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This  paper  describes  recent  work  on 
manipulation  strategies  that  rely  on  “coarse- 
fine”  robot  hardware  and  direct  sensing of part- 
workpiece  relationships.  The  experiments 
reported  use  an  extremely  precise,  high- 
bandwidth  planar  “wrist”  and  an  industrial  vision 
system  to  perform  accurate  alignment  of  small 
parts.  The  system  architecture,  experimental 
hardware,  and  programming  methods  employed 
are all discussed. 

Introduction 
Industrial robots  have  traditionally been used as general- 
purpose  positioning devices. In a typical  application, the 
robot is moved  through a sequence of positions so that a tool 
or part held by the  robot achieves a desired  relationship to a 
workpiece whose position  is fixed or known  in  relation to 
that of the robot.  Although textual  programming  methods 
and languages for robots have been around for some  time 
[ 11, the overwhelming number of robots  are still 
programmed by “teaching” a sequence  of points  under 
teleoperator control.  When a robot is programmed  in this 
manner,  the  most  important  requirement for successful 
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accomplishment of  its task is the repeatability with which it 
can  return  to  the taught  positions and with which successive 
workpieces can be presented to it. This  method of using a 
robot is easily understood, and  many people  have  developed 
considerable  expertise  in designing the necessary end- 
effectors, fixtures, and  setup procedures to go with it. 

Unfortunately, reliance on simple  repetition  of  taught 
points is inadequate for several increasingly important 
classes of robot applications, especially automatic assembly 
and “data-driven”  manufacturing, in which position goals 
must be computed directly from design data. Assembly 
tolerances are often at  the  extreme limit  of a robot’s 
repeatability, and small  variations  in  parts can have a big 
effect on successful task completion.  Part presentation 
equipment  and workpiece fixtures often  represent a 
significant fraction  of the  total system cost for an assembly 
robot. Even in cases for which teaching “works,” the 
necessity of reteaching at least some points any  time  the 
robot or a fixture is changed (or even subjected to  routine 
maintenance)  can create significant operational difficulties. 

Data-driven automation is especially important in the 
aerospace industry  and in  electronics manufacturing 
applications  such as printed  circuit  card assembly and 
testing. These  applications  often  require both  the ability to 
align a part or tool very precisely relative to a workpiece and 
the ability to  move  through a large work envelope. The 
requirements  are likely to become more  and  more stringent 
in the  future. 

A major goal of robot research and  development over the 
past fifteen years has  been  finding  techniques  for  improving 
the efective accuracy of the  manipulator, i.e., the precision 
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with which it can place a part or tool at a computed position 
relative to a workpiece. Several major  themes have emerged 
from  this work. 

Calibration methods use sensing to measure and correct 
for the inaccuracies of the robot.  A typical approach, e.g., 
[2], commands  the robot to move nominal positions relative 
to  an accurately  constructed  calibration fixture. Sensors are 
used to measure the corresponding alignment errors, and  the 
data  are  then used to  update a mathematical model of the 
robot. Although  these  techniques are frequently effective in 
improving  manipulator accuracy, their usefulness in any 
particular  application depends somewhat on  the  number of 
calibration points required, the  dimensional stability of the 
robot, and  the difficulty of installing the calibration fixture. 
A related technique is to use the workpiece itself as the 
calibration fixture. For example, the robots used in  testing 
backpanel wiring used touch sensing to locate the  corners of 
each  printed  circuit  board. Commanded positions for 
features on a  board were then  computed by interpolation. 
This  method has the advantage  of  automatically accounting 
for  small  variations in workpiece dimensions or orientation, 
but has the drawback of requiring that  the robot  spend time 
calibrating itself before beginning  each job cycle. This is 
tolerable  where the calibration time is short  compared  to  the 
rest of the  job (as here) or where  sensing  incidental to  normal 
execution can be used to  update a  calibration  model [3]. 

Compliance methods are widely used in automatic 
assembly. The  robot simply  moves through a nominal  path, 
and  the  manipulator  structure,  the workpiece, or a cleverly 
designed mechanism, e.g., [4], provides the necessary “give” 
to  make  up  for  any positioning errors  that result.  Limiting 
factors  for this  approach  include  the design time  and cost 
associated with special fixtures and  the fact that different 
steps  in  a task may  require different compliances. To get 
around these  limits, there has been considerable attention to 
controlling the force exerted by the robot, rather  than its 
position, and  then relying on software to synthesize  whatever 
effective compliance is required, e.g., [5-91. Friction and 
inertia  create  practical difficulties for implementing these 
methods  on existing robots. There has  been  considerable 
recent  activity  in  building  “direct  drive” manipulators  that 
substantially eliminate friction [ 10, 1 I], and in designing 
“wrists” with redundant  actuators  to avoid the inertias 
associated with “big” joints [ 12, 131. These research activities 
may be expected to have  a significant effect on  future 
industrial  robots, but they are  not a  panacea  for  applications 
which are  not well adapted  to force compliance.  These 
difficulties are particularly  relevant in electronics 
manufacturing, since  electronic  parts are often  small and 
delicate and since  it may  not be possible to design parts with 
chamfers or other features to facilitate force-compliant 
assembly. 

