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In recent years cumulative sum (CUSUM) control
charts have become increasingly popular as an
alternative to Shewhart’s control charts. These
charts use sequentially accumulated information
in order to detect out-of-control conditions. They
are philosophically related to procedures of
sequential hypothesis testing (the relation being
similar to that existing between Shewhart’s
charts and classical procedures for hypothesis
testing). In the present paper we present a new
approach to design of CUSUM-Shewhart control
schemes and analysis of the associated run
length distributions (under the assumption that
the observations correspond to a sequence of
independent and identically distributed random
variables). This approach is based on the theory
of Markov chains and it enables one to analyze
the ARL (Average Run Length), the distribution
function of the run length, and other quantities
associated with a CUSUM-Shewhart scheme. In
addition, it enables one to analyze situations in
which out-of-target conditions are not present
initially, but rather appear after a substantial
period of time during which the process has
operated in on-target mode (steady state
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analysis). The paper also introduces an APL
package, DARCS, for design, analysis, and
running of both one- and two-sided CUSUM-
Shewhart control schemes and gives several
examples of its application.

1. Introduction

Since the early thirties, control charts have been widely used
in industrial quality control as a means of monitoring the
quality of manufactured products. Traditionally, the most
commonly used are Shewhart’s charts (X-chart, R-chart, p-
chart, etc.), where the process is said to be out of control
once the last plotted observation falls outside the prescribed
control limits. The main advantage of these “classical” charts
is their simplicity. The main disadvantage is that typically
these charts are not very sensitive with respect to-mederate
changes in the process level. In order to overcome this
difficulty, several modifications of the basic procedure were
proposed by various authors. These modifications call for
additional signal criteria based on warning limits, runs, etc.
However, the price for improved sensitivity is substantial,
and loss of simplicity is only a minor part of it. Indeed, the
classical chart enables one to analyze, in a relatively simple
way, the distribution of the run length of the control chart
for any values of the parameters—one can see that in this
case the run length is a geometric random variable. With
additional signal criteria, the run length distribution becomes
much more complicated and in most cases can be analyzed
only by means of simulation study. If such a study indicates
that the scheme is not satisfactory (say, the probability of the
false signal within a short period of time is too high), it is not

always clear how the procedure can be changed in order to 377
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meet the requirements. In the final account, the
computational effort needed to find a scheme with desirable
properties might be enormous. Another difficulty is the
interpretation of the control chart in the presence of several
signal criteria.

Analysis of the run length distribution of control schemes
is especially important in situations where measurements are
taken and processed automatically (and the operator is
notified only if an out-of-control signal is triggered), as well
as in situations where several sequences of observations are
monitored simultaneously. In such situations frequent out-
of-control signals associated with economically
nonsignificant changes in process parameters may cause
frequent unjustified corrective actions and/or eventually ruin
the discipline of the operator. On the other hand, failure to
detect a truly out-of-control situation rapidly may result in a
substantial amount of poor-quality product. Thus, any
control scheme associated with automatic data processing
andjor simultaneous control of several parameters should be
thoroughly analyzed before it can be recommended for use.
The analysis should involve identification of various possible
joint distributions of observations and investigation of the
corresponding run length distributions. Its ultimate aim is to
ensure that the run length of the scheme under consideration
is sufficiently long if the changes in process parameters are
not economically significant and sufficiently short if they are.

In situations associated with automatic data collection and
processing, the following question becomes critical: Should
we continue to use traditional control schemes just because
they are most convenient for manual plotting and visual
evaluation (which is based on intuition and is, therefore,
highly subjective)? Indeed, some of the classical schemes
were often preferred to schemes having much better
statistical properties merely because of computational
simplicity. For example, for samples of size n > 2 from a
normal (or approximately normal) population, the sample
range carries much less information about ¢ than the sample
standard deviation, & [1]; yet R-charts are often preferred to
o-charts (possibly because fifteen years ago it was not very
practical, because of computational difficulties, to run
o-charts in an industrial environment). The answer to the
above question is, probably, as follows: If the process is
capable of meeting specifications and if relatively large
variations of process parameters are not associated with
significant economic losses, traditional control schemes do
very well (as do many other “reasonable” schemes);
otherwise, we must look for schemes with better statistical
properties.

The desired properties of such an improved scheme might
be as follows:

o It must be as sensitive as a comparable modified
Shewhart’s control chart with respect to substantial
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changes in the level of the controlled parameter and more
sensitive than a comparable modified Shewhart’s control
chart with respect to moderate changes.

e Each scheme (chart) should be based on very few (one or
two) signal criteria.

o It must be easily adjustable in order to meet reasonable
requirements related to the behavior of the run length
distribution for relevant values of controlled parameters.

o It must enable effective analytic evaluation of performance
for a wide range of stochastic patterns of incoming data; in
other words, its behavior must be easily predictable once
the distribution of input data is given.

o It must be robust with respect to slight departures from the
desired model that have no effect on the controlled
parameter (for example, if the controlled parameter is the
median of the distribution, we would not like the relevant
scheme to overreact because of slight departures from
assumed normality).

o It must enable relatively easy estimation of the current
values of the controlled parameter, especially after an out-
of-control signal has been triggered.

o It must enable easy visual interpretation by adequately
trained personnel.

o The scheme must be convenient for graphic display on the
screen of a computer terminal; in particular, graphic
representations in which the chart does not systematically
“run away” from the screen should be available.

o The scheme should enable easy implementation of the FIR
(Fast Initial Response) feature; i.e., it must provide an
instrument for initial setup which detects the initial out-of-
control conditions earlier than similar conditions
occurring later.

Are there control schemes possessing the mentioned
properties? The answer is yes; in particular, some types of
cumulative sum (CUSUM) control charts (first introduced
by Page [2]) can serve as an adequate example. These charts
use sequentially accumulated information in order to detect
out-of-control conditions. They are philosophically related to
procedures of sequential hypothesis testing [3], the relation
being similar to that existing between Shewhart’s charts and
classical procedures of hypothesis testing. Several other
schemes proposed as an alternative to the classical
Shewhart’s procedure (e.g., [4]) also meet the stated
requirements to various extents. However, most of them
either do not enable efficient study of the run length
distribution or are associated with such unpleasant features
as the necessity of specifying weights (in the weighted
moving average charts), excessive algebraic manipulations,
problems with visual interpretation, etc. Other reasons for
the relative popularity of the CUSUM approach are due to
its connection to the theory of Sequential Probability Ratio
Tests [3, 5] and to the Central Limit Theory [6] as well as to
the availability of certain optimality results [7, 8].
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Though CUSUM charts are very useful for other purposes
(e.g., retrospective data analysis, graphical data
representation, diagnostics, forecasting, sequential hypothesis
testing, etc.), our interests in the present work are primarily
related to CUSUM as a means for detecting and analyzing
out-of-control conditions. Extensive discussion on other
applications of CUSUM schemes is contained, for example,
in Refs. [9-12].

2. CUSUM control schemes

In this section we give a short description of typical CUSUM
procedures. Let x,, x,, - - - be a sequence of observations
related to a certain process. The observation x; may
represent, for example,

¢ the sample percentage of defective chips in the ith
produced lot,

e the total number of defects found in the ith produced
wafer,

e the sample mean of four diameters of ball bearings chosen
at random during the ith production period,

o the sample standard deviation of ten simultaneous
measurements (corresponding to various locations) of
polyethylene film thickness taken during the ith sampling
period,

and so on. Let us suppose that we would like our
observations to fall as close as possible to some target value
t,- Without loss of generality, we can assume that ¢, = 0. If
we are concerned about the possibility that the process might
shift up from its target level, it would be natural to adopt the
following three-parametric control scheme:

a. choose &7 > 0 (signal level), k™ (reference value), and
0 < s, < h" (headstart);
b. compute the sequence of cumulative sums:

+
s, =

1

max{s;_, +(x,— k), 0, i=12 ...; )

c. let N* be the first index i for which 57 = ™. Then trigger
the out-of-control signal at time N™.

