
On  the  analysis by Emmanuel  Yashchin 

and  design 
of CUSUM- 
Shewhart  control 
schemes 

In recent  years  cumulative sum  (CUSUM) control 
charts  have  become  increasingly  popular  as  an 
alternative to Shewhart’s  control  charts.  These 
charts  use  sequentially  accumulated  information 
in order to detect  out-of-control  conditions. They 
are  philosophically related to procedures of 
sequential  hypothesis testing (the  relation  being 
similar to that existing between  Shewhart’s 
charts  and classical procedures  for  hypothesis 
testing). In the  present  paper we present  a new 
approach to design of  CUSUM-Shewhart control 
schemes  and  analysis of the  associated  run 
length  distributions  (under  the  assumption  that 
the  observations  correspond to a  sequence of 
independent  and  identically distributed random 
variables).  This  approach is based  on  the  theory 
of  Markov  chains  and it enables  one to analyze 
the ARL (Average Run  Length),  the distribution 
function of the  run  length,  and  other  quantities 
associated  with  a CUSUM-Shewhart  scheme. In 
addition, it enables  one to analyze  situations in 
which  out-of-target  conditions  are  not  present 
initially,  but  rather  appear  after a substantial 
period of time  during  which  the  process  has 
operated in on-target  mode  (steady  state 
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analysis).  The  paper  also  introduces  an APL 
package, DARCS, for  design,  analysis,  and 
running of both  one-  and two-sided CUSUM- 
Shewhart  control  schemes  and  gives  several 
examples of its application. 

1. Introduction 
Since the early  thirties, control  charts have been widely used 
in  industrial  quality control  as a means of monitoring  the 
quality of manufactured products.  Traditionally, the most 
commonly used are Shewhart’s charts (X-chart,  R-chart, p- 
chart, etc.), where the process is said to be out of control 
once  the last plotted  observation falls outside the prescribed 
control limits. The  main advantage of these “classical” charts 
is their  simplicity. The  main disadvantage is that typically 
these charts  are  not very sensitive with respect to  moderate 
changes  in the process level. In order to overcome  this 
difficulty, several modifications of the basic procedure were 
proposed by various authors. These  modifications call for 
additional signal criteria based on warning  limits,  runs,  etc. 
However, the price for  improved sensitivity is substantial, 
and loss of simplicity is only a minor part  of it. Indeed, the 
classical chart enables one  to analyze,  in a relatively simple 
way, the  distribution of the  run length of the  control  chart 
for any values of the parameters-one can see that in  this 
case the  run length is a geometric random variable. With 
additional signal criteria, the  run length distribution becomes 
much  more complicated and  in most cases can be analyzed 
only by means of  simulation,  study. If such a study indicates 
that  the scheme is not satisfactory (say, the probability  of the 
false signal within a short period  of time is too high), it is not 
always clear how the procedure can be changed  in order  to 
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meet the requirements. In the final account, the 
computational effort  needed to find a scheme with desirable 
properties might be enormous. Another difficulty  is the 
interpretation of the control chart in the presence of several 
signal criteria. 

Analysis  of the  run length distribution of control schemes 
is especially important in situations where measurements are 
taken and processed automatically (and  the operator is 
notified  only if an out-of-control signal is triggered),  as well 
as in situations where  several sequences of observations are 
monitored simultaneously. In such situations frequent out- 
of-control signals  associated  with economically 
nonsignificant changes in process parameters may  cause 
frequent unjustified corrective actions and/or eventually ruin 
the discipline of the operator. On the other hand, failure to 
detect a truly out-of-control situation rapidly may  result in a 
substantial amount of poor-quality product. Thus, any 
control scheme associated with automatic data processing 
andjor  simultaneous control of several parameters should be 
thoroughly analyzed before it can be recommended for use. 
The analysis should involve identification of various possible 
joint distributions of observations and investigation of the 
corresponding run length distributions. Its ultimate aim is to 
ensure that  the  run length  of the scheme under consideration 
is  sufficiently long if the changes in process parameters are 
not economically significant and sufficiently short if they are. 

In situations associated  with automatic  data collection and 
processing, the following question becomes critical: Should 
we continue to use traditional control schemes just because 
they are most convenient for manual plotting and visual 
evaluation (which  is  based on intuition and is, therefore, 
highly subjective)? Indeed, some of the classical schemes 
were often preferred to schemes having much better 
statistical properties merely  because  of computational 
simplicity. For example, for samples of  size n > 2 from a 
normal (or approximately normal) population, the sample 
range cames much less information about u than  the sample 
standard deviation, 0 [ 11; yet R-charts are often preferred to 
&-charts (possibly  because  fifteen  years  ago  it  was not very 
practical, because  of computational difficulties, to run 
&charts in an industrial environment). The answer to  the 
above question is, probably, as follows:  If the process  is 
capable of meeting specifications and if relatively  large 
variations of  process parameters are not associated  with 
significant economic losses, traditional control schemes do 
very  well (as do many other “reasonable” schemes); 
otherwise, we must look for schemes with better statistical 
properties. 

be as follows: 
The desired properties of such an improved scheme might 

It must be as sensitive as a comparable modified 
Shewhart’s control chart with  respect to substantial 378 
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changes in the level  of the controlled parameter and more 
sensitive than a comparable modified  Shewhart’s control 
chart with  respect to moderate changes. 
Each scheme (chart) should be based on very  few (one or 
two) signal criteria. 
It must be  easily adjustable in order to meet reasonable 
requirements related to the behavior of the run length 
distribution for relevant values of controlled parameters. 
It must enable effective analytic evaluation of performance 
for a wide  range  of stochastic patterns of incoming data; in 
other words, its behavior must be  easily predictable once 
the distribution of input  data is given. 
It must be robust with  respect to slight departures from the 
desired model that have no effect on the controlled 
parameter (for example, if the controlled parameter is the 
median of the distribution, we would not like the relevant 
scheme to overreact because  of  slight departures from 
assumed normality). 
It must enable relatively  easy estimation of the current 
values  of the controlled parameter, especially after an out- 
of-control signal  has  been  triggered. 
It must enable easy  visual interpretation by adequately 
trained personnel. 
The scheme must be convenient for graphic display on  the 
screen  of a computer terminal; in particular, graphic 
representations in  which the chart does not systematically 
“run away” from the screen should be available. 
The scheme should enable easy implementation of the FIR 
(Fast Initial Response) feature; i.e.,  it must provide an 
instrument for initial setup which detects the initial out-of- 
control conditions earlier than similar conditions 
occumng later. 

Are there control schemes possessing the mentioned 
properties? The answer  is  yes;  in particular, some types of 
cumulative sum (CUSUM) control charts (first introduced 
by  Page [2]) can serve as an adequate example. These charts 
use sequentially accumulated information in order to detect 
out-of-control conditions. They are philosophically related to 
procedures of sequential hypothesis testing [3], the relation 
being similar to that existing  between  Shewhart’s charts and 
classical procedures of hypothesis testing. Several other 
schemes proposed as an alternative to the classical 
Shewhart’s procedure (e.g., [4]) also meet the stated 
requirements to various extents. However, most of them 
either do not enable efficient study of the run length 
distribution or are associated  with such unpleasant features 
as the necessity of specifying  weights (in the weighted 
moving average charts), excessive  algebraic manipulations, 
problems with  visual interpretation, etc. Other reasons for 
the relative popularity of the CUSUM approach are due  to 
its connection to the theory of Sequential Probability Ratio 
Tests [3, 51 and to  the Central Limit Theory [6] as well as to 
the availability of certain optimality results [7, 81. 
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Though CUSUM charts are very useful for other purposes 
(e.g., retrospective data analysis, graphical data 
representation, diagnostics, forecasting, sequential hypothesis 
testing, etc.), our interests in the present work are primarily 
related to CUSUM as a means for detecting and analyzing 
out-of-control conditions. Extensive  discussion on other 
applications of CUSUM schemes is contained, for example, 
in Refs. [9-121. 

2. CUSUM control schemes 
In this section we  give a short description of typical CUSUM 
procedures. Let x,, x,, . . . be a sequence of observations 
related to a certain process. The observation x, may 
represent, for example, 

the sample percentage of defective chips in the ith 

the total number of  defects found in the ith produced 

the sample mean of four diameters of  ball  bearings  chosen 

the sample standard deviation of ten simultaneous 

produced lot, 

wafer, 

at random during the ith production period, 

measurements (corresponding to various locations) of 
polyethylene film thickness taken during the ith sampling 
period, 

and so on. Let us suppose that we would  like our 
observations to fall as close as possible to some target value 
to. Without loss of generality, we can assume that to = 0. If 
we are concerned about the possibility that the process  might 
shift up from its target level,  it  would  be natural to adopt  the 
following three-parametric control scheme: 

choose h’ > 0 (signal  level), k’ (reference value), and 
0 5 s,’ < h’ (headstart); 
compute the sequence of cumulative sums: 

s’ = max(s:-, + (x, - k’), 01, i = 1, 2, . . . ; (1) 

let N’ be the first  index i for  which s: 2 h’. Then trigger 
the out-of-control signal at time N+.  