Endpoint sensing methods rely on sensors to measure  part- 
364 workpiece or tool-workpiece  misalignments directly and  then 

move the robot  accordingly. If force sensing is used, this is 
reduced to a compliance  method. However, many  other 
forms  of endpoint sensing have been used, including vision 
[14-161, touch  [14, 171, proximity [18, 191, and so forth. 
The principal  factors  limiting the  alignment precision that 
can be achieved with endpoint sensing methods  are  the 
resolution  of the sensing system and  the  motion resolution 
of the robot. The  motion resolution of robots used in 
present-day  electronics manufacturing (i.e., the size of the 
smallest incremental  motions  that they can reliably make) is 
typically a  bit  better than 0.1 mm. However, many  future 
applications are likely to require precision on  the  order of 
0.0 I mm [ 161. The difficulty of  achieving  these precisions 
with existing robot designs is exacerbated by the need to 
retain  a large working volume  and high motion speed. 

The  manipulation  approach reported  in  this  paper uses 
endpoint sensing to measure  part  misalignments and a fine- 
positioning wrist to get around  the resolution limitations of 
the  robot.  This  approach  may be summarized as follows: 

1. Use the coarse joints of the robot to bring the tool or part 
into approximately the desired position and  orientation 
relative to  the workpiece. 

misalignment. 
2. Use the fine-motion joints  to null out  the sensed 

Subsequent  sections  of this paper  describe the architecture 
of our experimental  system, the fine-positioning wrist, and 
two  application experiments illustrating the approach. 

System architecture 

Objectives 
Experience with an earlier system [20] and with a number of 
applications  within IBM convinced us that  the key problem 
with industrial  robots was not so much  manipulation  as  the 
integration  of  a broad  spectrum of  capabilities,  including 
manipulation, sensing, computation,  and  connections  to 
factory control systems and  data bases [3]. Addressing this 
problem  required  a control  computer  and powerful software, 
providing three  main classes of  function: configurability, 
flexible user interfaces, and reliability. 

Components 
The principal components of the system are a system 
controller, operator interface  hardware,  robot and sensor 
hardware, and system software. Each component is described 
briefly below. 

System controller 
The system controller is responsible for coordination of all 
activity at  the robot  workstation. It consists  of an IBM 
Series/ 1 minicomputer, together with data processing 
peripherals and workstation  interface  electronics. Data 
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processing peripherals vary somewhat  according to  the 
particular  application  requirements but normally include 
such items as  keyboard, display terminal, printer,  diskette 
drives,  hard  disk, and teleprocessing attachments  to  other 
computer systems. 

of functions,  including  positional control of robot  joints, 
safety interlocks, and robot  power  controls, input of sensor 
values, and  output of control signals to miscellaneous 
devices at  the workstation. The original Research and IBM 
7565 implementations of these functions used 
nonprogrammable custom-designed electronics. The robot 
had analog  position feedback, and  joint  control was 
accomplished by analog  “PD” loops with some 
compensation for the nonlinearities  of the hydraulic 
actuators. 

The workstation  interface  electronics  performs  a number 

In  order  to facilitate experimentation with more advanced 
control  methods  and  to simplify problems  associated with 
interfacing many different robots and sensors to  the system, 
we developed a family of programmable attachments called 
“RRA cards.” Each attachment has a standard base, 
consisting of a Series/ 1 channel interface, a 4K-byte  shared 
memory,  a Motorola  M68000 processor, timers, 
miscellaneous support chips, and a custom sensor  interface 
area.  These attachments have been used for  a number of 
robot and device control applications. 

Operator interface 
Operator interface  hardware  includes an operator’s  console 
on  the  robot  and a  hand-held pendant  containing a  small 
display and a number of switches and lights. Except for 
safety-related functions, the  interpretation of all operator 
input/output is determined by application software. 

Robot and sensor hardware 
The key design objectives for  both the robot and  the sensors 
were modularity and configurability. The system architecture 
makes no  assumptions  about  the kinematic structure of the 
manipulator, which it views simply as a  collection of 
position-controlled  “joints”  together with associated  power 
and safety interlocks. The system provides  coordinated 
straight-line motion  in configuration  space, and kinematic 
transformations  are handled by built-in subroutines. 

use a number of different robot configurations with the 
system. The most common configuration  has been a 
Cartesian structure similar to  the IBM 7565. Other 
configurations have included an IBM 7535 SCARA-type 
robot  and a number of specialized structures  put together  for 
particular  applications. 

The present  robot in  our laboratory is a  two-armed 
Cartesian electric-drive manipulator developed  for use in 
IBM clean room manufacturing.  Each arm consists  of three 
linear actuators providing X ,  Y, and Z motions,  three rotary 

This  approach  has been fairly successful in allowing us to 

actuators providing Roll, Pitch, and Yaw motions,  and a 
gripper with linearly actuated fingers. For the application 
experiments described  in  this  paper, the Pitch, Roll, and 
Gripper actuators of one  arm have been removed and 
replaced with an extremely accurate  planar wrist providing 
fine motions in the X and Y directions. 

Sensors typically include force transducers and a light 
beam presence sensor mounted  in  the fingers, several solid 
state television cameras, and miscellaneous  application- 
specific sensors, such  as  empty-feeder  indicators. 