The described procedure is called an upper Page’s scheme
with parameters (h*, k¥, s3). N represents the run length of
the scheme. If an additional signal criterion is introduced,
namely

d. if a single observation x; satisfies x; = ¢, trigger an out-of-
control signal at the moment i,

the procedure is called an upper Page’s scheme with
parameters (4", k*, s;) supplemented by Shewhart’s limit
¢

At this point, some comments about the meaning of the

reference value, the headstart, and the Shewhart’s limit are
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appropriate. The reference value k™ acts as an “anchor,”
keeping the CUSUM from drifting in on-target situations.
The headstart s; implements the FIR feature mentioned
earlier. The rationale for using a headstart is as follows: If the
process is on target, the Page’s scheme is (most likely)
brought to zero by the reference value, so that in this case
the expected effect of the headstart is minimal; otherwise,
however, the out-of-control signal is triggered much sooner
(for example, see [13]). Finally, supplementing the scheme
with a Shewhart’s limit improves the sensitivity of the
scheme with respect to substantial changes in the process
level (for example, see [14]). There are also cases in which
Shewhart’s limits are introduced because of some special
features of the associated production process or other
considerations. Here and in what follows we refer to such
(supplemented) Page’s schemes as CUSUM-Shewhart
control schemes.

It is clear that in order to affect the performance of the
control scheme, the Shewhart’s limit must satisfy
¢t < h* + k*. On the other hand, if ¢* < k7, an out-of-
control signal can be triggered only if the Shewhart’s limit
has been violated. Therefore, classical (Shewhart’s) control
schemes can be viewed as special cases of CUSUM-Shewhart
schemes. An alternate way to represent a Shewhart’s scheme
as a special case of a CUSUM-Shewhart scheme is to set 4"
and k" to zero and the desired Shewhart’s limit, respectively.

In a similar way, if we are concerned about the possibility
that the process might shift down from its target level, the
appropriate lower Page’s scheme with parameters (4~ > 0,
k™, 0 = 5, < i) calls for computing the sequence of lower
cumulative sums

s;=max{s_, + (=x; — k), 0}, i=12,--- 2)

and triggering an out-of-control signal at the first moment
N~ for which s,- = &~ If an additional signal criterion
(calling for a signal at the moment i if x, < ¢”) is introduced,
we say that the lower scheme is supplemented by Shewhart’s
limit ¢™.

When we would like to detect rapidly both types of shift of
process from its target level, it makes sense to run both
schemes simultaneously. This procedure is called a two-sided
Page’s scheme with parameters (1, k¥, 53, h™, k™, 57),
possibly supplemented by Shewhart’s limits (¢”, ¢*). The run
length of the two-sided scheme is denoted by V. Clearly,
N=min (N, N").

Now we give some comments related to selection of the
scheme parameters. First, the domain of possible values of a
single controlled parameter (say £) usually consists of a
“target” region and one or two “taboo” regions (depending
on what types of deviations of ¢ from its target level £ are
considered undesirable). (See, for example, [15(a)].) The
control procedure is usually applied to a sequence
£ - £, &, — &, - - - of estimates of £ — £, corresponding to
sequential moments of time.
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Discretization of the values of a one-sided CUSUM scheme.

The reference vatues k*, k™ are usually recommended to
be chosen about midway between the appropriate bounds of
the “target” and “taboo” regions, as shown in Figure 1. Such
a choice of k™, k™ has certain (asymptotic) optimality
properties (for example, see {8]) and, moreover, it is known
to work very well for most stochastic patterns of
observations encountered in practical applications. When the
target is chosen to be the origin, the above recommendations
always call for positive values of k*, k~, which is very
convenient for a user, especially in the case of two-sided
procedures. However, in some cases (often occurring in one-
sided control situations) it is hard to tie the observed
quantities to any particular “target” value. In these cases,
instead of looking for some artificial target value, we can
simply pick the reference values in accordance with the
above recommendations and apply them directly to the
observations. Though the resulting reference values may now
be negative, the logic of cusum plotting is unaffected and
confusing situations are unlikely to occur.

Once the reference values are fixed, the performance of
the scheme depends primarily on the values of signal levels
and Shewhart’s limits. Typically, one is interested in schemes
satisfying certain requirements related to on-target
performance. Thus, values of (4%, ¢*, 1™, ¢7) appropriate in
a given situation must not only satisfy these requirements
but also ensure the best possible off-target performance of
the scheme. In Sections 6 and 8 we outline the design
procedures for achieving this goal.
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The values of the headstarts are usually selected in the
final stage of the design procedure. As we know, setting the
headstart to a nonzero value improves the sensitivity of the
scheme with respect to initial out-of-control conditions. On
the other hand, it increases the probability of a false signal
within any given period of time. Thus, there usually exists a
“trade-off” value of the headstart for which improvement in
sensitivity is not associated with substantial increase in
probability of triggering a false signal; the situation here is
somewhat similar to that occurring in problems related to
testing of a hypothesis when one considers “trade-off”
between Type ! and Type 2 errors. In most practical
situations the value of the headstart does not exceed half of
the corresponding signal level.

3. Analysis of one-sided Page’s schemes

As we mentioned in the introduction, the run length
distribution is the primary criterion of performance of a
control scheme. In this section we introduce the
methodology for deriving the basic quantities associated with
this distribution. Our basic assumption is that the
observations x,, Xx,, - - - are realizations of a sequence X, X,,
- . of independent and identically distributed (iid) random
variables. The distribution function of X, is denoted by F(x).

At present, the most popular method for analysis of run
length distributions (first introduced in 1972 by Brook and
Evans [16]) is based on discretization of the values of
CUSUM and then treating it as a Markov chain (on other
methods of analysis see, for example, [17]). Let {4, &, 5.} be a
Page’s scheme applied to the sequence of observations x,, x,,
-+-. Then it is clear that the values s, s,, - - - form a Markov
chain which is discrete in time but may be continuous in
space. The levels O and 4 are reflecting and absorbing
barriers of the chain, respectively.

For computational purposes we discretize the values of s,
s;, - - - as shown in Figure 2. In other words, the values of s,
s,, - - - are rounded to the center of a corresponding group.
The number of states of the Markov chain (excluding the
absorbing state) is termed the level of discretization of the
scheme and denoted by d. For example, in the case
represented by Fig. 2, the level of discretization is d = 10.

Note that the length of an interval corresponding to a
single state, §, is always related to the level of discretization
by means of the formula

8 = h/(d — 0.5). (3)

Thus, the centers of the groups are at points 0, 6, 29, - - -,

(d — 1)é and & = (8/2) + (center of the last group). Such a
method of discretization usually gives approximations of
good quality and is recommended in many sources (for
example, [16]). The transition matrix of the Markov chain
can be easily expressed in terms of F(x). Analysis of this
matrix enables one to find the average run length (ARL) and
the standard deviation of the run length (SDRL), as well as
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the higher moments of the run length N. One can also
compute P{N>r}, r=0, 1, - - -. Some of the relevant
formulas can be found in the mentioned paper by Brook and
Evans.

Next we give some comments about the effect of
discretization. Extensive case studies indicate that levels of
discretization of about d = 30 give results which are
satisfactory for most practical purposes. The reason for that
is related to the fact that we discretize the states of the
CUSUM chart, but not the observations themselves. Thus,
relatively low sensitivity with respect to level of
discretization is explained by compensation of roundoff
errors when subsequent values of the scheme are computed.
As an example, let us apply the scheme (h = 3, k=1,

5, = 0) to three sequences of normal observations
corresponding to p = 0, 0.5, and 1 and ¢ = 1. Table 1
contains the values of ARL as well as the lower and upper
5% quantiles of the run length distribution (in parentheses)
corresponding to levels of discretization ranging from 10 to
100. It indicates that levels of discretization as low as 10
enable one to roughly assess the properties of the run length
distribution.

Finally, we discuss two special topics related to the one-
sided Page’s scheme.