The described procedure is  called an upper Page’s scheme 
with parameters (h’, k’, si). N’ represents the run length of 
the scheme. If an additional signal criterion is introduced, 
namely 

d. if a single observation x, satisfies x, 2 c’, trigger an out-of- 
control signal at the  moment i, 

the procedure is  called an upper Page’s scheme with 
parameters (h’, k’, si) supplemented by Shewhart’s limit 
c .  

At this point, some comments  about the meaning of the 
reference value, the headstart, and  the Shewhart’s limit are 

appropriate. The reference value k’ acts as an “anchor,” 
keeping the CUSUM from drifting in on-target situations. 
The headstart si implements the FIR feature mentioned 
earlier. The rationale for  using a headstart is as follows:  If the 
process  is on target, the Page’s scheme is (most likely) 
brought to zero by the reference  value, so that in this case 
the expected  effect  of the headstart is minimal; otherwise, 
however, the out-of-control signal is triggered much sooner 
(for example, see [ 131). Finally, supplementing the scheme 
with a Shewhart’s limit improves the sensitivity  of the 
scheme with  respect to substantial changes  in the process 
level (for example, see [ 141). There are also cases  in  which 
Shewhart’s limits are introduced because  of some special 
features of the associated production process or other 
considerations. Here and in what  follows we  refer to such 
(supplemented) Page’s schemes as CUSUM-Shewhart 
control schemes. 

It is clear that in order to affect the performance of the 
control scheme, the Shewhart’s limit must satisfy 
c+ c h’ + k’. On the other hand, if c’ 5 k’, an out-of- 
control signal can be triggered only if the Shewhart’s limit 
has  been violated. Therefore, classical  (Shewhart’s) control 
schemes can be  viewed as special  cases of CUSUM-Shewhart 
schemes.  An alternate way to represent a Shewhart’s scheme 
as a special  case  of a CUSUM-Shewhart scheme is to set h’ 
and k’ to zero and the desired  Shewhart’s limit, respectively. 

In a similar way,  if  we are concerned about  the possibility 
that  the process might shift down from its target level, the 
appropriate lower Page’s scheme with parameters ( h -  > 0, 
k-, 0 s si < h-) calls for computing the sequence of  lower 
cumulative sums 

s;= maxis,, + (-xi - k-), O } ,  i = 1, 2, . . .  (2) 

and triggering an out-of-control signal at the first moment 
N -  for  which s, 2 h-. If an additional signal criterion 
(calling for a signal at the  moment i if x, I c-) is introduced, 
we say that the lower scheme is supplemented by  Shewhart’s 
limit e-. 

When we would  like to detect rapidly both types of shift of 
process from its target level,  it makes sense to run both 
schemes simultaneously. This procedure is  called a two-sided 
Page’s scheme with parameters (h’, k’, s,’, h-, k-, si), 
possibly supplemented by Shewhart’s limits (c-, c+). The run 
length  of the two-sided scheme is denoted by N. Clearly, 
N = min ( N + ,  N - ) .  

Now  we  give some comments related to selection  of the 
scheme parameters. First, the domain of possible  values of a 
single controlled parameter (say E )  usually  consists of a 
“target” region and one or two “taboo” regions (depending 
on what types of deviations o f t  from its target  level to are 
considered undesirable). (See,  for example, [ 15(a)].) The 
control procedure is  usually applied to a sequence 
i, - Eo, i, - to, . . . of estimates of [ - to corresponding to 
sequential moments of time. 379 
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“Taboo” “Target” 
region 

“Taboo” 
region  region 

h 

0 \ I-* * k t o  

Recommended Recommended 
value of (- k-) value of k+ 

Values of the CUSUM 
0 6 26 h 
& - : = e = = = : = ’  

0 1 2 3 4 5 6 7 8 9 Absorbing 

Corresponding states of the  Markov  chain 
state 

1 Discretization of the  values of a one-sided CUSUM scheme. 

The reference values k’, k-  are usually recommended  to 
be chosen about midway between the  appropriate  bounds of 
the “target” and  “taboo” regions, as  shown in Figure 1. Such 
a  choice  of k’, k- has certain  (asymptotic)  optimality 
properties (for example, see [SI) and, moreover,  it is known 
to work very well for most  stochastic patterns of 
observations encountered  in practical  applications. When  the 
target  is  chosen to be the origin, the above recommendations 
always call for positive values of k’, k-, which is very 
convenient for  a user, especially in the case of two-sided 
procedures.  However,  in some cases (often occumng in one- 
sided control situations) it is hard to tie the observed 
quantities  to  any  particular “target” value. In these cases, 
instead  of  looking  for some artificial  target  value, we can 
simply pick the reference values in accordance with the 
above recommendations  and apply them directly to  the 
observations. Though  the resulting reference values  may now 
be negative, the logic of cusum plotting  is unaffected and 
confusing situations  are unlikely to occur. 

Once  the reference values are fixed, the performance  of 
the scheme depends primarily on  the values of signal levels 
and Shewhart’s limits. Typically, one is interested  in  schemes 
satisfying certain requirements related to on-target 
performance. Thus, values of (h’, c’, h-, c- )  appropriate  in 
a given situation  must  not only satisfy these requirements 
but also ensure  the best possible off-target performance of 
the scheme. In Sections  6 and 8 we outline  the design 

380 procedures  for  achieving  this goal. 

The values  of the headstarts are usually selected in  the 
final stage of the design procedure. As  we know,  setting the 
headstart to a nonzero value improves the sensitivity of the 
scheme with respect to initial  out-of-control  conditions. On 
the  other  hand, it  increases the probability  of  a false signal 
within any given period  of  time. Thus,  there usually exists a 
“trade-off value of the headstart  for which improvement in 
sensitivity is not associated with substantial increase in 
probability of triggering a false signal; the  situation here is 
somewhat  similar to  that  occumng in  problems related to 
testing  of  a  hypothesis  when one considers “trade-off 
between Type 1 and  Type 2 errors. In  most practical 
situations  the value of the headstart does  not exceed half of 
the corresponding signal level. 

3. Analysis of one-sided Page’s schemes 
As we mentioned in the  introduction,  the  run length 
distribution is the  primary criterion of performance  of  a 
control scheme. In this  section we introduce  the 
methodology  for  deriving the basic quantities associated with 
this distribution.  Our basic assumption is that  the 
observations x,, x,, . . . are realizations  of  a  sequence X , ,  X,, 
. . . of independent  and identically distributed (iid) random 
variables. The  distribution  function of X ,  is denoted by F ( x ) .  

At present, the most popular  method for analysis of run 
length distributions (first introduced  in 1972 by Brook and 
Evans [ 161) is based on discretization  of the values of 
CUSUM  and  then treating  it  as  a  Markov chain  (on  other 
methods of analysis see, for example, [ 171). Let { h, k, so] be a 
Page’s scheme  applied to  the sequence of observations x,, x,, 
. . . . Then it is clear that  the values so, s,, . . . form a Markov 
chain which is discrete  in time  but  may be continuous in 
space. The levels 0 and h are reflecting and absorbing 
bamers of the  chain, respectively. 

For computational purposes we discretize the values of so, 
s,, . . . as  shown  in Figure 2. In other words, the values of so, 
s,, . . . are  rounded  to  the  center of a corresponding  group. 
The  number of states of the  Markov  chain (excluding the 
absorbing  state) is termed  the level of discretization of the 
scheme and  denoted by d. For example,  in the case 
represented by Fig. 2, the level of  discretization is d = 10. 

Note  that  the length of an interval  corresponding to a 
single state, 6, is always related to  the level of  discretization 
by means of the  formula 

6 = h/(d - 0.5). (3) 

Thus,  the centers of the  groups  are  at  points 0, 6, 26, . . . , 
( d  - I)6 and h = (6/2) + (center of the last group). Such a 
method of discretization usually gives approximations of 
good quality  and is recommended in many sources (for 
example, [ 161). The  transition matrix  of the Markov chain 
can be easily expressed in  terms of F ( x ) .  Analysis of this 
matrix  enables one  to find the average run length  (ARL) and 
the  standard deviation  of the  run length (SDRL), as well as 
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the higher moments of the  run length N.  One  can also 
compute P( N > r ] ,  r = 0, 1, . . . . Some of the relevant 
formulas  can be found in the  mentioned  paper by Brook and 
Evans. 

