = min E { J g[x(t)ldt I x(o), a m )  
U ( . )  

subject to  (I), (2), and initial 
conditions x(0) and CY(O). (3) 

The scheduling policy that results from solving (3) can be 
decomposed into  the  three levels shown in Fig. 1: 

1. Top level: Evaluation  of J(  . , . ) off-line. 
2. Middle level: The on-line computation of the 

instantaneous  production rates is achieved at  this level. It 
can be shown [3]  that  the solution is given by solving 

3. 

[subject to u E Q(a). (4) 

Note  that this  requires the results of the  computation  at 
the  top level. 
Lower level: The  production rates u are translated into 
actual  part  dispatch  times. 

Kimemia  and Gershwin  [2]  describe  a method of 
computing  the required quantities  at each  of the  three levels. 
At the  top level, they suggest a decomposition by which the 
nth-order Bellman partial differential equation for J(x,  a )  is 
replaced by n  first-order ordinary differential equations 
(where  n is the  number of part types, i.e., the dimensionality 
of x, u, and d) .  However, the solution  is computation- 
intensive, In the next three sections, we describe new, 
computationally effective approximations of the  three levels. 

3. Top level: Cost-to-go  function 
We present  a quadratic  approximation for the value function 
of the  dynamic  programming problem (3). Not only does 
this  reduce data requirements, but it  also simplifies the 
middle-level (maximum principle) computation. As a result, 
the cost-to-go function is 

J(x, a )  = - x A(a)x + b(a)=x + c(a), l T  
2 ( 5 )  

where A(a)  is a positive definite  diagonal  matrix, b(a) is  a 
vector, and c(01) is a  scalar. In this  section, we describe a 
method for  choosing  these coefficients for some values of 01. 

The  function J[x( t) ,  a ]  is a  decreasing function o f t  when 
01 remains constant. The hedging point is the value  of x that 
minimizes J(x, CY) for a fixed a. It is the value that x reaches 
if a stays constant for  a  long time  and if d is feasible, i.e., if 
d E fi(a). The hedging point is important  to  the behavior 
and  performance of the algorithm because it is the  point  that 
x spends most of its time  either moving  toward or resting at. 
Intuitively,  it is the level to which one builds up  inventory  to 
compensate for future  production losses due  to  machine 
failures. 

Here, the hedging point is given by 

In  order  to  estimate  the hedging point, consider Figure 2, 
which demonstrates a typical  trajectory of x,(t). Assume that 
xj has  reached H,(a), the hedging point corresponding to  the 
machine state before the failure. Then u, is chosen to  be d, 
and x, remains  constant. 

A  failure  occurs at  time to that forces u, to  be 0. This 
causes x, to decrease at  rate -4. In fact, if the failure  lasts 
for  a  length of time T,, the  minimum value  of x, is 

HJ - d,Tr. (7) 394 
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Recall that T,, the repair time, is a random variable. Just 
after the repair (at  time to + T,), uJ is assigned the value U,. 
Assuming that  this value is greater than  that of demand d,, 
xI increases at  rate U, - d, until  it reaches the hedging point 
HI.  At that  time, uJ resumes  its old value of d, and xJ stays 
constant until the next  failure, at  time to + T, + T,. T, is also 
a random variable. 

To simplify the analysis, we assume  that 

1. The value of ul is constant between the repair ( to  + T,) 

2. T, and Tf can  be replaced by their  expected values, the 

3. The cost function g( .) in (3) penalizes positive areas  in 
Fig. 2 with weight a and negative areas with weight b, 
where a and b are positive scalars. 

and when xl reaches HI.  

MTTR  and MTBF. 

The objective of this is to  obtain  an  approximation  to 
J( . , . ). We do this by choosing H to  minimize  the total area 
under  the positive and above the negative parts of the 
trajectory  in Fig. 2. We  obtain 

T,d,(bU, - ad,) - Tpd,( U, - d,) 
HI = 

(a  + b)U, 

This  approach  cannot be applied  for machine states in 
which the  demand is not feasible. Either there is no hedging 
point  for such  a  state, or it  is larger than (8). 

AJ(a)  must be positive in  order for J to be convex.  Its 
value reflects the relative priority  of part  typej.  Parts  that 
have  great value, or that would  cause great difficulty if 
backlogged, or that pass through relatively unreliable 
machines  should have large values  of AJ. For example, in 
our  simulations we let A, be  the  number of machines 
through which part j passed. This was because we treated  all 
parts as equally  valuable and because  all  machines had  the 
same reliability parameters. 