One-sided Page’s scheme supplemented by Shewhart’s limit ¢
If the one-sided scheme is supplemented by Shewhart’s limit
¢, the cusum s, s,, - - - is still a Markov chain, with the
transition matrix being a modified version of one considered
earlier. Analysis of this transition matrix results in the basic
quantities associated with the CUSUM-Shewhart scheme
under consideration. Another way of looking at the scheme
supplemented by Shewhart’s limit ¢ is as follows: Replace
F(x), the distribution function (d.f.) of X, with a d.f. of an
improper random variable X* defined by X* = Xif X < ¢
and X* = « otherwise. The (improper) d.f. F*(x) of X* is,
of course,

o= {53

and analysis can easily be performed by using F* as the d.f.
of the observations instead of F.

x<c,
Xz 4)

Analysis of steady state situations  Our previous discussion
was related to the situations in which deviations of the
process from target conditions occur at time i = (. Under
this assumption, one of the primary questions of interest was
this: How fast will the relevant control schemes detect the
presence of various types of out-of-control conditions?
However, in many cases, we would like to analyze the run
length distributions corresponding to deviations of the
process from the target conditions, when these deviations
occur after a substantial period of time during which the
process operated in on-target mode characterized by some
distribution function of the observations ¥.
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Table 1 Effect of the level of discretization on ARL and 5%
quantiles (in parentheses) corresponding to the scheme (h =3, k =
1, s, = 0). The observations are iid normal with ¢ = 1. The entries
are rounded to the nearest integer.

d u= 0 0.5 1

10 1918 (100, 5741) 117 (8, 343) 17 (3, 45)
20 1952 (102, 5842) 117 (8, 345) 17 (3, 45)
30 1958 (102, 5860) 117 (9, 345) 17 (3, 45)
50 1961 (102, 5869) 118 (9, 345) 17 (3, 45)
100 1962 (102, 5873) 118 (9, 345) 17 (3, 45)

First of all, let us ask the following question: What are the
probabilities of various states of the Markov chain
(associated with our control scheme) after a long period of
time given that the out-of-control signal was not triggered
during this period of time? It is well known (for example, see
[18]) that the relevant probabilities are given by the
normalized left eigenvector corresponding to the maximal
real eigenvalue A, of R, the (d X d) principal minor of the
transition matrix. Thus, we denote

q(j) € lim P{(j — 0.5)5 < 5, < (j + 0.5)8| N > k},

k—so

provided the limit exists. Note that in this case the
distribution {g(j)} does not depend on s,.

Now let us assume that after a long period of time the d.f.
of the observations switched from F (on-target d.f.) to F. Let
N be the remaining run length until the signal is triggered.

Then
d-1
E{N} = % q()E;{N|s, = jd},
j=0
d-1
PIN>rl = % q()P{N > r|s, = jo}, (6)

j=0

where the subscript # emphasizes that the corresponding
expectation and probability are computed under the
assumption that the observations are generated by the d.f. F.
Other quantities related to N can also be found by using
formulas of type (6).

4. Some basic information related to the
analysis of two-sided Page’s schemes

Analysis of two-sided schemes is known to be technically
much more complicated than that of one-sided schemes.
Indeed, after discretization of both schemes, one can see that
the two-sided scheme represemé a pair of dependent Markov
chains operating simultaneously. This pair may be treated as
a single Markov chain with the set of possible states
represented by pairs (7, j), where i and j are the states

corresponding to the upper and lower schemes, respectively. 381
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Nonsignal regions corresponding to the event {N = i*}.

Unfortunately, the corresponding transition matrix is usually
so large that any detailed analysis of the run length
distribution becomes practically impossible. For example, if
each scheme is discretized into d = 30 states, the transition
matrix of the two-sided scheme is about (900 x 900). This
example provides a partial explanation for the skepticism of
many potential users of cumulative sum techniques.

Clearly, an alternative, much more efficient method of
analysis was needed. Indications that such a method might
exist are related to the fact that upper and lower schemes are
strongly correlated; thus, it is reasonable to expect that the
transition matrix of the two-sided scheme is “too big” for the
information it contains. Indeed, Woodall [15(b)] showed that
some reduction of the number of states of a two-sided
scheme is possible. However, even with this reduction, the
size of the transition matrix remains substantial. One can
also approach the problem by trying to find a relation
between the basic quantities associated with a two-sided
scheme and those associated with corresponding one-sided
schemes. Some important results in that direction were
obtained by Khan [19] and Lucas and Crosier [13]. The
comprehensive theory (and associated method) for analysis
of general two-sided CUSUM-Shewhart schemes on the basis
of this approach can be found in [20].

In this section we give some basic information related to
this method. This information is helpful for understanding
the principles upon which our approach to analysis and the
associated software are based. The reader is referred to [20]
for a more detailed discussion and proofs of the presented
theoretical results. To simplify the notation we shall assume,
without loss of generality, that " = A~,

First let us introduce two constants which play a crucial
role in the analysis of two-sided CUSUM schemes. Let
(h*, k", 55, h™, k™, s5) be a two-sided Page’s scheme. The
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first constant, j*, represents the smallest non-negative integer
for which

So+ Sog—h —i*kT+ k) =0. N

One can show [20] that this constant has the following
property: Whatever the realization of the observations and
index i may be, s} + s; < A" ifand only if i = i*.

Analysis of the two-sided Page’s scheme is heavily
dependent on the question of whether the associated upper
and lower schemes do or do not interact. By definition, the
upper and lower schemes do not interact if no realization x,,
X, - - - of observations exists for which one of the schemes
signals while, at the same moment, the value of the opposite
scheme is not zero. Absence of interaction means that the
successive points of signal of the two-sided scheme form a
renewal process [21] which makes the analysis much easier.
The second constant of interest, ¢, defined by

e -0y = (K + k), (8)

represents a measure of the “amount of interaction” present
in a given two-sided scheme. Indeed, let x|, x,, - - - be any
realization for which the run length N is greater than i*. As
shown in [20, Theorem 4.1], for such a realization

sy= h" implies that sy =0, (9a)
sy=h" implies that 0 < sy < max (0, ¢). (9b)

Thus, if ¢ = 0 and it is known that no signal was triggered
within the first i* steps of the scheme, the subsequent
behavior of the two-sided scheme is as if no interaction were
present. On the other hand, if ¢ > 0 and it is known that no
signal was triggered within the first /* steps, it may happen
that one of the schemes signals while at the same time the
value of the opposite scheme is not zero—but this value
never exceeds ¢. So, if ¢ is small compared to /#*, bounds and
approximations of very high quality for quantities associated
with two-sided schemes are usually available. [Most practical
situations (in particular, when 4" = /7) are related to the
case ¢ < 0, so that no need for such bounds and
approximations typically arises.] If ¢ > 0, we say that the
two-sided Page’s scheme satisfies the intrinsic interaction
condition. In this case ¢ is called the power of intrinsic
interaction and ¢/h" is called the relative power of intrinsic
interaction.

So far, we have considered the situation in which it is
known that no signal was triggered within the first i* steps.
But analysis of the run length distribution must take into
account the possibility that a signal may be triggered within
this period of time. One can show that such analysis can be
based on only one of the schemes. Indeed, assume that
i* > 0 and consider the regions a and b given by

O<si+s;—h —i(k"+k)<s;<h, (102)

Osst+s;—h —ik* +k)<s;<h, (10b)
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0 =< i < i* (see Figure 3). As shown in [20, Theorem 4.2]),
cusum paths corresponding to any realization of
observations for which N = /* must lie within these regions.
Moreover, if for some realization x;,, x,, - - - one of the
relations (10) holds for every 0 < i < i*, then (for this
realization) the other relation also holds for every 0 < i < i*
and N = i*.

The last result implies that the probability of any event
related to the behavior of the run length of a two-sided
scheme within the first /* steps can be found by analyzing
the upper (or lower) scheme only. For example, N = i* if
and only if the path of the upper scheme (see Fig. 3) lies
within the shaded region corresponding to (10a) [or,
alternatively, if and only if the path of the lower scheme lies
within the shaded region corresponding to (10b)].