Next we give some  comments  about  the effect of 
discretization. Extensive case studies  indicate that levels of 
discretization of about d = 30 give results which are 
satisfactory for  most practical purposes. The reason  for that 
is related to  the fact that we discretize the states of the 
CUSUM  chart,  but not the observations themselves. Thus, 
relatively low sensitivity with respect to level of 
discretization is explained by compensation of roundoff 
errors when subsequent values of the scheme are  computed. 
As an example, let us apply the scheme ( h  = 3, k = 1, 
so = 0 )  to  three sequences of normal observations 
corresponding to p = 0, 0.5, and I and u = 1. Table 1 
contains  the values of ARL  as well as the lower and  upper 
5 %  quantiles of the  run length distribution (in parentheses) 
corresponding to levels of discretization ranging from 10 to 
100. It indicates that levels of  discretization as low as 10 
enable one  to roughly assess the properties  of the  run length 
distribution. 

Finally, we discuss  two special topics related to  the one- 
sided Page’s scheme. 

One-sided Page’s scheme supplemented by Shewhart’s limit c 
If the one-sided scheme is supplemented by Shewhart’s limit 
c, the  cusum so, s,, . . . is still a Markov  chain, with the 
transition  matrix  being  a modified version of one considered 
earlier. Analysis of this transition  matrix results in the basic 
quantities associated with the CUSUM-Shewhart  scheme 
under consideration. Another way of  looking at  the scheme 
supplemented by Shewhart’s limit c is as follows: Replace 
F(x) ,  the  distribution function (d.f.) of X ,  with  a d.f. of an 
improper  random variable X* defined by X* = X if X 5 c 
and X* = m otherwise. The  (improper) d.f. F*(x)  of X* is, 
of course, 

and analysis can easily be performed by using F* as  the d.f. 
of the observations  instead  of F. 

Analysis of steady  state situations Our previous discussion 
was related to  the  situations  in which deviations of the 
process from target conditions  occur  at  time i = 0. Under 
this  assumption,  one of the primary  questions of interest was 
this: How fast will the relevant control schemes  detect the 
presence of various  types of out-of-control  conditions? 
However,  in many cases, we would like to analyze the  run 
length distributions corresponding to deviations of the 
process from  the target conditions, when  these  deviations 
occur after  a  substantial period of time  during which the 
process operated  in  on-target mode characterized by some 
distribution  function of the observations F. 
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Table 1 Effect of the  level of discretization on ARL and 5% 
quantiles (in parentheses) corresponding to the scheme ( h  = 3, k = 
1, so = 0). The observations are iid  normal  with u = 1. The entries 
are  rounded to the  nearest integer. 

10 1918 (100, 5741) 117 (8,  343) I7 (3, 45) 
20 1952 (102,  5842) 117 (8,  345) 17 (3,45)  
30 1958 (102,  5860) 117 (9,  345) 17 (3.45)  
50 1961 (102,  5869) 118 (9,  345) 17 (3,45)  

IO0 1962 (102,  5873) I18 (9,  345) 17 (3,45)  

First of all, let us ask the following question: What  are  the 
probabilities  of  various  states of the Markov chain 
(associated with our  control scheme)  after  a  long period of 
time given that  the out-of-control signal was not triggered 
during  this period  of time?  It is well known  (for  example, see 
[IS]) that  the relevant  probabilities are given by the 
normalized left eigenvector  corresponding to  the  maximal 
real eigenvalue X, of R, the ( d  X d )  principal minor of the 
transition  matrix. Thus, we denote 

q ( j )  !Ef l i m P ( ( j  - 0.5)6 < sk < ( j  + 0.5)6 I N > k } ,  
k-m 

provided the limit exists. Note  that in this case the 
distribution ( q ( j ) }  does  not  depend on so. 

Now let us assume  that after  a  long  period  of time  the d.f. 
of the observations switched from F (on-target d.f.) to F. Let 
N be the  remaining  run length  until the signal is triggered. 
Then 

d- I 

EIN = c q(jW$INlso = j %  
J =o 

d- I 

PIN > rl = q ( j ) P p ( N >  ‘Iso = j 6 l ,  
J -0 

where the subscript F emphasizes that  the corresponding 
expectation and probability are  computed  under  the 
assumption  that  the observations are generated by the d.f. F. 
Other  quantities related to N can also be  found by using 
formulas of type (6). 

4. Some basic information related to the 
analysis of two-sided Page’s schemes 
Analysis of two-sided schemes  is  known to be technically 
much  more complicated than  that of one-sided schemes. 
Indeed,  after  discretization  of both schemes, one  can see that 
the two-sided scheme  represents  a  pair  of dependent Markov 
chains operating  simultaneously. This pair may be treated as 
a single Markov  chain with the set of possible states 
represented by pairs ( i ,  j ) ,  where i and j are  the states 
corresponding to  the  upper  and lower schemes, respectively. 
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Nonsignal regions corresponding to the event { N  1 i*}. 

Unfortunately, the corresponding transition matrix is  usually 
so large that any detailed analysis of the run length 
distribution becomes practically  impossible. For example, if 
each scheme is  discretized into d = 30 states, the transition 
matrix of the two-sided scheme is about (900 X 900). This 
example provides a partial explanation for the skepticism of 
many potential users of cumulative sum techniques. 

Clearly, an alternative, much more efficient method of 
analysis  was  needed. Indications that such a method might 
exist are related to the fact that upper and lower schemes are 
strongly correlated; thus, it is reasonable to expect that the 
transition matrix of the two-sided scheme is “too big”  for the 
information it contains. Indeed, Woodall [ 15(b)]  showed that 
some reduction of the number of states of a two-sided 
scheme is  possible.  However,  even  with this reduction, the 
size  of the transition matrix remains substantial. One can 
also approach the problem by trying to find a relation 
between the basic quantities associated  with a two-sided 
scheme and those associated  with corresponding one-sided 
schemes. Some important results in that direction were 
obtained by Khan [ 191 and Lucas and Crosier [ 131. The 
comprehensive theory (and associated method) for  analysis 
of  general  two-sided CUSUM-Shewhart schemes on  the basis 
of this approach can be found in [20]. 

In this section we  give some basic information related to 
this method. This information is helpful  for understanding 
the principles upon which our approach to analysis and  the 
associated  software are based. The reader is  referred to [20] 
for a more detailed discussion and proofs of the presented 
theoretical results. To simplify the notation we shall assume, 
without loss of generality, that h’ 2 h-. 

First let  us introduce two constants which  play a crucial 
role  in the analysis of  two-sided CUSUM schemes.  Let 

382 (h’, k’, si, h-, k-,  si) be a two-sided Page’s scheme. The 
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first constant, i*, represents the smallest non-negative integer 
for  which 

s: + s i  - h’ - i*(k+ + k-)  I 0. (7) 

One can show  [20] that this constant has the following 
property: Whatever the realization of the observations qnd 
index i may  be, sf + s- I h’ if and only if i 2 i*. 

dependent on  the question of whether the associated upper 
and lower schemes do or do not interact. By definition, the 
upper and lower schemes do not interact if no realization x,, 
x,, . . . of observations exists  for  which one of the schemes 
signals  while, at the same moment,  the value of the opposite 
scheme is not zero.  Absence  of interaction means that  the 
successive points of  signal  of the two-sided scheme form a 
renewalprocess [21] which makes the analysis much easier. 
The second constant of interest, E, defined by 

Analysis of the two-sided Page’s scheme is heavily 

E = (h’ - h-) - (k’ + k-) ,  def 
(8) 

represents a measure of the  “amount of interaction” present 
in a given  two-sided scheme. Indeed, let x,, x,, . . . be any 
realization for  which the  run length N is greater than i*. As 
shown  in [20, Theorem 4.11, for such a realization 

s; 2 h’ implies that s; = 0, ( 9 4  

s i  2 h- implies that 0 I s; 5 max (0, E ) .  (9b) 

Thus, if e 5 0 and it is known that no signal  was  triggered 
within the first i* steps of the scheme, the subsequent 
behavior of the two-sided scheme is as if no interaction were 
present. On the other hand, if E > 0 and it is known that  no 
signal  was  triggered within the first i* steps,  it  may happen 
that  one of the schemes signals  while at the same time  the 
value of the opposite scheme is not zero-but this value 
never  exceeds E .  So, if c is small compared to h’, bounds and 
approximations of  very  high quality for quantities associated 
with  two-sided schemes are usually available. [Most practical 
situations (in particular, when h’ = h-) are related to the 
case E I 0, so that  no need  for such bounds and 
approximations typically  arises.] If c > 0, we  say that the 
two-sided Page’s scheme satisfies the intrinsic interaction 
condition. In this case E is  called the power of intrinsic 
interaction and clh’ is  called the relative power of intrinsic 
interaction. 