Software 
One  component of the system controller software provides 
an interactive programming  environment for  a high-level 
programming language, AML [21, 221, which is used for all 
application  programming.  A  second software component 
performs  trajectory  planning, motion  coordination, sensor 
monitoring, and  other real-time  activity  in response to 
commands  from  the  AML interpreter.  A third  component 
supplies standard supervisor services, such as file and 
terminal I/O. 

AML language 

Objectives and overview 
The principal programming interface to  the robot 
workstation is the  AML language [3, 2 I ,  221. AML was 
designed to be a  well-structured,  semantically powerful 
interactive language that would be good for robot 
programming. The central  idea was to provide an expressive 
base language with simple  subsets which would be usable by 
programmers with a wide variety of experience. Although 
the language primitives  have  been  chosen to provide  a 
natural way of  describing manufacturing applications, we 
make a  clear  distinction between the language constructs  and 
the semantics  of the application environment. No special 
syntax is supplied  for  robotic  concepts.  Instead, all access to 
system functions is  accomplished  through calls to system- 
defined subroutines  that  are called exactly like those  written 
by a user. This transparency  provides  a natural mechanism 
for system extensibility through  the use of subroutine 
libraries for customization of the  runtime  environment for 
particular  application domains. 

Language summary 
AML  supports a number of “scalar” data types, including 
INTeger, REAL, and STRING, and provides the usual unary 
and binary operations  on  them. A number of auxiliary  types 
useful in the  construction of  application subroutine libraries 
and debugging packages are also supported. The language 
supports ordered lists, called “aggregates,” of scalar and/or 
aggregate AML objects. The language includes  constructs, 
somewhat  reminiscent  of APL‘s [23],  for generalized 
indexing of aggregates and for uniform  mapping of scalar 365 
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operations over aggregate objects. Variables are typed and 
are declared by binding an identifier to  the value produced 
by evaluating an expression. For example, 

var: NEW 2 + ( (  1,2),3.5); 

would bind  the identifier var to  an aggregate data object 
whose initial value is ( ( 3 , 4 ) , 5 . 5 ) .  

The language is expression-oriented,  in the sense that 
every legal AML  construct produces a value which may be 
used as a part of some  other expression. Expressions are 
evaluated left-to-right, and  the grouping  of  expressions is 
determined by operator precedence and parentheses  as in 
most common  programming languages. The  normal 
constructs of structured programming, 

IF  el  THEN  e2  ELSE e3 
WHILE  el   DO e2 
REPEAT  el  UNTIL e2 
BEGIN e l ; .  . .; en END 

are  supported by the language and also produce values. 
AML  subroutine definitions  have the general form 

subr-name: SUBR  (formal-I, . . ., formal-n); 
statement-1; 
statement-2; -- Comments are preceded 

statement-k; -- example indicates. 
-- by a “--”, as this 

END; 

and  are called by expressions with the general form 

subr-name (expression-I, . . ., expression-n). 

The language supports both  “by  value” and “by reference” 
passing of parameters  and  has a number of special constructs 
provided  for  building subroutine packages. 

Vision system 
Our system supports  attachment of up  to  four 128 X 128- 
pixel solid state binary cameras  to  the Series/ 1 controller. 
The  programming interface, AML/V [24], is an extension of 
AML. It was designed to provide the power and ease of use 
of AML for machine vision application development,  and  to 
allow close coupling  of  robot control  and vision sensing. The 
latter  capability is very important if endpoint sensing is 
being used to  improve robot  accuracy,  since communication 
delays can have a significant effect on system throughput  and 
since  application data  may  be used to provide input  to  the 
vision system. 

AML/V  images are stored as  AML strings and  may  be 
packed  binary,  run-length-coded  binary, or gray-scale 
representations  of the  TV  input. System-defined subroutines 
provide a number of  image processing functions. Image  I10 
functions allow the user to define “logical vision input 
devices,” control  their operating  parameters, and  acquire 
images. Additional 1/0 functions  support display of images 

on raster output devices (such as  TV  monitors)  and storage/ 
retrieval operations on disk files. Image-to-image functions 
perform  boolean operations  on packed binary and run-coded 
binary images, image  windowing and shifting on run-coded 
images, arithmetic  operations  on gray-scale images, and 
conversion between the various  representations. Image 
analysis functions provide  histogramming and binary region 
analysis functions. 

Planar  fine-positioner 
We decided to  concentrate initially on precise motion  in  the 
XY plane,  since many of the principles  of coarse-fine motion 
could still be studied, and since a planar fine-positioner 
could be applied to several practical problems in  electronic 
testing and assembly. We wanted a device that was fast, 
strong, and  as free as possible from  backlash,  friction, or 
hysteresis. 

We used a single direct-drive  two-dimensional actuator 
rather  than coupling a pair of linear actuators together to 
achieve  two-dimensional motion.  This parallel arrangement 
maintains  symmetry between the X and Y axes, offering the 
advantage  of nearly identical inertia for each axis, while 
eliminating  the problems  of serial kinematics  stack buildup 
and resulting error  accumulation. 

Figure 1 shows an overall view of the fine-positioner. The 
design combines  four  major elements:  electromagnetic  drive, 
flexure spring  suspension,  lateral effect device  position 
sensor, and digital control system. Subsequent sections 
provide a brief description of each design element  and 
summarize its  operational modes. A fuller discussion  of the 
design may be found in [25]. 