4. Middle  level:  Maximum  principle 
In this section we describe a computationally effective 
method of computing  the  instantaneous  production rates. 

Chattering 
The  optimal  production rate  vector u( t )  satisfies the 
following linear programming problem at every time 
instant t :  

(subject  to u E a(01). (9) 

This is a feedback law, since the problem is specified only 
when x and 01 are  determined.  The numerical  solution  of (9) 
is implemented on-line at  the  middle level of the hierarchical 
algorithm. 

For every 01, x-space is divided into a set of regions (open, 
connected sets) and  the  boundaries between them. Each 
region is associated with a corner of n(01). When x is in the 
interior  of region R,, the value of u that satisfies (9) is the 
corresponding corner P,. 

Gershwin, Akella, and  Choong [3] show that when J is 
quadratic,  the R, regions are cones. 

Kimemia  and Gershwin [2] implemented (9) in  a 
simulation by solving it every time step (one minute). This 
worked well while x was in the interior of a region R,. 
However, when x crossed certain boundaries between 
regions, this  approach worked poorly. After x( t )  crossed such 
a boundary, which we call attractive, the value  of u 
corresponding to the new region R, was such that  the 
derivative (1 )  pointed toward R,. When x(t) crossed the 
boundary back into R,, the derivative  pointed again to R,. 
Thus, u(t)  jumped between the adjacent corners P, and P, 
of Q(O1). 

This  kind of behavior  is called chattering and is well 
known in the  optimal  control literature.  Here,  it  causes the 
flow rate to  change  more frequently than parts are loaded 
into  the system. As a result, if the  demands  on  the system 
are  near  its capacity,  it will fail to meet the  demands.  This 
was observed by Kimemia [ I ] .  

Linear program 
Linear  program (9) can be written 

minimize C(X)=U 
subject to Du = e, 

u 2 0, 

where u has been expanded with slack variables so that  the 
inequality constraint (2a) can be written  as an equality, and 

C(X) = AX + b = A ( x  - H ) .  

(Note  that  arguments 01 and t are suppressed.) The  standard 
solution of ( I O )  [5] breaks u into basic ( u,) and nonbasic 
(u,) parts, with C(x) and D broken  up correspondingly. The 
basic part of D is a square,  invertible  matrix. By using the 
equality in (IO), uB can be eliminated,  and  the problem 
becomes 

minimize c,(x)'u, 
subject to uN 2 0, 

where the  constraint  on u, has been suppressed, and where 

CR(X)' = CN(X)' - CB(X)'DB"DN 

is the reduced  cost. If all components of CR are positive, 
there is a  solution to (1 1): uN = 0. This  and  the 
corresponding us form  an  optimal solution to (10). 
Otherwise, ( 1  1 )  does  not have a bounded  optimal solution 
and ( 1  1 )  is not equivalent to (10). 

It is important  to  note  that since C is a function of x,  the 
basic/nonbasic breakup of this problem depends  on x. That 395 
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'Initial x 

Regions ofx-space. 
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is, the set  of components of u that  are treated as basic  varies 
as a function of x. 

At  every x in region R,, corner P, is the optimal value of 
u for (10). In  each  region, then, there must be a basic/ 
nonbasic breakup of (10) which is constant. Consequently, 
CR(x) must be  positive  everywhere in its  own  region and it 
must have some negative components elsewhere. The 
boundaries of the regions are determined by some 
components of CR(x) being equal to zero. 

The boundaries of the regions are portions of hyperplanes 
because C(x) is linear in x. Consequently CN(x)'and C , ( X ) ~  
and therefore CR(x) are also linear in x. 

396 

< 

Qualitative  behavior 
After a machine state change, x ( t )  is almost always in the 
interior of a region. Since u is constant throughout a region, 
dx/dt is also constant. Thus, x travels along a straight line in 
the interior of each region. As indicated in Figure 3, such 
lines may intersect with one or more boundaries of the 
region.  When x reaches a boundary, u (and therefore dxldt)  
changes. 

If the boundary is not attractive, x( t )  moves into the 
interior of the next  region until it  reaches the next boundary. 
The production rate vector u jumps  to an adjacent corner. 
This behavior continues until x(  t )  encounters an attractive 
boundary. At this time, the trajectory begins to move along 
the boundary and u(t)  jumps  to a point on the edge of Q(a) 
between the corners corresponding to  the regions on either 
side of the boundary. 