So far, we have considered the situation in  which it is 
known that  no signal  was  triggered within the first i* steps. 
But analysis of the  run length distribution must take into 
account the possibility that a signal may be triggered within 
this period of time. One can show that such analysis can be 
based on only one of the schemes. Indeed, assume that 
i* > 0 and consider the regions a and b given  by 

IBM J.  RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 



0 I i < i* (see Figure 3). As shown in [20, Theorem 4.2]), 
cusum  paths corresponding to  any realization  of 
observations  for which N 2 i* must lie within  these regions. 
Moreover, if for some realization x,, x,, . . . one of the 
relations ( I O )  holds  for every 0 5 i < i*, then (for this 
realization) the  other relation also holds  for every 0 5 i < i* 
and N 2 i*. 

The last result  implies that  the probability  of any event 
related to  the behavior of the  run length of a two-sided 
scheme  within the first i* steps can  be  found by analyzing 
the  upper (or lower) scheme only. For example, N 2 i* if 
and only if the  path of the  upper scheme (see Fig. 3 )  lies 
within the shaded region corresponding to  (loa) [or, 
alternatively, if and  only if the path  of the lower  scheme lies 
within the shaded region corresponding to  (lob)]. 

In light of the previous  discussion, we are  able  to suggest a 
very simple  criterion for  noninteraction of the  upper  and 
lower schemes,  namely: The  upper  and lower schemes do 
not interact if and only if E I 0 and si + s i  - h- - 
(k’ + k - )  I 0 or, equivalently, if and  only if 

Moreover, the results given above  enable one  to develop a 
unified approach  to analysis of two-sided control schemes. 
This  approach is based on analysis  of the probabilistic 
behavior of the  scheme prior to i* and after i* separately. 
The first part  of the analysis  (as well as  the  conditional 
distribution of values of the  upper  and lower schemes at  the 
moment i*, given that  no out-of-control signal was triggered 
within the first i* steps)  can be performed by considering 
one of the schemes  only, and therefore is not associated with 
a  substantial computational effort. Thus, we assume,  without 
loss of  generality, that i* = 0 and proceed to  the second  part. 

Let L+( p I si), L-( p I si), and L( p I si, s i )  be Laplace 
transforms of the  run lengths  of the  upper scheme with 
headstart s:, the lower  scheme with headstart si, and  the 
two-sided scheme, respectively. Also, define 

We start the analysis of a given two-sided Page’s scheme 
by finding E .  If E 5 0, one  can show (see [20, Theorem 5.11) 
that L( p I si,  si) = A,( p ) .  Thus, expansion  of ( I  2) into 
power series enables one  to  obtain expressions  for  ARL, 
SDRL,  and P(   UP)  = PIN+ < N )  (Le., the probability that 
the signal is triggered by the  upper scheme) in  terms of the 
ARL‘s and SDRL‘s of the associated one-sided schemes. 

The  formula ( 12) also enables one  to  determine  the  run 
length distribution of the two-sided scheme.  Indeed,  once 

discretization is performed,  L+(log p I si), L-(log p I s i )  and, 
consequently,  L(log p I s:, s i )  become  ratios  of  polynomials 
with real coefficients. The  run length distribution  can 
therefore be analyzed by finding the  roots of the 
denominator  in ( 12), expanding (1 2) into  the  sum of partial 
fractions, and subsequent  termwise  inversion  of the Laplace 
transform. 

If E > 0, one  can prove [20, Section 81 that  for p > 0, 

This inequality  leads  immediately to  bounds for ARL  and, 
after some  additional analysis, to  bounds for higher-order 
moments  as well as for the  run length distribution itself. In 
practical  terms, however, the Laplace  transform of the  run 
length is much closer to  the left bound in (1 3 )  than  to its 
right bound.  In fact, one has 

where P is the probability that 

1. the signal is triggered by the lower scheme; 
2. the value of the  upper scheme at  the  moment of signal is 

not  equal  to 0 [note  that by (9), it must  be less than E]; 
3. the  upper scheme does  not reach 0 (before it signals) 

during its  subsequent path; 
4. the value  of the  upper scheme at  the  moment of its signal 

does  not exceed h’ by more  than  the  minimal value of 
the  upper scheme  achieved during its  subsequent path; 

and C( p )  is the “correction term” associated with the above 
event. One  can show that  as p ”$0, C ( p )  = -fiLpp + o(p) ,  
where w P  is approximately equal  to half of the  ARL of the 
upper  scheme with headstart (h’ - E ) .  It is  intuitively  clear 
that whatever the stochastic pattern of observations may be, 
P must be very small (especially for moderate powers of 
intrinsic  interaction), and if, in  addition,  the  trend of the 
CUSUM path  is  upwards, then also the  impact of C( p )  is 
small. Since  in the vast majority  of the problems 
encountered  in practice the relative power of  intrinsic 
interaction is 0.5 or less,  we performed an extensive study  of 
the second term  in (14) in  this  domain  in  order  to decide 
whether  its impact was significant enough  to justify 
additional  computational effort. This  study was based on  the 
exact transition  matrix  of the bivariate Markov chain as well 
as  on simulated runs,  and it led to  the conclusion that 
approximations based on  the first term of  (14)  produced 
results sufficient for most practical purposes. 

The results given so far are relevant with respect to  any 
stochastic pattern of incoming iid  observations. It is  clear 
that  any restrictions on the  nature of  observations can lead 
only  to a decrease in  actual power of intrinsic interaction. 
For example,  consider the case in which the two-sided 
scheme is supplemented by Shewhart’s limits c-, c+. Clearly, 
if -c- 5 k- (Le., the lower scheme is of Shewhart’s type), the 383 
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A N A L Y S I S  OF O N E - S I D E D  CUSUM  SCHEHE W I T H  PARAMETERS  H,K,C = 3 1 3 .5  

THE  VARYING  PARAMETER I S  THE  HEADSTART,   (HEADST) .  
THE LEVEL OF DISCRETIZATION IS 30 

HEADST ARL SDRL I O  20 30 50 100 

.163EOI 1478.9 1505.1 ,97559 .96913 ,96272 ,95001 ,91897 
0 1501.3 1505.4 ,99430 ,98772 ,98118 ,96823 ,93660 

,173E01 1472.3 1504.9 ,97124 ,96481 ,95842 ,94577 ,91487 
.I83EOl 1464.4 1504.7 ,96602 .95963 ,95321 ,94069 ,90996 

A N A L Y S I S  OF ONE-SIDED  CUSUH  SCHEME  WITH  PARAMETERS  H,K,C - 3 I 3.5 
THE  LEVEL OF D I S C R E T I Z A T I O N  I S  30 
THE  HEADSTART I S  OUT OF RANGE;  STEADY  STATE  ANALYSIS  ASSUMED 
THE  CHANGING  PARAHETER  NAHE I S  S I G M A  

,800E00 47185.9 47194.2 ,99971 ,99960 ,99949 ,99939 ,99875 ,99769 
S I G M A  ARL SDRL 5 10 I 5  20 50 100 

.90OE00 6279.8 6280.8 ,99896 ,99816 ,99736 ,99657 .99182 ,98396 

. l O O E O l  1505.9 1505.3 ,99668 ,99338 .99009 ,98680 ,96733 ,93573 

. l l O E 0 1  530.1 529.1 ,99146 .98215 ,97291 ,96376 ,91064 ,82853 

.120E01 241.8 240.7 ,98190 .96174 .94197 .92260 ,81449 ,66171 

question whether  interaction is present or not  can be 
ignored.  Otherwise, all the results given earlier remain 
relevant, but instead of c one should use cI = c - p( k’ + k- )  
where /3 = - I  - h-/( k-  + c-). One can see that  in this case, 
whenever introducing Shewhart’s limits affects the  run length 
distribution, j3 is positive. 

5. Software support 
Procedures  for  analysis of CUSUM-Shewhart control 
schemes  described in  the previous  sections are used 
primarily  for  designing  a control scheme appropriate in  a 
given situation. In cases where it  is really important  to have 
a  “good”  scheme, the design procedure is likely to require  a 
substantial amount of work. First  of all, the designer  should 
study  the available data  (and perform  experimental  work, 
if necessary) in order  to identify the relevant  on-target and 
off-target stochastic patterns of incoming observations. 
Subsequently, he  must choose the  parameters of the scheme 
in  such  a way that its performance is satisfactory with 
respect to these  patterns.  Clearly,  in  most  nontrivial 
situations  the design procedure requires appropriate 
software. As a minimum,  such software  should  enable one 
a)  to  obtain  any  quantity associated with a given CUSUM- 
Shewhart  procedure  for an  arbitrary  distribution of iid 
observations, and b) to apply  CUSUM-Shewhart  procedures 
to actual  sets  of data  and, for more complicated  stochastic 
behavior  of the observations, study  the properties  of  a 
scheme by simulation. 

software package, DARCS,  for design, analysis, and  running 
of  CUSUM-Shewhart control schemes  developed recently in 
the  Department of Mathematical Sciences of the IBM 
Thomas J. Watson Research Center, with some examples  of 
its  application. This material is helpful for  a  better 
understanding of the design procedures given in the 
following sections. In the present work we discuss the 
functions  appropriate for situations in which the 

In this  section we give a short description  of an APL 
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observations form  an iid sequence only. A more detailed 
description of the package as well as additional examples can 
be found in [ 2 2 ] .  