0 Design 

Two-dimensional  motor 
Many actuator technologies can be considered,  including 
shape  memory alloys, magnetostriction, piezoelectrics, 
pneumatics, hydraulics [ 12, 261, electrodynamics [ 131, and 
electromagnetics. The need  for high actuation speed, 
contamination-free  operation, large motion range, good 
stiffness range, and controllability  narrowed the choice to 
either an electrodynamic or an electromagnetic  drive. A 
further need to generate fairly high forces in a small package 
led to  the selection of an electromagnetic  drive based on  the 
Sawyer motor principle [27]. The Sawyer motor is really a 
linear  stepping motor which operates by permanent magnet 
flux-steering. In the fine-positioner device, it is used as a 
direct-drive  analog  positioner with a total range of one step. 

Flexure spring assembly 
A flexure spring assembly supports  the moving armature 
without  friction or backlash. This assembly allows motion in 
the X and Y directions, but is rigid in the Z direction and  in 
torsion about Z. As the springs bend in a slight arc, some Z 366 
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motion (worst case 1 1  pm) occurs which can be 
compensated for  in  most  robotic  applications. We are 
considering  alternative flexure arrangements  that would 
practically eliminate  this deflection but  that  may be less 
compact. 

Position sensor 
A commercially  available semiconductor lateral-effect cell 
[28]  provides noncontact position  sensing  in  two 
dimensions.  A  light-emitting diode  (LED) attached to  the 
moving armature produces  a  spot of light whose position is 
measured by the fixed lateral-effect cell. The position of the 
light spot  on  the cell surface is determined by measuring the 
generated photocurrents in four electrodes  arranged on  the 
periphery of the square  active  surface of the cell. 

positioner is normally  operated  in  a manner which requires 
a  separate  external  sensing  means.  External  sensors can  take 
many forms,  including fiber optics,  image  sensors, or other 
means  appropriate  to  the task, and  may sometimes be used 
in place of or together with the internal  sensor  in 
servocontrol  of the fine-positioner. 

In addition  to  the built-in position  sensor, the fine- 

Controller 
The fine-positioner  open-loop  response is very underdamped 
due  to  the frictionless suspension and  can be closely 
modeled  as  a  second-order  complex pole with natural 
frequency W ,  = 17.5 Hz and  damping ratio { = 0.03. After 
amplification, voltages proportional to  the lateral-effect 
currents  are sampled by a  multiplexed 12-bit analog-to- 
digital converter (ADC)  and  an M68000-based 
microcomputer  on  the  RRA card. The  control algorithm 
running in the  microcomputer  computes  the required 
control efforts from commanded  and measured positions, 
establishing proper values of currents in the drive coils 
through  a  pair of 12-bit digital-to-analog converters  (DAC) 
on  the RRA  card. We have experimented with z-transform 
direct design algorithms as well as  analog  and digital 
proportional integral derivative (PID) controllers. Figure 2 
shows the response  obtained  for large and small  step position 
commands with a digital PID controller.  Since peak 
dynamic performance depends greatly on  the detailed 
characteristics  of the servo  controller, we are  continuing  to 
refine the algorithms. 

Fine-positioner operation 
A brief listing of the fine-positioner specifications appears  in 
Table 1. Our primary  emphasis  has been on using the device 
as  a high-precision positioner  attached to a  general-purpose 
robot.  Other modes of operation  include use as a variable 
compliance device, variable forcing device, or measuring 
device. 

We have  already mentioned  that  the device can be used to 
execute rapid submicron  motions in X and Y over  a  total 
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Two-dimensional planar fine-positioner. 

Open-loop 

t " 2 s +  

Position vs time  trace:  (a)  large  step  response; (b) small step 
response. 

Table 1 Planar fine-positioner characteristics. 

Approximate physical dimensions 76 mm on  a side 
Approximate mass 1 kg 
Force I3  N 
Motion range k0.9 mm 
Positional resolution with internal sensor 0.5 pm 
Closed-loop bandwidth with PID controller 52 Hz 
Rise time  (10%  to 90%) for I-mm move 8 ms 
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range of  approximately 1.8 mm, which is large enough to 
accommodate most errors in  robot  positioning. The ability 
to execute fine motions has many applications in science and 
engineering  as well as  in  robotics. 

Alternatively, by varying the closed-loop gain parameter 
(in our  implementation  this is done simply by changing 
coefficients in the  computer  control  program),  the 
compliance  can be vaned over  a range from much greater 
than  to  much less than  the  natural spring  compliance. 

In some applications,  it is desirable to exert known forces 
on a workpiece. If negligible motion occurs, the force exerted 
on the  armature is proportional  to  the coil current. For 
direct force measurement,  an external transducer  can also be 
mounted  on  the  armature. 

By using the built-in sensor, the device can be used as a 
passive measuring device, in  a mode where the coil drive 
currents  are disabled.  Applications  such as parts profiling 
can be accomplished by sensing the relationship between a 
mechanical  probe or stylus attached  to  the movable 
armature  and  the fixed part of the device. 

Since the device  incorporates digital control, operation 
can be switched between the various modes described above 
as necessary to perform  a given task. 