This behavior continues: x ( t )  moves to lower-dimensional 
boundaries and u(t) jumps  to higher-dimensional faces. It 
stops when either the machine state changes (that is, a repair 
or failure takes place) or u( t )  becomes constant. If the 
demand is  feasible, the constant value for u is d .  When that 
happens, x also becomes constant and its value is the 

hedging point. If the  demand is not feasible, x does not 
become constant. Instead, some or all of its components 
decrease without limit. 

Consequently, the future behavior of x ( t )  can be 
determined from its current value if the machine state 
remains constant. We call this future behavior the projected 
trajectory. 

0 Calculation of the  projected  trajectory 
Assume that  the conditional future trajectory is to be 
calculated at time to. This may be due to a machine state 
change. As soon as the machine state change occurs (at to), 
linear program (10) is  solved. Thus  the basic/nonbasic split 
is determined and the C,(x) function is known. In general, x 
appears in the interior of a region, and therefore all 
components of CR(x) are strictly positive. One or more 
components are zero on a boundary of a region. 

The production rate vector at t = to is denoted uo. The 
production rate remains constant at this value until t = t ,  , 
which  is to be determined. In ( to,   t , ) ,  x is  given  by 

x( t )  = N t 0 )  + (uo - d)( t  - to), 

where x ( t l )  is on a boundary. Then t ,  is the smallest value of 
t for  which some component of CR[x( t ) ]  is  zero.  It is easy to 
calculate this quantity since CR is linear in x and x is linear 
in t .  Once t ,  is found, x ( t , )  is known. Define h[x(t)]  to be the 
component of CR[x(t)]  that reaches zero at t = t ,  . Because h 
is a linear scalar function of x, we can write 

h[x(t)l = f T [ X ( f )  - x( t , ) l ,  

wheref is a vector  of  coefficients. 
For t > t ,  , there are two possibilities. The trajectory may 

enter the neighboring region and travel in the interior until it 
reaches the next boundary. Alternatively, it may move along 
the boundary it  has just reached. To determine whether or 
not the boundary is attractive, we must consider the 
behavior of h[x(t)]  in its neighborhood. 

We know that h(x)  is  negative in the region  across the 
boundary since this is how the regions are defined. We must 
determine whether h is increasing or decreasing on 
trajectories inside that region. If h is decreasing, x moves 
away from the boundary (where h is zero) into the interior. 
If h is increasing, trajectories move toward the boundary, 
which must therefore be attractive. 

One value of x which  is just across the boundary is 

x" = x(&) + (uo - d) ( t ,  + t - to)  

= x ( t , )  + (uo - d)t. 

This is the value x would  have if u were  allowed to be uo 
until t ,  + e .  

Let u" be the solution to (IO) in the adjacent region. That 
is, (10) is  solved  with x given  by x". (This can be performed 
efficiently.)  Let x' be the value  of x at t ,  + t if U" were 
used after t ,  . That is, 
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X” = x ( t , )  + (u” - d)c. 

Then 

h(x”) = fT(u” - d)c. 

Therefore h is  increasing and  the  boundary is attractive if 
and  only if 

fT(u” - d )  > 0. 

If the  boundary is not attractive, define u, = u”. Then  the 
process is  repeated to find t,, x( t2) ,  t,, x(t,),  and so forth 
until an attractive boundary is encountered. Recall that  this 
is an on-line computation  that is taking place at  time to .  The 
future trajectory is now being planned. 

If the  boundary is attractive,  a  value of u must be 
determined which will keep the trajectory on it. Otherwise 
chattering will occur.  For  the trajectory to stay on  the 
boundary, 

h[x(t)l = 0, 

or, since h[x( t , ) ]  = 0, 

d 
dt “ h [ x ( t ) ]  = f ’ ( ~  - d )  = 0. (12) 

Although u is an  optimal solution to (lo), it  is no longer 
determined by this linear program. In fact uo, u”, and  any 
convex combination of them  are  optimal.  This is because 
one or more of the reduced  costs is zero while x is on a 
boundary. Consequently, the new scalar condition ( 12) is 
required to  determine  the solution. The linear  program is 
modified  as follows: 

minimize C(X)~U 
subject to Du = t, 

u 2 0, 
f Tu = f ‘d. 