The package contains two basic functions for analysis of 
the  run length distribution.  The first one determines,  for any 
given pattern of iid observations, the  ARL,  SDRL,  and  run 
length distribution corresponding to a given one-sided 
CUSUM-Shewhart  scheme  (including  steady  state analysis). 
The second  function  performs  a  similar analysis for a given 
two-sided scheme. In addition, it  enables one  to  determine 
the probability P( UP)  that  the out-of-control signal is 
triggered by the  upper scheme. 

following three modes: 
Each of the  mentioned  functions  can  operate in one of the 

I-mode is used for  interactive analysis of the performance 
of  a given scheme with respect to a fixed  d.f. of 
incoming observations: 

V-mode is used for  a  noninteractive analysis of a  sequence 
of  schemes (depending on a single varying 
parameter) with respect to a given fixed d.f. of the 
observations: 

E-mode is used for  a  noninteractive analysis of 
performance  of  a fixed scheme with respect to a 
set of several d.f.’s of the observations 
corresponding to different values of  a specified 
parameter. 

To illustrate  application  of  these  functions, let us  consider 
several examples. 

Suppose that we would like to analyze the  run length of a 
one-sided  scheme h = 3 ,  k = 1 supplemented by Shewhart’s 
limit c = 3.5, for all (discretized) values of so between 1.6 
and 1.8 and so = 0 when {xi] are distributed  normally with 
p = 0 and u = 1 .  Suppose  also that  this distribution 
corresponds to  an on-target  situation and  that we would like 
(for the purpose of future steady  state  analysis) to  store  the 
steady  state  probabilities { q ( j ) J .  In  addition, we would like 
to  compute, for  each  headstart, the probabilities P{ run 
length > r J  for r = 10, 20, 30, 50, and 100. Application of an 
appropriate  function  (in  V-mode) results in  the  printout 
shown  in Figure 4. The  computed values of the steady state 
distribution  are { q( j ) ,  j = 0, 1, . . . , 30) = (0.8 155,0.0241, 
. . . , 0.000 1 1; the  intermediate values are  omitted. 

Figure 4 serves as an illustration  of  how  unreliable ARL 
can be as a performance criterion for a control scheme. Note 
that  although  some of  these  schemes  have ARL‘s over 1400, 
the probability of a signal before 1 0 0  observations are  taken 
is close to 0. I .  

To illustrate the application of the E-mode of analysis, let 
us ask the following question: After the scheme  considered 
previously runs for  a  long time  in on-target mode (i.e., with 
observations coming  from  the  standard  normal distribution), 
what is the effect of  change  in u (in the steady  state situation) 
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from its on-target value ( 1) to 0.8, 0.9, 1.1, or 1.2? 
Application of the analysis function results  in the printout 
shown  in Figure 5, which illustrates the high sensitivity of 
performance of a CUSUM with  respect to slight changes in 
U.  It also explains why there is a reason to be suspicious 
about  the perforniance of any scheme that has been derived 
“under  the assumption that u is known.” 

In our next example, let  us analyze the run length  of a 
symmetric two-sided scheme h’ = 3, k’ = 1, h- = 3, k- = 1, 
supplemented by Shewhart’s limits c- = -3.5, c’ = 3.5, the 
observations {x, 1 being distributed normally with p = 0 and 
u = 1. Let  us also compute  the probabilities P( run length > 
r ]  for r = IO, 20,  30, 50, and 100. In order to provide the 
reader with the chance to compare the results  with those 
obtained earlier (note  that  our scheme is combined from two 
one-sided schemes considered in the first example), we chose 
(0, 0), (1.627, 1.627), and (1.627, 1.831) as pairs of 
headstarts of interest. Now application of the function for 
analysis of  two-sided schemes (in V-mode, the varying 
parameters being s: and si) produces the results shown in 
Figure 6. 

On the basis  of  Fig. 6, one can verify that  the ARL of a 
two-sided  scheme can be roughly approximated by a 
harmonic mean  of  ARL‘s corresponding to one-sided 
schemes [23]. In addition, one can see that P{ run rengfh > r )  
can be approximated by a product of analogous probabilities 
corresponding to one-sided  schemes. For example, in 
accordance with the first printout of this section, P{ R.L. > 
100 I s: = 1.627, si = 1.831) = 0.83557 ’5 0.91897 X 

0.90996 = 0.83622. This property is  related to one 
mentioned above and also to the fact that  the run length 
distribution of a CUSUM-Shewhart scheme can usually be 
roughly approximated (especially in the tail area) by an 
appropriate geometric distribution. We  use  it in Section 8 for 
the purpose of  designing  two-sided  schemes. 

Finally,  let  us examine the effect  of a shift  of p from 0 to 
0. I ,  0.25, 0.5, 1.0, 1.5, or 2.0 on  the run length  of the 
scheme. After applying the appropriate function in E-mode 
we obtain the results  shown in Figure 7, indicating that for 
p 2 0.5 performance of the two-sided  scheme  is  roughly 
equivalent to  that of the upper scheme. 

6. Design of a  one-sided CUSUM-Shewhart 
scheme 
Until the early seventies, design and analysis  of CUSUM 
control schemes centered about  the notion of  ARL. Though 
the use  of  ARL as a primary criterion for evaluation of the 
performance of the scheme was criticized by some authors 
(for example, [ 1 1, 24]), the choice of alternative measures of 
efficacy  was  very limited because  of theoretical as well as 
computational difficulties.  Typically, the approach to the 
problem of choice of an appropriate scheme was  based on 
the assumption that the observations come from a normal 
population with a known standard deviation a. Under this 
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ANALYSIS OF THE TWO-SIDED cusun SCHEME WITH PARAMETERS: 

THE  LEVELS OF DISCRETIZATION ARE D+.D-= 30 30 
H+,K+.C+ - 3 1 3 .5  AND H-,K-,C- - 3 I -3 .5 

HEADSTARTS P(UP)  ARL SOUL 10 20 30 50 100 

.163E01  ,163E01  ,500 725.3 751.2 ,951  7 93880 ,92639 ,90207 ,84402 
0 0 ,500 753.6 751.7 ,98863 ,97556 ,96267 ,93740 ,87708 

.163E01  ,183E01  ,495 718.1 750.9 , 9 4 1 h  :92940 ,91712 .e9304 .E3557 

,85978 
1 DO 

,76333 
,40367 
.ODD91 
.DO000 
.ooooo 

assumption, ARL was studied as a function of the process 
mean p, similarly to the way in  which the operating 
characteristic (OC) curve is studied in standard hypothesis 
testing (or acceptance sampling) problems (for example, see 
[25, Fig.  22.71). The decision whether to adopt a given 
scheme was then based on  the properties of this curve, the 
major points of interest being po (good quality) and p,  (bad 
quality). In particular, in the case  of cumulative 1-charts u is 
a function of the sample size n, and then it  is  always  possible 
to find h, k, and n (we assume that so = 0) such that ARL 
(p,,) is approximately equal to some fixed  large number La 
and, at the same time, ARL (pl) is approximately equal to 
some fixed small number L,. Nomograms and examples 
related to  the solution of this two-point problem can be 
found, for example, in j25, pp. 471-4791 and [26]. 

is  solely  based on  the notion of  ARL. Though ARL is 
probably meaningful in the off-target situation, it can be 
highly  misleading  when the on-target case  is under study 
(primarily because the set  of  possible CUSUM paths 
includes “too many” extremely “short” members). Indeed, as 
we have learned from the first example in Section 5, schemes 
with ARL ‘5 1500 can signal within the first 100 
observations with probability approximately 0. I .  This feature 
of the run length distribution might represent a serious 
source of problems, especially in the cases in which one uses 
headstarts. Indeed, an increase in the probability of a false 
signal  resulting from the use  of a headstart is not as  visible in 
terms of ARL, because the right  tail behavior of the run 
length distribution is (practically) independent of the 
headstart. An additional drawback of ARL as a criterion for 
choice of an appropriate control scheme is that it is 
extremely  sensitive  with  respect to slight departures from 
normality as well as with  respect to slight variations in u. 