In light of the previous discussion, we are able to suggest a
very simple criterion for noninteraction of the upper and
lower schemes, namely: The upper and lower schemes do
not interact if and only if e < 0 and s + 55— A~ —

(k™ + k™) = 0 or, equivalently, if and only if
e <minf{0, A" — (55 + sp)k- (1)

Moreover, the results given above enable one to develop a
unified approach to analysis of two-sided control schemes.
This approach is based on analysis of the probabilistic
behavior of the scheme prior to /* and after i* separately.
The first part of the analysis (as well as the conditional
distribution of values of the upper and lower schemes at the
moment ;*, given that no out-of-control signal was triggered
within the first /* steps) can be performed by considering
one of the schemes only, and therefore is not associated with
a substantial computational effort. Thus, we assume, without
loss of generality, that i* = 0 and proceed to the second part.

Let L*(plsg), L™(p|sy), and L(p|sg, s;) be Laplace
transforms of the run lengths of the upper scheme with
headstart s0+, the lower scheme with headstart s, and the
two-sided scheme, respectively. Also, define

4 (p)=L+(p|SD[1 — L (p|0]+ L (p|s,)lL = LY(ple)]
’ L= L(pIOL"(ple)

s

p#0,

A40)=1. (12)

We start the analysis of a given two-sided Page’s scheme
by finding ¢. If ¢ < 0, one can show (see [20, Theorem 5.1])
that L(p|s5, 55) = Ay(p). Thus, expansion of (12) into
power series enables one to obtain expressions for ARL,
SDRL, and P(UP) = P{N" < N} (i.e., the probability that
the signal is triggered by the upper scheme) in terms of the
ARL’s and SDRL’s of the associated one-sided schemes.

The formula (12) also enables one to determine the run
length distribution of the two-sided scheme. Indeed, once
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discretization is performed, L (log p| s;), L™ (log p|s,) and,
consequently, L(log p| s;, 5,) become ratios of polynomials
with real coefficients. The run length distribution can
therefore be analyzed by finding the roots of the
denominator in (12), expanding (12) into the sum of partial
fractions, and subsequent termwise inversion of the Laplace
transform.

If ¢ > 0, one can prove [20, Section 8] that for p > 0,

Ay(p) = L(p|sg, 59) < A(D).

This inequality leads immediately to bounds for ARL and,
after some additional analysis, to bounds for higher-order
moments as well as for the run length distribution itself. In
practical terms, however, the Laplace transform of the run
length is much closer to the left bound in (13) than to its
right bound. In fact, one has

L(p| sy, 5o) = A(p) + P-C(p),

where P is the probability that

(13)

(14)

1. the signal is triggered by the lower scheme;

2. the value of the upper scheme at the moment of signal is
not equal to 0 [note that by (9), it must be less than ¢];

3. the upper scheme does not reach 0 (before it signals)
during its subsequent path;

4. the value of the upper scheme at the moment of its signal
does not exceed #* by more than the minimal value of
the upper scheme achieved during its subsequent path;

and C(p) is the “correction term” associated with the above
event. One can show that as p — 0, C(p) = —p,p + o(p),
where u, is approximately equal to half of the ARL of the
upper scheme with headstart (h* — ¢). It is intuitively clear
that whatever the stochastic pattern of observations may be,
P must be very small (especially for moderate powers of
intrinsic interaction), and if, in addition, the trend of the
CUSUM path is upwards, then also the impact of C(p) is
small. Since in the vast majority of the problems
encountered in practice the relative power of intrinsic
interaction is 0.5 or less, we performed an extensive study of
the second term in (14) in this domain in order to decide
whether its impact was significant enough to justify
additional computational effort. This study was based on the
exact transition matrix of the bivariate Markov chain as well
as on simulated runs, and it led to the conclusion that
approximations based on the first term of (14) produced
results sufficient for most practical purposes.

The results given so far are relevant with respect to any
stochastic pattern of incoming iid observations. It is clear
that any restrictions on the nature of observations can lead
only to a decrease in actual power of intrinsic interaction.
For example, consider the case in which the two-sided
scheme is supplemented by Shewhart’s limits ¢, ¢*. Clearly,

if —¢” = k~ (i.e., the lower scheme is of Shewhart’s type), the 383
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ANALYS|S OF ONE-SIDED CUSUM SCHEME WITH PARAMETERS H,K,C = 3 | 3.6
THE LEVEL OF DISCRETIZATION IS 30
THE VARYING PARAMETER |S THE HEADSTART, (HEADST).
HEADST ARL SDRL 10 20 30
0 1507.3 1505.4 .99430 98772 .98118 .96823 .93660
(163801 1478.9  1505.1 .97559 .96913 .86272 95001 .31897
L173E0T 147203 1504.9 97124 96481 95842 .G4577 .91487
L183E01  theh.b 1504.7 .96602 .95963 .35327 .94069 .90996

ANALYSIS OF ONE-SIDED CUSUM SCHEME WITH PARAMETERS H,K,C =3 1 3.5
THE LEVEL OF DISCRETIZATION IS 30
THE HEADSTART IS OUT OF RANGE; STEADY STATE ANALYSIS ASSUMED
THE CHANGING PARAMETER NAME IS SIGMA

SIGMA AR SDRL 5 10 15 20 50 100
.800E00 47185.9 47194.2 ,99971 . . . .
.900E00 6279.8 6280.8 .99896 .39B16 .93736 .99B57 .99182 .9839%
.100E0T 1505.9 1505.3 .99668 .99338 .99009 .98680 .96733 .93573
LHI0EOT  530.1  529.1 .99146 .98215 .97291 .96376 .91064 .82853

1120601 2h1.8  240.7 98190 .9617h .94197 .92260 .B14k3 66171

question whether interaction is present or not can be
ignored. Otherwise, all the results given earlier remain
relevant, but instead of ¢ one should use ¢, = ¢ — Bk™ + k)
where 8 =—1 — A /(k” + ¢7). One can see that in this case,
whenever introducing Shewhart’s limits affects the run length
distribution, 3 is positive.

5. Software support

Procedures for analysis of CUSUM-Shewhart control
schemes described in the previous sections are used
primarily for designing a control scheme appropriate in a
given situation. In cases where it is really important to have
a “good” scheme, the design procedure is likely to require a
substantial amount of work. First of all, the designer should
study the available data (and perform experimental work,
if necessary) in order to identify the relevant on-target and
off-target stochastic patterns of incoming observations.
Subsequently, he must choose the parameters of the scheme
in such a way that its performance is satisfactory with
respect to these patterns. Clearly, in most nontrivial
situations the design procedure requires appropriate
software. As a minimum, such software should enable one
a) to obtain any quantity associated with a given CUSUM-
Shewhart procedure for an arbitrary distribution of iid
observations, and b) to apply CUSUM-Shewhart procedures
to actual sets of data and, for more complicated stochastic
behavior of the observations, study the properties of a
scheme by simulation.

In this section we give a short description of an APL
software package, DARCS, for design, analysis, and running
of CUSUM-Shewhart control schemes developed recently in
the Department of Mathematical Sciences of the IBM
Thomas J. Watson Research Center, with some examples of
its application. This material is helpful for a better
understanding of the design procedures given in the
following sections. In the present work we discuss the
functions appropriate for situations in which the
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observations form an iid sequence only. A more detailed
description of the package as well as additional examples can
be found in [22].

The package contains two basic functions for analysis of
the run length distribution. The first one determines, for any
given pattern of iid observations, the ARL, SDRL, and run
length distribution corresponding to a given one-sided
CUSUM-Shewhart scheme (including steady state analysis).
The second function performs a similar analysis for a given
two-sided scheme. In addition, it enables one to determine
the probability P( UP) that the out-of-control signal is
triggered by the upper scheme.