The solution to ( 13) is the value of u that keeps the 
trajectory on  the  boundary. As before, this value is 
maintained until a new boundary is  encountered. 

New boundaries  may still be attractive or unattractive. 
The  same tests are performed: x is allowed to move slightly 
into  the next region to  determine  the value of u. The  time 
derivative of the  component of the reduced  cost that first 
reaches  zero (h)  is examined. If it  is negative, the  boundary is 
unattractive and  the trajectory enters  the new region. If it is 
positive, a new constraint is added  to linear  program ( 13). 

Constraints,  when added  to (1 3), are  not deleted. As the 
number of constraints increases, u is found  on surfaces in 
~ ( C X )  that increase  in dimension  and x is found in regions of 
decreasing dimension. 

Since  this  is a finite dimensional system, this process must 
terminate.  The vector x( t )  is  eventually  of the form 

X( t )  = X( t,) + ( u - d)t. 

If d is feasible, when enough linearly independent 
constraints ( 12) are  added  to ( 13), the only feasible solution 
is u = d and x is constant. If d is not feasible, some or all of 
the  components of u - d a r e  negative. The corresponding 
components of x decrease without limit. 

5. Lower  level:  Discrete  part  dispatch 
The new part-loading  scheme  is based on  the  conditional 
future trajectory [x(s), s 5 t ] .  Define the  actual  surplus  of 
part type J at  time t to be 

x;( t )  = {number of parts of type j loaded during (0, t ) )  
- d,t. 

Note  that x,”( t )  is an irregular  sawtooth function of time. 
It  jumps by 1 each time a part is loaded. At other times,  it 
decreases at  rate d, . 

The loading strategy ensures that x“(t)  is near x(t) .  The 
strategy is this: At each time  step t ,  load  a  part of type J if 

x;(d x$). (14) 

Do not load  a part of type J otherwise. A  rule  is  required to 
resolve conflicts; it may  not  matter what that rule is since 
conflicts do  not arise very often. 

6. An automated  card  assemby  line 
In this  section, we describe  a system to which the 
hierarchical  scheduler is applicable. Our  purpose in using 
this system is to assess the scheduler in a realistic setting. 

Purpose of system 
An automated  card assembly line is being built up in stages, 
through a series of  “minilines.” The  portion of the system of 
interest to us  is the stage consisting of insertion  machines. 
Printed circuit cards  from a  storage area  upstream  amve  at 
the loading area of the insertion stage. Each  card is placed in 
a  workholder, which is introduced  into  the system. It goes to 
the machines  where the electronic components  it requires 
are inserted. It then leaves the system and goes to  the 
downstream stages, which consist of testing and soldering 
machines. 

There  are several types  of  insertion  machines,  each  of 
which inserts one mechanically  distinct  type  of component. 
The  common  ones  are SIPs (single in-line package inserters), 
DIPS (dual in-line package inserters), MODIS  (multiform 
modular inserters) and VCDs  (variable center distance 
inserters). By loading different components,  the line can be 
used to assemble a variety of  cards. 

In  order  to  concentrate  on  the operational issues of the 
FMS, we assume  that  component loading  has  already been 
determined.  The changeover time is small among  the family 
of  parts  producible with a given component loading. We also 
restrict our  attention  to  the  Miniline 1300, whose schematic 
is shown  in Figure 4. This consists of a DIP, a VCD, and 
two SIPs. Each  of the  machines also has an associated buffer, 
which can hold 30 parts. 397 
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Table 1 Transportation mechanism. 

Transfer time of card from element to 
element (straight or rotation) one second 

Rotation time six seconds 

Number of movements to transfer card one rotation and one 
via rotary mode transfer 

Transportation system 
The workholders are loaded at  input  station  30 1 and  then 
move  to  each of the required  machines. Movement is along 
straight or rotating  elements. The straight elements  are used 
to  move  parts  in a single, fixed direction and  are represented 
by rectangles. The rotating elements  are for 90" turns  and  are 
represented by circles. Representative movement  times  are 
listed in Table 1. 