In general, the user of a CUSUM scheme probably feels 
uneasy about specifying a particular ARL  for the on-target 

One of the major drawbacks of such an approach is that it 
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c* c C** Shewhart’s limit 

The set values (h,  c)  corresponding to (15) (shaded) and level curves 
of ARL corresponding to some off-target distributionF(k is fixed and 
so = 0). 

situation; what he typically wants is that  the scheme will not 
generate a false alarm within a certain period of time (say, a 
shift) with probability of at least, say, 0.99. Indeed, the most 
fruitful applications of CUSUM techniques in industry are 
related to situations associated  with automated collection 
and processing  of data generated in a systematic way  by a 
production line. In such situations costs  associated  with 
unjustified troubleshooting (possibly  caused by a false out-of- 
control signal) are usually  of primary concern for the 
designer of a control procedure. Since this procedure 
typically monitors several (sometimes thousands of) 
sequences of observations at the same time, the necessity  of 
keeping the overall probability of a false  signal small leads to 
corresponding requirements related to each individual 
(univariate) scheme. This argument serves as a basis  for our 
approach to the problem of  design.  It also emphasizes the 
need for having the ability to analyze the run length 
distribution and not  just its first moment,  the ARL, in order 
to choose a scheme with “good” properties. 

In this section we  give some recommendations that might 
be helpful  for  designing a one-sided (say, upper) CUSUM- 
Shewhart scheme. Let x,, x,, . . . be the sequence of 
observations the scheme is intended to monitor. In all 
practical cases we would  like this sequence to be  iid or at 
least stationary in time. So, let us suppose that some process 
history is available, and it indicates that such behavior of the 
observations is in principle achievable. Moreover, in the 
initial stage we assume that the observations form an iid 
sequence with common d.f. F( x). Let [ be some measure of 
central tendency (mean, median, etc.) of F. Then our 
scheme is primarily supposed to control the level  of this 
parameter (though it is possible that F depends on other 
parameters as well). 

To choose an appropriate one-sided  (say, upper) Page’s 
386 scheme one must in general  specify four parameters and 

possibly some other “shadow” parameters which  affect the 
distribution of the observations ( e g ,  sample size n when the 
observations form a sequence of sample means) but are 
related to the particular sampling routine rather than to the 
nature of the process  of interest. In the present work we 
assume that  the values  of all parameters of this type are 
fixed. The main reason  for excluding the “shadow” 
parameters from consideration is related to our desire to 
keep the discussion  as simple as possible; our experience 
shows that  the design procedures we are going to present 
together with  DARCS  software enable one to determine, 
relatively quickly, the values of such parameters by trial and 
error. Another reason is related to the fact that in many 
practical situations the sampling intensity is determined by 
the production process  itself and therefore cannot be  easily 
changed  (for example, in cases  where every produced item is 
subject to automated inspection, the sampling intensity is 
determined by the production speed). 

Under  the stated assumptions the following sequence of 
steps in most cases  leads to a scheme with “good” properties. 

Step 1 Choose the “target” and  “taboo” regions  for [ (see 
Fig. 1). This may require evaluation (or estimation) of 
various parameters of F (or F itself) on the basis  of the 
previous history. It may also be associated  with  cost  analysis. 

Step 2 Define the extreme on-target family, i.e., the family 
of  d.f.’s that are likely to represent the on-target observations 
and for which 4 is equal to the upper bound of the “target” 
region. (For example, in the case  when the “target” region is 
.$ 5 0.5, one may include in the extreme on-target family  all 
the normal d.f.3 with p = 0.5, u 5 0.1 as well as all gamma 
d.f.’s  with P(Y = 0.5, fl& 5 0.1, (Y 2 25.)  In a similar way, 
define the extreme  off-target family, Le., the family  of  d.f.’s 
that are likely to represent the off-target observations and for 
which [ is equal to  the lower bound of the “taboo” region. 

Step 3 Choose k in accordance with the recommendations 
of Section 2.  

Step 4 Choose K (in accordance with sampling intensity) 
and (Y = 0, for  which it is  desired that 

P(run length > KI Process is on target) 2 1 - a. (15) 

Step 5 It is not difficult to see that the set of all pairs (h ,  c) 
for  which (1 5 )  holds form a convex  region  of the type shown 
in Figure 8. 

One is primarily interested in schemes corresponding to 
the curved boundary of this region. Moreover, in most 
practical  cases  it turns  out  that  the scheme of interest 
corresponds to one of the extreme points [( h*, c*) or (h**, 
c**)] of this region. These points can be found by means of 
the following procedure. 
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From  the  extreme on-target  family,  choose the “worst” 
representative F, for which the out-of-control signal is still 
undesirable. [For example,  in the case considered in  Step 2, 
such a representative is, probably, the  gamma d.f. with 0 = 
0.02, LY = 25. (The “worst”  representatives  of the on-target 
family  of distributions  are those  having the “shortest” run 
lengths; similarl,y, the “worst”  representatives  of the off-target 
family are those  having the “longest” run lengths.)] Find a 
minimal c* for  which a pure Shewhart’s  scheme with upper 
control limit c* satisfies 

F,( c*) 5 ( 1  - a ) Y  (16) 

[Note  that in the case where the observations are  coming 
from  the  population F,, the resulting “pure” Shewhart’s 
control scheme satisfies ( 15).] Continue  the analysis  for F, 
and find a minimal value  of the signal level (h*)  for which 
the  scheme “practically never” signals within K observations 
[Le., for which (1 5 )  is still valid]. (Typically, this results in a 
scheme for which a false out-of-control signal is most likely 
related to violation  of the Shewhart’s limit; thus,  the scheme 
corresponding to this extreme  point  can be viewed as a 
Shewhart’s scheme “supplemented” by the  CUSUM  control 
criterion. This also  explains why it  is usually possible to 
introduce a “moderate” headstart  without affecting 
substantially the on-target performance of the scheme.) 
Choose a headstart  value s: for which the resulting  scheme 
still “practically  never” signals within K observations 
provided that they are generated by F,. 

Next find a scheme corresponding to  the second extreme 
point  of  the  boundary region (see Fig. 8). Start with the 
scheme (h*, k )  without either  headstart or Shewhart’s limit. 
Decrease h until  the minimal value is found (h**) for which 
the scheme  “practically  never” signals within K observations, 
provided that they are generated by F,,. Increase c (starting 
from c*) until the minimal value is found (c**) for which 
( 1  5 )  is still valid. Supplement  the derived  scheme with an 
appropriate headstart SF. 

Step 6 Examine  the behavior  of both derived  schemes with 
respect to “worst”  representatives  of the  extreme off-target 
family. Make slight adjustments  to  the  parameters of the 
schemes, if necessary. 

Step 7 Usually both schemes  perform well for the values 
of 5 corresponding to  the “target” and  “taboo” regions. The 
scheme based on (A**, k, c**) is generally more sensitive 
with respect to  the values of 5 corresponding to  the 
“intermediate” region. On  the  other  hand,  the scheme based 
on (h* ,  k, c*) is more likely to “catch”  extremely large 
deviations from  the target level within a very short period of 
time. Therefore, the final choice  of a scheme depends  on  the 
relative importance of  these  properties in a given situation. 
In some cases the user  may prefer a scheme based on  some 
(h,  k, c) corresponding to a “tradeoff between these 

properties. For example, if one is interested  in a scheme 
having the smallest possible ARL for some given off-target 
d.f. p, the  appropriate choice could be based on (h ,  c), 
derived as shown  in Fig. 8. Thus, in this  step we choose an 
appropriate  scheme  and  examine its sensitivity with respect 
to  the “worst”  representatives  of the  extreme off-target 
family. If it is found  to be satisfactory, the  scheme is ready 
for  steady  state analysis. Otherwise,  it is worthwhile to 
examine  the effect of slight variations  in the  parameters of 
the scheme  (including k )  on  the overall performance of the 
scheme. If this  examination  does  not lead to a satisfactory 
scheme, it is most likely that, with  present  sampling 
intensity, a scheme with desired  properties is, in principle, 
unachievable. The possibilities corresponding to  this 
situation  are  as follows: 

Increase the sampling  intensity,  redetermine K 
accordingly, and  then repeat the search procedure. One of 
the ways to increase the sampling  intensity is to pick n 
observations  (instead  of a single observation) at a time, if 
possible; the  control  scheme is then applied to a 
corresponding  sequence of estimators  for 5. 

between the probability  of a false alarm  and sensitivity is 
achieved. 

Decrease the value  of h until  some kind  of  “trade-off” 

Step 8 Let ko be a d.f. which seems  most likely to 
represent the  data corresponding to  an on-target  situation. 
Perform a steady state analysis with respect to  the “worst” 
representatives of the  extreme off-target family. Adjust the 
parameters of the scheme slightly if necessary. 