Application  experiments 

Trace probing 

Application overview 
The electronic components of IBM mainframe  computers 
are packaged in high-density thermal  conduction  modules 
(TCMs), each of which can  accommodate  up  to 1 18 chips. 
The  TCMs have 1800 1/0 pins  and plug into special high- 
density printed circuit boards ("TCM boards") with zero- 
insertion-force  connectors. The  TCM boards  measure 600 
mm x 700 mm  and  contain twelve power  planes and six 
signal planes, each  of which can  contain several thousand 
signal lines [29]. 

In order  to  improve system reliability and  to reduce the 
cost of reworking, it is very desirable to perform  exhaustive 

~ . . ." ..  .. .". . I_-x_ 

4 TCM board: (a) assembled board; (b) signal plane traces. 
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electronic  testing of the signal planes before they are 
assembled into  the  TCM board.  Testing  requires that 
electronic  probes be placed at  the  ends of each signal line. If 
a defect is found, it must be localized by probing points 
along the line. The lines are only 80 pm wide and  can be 
spaced  as close together as 150 pm,  as illustrated in Figure 3. 

The probes must be placed within k20 pm of the  center of 
a  line  in order  to avoid damage  to  the  product.  Maintaining 
this  accuracy  over  a large area is quite challenging with a 
conventional  robot.  The problem is exacerbated by the 
manufacturing tolerances in producing the  sublaminates 
[30]. Consequently,  a coarse-fine manipulation strategy that 
relies on a robot  to get the probes “close” to  their targets and 
direct sensing of the lines  coupled with fine manipulation  to 
“home  in” seems natural. 

System overview 
A robotic system for electronic  testing of TCM  boards is 
illustrated  in Figure 4. The  robot has  two arms, each of 
which has three coarse  actuators,  providing X, Y, and Z 
motions,  and a fine-positioning mechanism providing fine 
X Y  motions. Each fine-positioner carries an electronic test 
probe and a fiber-optic sensor  for  detecting  circuit wires, as 
shown  in Fig. 4. 

The sensor is quite simple. Light from an  LED source  is 
passed through the optical fiber and shines on  the  TCM 
board. A photodetector then measures the  amount of light 
reflected back up  through  the fiber. Figure 5 shows the 
sensor output when the fine-positioner is used to scan it over 
two closely spaced TCM-board wires. 

Job cycle 
The application  consists of two phases: a setup phase, in 
which a sublaminate is placed under  the robot and  an initial 
calibration is done  to  determine  the  transformation relating 
sublaminate  coordinates  to robot  coordinates, and a test 
phase  in which each wire is tested as follows: 

1. Read design data for  next wire. 
2 .  Place the probes at  the  endpoints of the wire and  conduct 

the test (see below). If the test is successful, go on  to  the 
next wire. Otherwise, conduct a  binary search along the 
wire to  determine  the location of the defect to within  a 
few millimeters. Note  that  the possibility of  multiple 
defects in a single wire cannot be ignored. 

The  method for conducting each  electronic test may be 
summarized  as follows: 

1. Using the board-to-robot transformation  determined  in 
the calibration  phase, compute  the robot  coordinates 
corresponding to  the circuit  features to be probed. 

2.  Move both  arms  to these  coordinates. 
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sor when it is swept past a  pair of TCM-board wires  spaced 0.15 mm 
apart. (b) shows the output of the differential sensor as it  is swept past 
a  TCM-board wire. The  sensors and these  figures were supplied by 
Mark Johnson, IBM Research. 

’ 

3. Use the fine-positioners to scan the  optic probes rapidly 
across the circuit features. Use the resulting data  to 
determine  the  center of  each  feature. 

4. Move  each  fine-positioner so that  the electronic  probes 

5 .  Conduct  the electronic test. 
are centered  over the features. 

Probe placement sensitivity 
One difficulty often encountered with endpoint-sensing 
methods is that of finding an independent means of verifying 
that  the  method is achieving  its desired result. We used the 
apparatus illustrated  in Figure 6 to investigate the ability of 
the fine-positioner and fiber-optic sensor combination  to 
compensate for  small  variations in wire placement  and robot 
inaccuracies. A lateral-effect cell was attached and a  small 
piece of TCM-sublaminate was affixed to a micrometer 
stage. A probe  attached to  the fine-positioner armature 
carried both  the fiber-optic sensor and  an  LED so arranged 
that  the light spot from  the  LED fell on  the lateral-effect cell 
when the fiber-optic sensor was centered  over  a sublaminate 
wire. 369 
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Probe placement  sensitivity  experiment  aparatus:  The  micrometer 
f stage is  used to displace the small section of TCM board by known 
k! amounts, and the lateral-effect cell is  used to measure the probe dis- 

placement after the wire  is located, 

Table 2 Probe placement sensitivity experiment results: Five 
trials were made for each  displacement value. Mean  and  standard 
deviation lateral cell readings are given. 