Movement of cards in the vicinity of a  work station 
(insertion machine, associated buffer, and  transport 
elements) follows a common  pattern.  Cards  amve  at a 
rotating  element such as  603  and either turn toward the 
insertion machines or move straight on.  The  cards going to 
machines (e.g., 101) either wait at  input  elements such as 398 
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605 or go into buffers such  as 20 1. After all the required 
components have  been  inserted,  a  similar movement  takes 
the card out of the insertion machine  and  onto  output 
element 305. After element 606 is rotated  toward  the work 
station,  the  card is placed on it. Element  606 is rotated back 
to its  original  position and  the card  is then loaded onto  the 
next transportation  element (306). Finally,  after going 
through  the  entire system, the  cards exit from  output 
element 324. 

Machine parameters  and part data 
The  mean  time between failures (MTBF)  and  mean  time  to 
repair (MTTR) of the  machines  are listed in Table 2. The 
average fraction of time a machine is  available is the  time it 
is available  for production divided by the total  time. This 
quantity, called the efficiency or availability  of a machine, is 
also listed in  Table 2. 

There  are  other  random  perturbations affecting the 
system. These  include machine tool jams, which occur when 
a machine  jams  in trying to insert a component.  Rather  than 
being regarded as a  failure, this small but regular 
(approximately once every 100 insertions) disturbance  can 
be modeled as  part of the processing time. 
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Normally, there  are several part  (card)  types being 
processed in the system. We limit our experiment  to only six 
types to better examine  the hierarchical policy. Typical 
demand rates are listed in Table 3, with the  operation  times 
required by each  card  type at each of the machines.  These 
include  the processing time  and  the  time to move  in  and  out 
of  each machine. 

Loading 
Loading  describes  how heavily the machines  in  a system 
must be utilized to satisfy demand.  The expected  utilization 
of  a machine is equal  to  the  ratio of the total machine  time 
required to  the expected machine  time available. The total 
machine  time required is the  product of total demand  and 
processing time. The expected time a machine is available is 
its time available  multiplied by the total time period.  Table 2 
displays the average utilizations  for the  machines  in  the 
configuration  reported  in the  runs in  Section 6. These data 
were created to impose  a heavy loading on  the simulated 
production system. The actual  utilization  in any sample 
simulation  run  depends  on  the  time history of machine 
failures and repairs during  that  run.  This  time sequence 
determines  the actual amount of time a machine is available. 

7.  Simulation  results 
A  detailed simulation of  a flexible manufacturing system was 
written to test the hierarchical  scheduling policy and  to 
compare it with other reasonable policies. The  simulation is 
described in [6]. A full description  of the results appears in 

The  simulation indicates that  the  method behaves very 
well. The performance  measures that were used were the 
total production  during a  day,  average  work in process, and 
production balance. The latter  measured  how well 
production  adhered  to  the specified ratio of production 
requirements for different parts. 

141. 

The hierarchical method was compared with a set of 
simpler strategies. On all measures, the hierarchical method 
was superior: production was greater; work in process was 
less; and balance was closer to loo%, indicating that 
material was produced  in nearly the specified ratio. 

It was more  robust,  in  that it was less affected by 
disruptive events. The difference between its performance on 
good days  and  on bad  days was less than  the difference for 
other strategies. 

It was not vulnerable to  parameter variations.  A variety of 
different A and b coefficients chosen  for J in (5) made  almost 
no difference in  the performance of the algorithm. 

8. Summary and conclusions 
The hierarchical  scheduling policy devised by Kimemia  and 
Gershwin  for flexible manufacturing systems has been 
further developed and tested. This policy is designed to 
respond to  random  disruptions of the  production process. In 
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Table 2 Machine parameters. 

Machine MTBF MTTR EJfieieney Expected 
(min)  (min) (%) utilization 

(%) 

1 600 60  90.9 I 97.68 
2 600 60  90.9 I 91.10 
3  600 60 90.91 96.03 
4  600 60  90.91 96.58 

Table 3 Operation times and demand rates. 

Machine Operation times 
( S )  

Part type 

I 2 3 4 5 6 

1 40 40 0 0 20 60 
2 0 0 60 30 40  40 
3 0 100 0 0 70 0 
4 0 0 0 80 0 80 

Demand rates 
(parts/s) 
Part type 

I 2 3 4 5 6 

0,0080 0.0070  0.0060  0.0070  0.0025  0.0040 

its current  formulation, it treats unpredictable  changes  in the 
operational  states  of the machines:  repairs and failures. All 
levels of the policy have  been  improved, and  the policy 
shows  great  promise  for  practical  application. 
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