Step 9 Examine  the performance of the  scheme with 
respect to selected on-target and off-target distributions F 
which are likely to  appear  in practice, 

Though  the above  sequence of steps seems to be 
somewhat  lengthy, one finds out, after some practice, that 
intuition  and  common sense lead  quickly to a scheme with 
the desired  properties,  provided the latter exists. 

cases) should be taken  into consideration  when  performing 
the final analysis of a control scheme. 

If it is known  that  the observations may correspond to a 
sequence  of dependent random variables (e.g., a stationary 
Gaussian  sequence),  it is very desirable to  examine  the 
behavior  of the derived scheme with respect to simulated 
sequences  corresponding to “on-target’’ and “off-target” 
conditions. Some theoretical results related to  the 
performance  of CUSUM schemes  in situations where 
observations are serially correlated can be found, for 
example, in  the two-part paper by  Bagshaw and  Johnson 
[27,28].  These results are based on  the fact that  under 
certain rather general conditions,  the (properly  normalized) 
CUSUM path converges weakly to  the Wiener process; thus, 

Next we discuss some  additional aspects which (in certain 
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the  run length distribution of a Page’s scheme can be 
approximated by that of the  time  to absorption  of  a  Wiener 
process with reflecting and absorbing bamers.  The 
theoretical basis for  such an  approximation  can be found in 
[29, Theorems 20.1 and 2 I .   I ] .  

In  the cases where  observations may be contaminated by 
outliers, one may be willing to consider  a  modification of the 
basic control  procedure  that calls for special treatment of 
cases in which an out-of-control signal is suspected  of being 
triggered by an outlier.  Since  such  modification typically 
leads to  some loss of sensitivity with respect to off-target 
situations, the modified scheme  should be re-examined with 
respect to relevant  stochastic patterns of the  input 
observations. The effect of some of the possible 
modifications (for example,  ignore the outlier, winsorize the 
outlier,  etc.) is discussed in [30]. 

7. Examples 
In this  section we give several examples  illustrating the use of 
some  functions in  relation to  the design and analysis of 
CUSUM-Shewhart schemes. We limit  ourselves to  outlining 
only  the basic steps  of the design and analysis, so that  the 

random variable with ( n  - 1)  degrees of  freedom. Under  the 
additional  assumptions  that i,, G2, . . . are realizations of 
independent random variables, and  that 

a.  the  sample size is  fixed ( n  = 4), 
b. the  planning  “horizon”  does  not extend  beyond K = 200 

samples (because of the regular equipment  maintenance 
operations), and 

c. if the process is on-target, the probability of a false signal 
within 200 samples should  be  at  most a = 0.000 I ,  

we would like to find a  CUSUM-Shewhart  scheme with the 
best possible out-of-target performance. 

We  start by noting  that  the “target” and  “taboo” regions 
are u I 2 and u 2 4, respectively. Moreover,  since we are  in 
fact dealing with a one-parametric family  corresponding to 
Z(a, 4), the only member of the  extreme on-target family is 
the d.f. of 2(2, 4); analogously, the only member of the 
extreme off-target  family corresponds  to 2(4,4). In 
accordance with the  recommendations of  Section 2, we 
choose the  starting reference value k = 3. Next, one  can see, 
by analyzing  a “pure” Shewhart’s scheme with respect to 

interested  reader can verify each step by using the Software. Z(2, 4) - F,,, that  the solution o f (  16) is c* 6.6. Further, 

Example 7.1 (Cumulative &chart) In  the oxidation one-sided schemes, that h* = 5. Finally,  for the headstart 
process of silicon wafers, we are interested in keeping the so* = 1.02, the probability  of  a false signal (under F,) is still 
“within-the-lot’’ variability of the thickness of the grown approximately equal  to 0.000 1. 
SiO, layer as  small as possible. In  order  to achieve that, we In  order  to  obtain  the  parameters of the scheme 
take n measurements of film  thickness Per lot and  monitor corresponding to  the second extreme  point of Fig. 4, we start 
the resulting  sequence of sample  standard deviations, with a “pure”  CUSUM  scheme (h* = 5 ,  k = 3) and find, by 

using the  V-mode of the software, that h** = 4.5. Further, 
i ,= d-, i =  1 , 2 ,  . . . ,  we can  supplement  the  scheme with c** = 7.2 and s:* = 0.3 

without affecting its on-target  performance  (with respect 
where y,,, y, , ,  . . . y,, are  the observations  corresponding to  to F J .  
the  ith lot and j ,  is their sample mean. In  the off-target situation corresponding to  2(4,4),  the 

We do  not have  a  particular  “target” value for the ARL of both derived  schemes is 6.7; the SDRL‘s are 4.8 and 
sequence G , ,  a,, . . . ; instead, we have  a  “target” region: 4.5, respectively. To illustrate the  point we discussed in Step 
namely, we want  the underlying “true”  standard deviation u 7,  consider the off-target situation corresponding to 2(8, 4). 
to lie within the interval 0 I u I 0.02 nm.  On  the  other The probability that  the  run length will exceed 1 is 0.44 (for 
hand, we would like to detect as quickly as possible the the first scheme) and 0.5 1 for the second one.  On  the  other 
situation  in which u 2 0.04  nm. hand,  the first scheme is less sensitive with respect to 

Suppose that for every i, { y,  ,, Y,~, . . . y,, 1 are realizations moderate deviations  of u from its  target region; for example, 
of a normal  random variable with certain  mean  and if the observations are generated by 2(3,4),  the ARL‘s of the 
standard deviation U. Then GI, a,, . . . can be considered first and second  schemes are 60.1 and 50.7, respectively. In 
as realizations  of  a random variable Z(u, n )  = Table 2 we give the values of ARL corresponding to both 
d x 2 ( n  - l)/(n - I ) ,  where x 2 ( n  - 1) is a chi-square derived  schemes and a “pure” Shewhart’s scheme  having 

Table 2 Values of the ARL corresponding to schemes considered in  Example 7. I as functions of the  standard deviation, u ( n  = 4): 
a) Shewhart’s scheme with c = 6.55; b) h* = 5, k = 3, s t  = 1.02, c* = 6.6; c) h** = 4.5, k = 3, so** = 0.3, c** = 7.2. 

we find, by using the  V-mode of the  function for analysis of 

n - I ,=,  

Scheme a = 2 2.5 3 3.5 4 5 6 7 8 

a 2.08 x IO6 7820.3 396.4 68.0 22.2 6.2 3.2 2.2 1.8 
b 2.03 x IO6 2095.1 60. I 13.5 6.7 3.3 2.3 1.9  1.6 

1.98 x IO6 1368.7 50.7 13.0 6.7 3.5 2.5 2.0  1.7 C 
3aa 
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comparable on-target  performance (note  that for  each of 
these  schemes P{R.L.  > 200 I u = 2) = 0.9999). This table 
can serve as  a  good  illustration of the superiority of CUSUM 
techniques  compared  to  the classical ones. 

Our next example is related to  the  control of the 
parameter X of the Poisson population. The classical 
(Shewhart’s) method of control is usually referred to in the 
literature  as  a  c-chart. 

Example 7.2 (Cumulative c-chart) [ 3  I ]  Spin  dryers are 
used as  one of the steps  in the  production of integrated 
circuit chips  from  semiconductor wafers. Typically, the 
process steps are followed by rinses with deionized, filtered 
water. After the rinsing, the water is removed by placing the 
wafers in the spin dryer (centrifugal device), which spins the 
water off the wafers (and accelerates evaporation by using 
dry filtered gas). 

Periodically, test wafers are  run through the rinse and 
drying cycle and  the particles on  the wafer that  are larger 
than a specified diameter are counted.  The recorded counts 
{ o,, 02, . . . ) serve as a basis for the decision to clean and 
retest the spin  dryer. On  the basis of  theoretical 
considerations, there is reason to believe that,  during a 
certain  initial  period  of  time, the process { 0,) corresponds to 
a  sequence of iid Poisson random variables with parameter 
X. Under  normal conditions, the level of this process does 
not exceed 6.5. Levels of the process exceeding 1 1.5 are 
associated with a high rate of defective production- 
situations in which the process of counted  contaminating 
particles  reaches this level should be detected as  soon as 
possible. On  the  other  hand, since  cleaning and retesting 
represent an expensive and tedious  procedure, we are 
interested  in  a CUSUM  control scheme for which the 
probability of a false signal within 100 tests is not  more  than 
0.0 I ,  and,  at  the  same  time, sensitivity with respect to  the 
levels of the process exceeding I 1.5 is as high as possible. 