Wire  displacement  Lateral cell reading 
( r m )   ( r m )  

0 
5 

I O  
15 
20 
25 
30 
35 
40 
45 
50 
75 

730. I ? I .6 
723.7 f 2.1 
730.9 f 1.1 
73 1.2 f 0.9 
725.1 k 2.6 
728.2 f 1.4 
731.9 f 1.4 
732.0 f 0.9 
732.9 ? 0.7 
732.9 f 0.7 
732.5 f 0.8 
732.8 f 0.4 

The robot was then repeatedly moved to a nominal wire 
position, the  optic probe was scanned over the wire, and  the 
resulting data were used to  center  the  optic  probe over a line, 
as described in  the previous  section. The lateral-effect cell 
was then read to  determine  the relative placement of the 
probe  to  the  sublaminate board. After five trials, the 
micrometer stage was used to displace the  sublaminate by a 
known  amount,  and  the process was repeated. Table 2 shows 
the results obtained. The  probe  placement relative to  the line 
varied by at  most  about 10 pm when the wire was displaced 
over 75 pm, well within the +20-pm precision required by 
the application. The principal  limiting  factor was a 25-Hz 
room vibration  coupled to  the robot  frame. 370 
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In a  subsequent experiment, a differential sensor 
consisting of one  illumination fiber and two  detection fibers 
was used to generate  a  direct measurement of the probe-to- 
wire alignment error. This  error signal was fed back to  the 
microprocessor  controlling the fine-positioner, which used 
the  information  to “lock” the probe onto  the line. When this 
was done,  the probe  stayed  centered on  the wire within 1-2 
pm, even  in the presence of the  room vibration and static 
frame deflections of 25 pm or so. 

Disk slider assembly 

Requirements 
The high storage  density  of IBM 3370 and 3380 disk 
products  requires that  the distance between the recording 
head and  the  spinning magnetic  disk be extremely  small and 
almost  constant.  To accomplish  this, the head  is supported 
by a small  “slider” which rides on  an  air cushion  created 
between the slider and  the disk [31, 321. The slider has two 
rails and is supported by a leaf-spring suspension, as shown 
in  Figure 7. It is approximately  3 mm wide and 4 mm long. 
Since the  alignment of the slider with respect to  the 
suspension can have a significant effect on its flying 
characteristics, both  its  position and  orientation  must be 
tightly controlled during assembly. In this  application 
experiment, we  wish to place the slider on  the suspension so 
that its center is displaced at most f 10 pm relative to its 
nominal location in  the XY plane, and its orientation  about 
the Z axis is controlled to within +O. 15”. 

Hardware 
The experimental setup is shown  in  Figure 8. A standard 
camer was used to dispense sliders, and a specially 
constructed  carrier was used to hold both  suspensions and 
completed slider-suspension assemblies. For this experiment, 
we simply  bolted the carriers to  the table. An actual 
production application  would include provisions for 
replacing them  at  appropriate times, and would  probably 
include  some sensing scheme  to locate them relative to  the 
robot. 

A standard  vacuum pen was mounted  to  the fine- 
positioner and was used to  transport both sliders and 
suspensions. This required  us to  make  some undesirable 
compromises in the  vacuum head design. The small size 
required  for picking up  the sliders made it difficult to hold 
the suspension firmly enough  to prevent  it  from  rotating 
about  the  pen axis while being moved  to  the assembly 
fixture. In a production application, two pens would 
probably be used. This would permit  better design and 
would reduce the cycle time, since both parts (the slider and 
the suspension)  could be brought to  the assembly fixture at 
the  same  time. 

The assembly fixture was a  translucent block, backlit to 
provide  a  high-contrast  image  for the binary vision system. 
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f IBM slider-suspension  assembly. 

The field of view of the 128 X 128-pixel TV  camera was 
approximately 7 mm X 7 mm, so that each pixel 
corresponded to a square approximately 55 pm  on a side. 
The  camera was rotated relative to  the fixture so that  the 
slider and suspension were tilted in  the image. This tilting 
was necessary to achieve subpixel resolution  for the slider- 
suspension alignment (see below). The block was machined 
to provide a small “platform” for the suspension, and a 
suction port was used to hold the suspension  in place during 
assembly. In order  to get around  the difficulties encountered 
in  transporting  the suspension, several alignment pins were 
added  to  the fixture, so that  the suspension was 
approximately oriented. These  could  probably be eliminated 
in a production application. 

Job cycle 
An AML program  for  performing slider-suspension assembly 
is shown  in Figure 9. The execution  steps are  as follows: 

Step I 

Step 2 

Step 3 

Get a suspension. 
Using the  vacuum  pen, pick up  the next  suspension 
from the suspension  carrier and place it in  the 
assembly fixture. Turn  on  the fixture suction to hold 
the suspension  in place. 

Locate the suspension. 
Use the vision system to locate the suspension. 

Apply a drop of glue to  the suspension. 
For this  experiment, we used a heat-setting epoxy. 
Since our  primary interest was in demonstrating 
visual alignment of the head to  the suspension, we 
chose to  do  this step manually with a hypodermic 
needle. In  an actual production application, any  one 
of a number of  techniques  could be used to 
automate it. 

E Slider-suspension  assembly  experiment. 

Job-cycle: SUBR; 
step-I: next-suspension: 

get-suspension; 
susp-to f ixture; 

step-2: susp-xyw = locate-suspension: 
step-3:  apply-glue; 
step-4:  next-slider; 

get-slider: 
safe_r_mow(ARM,tv_s/ation); 

step-5: adjust-slider; 
step-6: cure-glue; 

pen-vacuum(OFF); 
step-7:  replace-suspension; 

BRANCH(step-I): 
END; 

a AML  program for slider-suspension  assembly:  Significant  sub- ! 
t routines  are  shown in subsequent  figures.  An  actual  production d program  would  include  a  number of other  elements,  including  oper- 

ator  interfaces, l inks to  the  production  control  system,  and  error 
1 recovery  procedures. 