Each of the mentioned functions can operate in one of the
following three modes:

I-mode s used for interactive analysis of the performance
of a given scheme with respect to a fixed d.f. of
incoming observations;

V-mode is used for a noninteractive analysis of a sequence
of schemes (depending on a single varying
parameter) with respect to a given fixed d.f. of the
observations;

E-mode s used for a noninteractive analysis of

performance of a fixed scheme with respect to a
set of several d.f.’s of the observations
corresponding to different values of a specified
parameter.

To illustrate application of these functions, let us consider
several examples.

Suppose that we would like to analyze the run length of a
one-sided scheme 4 = 3, k = 1 supplemented by Shewhart’s
limit ¢ = 3.5, for all (discretized) values of s, between 1.6
and 1.8 and s, = 0 when {x,] are distributed normally with
u =0 and o = 1. Suppose also that this distribution
corresponds to an on-target situation and that we would like
(for the purpose of future steady state analysis) to store the
steady state probabilities {g(j)}. In addition, we would like
to compute, for each headstart, the probabilities P{run
length > r} for r = 10, 20, 30, 50, and 100. Application of an
appropriate function (in V-mode) resuits in the printout
shown in Figure 4. The computed values of the steady state
distribution are {q(j),j =0, 1, - - -, 30} = {0.8155, 0.0241,
-+, 0.0001}; the intermediate values are omitted.

Figure 4 serves as an illustration of how unreliable ARL
can be as a performance criterion for a control scheme. Note
that although some of these schemes have ARL’s over 1400,
the probability of a signal before 100 observations are taken
is close t0 0.1.

To illustrate the application of the E-mode of analysis, let
us ask the following question: After the scheme considered
previously runs for a long time in on-target mode (i.e., with
observations coming from the standard normal distribution),
what is the effect of change in o (in the steady state situation)

IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985




from its on-target value (1) to 0.8, 0.9, 1.1, or 1.2?
Application of the analysis function results in the printout
shown in Figure 5, which illustrates the high sensitivity of
performance of a CUSUM with respect to slight changes in
a. It also explains why there is a reason to be suspicious
about the performance of any scheme that has been derived
“under the assumption that ¢ is known.”

In our next example, let us analyze the run length of a
symmetric two-sided scheme 4" =3, k™= 1, A" =3,k =
supplemented by Shewhart’s limits ¢~ = —3.5, ¢ = 3.5, the
observations {x,} being distributed normally with x = 0 and
o = 1. Let us also compute the probabilities P{run length >
r} for r = 10, 20, 30, 50, and 100. In order to provide the
reader with the chance to compare the results with those
obtained earlier (note that our scheme is combined from two
one-sided schemes considered in the first example), we chose
(0, 0), (1.627, 1.627), and (1.627, 1.831) as pairs of
headstarts of interest. Now application of the function for
analysis of two-sided schemes (in V-mode, the varying
parameters being s; and s,) produces the results shown in
Figure 6.

On the basis of Fig. 6, one can verify that the ARL of a
two-sided scheme can be roughly approximated by a
harmonic mean of ARL’s corresponding to one-sided
schemes [23]. In addition, one can see that P{run length > r}
can be approximated by a product of analogous probabilities
corresponding to one-sided schemes. For example, in
accordance with the first printout of this section, P{R.L. >
100|s, = 1.627, s, = 1.831} = 0.83557 ~ 0.91897 x
0.90996 = 0.83622. This property is related to one
mentioned above and also to the fact that the run length
distribution of a CUSUM-Shewhart scheme can usually be
roughly approximated (especially in the tail area) by an
appropriate geometric distribution. We use it in Section 8 for
the purpose of designing two-sided schemes.

Finally, let us examine the effect of a shift of x from 0 to
0.1,0.25, 0.5, 1.0, 1.5, or 2.0 on the run length of the
scheme. After applying the appropriate function in E-mode
we obtain the results shown in Figure 7, indicating that for
u = 0.5 performance of the two-sided scheme is roughly
equivalent to that of the upper scheme.

6. Design of a one-sided CUSUM-Shewhart
scheme

Until the early seventies, design and analysis of CUSUM
control schemes centered about the notion of ARL. Though
the use of ARL as a primary criterion for evaluation of the
performance of the scheme was criticized by some authors
(for example, [11, 24}), the choice of alternative measures of
efficacy was very limited because of theoretical as well as
computational difficulties. Typically, the approach to the
problem of choice of an appropriate scheme was based on
the assumption that the observations come from a normal
population with a known standard deviation ¢. Under this
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ANALYS IS OF THE TWO-SIDED CUSUM scnsne WITH PARAMETERS:
H+,K+,C+ = 3 1 3.5 AND H=-,K-,C- = -3.
THE LEVELS OF DISTRETIZATION ARE D+, o—= 30 30
HEADSTARTS P(UP} ARL $ORL 10 20 30 50 100
0 .500 753.6 751.7 .98863 .97556 .96267° .937h0 .87708
.163501 L163E01  .500 725.3 751.2 .95137 .93880 .92639 .30207 .8hk02
(16301 .183801 .95 718.1 750.9 .9h1BS .92940 -.91712 .B9304 .83557

ANALYS1S OF THE TWO-SIDED CUSUM SCHEME _WITH PARAMETERS:

He K+,C+ = 3 1 3.5 AND H-,K-,C- =

THE LEVELS OF DISCRETIZATION ARE D+, n—=- 30 30

THE VALUES OF THE HEADSTARTS ARE 00

THE CHANGING PARAMETER NAME 15 MEU

MEU  P(UP) ARL  SORL 5 0 20 50 100

.100E00  .749  653.9  651.9 .99462 .98707 .97204 .92832 .85978
250600  .937 365.7 363.3 .93129 .37791 .95136 .87595 .76333
.500£00 .995 110.5 . . . .
.100E01 1,000  17.1 . . .
.150£01  1.000 6.3 3.9 .48629 .12590 .00780 .00000 00000
.200E01 1.000 3.7 1.8 . .

assumption, ARL was studied as a function of the process
mean g, similarly to the way in which the operating
characteristic (OC) curve is studied in standard hypothesis
testing (or acceptance sampling) problems (for example, see
[25, Fig. 22.7]). The decision whether to adopt a given
scheme was then based on the properties of this curve, the
major points of interest being u, (good quality) and u, (bad
quality). In particular, in the case of cumulative X-charts o is
a function of the sample size n, and then it is always possible
to find A, k, and n (we assume that s, = 0) such that ARL
(p) 1s approximately equal to some fixed large number L,
and, at the same time, ARL () is approximately equal to
some fixed smail number L . Nomograms and examples
related to the solution of this two-point problem can be
found, for example, in [25, pp. 471-479] and [26].

One of the major drawbacks of such an approach is that it
is solely based on the notion of ARL. Though ARL is
probably meaningful in the off-farget situation, it can be
highly misleading when the on-target case is under study
(primarily because the set of possible CUSUM paths
includes “too many” extremely “short” members). Indeed, as
we have learned from the first example in Section 5, schemes
with ARL = 1500 can signal within the first 100
observations with probability approximately 0.1. This feature
of the run length distribution might represent a serious
source of problems, especially in the cases in which one uses
headstarts. Indeed, an increase in the probability of a false
signal resulting from the use of a headstart is not as visible in
terms of ARL, because the right tail behavior of the run
length distribution is (practically) independent of the
headstart. An additional drawback of ARL as a criterion for
choice of an appropriate control scheme is that it is
extremely sensitive with respect to slight departures from
normality as well as with respect to slight variations in o.

In general, the user of a CUSUM scheme probably feels
uneasy about specifying a particular ARL for the on-target
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Signal
level

h#

The set values (h, c) corresponding to (15) (shaded) and level curves
of ARL corresponding to some off-target distribution F (k is fixed and
55=0).

situation; what he typically wants is that the scheme will not
generate a false alarm within a certain period of time (say, a
shift) with probability of at least, say, 0.99. Indeed, the most
fruitful applications of CUSUM techniques in industry are
related to situations associated with automated collection
and processing of data generated in a systematic way by a
production line. In such situations costs associated with
unjustified troubleshooting (possibly caused by a false out-of-
control signal) are usually of primary concern for the
designer of a control procedure. Since this procedure
typically monitors several (sometimes thousands of)
sequences of observations at the same time, the necessity of
keeping the overall probability of a false signal small leads to
corresponding requirements related to each individual
(univariate) scheme. This argument serves as a basis for our
approach to the problem of design. It also emphasizes the
need for having the ability to analyze the run length
distribution and not just its first moment, the ARL, in order
to choose a scheme with “good” properties.