Since the first four steps  of the design are straightforward 
(clearly, in our case a = 0.01, K = 100, k = 9), we proceed 
towards Step 5 and find that  c* = 18.5. Subsequently, we 
find that h* = 13.5. Note  that in this  part of the analysis we 
use the  nonstandard level of discretization, d = 14. [If one 
deals with counted  data  and chooses an integer value of k, 
the values of the  CUSUM scheme  become  limited to  the set 
of  non-negative integers (provided the headstart is an 
integer). Thus,  the choice of h and   d in  accordance with the 
rule h = J - 0.5, d = j ,  where J is an integer, ensures the 
absence  of  a  roundoff  error.] Finally, we choose s,* = 5 in 
accordance with Step 7 and proceed towards  finding  a 
scheme correspo’ ding to  the second extreme  point  of  the 
boundary region. We start with a “pure”  CUSUM scheme 
(h *  = 13.5, k = 9) and find that h** = 12.5. Subsequently, 
we find that c** = 19.5 and sg* = 3.  

6.5 5 X 5 1 1.5,  we apply the E-mode  of the  function for 
analysis. This gives the results shown in Figure 9. 

To analyze the performance of the first derived  scheme for 
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By using the  DARCS software, one  can easily verify that 
in this  example the properties of the second  scheme are 
roughly the  same  and also that  additional variation of the 
parameters of the derived  schemes  leads to only very minor 
improvements in  their  performance. 

8. Design of a two-sided  CUSUM-Shewhart 
scheme 
Design of a two-sided CUSUM-Shewhart  scheme represents, 
in general, a more difficult problem than design of  a  one- 
sided scheme. Though  the “first draft” of a  scheme with 
desired  properties can be obtained in  a relatively 
straightforward way, the final adjustments  and analysis can 
be time-consuming, as they are associated with 
manipulations of eight parameters. 

Under  the  assumptions of  Section 6, the following 
sequence  of  steps usually leads to a  scheme with desirable 
properties: 

Step I and  Step 2 The  same as  in Section 6. 

Step 3 Choose k’ and k-  in  accordance with the 
recommendations of  Section 2. 

Step 4 If the “target” region consists of  a single point or its 
width is  very small compared  to widths of both 
“intermediate” regions, design (by using the procedure 
described in  Section 6) an  upper Page’s scheme (h’, k’, s:, 
c’) and a lower scheme (h-, k-, si, c-) such that relation 
( 1  5 )  holdsfor each scheme. Otherwise, design both  schemes 
so that 

P{ run length > KI Process is on target! 2 J1-a ( 1  7) 

holds for each scheme. 

Step 5 Combine  the derived one-sided schemes into a 
single two-sided scheme. This scheme  represents  a first 
approximation which in  most practical situations is fairly 
close to what is desired. Indeed, the behavior  of the 
combined scheme with respect to off-target patterns of 
incoming  data is primarily determined by one of “well- 
designed” one-sided schemes. Further, if the width of the 
“target” region is very small compared  to widths  of both 
“intermediate” regions, then, by the property discussed in 389 
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ANALYSIS OF THE  TWO-SIOEO  CUSUM  SCHEME WITH PARMETERS: 
H+,K+,C+ - 2.1 3 1E60 AND H-,K-,C- - 3.5 2 -5 .1 
THE  LEVELS OF OISCRETIZATION ARE Dt .0 -=  18 30 
THE  VALUES OF THE HEADSTARTS  ARE 0 . 9 1   0 . 7  
THE  CHANGING  PARAMETER  NAME IS MEU standard deviation U.  We also suppose, as in  Example 7. I ,  

Suppose that for every i, ( y i l ,  yi2, . . . y,,} are realizations 
of a normal  random variable with certain mean  and 

-.40E01 ,000 2.0 .l ,00046 .OOOOO .OOOOO .OOOOO .OOOOO 
HEU P(UP1 ARL SDRL 5 I O  50 100 200 

- . l O E O l  ,000 4976.2 4977.4 ,99868 ,99764 ,98966 ,97976 ,96028 that n = 4, and, if the process is on target, the probability of 
-.50E00 ,002 .162E06 ,162E06 ,99994 ,39991 ,99966 ,99935 ,99874 

0 ,420 .241E07 .241E07 ,99998 ,99998 ,99996 ,99994 ,99990 a false signal within K = 200 samples  should not exceed 
, 5 0 0 ~ 0 0  ,995  ,427E06  ,427606  ,99985  ,99984  ,99974  ,99363  ,39939 
. I O O E 0 1  1.000 36076.0 36108.4 .99895 ,99881 ,99771 ,99612 ,99357 
,400E01 1.000 2 .0  1.3 ,02206 ,00043 .OOOOO .OOOOO .OOOOO 
,600EOI 1.000 1 . 0  . 2  .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO 

0.000 1. Under these assumptions, we would like to find a 
scheme with the best performance with respect to  the off- 

Section  5, the  combined  scheme (approximately) satisfies the 
relation (1 5). Otherwise, the “on-target’’ behavior  of the 
scheme is mostly determined by one of the one-sided 
schemes and, by construction, ( 15) is once  more 
approximately satisfied. 

Step 6 Adjust the  parameters of the  combined scheme so 
that ( 1  5) is satisfied. 

Step 7 Examine  the behavior of the resulting scheme with 
respect to  the “worst”  representatives  of the  extreme off- 
target family. If sensitivity is found satisfactory, proceed to 
the next  step.  Otherwise, examine  the effect of slight 
variations in  the  parameters (including k’, k - ) .  If it does  not 
improve  the  performance of the scheme, it is most likely that 
the scheme with desired  properties cannot,  in principle, be 
achieved. The possibilities corresponding to such a situation 
are analogous to those described in  Section 6, Step 7. 

Step 8 Examine  the  performance of the scheme with 
respect to selected on-target and off-target distributions 
which are likely to  appear  in practice. 

The effects of some  other factors that  one  may be willing 
to consider  when designing a two-sided CUSUM-Shewhart 
scheme  (for  example, see Section 6) can be studied by 
simulation or by means of approximations based on  the 
properties  of the related Wiener process. 

following example. 

Example 8.1 (Cumulative  X-chart) Suppose that  in  the 
oxidation process of silicon wafers considered in Example 
7.1 we are also interested in keeping the difference between 
the  actual  mean thickness  of the grown SiO, layer and  the 
target  value to (we denote  this difference by A) as close to 

For  an application  of the above  procedure,  consider the 

target region consisting of two  parts, ( A  I -0.04 nm)  and 
( A  2 0.06 nm]. 

Of  course, before proceeding  further, we need to specify 
the on-target  family  of distributions of interest. In order  to 
illustrate the  point of Step 4, we consider two possibilities: 

a.  The on-target family is a set of all normal d.f.’s N(A, U )  for 

b. The on-target  family  is a set of all normal d.f.’s for which 
which-1 s A s 2 a n d u s 2 .  

A = 0 and u 5 2. 

In Case a the “worst”  representatives of the  extreme  on- 
target  family are d.f.’s  N(A = - I ,  u = 2) and 
N(A = 2, u = 2). Further,  the width of the “target” region (3) 
is comparable  to  the widths  of  both “intermediate” regions, 
which are 3 and 4. Therefore, we design, by using the 
method of  Section 5, an  upper scheme so that P{ R.L. > 
200 I A = 2, u = 2)  = 0.9999. One of the  appropriate 
schemes is h’ = 3.2, k’ = 4,~ :  = 0.33, c+ = 7). Next, we 
design a lower scheme satisfying P( R.L. > 200 I A = - 1, 

Finally, combining these  schemes  leads to a two-sided 
scheme with the desired properties. 

In Case b the  only “worst”  representative  of the  extreme 
on-target  family is N(A = 0, u = 2). Since the “target” region 
consists of a single point, 0, we design an  upper scheme  for 
which P(R.L. > 200 I A = 0, u = 2) = 66% = 0.99995 
(h’ = 2. I ,  k’ = 3, J: = 0.93, no Shewhart’s limit), and a 
lower scheme  for which the  same property  holds ( h -  = 3.5, 
k- = 2, so = 0.7, c- = -5. I) .  Finally, we combine  the 
derived  schemes and  examine  the behavior of the resulting 
two-sided scheme with respect to A = 0, k0.5, & I ,  k4, and 6 
by applying the E-mode  of the  function for analysis of  two- 
sided schemes. This gives the results  shown in Figure 10. 
One  can see that  the derived  scheme satisfies ( 1  5). Moreover, 
application  of the software shows that  further variations  of 
parameters will not lead to  dramatic  improvements of  its 
performance. 

u = 2)  = 0.9999 (h -  = 4.6, k- = 2.5, S, = 1.25, C- = -6). 
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c. Complete  (not asymptotic)  analysis of the  run length 

d. Software for design, analysis, and  running of CUSUM- 
distribution  (implemented in the software). 

Shewhart  schemes (Section 5). 
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