Step 4 

Step 5 

Step 6 

Step 7 

Get a slider. 
Using the  vacuum pen, pick up  the next slider from 
the slider carrier.  Using the coarse joints of the 
robot, move the slider to its approximate final 
position relative to  the suspension. 

Use visual feedback to  adjust  the slider relative to 
the suspension. 

Cure  the glue. 

Return  the  completed suspension. 
Using the  vacuum pen, pick up  the completed 37 1 
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get-suspension: SUBR; 
penqickup(suspensiongnNef(surp_no),0.05, 

MOVE(UT,safe-z,,,<SPEED,0.5,0.5>); 
END; 

susp-dwell. 0.3, < 0.02,O. I. 0. I >); 

pengickup:SUBR(loc, 
approach-& DEFAULT  0.020, 
dwell-time DEFAULT  .25. 
depart-& DEFAULT safe-z-loc(3). 
depart-ctl DEFAULTDEFAULT); 

safe~~~move~ARM,locc+~O,O,appmach~dz,O,O,O~); 

pen-wcuum(ON);DELA Y(dwell-time); 
MO VE(2JX Ioc(3)); 

DMOVE(ZJT,depati-&,,depart-ctl); 
END; 

susp-lo_fixture: SUBR; 
safe-z-mow(amt,fijrrure+J?xture-oppi); 
MOVE(ARM,fixtureifirture-app2); 

J?xture-vacuum(ON); 
MOVE(ARM,fixture); 

pen-vacuum(OFF); delay(..S); 
scrubfp(4,.2); 
MOVE(ZJXsafe-z); 
END; 

scrubfp:  SUBR(n,dfl; 

f 0 :  NEW QGOALfp); 
i: NEW 0; 

BEGIN 
~OVEU~.fOidf,,<I.,l..l.,O>); .- fullspeed, accel, no settling 
~OVEfP,fO-d-d/,,<1.,1.,1..0>); --fullspeed, accel, no settling 
END; 

WHILE n GE  i=i+l  DO 
-- remember where we start 

MOVEfp.fO,,<l.,l..l.,l>); 
END; 

-- futt speed, accel, settling 

$ AML subroutines for getting a suspension 

suspension  assembly and  return it to  the suspension 
assembly. 

Getting a suspension 
The  AML code  for picking up a  suspension and  transporting 
it to  the assembly fixture is shown  in Figure 10. A common 
subroutine, pen-pickup, is used for picking up both 
suspensions and sliders. This  subroutine moves the  arm to 
the  pickup  point,  turns  on  the pen vacuum, waits for  a 
specified time,  then lifts the  pen by a specified amount.  The 
code  for placing a  suspension into  the assembly fixture is 
also straightforward. The  arm is moved through  an 
appropriate  approach trajectory to  the setdown point,  the 
fixture vacuum is turned  on,  and  the  pen  vacuum is turned 
off. The fine-positioner then makes several quick back-and- 
forth motions  to break the  pen suction, and  the  arm moves 
up  to a clear plane. 

Locating the suspension 
The 2D position and  orientation of the suspension are 
determined  as follows: 

Step I Acquire  a  run-coded  binary  image rc of the 
suspension;  a typical image i s  shown  in Figure 11. 

Step 2 Extract  a  “centerline”  image  of the suspension 
(shown  superimposed on  the original  suspension 
image in Figure 12) by evaluating the AML/V 
expression: 

Binary image of suspension Suspension centerline, superimposed on suspension image. 
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rc-suspension-center = 

RCOR(RCSHIFT(rc,suspension-haV- 
width, WHITE), 
RCSHIFT(rc,-suspension-half- 
width, WHITE)) 

where suspension-half-width is a vector that would 
span slightly less than half the small dimension of 
the rectangular  suspension. This vector is obtained 
during calibration. The  technique is insensitive to 
up  to +5” variations  in  its orientation. 

Step 3 Perform  binary region analysis on rc-suspension- 
center; from second-moment features  of the white 
centerline region, determine  the suspension 
orientation. 

Step 4 Perform  binary region analysis on rc; use the 
centroid  of the white region lying most nearly on 
the centerline (the locating hole in Fig. 11 )  as  the 
XY coordinates for the suspension. 

Subpixel  resolution is obtained for both  position and 
orientation parameters, since region features are derived 
from  sums of values over all pixels in the region (cf. [33]). 

Getting the slider 
The  AML code  for  picking up a slider is shown  in Figure 13. 
The principal  complication  arose because the clearance 

get-slider: SUBR(1oc DEFAULT  slider-Ira~slider-nojj; 
pengickup(loc,,slider_dwell,.O2j; 
scrub fp(3,<0..0.05>); 
MOVE(ZJT,safe-z); 
END: 

AML subroutine for getting  a slider. 

between the rails of the slider and  the  tip of the  vacuum pen 
was only 0.2 mm.  This is comparable  to the  potential slider- 
vacuum  tip misalignment at  the  pickup  point. In order  to 
ensure  that  the  vacuum  tip is not cocked on  the rails, the 
fine-positioner makes  a  small ‘‘scrubbing’’ motion before the 
robot lifts the slider out of its nest. This motion takes almost 
no  time  and has the  added benefit of  squaring up  the slider 
somewhat, thus significantly reducing  rotational 
misalignments at  the assembly fixture. 