In this section we give some recommendations that might
be helpful for designing a one-sided (say, upper) CUSUM-
Shewhart scheme. Let x,, x,, - - - be the sequence of
observations the scheme is intended to monitor. In all
practical cases we would like this sequence to be iid or at
least stationary in time. So, let us suppose that some process
history is available, and it indicates that such behavior of the
observations is in principle achievable. Moreover, in the
initial stage we assume that the observations form an iid
sequence with common d.f. F(x). Let £ be some measure of
central tendency (mean, median, etc.) of F. Then our
scheme is primarily supposed to control the level of this
parameter (though it is possible that F depends on other
parameters as well).

To choose an appropriate one-sided (say, upper) Page’s
scheme one must in general specify four parameters and
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possibly some other “shadow” parameters which affect the
distribution of the observations (e.g., sample size n when the
observations form a sequence of sample means) but are
related to the particular sampling routine rather than to the
nature of the process of interest. In the present work we
assume that the values of all parameters of this type are
fixed. The main reason for excluding the “shadow”
parameters from consideration is related to our desire to
keep the discussion as simple as possible; our experience
shows that the design procedures we are going to present
together with DARCS software enable one to determine,
relatively quickly, the values of such parameters by trial and
error. Another reason is related to the fact that in many
practical situations the sampling intensity is determined by
the production process itself and therefore cannot be easily
changed (for example, in cases where every produced item is
subject to automated inspection, the sampling intensity is
determined by the production speed).

Under the stated assumptions the following sequence of
steps in most cases leads to a scheme with “good” properties.

Step 1 Choose the “target” and “taboo” regions for £ (see
Fig. 1). This may require evaluation (or estimation) of
various parameters of F (or F itself) on the basis of the
previous history. It may also be associated with cost analysis.

Step 2 Define the extreme on-target family, i.e., the family
of d.f.’s that are likely to represent the on-target observations
and for which £ is equal to the upper bound of the “target”
region. (For example, in the case when the “target” region is
£ = 0.5, one may include in the extreme on-target family all
the normal d.f.’s with x = 0.5, ¢ < 0.1 as well as all gamma
d.£7s with Ba = 0.5, BV < 0.1, @ = 25.) In a similar way,
define the extreme off-target family, i.e., the family of d.fs
that are likely to represent the off-target observations and for
which ¢ is equal to the Jower bound of the “taboo” region.

Step 3  Choose k in accordance with the recommendations
of Section 2.

Step 4 Choose K (in accordance with sampling intensity)
and « = 0, for which it is desired that

Pf{run length > K|Process is on target} = | — a. (15)

Step 5 1t is not difficult to see that the set of all pairs (4, ¢)
for which (15) holds form a convex region of the type shown
in Figure 8.

One is primarily interested in schemes corresponding to
the curved boundary of this region. Moreover, in most
practical cases it turns out that the scheme of interest
corresponds to one of the extreme points [(7*, ¢*) or (A**,
¢**)] of this region. These points can be found by means of
the following procedure.
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From the extreme on-target family, choose the “worst”
representative F,, for which the out-of-control signal is still
undesirable. [For example, in the case considered in Step 2,
such a representative is, probably, the gamma d.f. with 8 =
0.02, o = 25. (The “worst” representatives of the on-target
family of distributions are those having the “shortest” run
lengths; similarl’y, the “worst” representatives of the off-target
family are those having the “longest” run lengths.)] Find a
minimal c* for which a pure Shewhart’s scheme with upper
control limit c* satisfies

Ffem = (- a)' (16)

[Note that in the case where the observations are coming
from the population F,, the resulting “pure” Shewhart’s
control scheme satisfies (15).} Continue the analysis for F,
and find a minimal value of the signal level (#*) for which
the scheme “practically never” signals within K observations
[i.., for which (15) is still valid). (Typically, this results in a
scheme for which a false out-of-control signal is most likely
related to violation of the Shewhart’s limit; thus, the scheme
corresponding to this extreme point can be viewed as a
Shewhart’s scheme “supplemented” by the CUSUM control
criterion. This also explains why it is usually possible to
introduce a “moderate” headstart without affecting
substantially the on-target performance of the scheme.)
Choose a headstart value s} for which the resulting scheme
still “practically never” signals within K observations
provided that they are generated by F,.

Next find a scheme corresponding to the second extreme
point of the boundary region (see Fig. 8). Start with the
scheme (4*, k) without either headstart or Shewhart’s limit.
Decrease # until the minimal value is found (/2**) for which
the scheme “practically never” signals within K observations,
provided that they are generated by F,. Increase ¢ (starting
from c*) until the minimal value is found (¢**) for which
(15) is still valid. Supplement the derived scheme with an
appropriate headstart s3*.

Step 6 Examine the behavior of both derived schemes with
respect to “worst” representatives of the extreme off-target
family. Make slight adjustments to the parameters of the
schemes, if necessary.

Step 7 Usually both schemes perform well for the values
of ¢ corresponding to the “target” and “taboo” regions. The
scheme based on (h**, k, c**) is generally more sensitive
with respect to the values of ¢ corresponding to the
“intermediate” region. On the other hand, the scheme based
on (h*, k, ¢*) is more likely to “catch” extremely large
deviations from the target level within a very short period of
time. Therefore, the final choice of a scheme depends on the
relative importance of these properties in a given situation.
In some cases the user may prefer a scheme based on some
(h, k, ¢) corresponding to a “tradeoff” between these
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properties. For example, if one is interested in a scheme
having the smallest possibie ARL for some given off-target
d.f. F, the appropriate choice could be based on (4, ¢),
derived as shown in Fig. 8. Thus, in this step we choose an
appropriate scheme and examine its sensitivity with respect
to the “worst” representatives of the extreme off-target
family. If it is found to be satisfactory, the scheme is ready
for steady state analysis. Otherwise, it is worthwhile to
examine the effect of slight variations in the parameters of
the scheme (including k) on the overall performance of the
scheme. If this examination does not lead to a satisfactory
scheme, it is most likely that, with present sampling
intensity, a scheme with desired properties is, in principle,
unachievable. The possibilities corresponding to this
situation are as foliows:

e Increase the sampling intensity, redetermine K
accordingly, and then repeat the search procedure. One of
the ways to increase the sampling intensity is to pick n
observations (instead of a single observation) at a time, if
possible; the control scheme is then applied to a
corresponding sequence of estimators for £.

o Decrease the value of / until some kind of “trade-off™
between the probability of a false alarm and sensitivity is
achieved.

Step8 Let F, be a d.f. which seems most likely to
represent the data corresponding to an on-target situation.
Perform a steady state analysis with respect to the “worst”
representatives of the extreme off-target family. Adjust the
parameters of the scheme slightly if necessary.

Step 9 Examine the performance of the scheme with
respect to selected on-target and off-target distributions F
which are likely to appear in practice.

Though the above sequence of steps seems to be
somewhat lengthy, one finds out, after some practice, that
intuition and common sense lead quickly to a scheme with
the desired properties, provided the latter exists.

Next we discuss some additional aspects which (in certain
cases) should be taken into consideration when performing
the final analysis of a control scheme.

If it is known that the observations may correspond to a
sequence of dependent random variables (e.g., a stationary
Gaussian sequence), it is very desirable to examine the
behavior of the derived scheme with respect to simulated
sequences corresponding to “on-target” and “off-target”
conditions. Some theoretical results related to the
performance of CUSUM schemes in situations where
observations are serially correlated can be found, for
example, in the two-part paper by Bagshaw and Johnson
[27, 28]. These results are based on the fact that under
certain rather general conditions, the (properly normalized)

CUSUM path converges weakly to the Wiener process; thus, 387
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the run length distribution of a Page’s scheme can be
approximated by that of the time to absorption of a Wiener
process with reflecting and absorbing barriers. The
theoretical basis for such an approximation can be found in
[29, Theorems 20.1 and 21.1].

In the cases where observations may be contaminated by
outliers, one may be willing to consider a modification of the
basic control procedure that calls for special treatment of
cases in which an out-of-control signal is suspected of being
triggered by an outlier. Since such modification typically
leads to some loss of sensitivity with respect to off-target
situations, the modified scheme should be re-examined with
respect to relevant stochastic patterns of the input
observations. The effect of some of the possible
modifications (for example, ignore the outlier, winsorize the
outlier, etc.) is discussed in [30].

7. Examples

In this section we give several examples illustrating the use of
some functions in relation to the design and analysis of
CUSUM-Shewhart schemes. We limit ourselves to outlining
only the basic steps of the design and analysis, so that the
interested reader can verify each step by using the software.

Example 7.1 (Cumulative a-chart) In the oxidation
process of silicon wafers, we are interested in keeping the
“within-the-lot” variability of the thickness of the grown
Si0, layer as small as possible. In order to achieve that, we
take n measurements of film thickness per lot and monitor
the resulting sequence of sample standard deviations,

YA
%= n—1,.

J

(yi,“‘J_/,-)z, i=1, 2"",

i s

where y,,, y,,, - - ¥, are the observations corresponding to
the ith lot and , is their sample mean.

We do not have a particular “target” value for the
sequence 4,, d,, - - -; instead, we have a “target” region:
namely, we want the underlying “true” standard deviation ¢
to lie within the interval 0 < ¢ < 0.02 nm. On the other
hand, we would like to detect as quickly as possible the
situation in which ¢ = 0.04 nm.

Suppose that for every i, {y;,, ¥;,, - -+ ¥,,} are realizations
of a normal random variable with certain mean and
standard deviation ¢. Then 4,, 4,, - - - can be considered

as realizations of a random variable Z(qs, n) =

ovxi(n — 1)/(n — 1), where xz(n — 1) is a chi-square

random variable with (n — 1) degrees of freedom. Under the
additional assumptions that ¢,, 4, - - - are realizations of
independent random variables, and that

a. the sample size is fixed (n = 4),

b. the planning “horizon” does not extend beyond K = 200
samples (because of the regular equipment maintenance
operations), and

c. if the process is on-target, the probability of a false signal
within 200 samples should be at most « = 0.0001,

we would like to find a CUSUM-Shewhart scheme with the
best possible out-of-target performance.

We start by noting that the “target” and “taboo” regions
are ¢ < 2 and o = 4, respectively. Moreover, since we are in
fact dealing with a one-parametric family corresponding to
2(o, 4), the only member of the extreme on-target family is
the d.f. of Z(2, 4); analogously, the only member of the
extreme off-target family corresponds to Z(4, 4). In
accordance with the recommendations of Section 2, we
choose the starting reference value k = 3. Next, one can see,
by analyzing a “pure” Shewhart’s scheme with respect to
2(2, 4) ~ F,, that the solution of (16) is ¢* = 6.6. Further,
we find, by using the V-mode of the function for analysis of
one-sided schemes, that #* = 5. Finally, for the headstart
s¥=1.02, the probability of a false signal (under Fp) is still
approximately equal to 0.0001.

In order to obtain the parameters of the scheme
corresponding to the second extreme point of Fig. 4, we start
with a “pure” CUSUM scheme (#* = 5, k = 3) and find, by
using the V-mode of the software, that #** = 4.5. Further,
we can supplement the scheme with ¢** = 7.2 and s3* = 0.3
without affecting its on-target performance (with respect
to F,).

In the off-target situation corresponding to Z(4, 4), the
ARL of both derived schemes is 6.7; the SDRL’s are 4.8 and
4.5, respectively. To illustrate the point we discussed in Step
7, consider the off-target situation corresponding to =(8, 4).
The probability that the run length will exceed 1 is 0.44 (for
the first scheme) and 0.51 for the second one. On the other
hand, the first scheme is less sensitive with respect to
moderate deviations of ¢ from its target region; for example,
if the observations are generated by =(3, 4), the ARL’s of the
first and second schemes are 60.1 and 50.7, respectively. In
Table 2 we give the values of ARL corresponding to both
derived schemes and a “pure” Shewhart’s scheme having

Table 2 Vvalues of the ARL corresponding to schemes considered in Example 7.1 as functions of the standard deviation, ¢ (n = 4):
a) Shewhart’s scheme with ¢ = 6.55;b) h* = 5,k = 3,53 = 1.02, c* = 6.6; ¢) i** = 4.5, k =3, s¢* = 0.3, ¢ = 7.2,

Scheme g = 2 2.5 3 3.5 4 5 6 7 8
a 2.08 x 10° 7820.3 396.4 68.0 222 6.2 3.2 2.2 1.8
b 2.03 % 10° 209s5.1 60.1 13.5 6.7 33 2.3 1.9 1.6
¢ 1.98 x 10° 1368.7 50.7 13.0 6.7 3.5 2.5 2.0 1.7
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comparable on-target performance (note that for each of
these schemes P{R.L. > 200 | ¢ = 2} = 0.9999). This table
can serve as a good illustration of the superiority of CUSUM
techniques compared to the classical ones.

Our next example is related to the control of the
parameter A of the Poisson population. The classical
(Shewhart’s) method of control is usually referred to in the
literature as a c-chart.

Example 7.2 (Cumulative c-chart) [31]  Spin dryers are
used as one of the steps in the production of integrated
circuit chips from semiconductor wafers. Typically, the
process steps are followed by rinses with deionized, filtered
water. After the rinsing, the water is removed by placing the
wafers in the spin dryer (centrifugal device), which spins the
water off the wafers (and accelerates evaporation by using
dry filtered gas).

Periodically, test wafers are run through the rinse and
drying cycle and the particles on the wafer that are larger
than a specified diameter are counted. The recorded counts
{0,, 0,, - - -} serve as a basis for the decision to clean and
retest the spin dryer. On the basis of theoretical
considerations, there is reason to believe that, during a
certain initial period of time, the process {0} corresponds to
a sequence of iid Poisson random variables with parameter
A. Under normal conditions, the level of this process does
not exceed 6.5. Levels of the process exceeding 11.5 are
associated with a high rate of defective production—
situations in which the process of counted contaminating
particles reaches this level should be detected as soon as
possible. On the other hand, since cleaning and retesting
represent an expensive and tedious procedure, we are
interested in a CUSUM control scheme for which the
probability of a false signal within 100 tests is not more than
0.01, and, at the same time, sensitivity with respect to the
levels of the process exceeding 11.5 is as high as possible.

Since the first four steps of the design are straightforward
(clearly, in our case a = 0.01, K = 100, k = 9), we proceed
towards Step 5 and find that ¢* = 18.5. Subsequently, we
find that A* = 13.5. Note that in this part of the analysis we
use the nonstandard level of discretization, d = 14. [If one
deals with counted data and chooses an integer value of &,
the values of the CUSUM scheme become limited to the set
of non-negative integers (provided the headstart is an
integer). Thus, the choice of # and d in accordance with the
rule 2 = j — 0.5, d = j, where j is an integer, ensures the
absence of a roundoff error.] Finally, we choose 5§ = 5 in
accordance with Step 7 and proceed towards finding a
scheme correspo’ ding to the second extreme point of the
boundary region. We start with a “pure” CUSUM scheme
(h* = 13.5, k = 9) and find that A** = 12.5. Subsequently,
we find that c** = 19.5 and s3* = 3.