Locating the slider 
The 2D position and  orientation of the slider are determined 
as follows: 

Step 1 Acquire  a  run-coded  binary image rc of the slider; 
Figure 14 shows  a typical image. 

Step 2 Extract  a  binary  image of the slider’s “minor axis” 
(shown  in Figure 15, superimposed on  the slider 

4 Binary image of slider 1 Slider minor axis,  superimposed  on  slider  image. 
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image) by evaluating the  AML/V expression 

rc-slider-minor-axis = 

RCOR(RCSHIFT(rc,slider-harp 
length, WHITE), 
RCSHIFT(rc,-slider-halflength, WHITE)) 

where slider-half_length is a vector that would 
span slightly less than half the long dimension of the 
rectangular slider. 374 
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Step 3 Compute X ,  Y,  and 0 parameters for the  minor axis 
using first- and  second-moment features  derived 
from binary region analysis of re-slider-minor- 
axis. 

Step 4 Extract a binary  image  of the slider’s “major axis” 
(shown in Figure 16 superimposed on  the slider 
image) by evaluating the  AML/V expression 

rc-slider-major-axis = 

RCAND(RCNOT(RCSHIFT(rc,slider-half_ 
width, BLACK)), 
RCNOT(RCSHIFT(rc,-slider-half_ 
width,BLACK)), 
RCSHIFT(rc,l.l*slider-half-width,BLACK), 
RCSHIFT(rc,-I.l*slider-half-width,BLACK)) 

where slider-half-width is a vector that would  span 
slightly less than half the  short  dimension of the 
rectangular slider. 

Step 5 Compute X ,  Y, and 0 parameters for the  minor axis 
using first- and  second-moment features  derived 
from binary region analysis  of rc-slider-minor- 
axis. 

Step 6 Compute slider X ,  Y from  the intersection  of the 
minor  and  major axes, and 0 from  the  orientation of 
the  minor axis. 

As with the suspension,  subpixel  resolution is obtained for 
both position and  orientation parameters, since region 
features are derived from sums of values over all pixels in 
the region. By experimentally moving  the slider by known 
amounts, we were able to verify that resolutions on  the order 
of 0.2 pixels, corresponding to displacements  of about 10 
pm, were obtained. 

Adjusting the slider 
The  AML code  for  aligning the slider with respect to  the 
suspension is shown in Figure 17. An iterative approach is 
used: 

Step I Determine  the position and  orientation of the slider, 
using the  method described above. Compute  the 
displacement and  orientational misalignment 
relative to  the suspension. 

Step 2 If the slider is correctly oriented relative to  the 
suspension, go to  Step 3. Otherwise move  the coarse 
X ,  Y, and 0 joints  to correct  for the misalignment 
while keeping the slider in  the camera’s field of 
view, and go back to  Step I .  

HOLLIS, AND MARK A. LAWN IBM 1. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 



Step 3 If the slider’s displacement relative to  the suspension 
is small enough, stop. Otherwise, move  the fine- 
positioner X and Y actuators by an  appropriate 
amount  to correct  for the misalignment and go back 
to  Step 1. 

The principal  complications with this approach arise from 
using the coarse joints  to correct  for  angular  misorientations. 
The distance from  the axis of the 8 motor  to  the  tip of the 
vacuum pen is about 14 cm.  Thus each 1” of rotation 
correction introduces  an  additional 0.24-mm  lateral 
displacement of the slider. In principle, up  to  4”  orientation 
could be compensated by using the fine-positioner axes. 
However, we found  that  the 8 joint was slow enough  that it 
made sense to  move  the coarse X and Y motors  as well and 
to reserve the full range of the fine-positioner for Step 3. 

The final motions  are  made using the fine-positioner 
actuators. For various reasons, we found it  most convenient 
to  compute  the desired  displacement  in camera coordinates. 
The necessary camera-to-fine-positioner transformation is 
determined by using the fine-positioner to displace  a slider 
by known  amounts  and  then calling thejind-slider 
subroutine.  The  transformation is then  computed by 
ordinary least squares. 

Conclusion 
This  paper has described an endpoint-sensing method for 
achieving very precise alignment of a  part or tool with 
respect to a workpiece. Our  approach relies on  the coarse 
joints of  a robot  to bring  a  tool or part within the “capture 
range”  of  a fine-positioning system camed by the robot, 
which is then used to null out sensed misalignments. To 
investigate this  approach, we have  developed  a compact 
“wrist”  mechanism  capable of making fast and extremely 
precise motions in  two  directions. We have used it in several 
application experiments which demonstrate  the feasibility of 
achieving roughly an order-of-magnitude improvement in 
the effective precision of a  robot  (from about 0.1 mm  to 0.01 
mm) while retaining  a large working  volume and high speed 
for  long  motions. The principal requirement is that it be 
possible to sense the misalignment between the tool or part 
and  the workpiece. 

Many applications  require the ability to correct  small 
rotational misalignments  as well as displacement  errors. In 
this  paper, we used a “coarse” wrist motor  to supply  these 
corrections.  Work is proceeding on  an XYO, model of the 
fine-positioner that will allow fast rotational motions 
through small  fractions  of 1”. Work is also proceeding on 
additional endpoint-sensing  experiments, and  on 
investigation of other operating modes such as force 
compliance. 
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