To analyze the performance of the first derived scheme for
6.5 = A < 11.5, we apply the E-mode of the function for
analysis. This gives the results shown in Figure 9.
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ANALYSIS OF ONE-SIDED CUSUM SCHEME WITH PARAMETERS H,K,C = 13.5 9 18.5

THE LEVEL OF DISCRETIZATION 1S 14

THE VALUE OF THE HEADSTART IS §

THE CHANGING PARAMETER NAME 1S LAMBDA
LANB R R 10

A ARL  SDRL
L650E071 11367.9 11381.4 .99848 .99790 .99701 .99526 .99003 .98137
.750E01  653.7 660.1 .98563 .97507 .95989 .93123 .85033 .73080
(850601  62.1  62.3 .92371 .BAlhy .77h29 .51852 .19846 .0kook
3 .76041 .51587 .24243 .05396 .00060 .00000
1 .50851 .18627 .02479 .000k4 .00000 .00000
7

0.

.950E01 15.0 13.
7.0 5.

2. .26435 .037t3 .00070 .00000 .00000 .00000

. 105€£02 .
. 115E02 4.5

By using the DARCS software, one can easily verify that
in this example the properties of the second scheme are
roughly the same and also that additional variation of the
parameters of the derived schemes leads to only very minor
improvements in their performance.

8. Design of a two-sided CUSUM-Shewhart
scheme
Design of a two-sided CUSUM-Shewhart scheme represents,
in general, a more difficult problem than design of a one-
sided scheme. Though the “first draft” of a scheme with
desired properties can be obtained in a relatively
straightforward way, the final adjustments and analysis can
be time-consuming, as they are associated with
manipulations of eight parameters.

Under the assumptions of Section 6, the following
sequence of steps usually leads to a scheme with desirable
properties:

Step I and Step 2 The same as in Section 6.

Step 3 Choose k™ and k™ in accordance with the
recommendations of Section 2.

Step 4 If the “target” region consists of a single point or its
width is very small compared to widths of both
“Iintermediate” regions, design (by using the procedure
described in Section 6) an upper Page’s scheme (4™, k*, s;,
c*) and a lower scheme (4™, k~, Sg» € ) such that relation
(15) holds for each scheme. Otherwise, design both schemes
so that

P{run length > K{Process is on target} = vl — « (17)

holds for each scheme.

Step 5 Combine the derived one-sided schemes into a
single two-sided scheme. This scheme represents a first
approximation which in most practical situations is fairly
close to what is desired. Indeed, the behavior of the
combined scheme with respect to off-target patterns of
incoming data is primarily determined by one of “well-
designed” one-sided schemes. Further, if the width of the
“target” region is very small compared to widths of both
“intermediate” regions, then, by the property discussed in
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ANALYS1S. OF THE -TWO-SIDED CUSUM SCHEME WITH PARAMETERS:
H¥,K+,0+ =213 1E6D AND H-,K-,C- = 3.5 2 -5,
THE ‘LEVELS:OF :DISCRETIZATION ARE D+,D-= 18 30
THE VALUES OF THE HEADSTARTS ARE 0.93 0.7
THE: CHANGING PARAMETER NAME 1S MEU

$

-.4OEG1 000 2.0 7 . : R .

- 1001 000 ' 4976.2 - 4977.4 -.99868 9976k .98966..97976 .96028

-.50£00 -.002 . 1B2EQ6 162606, .39994  .39991  ,99966. .99335 .99874
[ . . .

.SO0EQD " .995. 427€06: . 427E06 . 99985 39984 99974 .99963 '.39939
.100EQT - 1.000 36076.0° 36108.4 .°, 99895 99881 .. 99771 = .99632: ;99357
.4ODEOT. ¥.000 2.0 1.3 .02206 - 00043, ;00000 00000 - .D0O0O
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Section 5, the combined scheme (approximately) satisfies the
relation (15). Otherwise, the “on-target” behavior of the
scheme is mostly determined by one of the one-sided
schemes and, by construction, (15) is once more
approximately satisfied.

Step 6 Adjust the parameters of the combined scheme so
that (15) is satisfied.

Step 7 Examine the behavior of the resulting scheme with
respect to the “worst” representatives of the extreme off-
target family. If sensitivity is found satisfactory, proceed to
the next step. Otherwise, examine the effect of slight
variations in the parameters (including k™, k7). If it does not
improve the performance of the scheme, it is most likely that
the scheme with desired properties cannot, in principle, be
achieved. The possibilities corresponding to such a situation
are analogous to those described in Section 6, Step 7.

Step 8 Examine the performance of the scheme with
respect to selected on-target and off-target distributions
which are likely to appear in practice.

The effects of some other factors that one may be willing
to consider when designing a two-sided CUSUM-Shewhart
scheme (for example, see Section 6) can be studied by
simulation or by means of approximations based on the
properties of the related Wiener process.

For an application of the above procedure, consider the
following example.

Example 8.1 (Cumulative X-chart) ~ Suppose that in the
oxidation process of silicon wafers considered in Example
7.1 we are also interested in keeping the difference between
the actual mean thickness of the grown SiO, layer and the
target value ¢, (we denote this difference by A) as close to
zero as possible. The consequences of systematic deviations
between the actual mean thickness and ¢, depend not only
on the magnitude but also on the sign of the deviation, so we
would like to guard ourselves against situations in which A is
more than 0.06 nm or less than —0.04 nm.

With observations taken in the same way as in Example
7.1, we shall try to design a CUSUM-Shewhart procedure for
controlling A on the basis of the sequence x;, = 3, — f, { = |,
2, ...,
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Suppose that for every i, { y;,, ¥, - -+ ¥,,} are realizations
of a normal random variable with certain mean and
standard deviation ¢. We also suppose, as in Example 7.1,
that n = 4, and, if the process is on target, the probability of
a false signal within X = 200 samples should not exceed
0.0001. Under these assumptions, we would like to find a
scheme with the best performance with respect to the off-
target region consisting of two parts, {A < —0.04 nm} and
{A = 0.06 nm].

Of course, before proceeding further, we need to specify
the on-target family of distributions of interest. In order to
illustrate the point of Step 4, we consider two possibilities:

a. The on-target family is a set of all normal d.f.’s N(A, o) for
which—1=sA=<2andeo<2.

b. The on-target family is a set of all normal d.f.’s for which
A=0and s <2,

In Case a the “worst” representatives of the extreme on-
target family are d.f.’s N(A = —1, ¢ = 2) and

N(A = 2, ¢ = 2). Further, the width of the “target” region (3)
is comparable to the widths of both “intermediate” regions,
which are 3 and 4. Therefore, we design, by using the
method of Section 5, an upper scheme so that P{R.L. >
200] A =2, ¢ = 2} = 0.9999. One of the appropriate
schemesis A" = 3.2, k" =4, 5, =0.33, ¢ = 7). Next, we
design a lower scheme satisfying P{R.L. > 200| A = —1,
0=21=09999 (h =4.6,k =2.5,5,=125,¢c" = =6).
Finally, combining these schemes leads to a two-sided
scheme with the desired properties.

In Case b the only “worst” representative of the extreme
on-target family is N(A = 0, ¢ = 2). Since the “target” region
consists of a single point, 0, we design an upper scheme for
which P{R.L.>200|A =0, ¢ = 2} = v0.9999 = 0.99995
(A" =2.1,k" = 3, 53 = 0.93, no Shewhart’s limit), and a
lower scheme for which the same property holds (2~ = 3.5,
k™ =2,5,=0.7, ¢ =-5.1). Finally, we combine the
derived schemes and examine the behavior of the resulting
two-sided scheme with respect to A =0, £0.5, 1, +4, and 6
by applying the E-mode of the function for analysis of two-
sided schemes. This gives the results shown in Figure 10.
One can see that the derived scheme satisfies (15). Moreover,
application of the software shows that further variations of
parameters will not lead to dramatic improvements of its
performance.

Concluding remarks

In this paper we have presented an approach for complete
analysis of one-sided CUSUM-Shewhart control schemes.
The methods which we believe to be original include

a. An approach to the problem of design of CUSUM-
Shewhart control schemes (Sections 6 and 8).

b. “Steady state analysis” of the performance of a CUSUM-
Shewhart scheme (Section 3).
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