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This paper describes recent work on
manipulation strategies that rely on “coarse-
fine” robot hardware and direct sensing of part-
workpiece relationships. The experiments
reported use an extremely precise, high-
bandwidth planar “wrist” and an industrial vision
system to perform accurate alignment of small
parts. The system architecture, experimental
hardware, and programming methods employed
are all discussed.

Introduction

Industrial robots have traditionally been used as general-
purpose positioning devices. In a typical application, the
robot is moved through a sequence of positions so that a tool
or part held by the robot achieves a desired relationship to a
workpiece whose position is fixed or known in relation to
that of the robot. Although textual programming methods
and languages for robots have been around for some time
[1], the overwhelming number of robots are still
programmed by “teaching” a sequence of points under
teleoperator control. When a robot is programmed in this
manner, the most important requirement for successful
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accomplishment of its task is the repeatability with which it
can return to the taught positions and with which successive
workpieces can be presented to it. This method of using a
robot is easily understood, and many people have developed
considerable expertise in designing the necessary end-
effectors, fixtures, and setup procedures to go with it.

Unfortunately, reliance on simple repetition of taught
points is inadequate for several increasingly important
classes of robot applications, especially automatic assembly
and “data-driven” manufacturing, in which position goals
must be computed directly from design data. Assembly
tolerances are often at the extreme limit of a robot’s
repeatability, and small variations in parts can have a big
effect on successful task completion. Part presentation
equipment and workpiece fixtures often represent a
significant fraction of the total system cost for an assembly
robot. Even in cases for which teaching “works,” the
necessity of reteaching at least some points any time the
robot or a fixture is changed (or even subjected to routine
maintenance) can create significant operational difficulties.

Data-driven automation is especially important in the
aerospace industry and in electronics manufacturing
applications such as printed circuit card assembly and
testing. These applications often require both the ability to
align a part or tool very precisely relative to a workpiece and
the ability to move through a large work envelope. The
requirements are likely to become more and more stringent
in the future.

A r'hajor goal of robot research and development over the
past fifteen years has been finding techniques for improving
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with which it can place a part or tool at a computed position
relative to a workpiece. Several major themes have emerged
from this work.

Calibration methods use sensing to measure and correct
for the inaccuracies of the robot. A typical approach, e.g.,
[2], commands the robot to move nominal positions relative
to an accurately constructed calibration fixture. Sensors are
used to measure the corresponding alignment errors, and the
data are then used to update a mathematical model of the
robot. Although these techniques are frequently effective in
improving manipulator accuracy, their usefulness in any
particular application depends somewhat on the number of
calibration points required, the dimensional stability of the
robot, and the difficulty of installing the calibration fixture.
A related technique is to use the workpiece itself as the
calibration fixture. For example, the robots used in testing
backpanel wiring used touch sensing to locate the corners of
each printed circuit board. Commanded positions for
features on a board were then computed by interpolation.
This method has the advantage of automatically accounting
for small variations in workpiece dimensions or orientation,
but has the drawback of requiring that the robot spend time
calibrating itself before beginning each job cycle. This is
tolerable where the calibration time is short compared to the
rest of the job (as here) or where sensing incidental to normal
execution can be used to update a calibration model [3].

Compliance methods are widely used in automatic
assembly. The robot simply moves through a nominal path,
and the manipulator structure, the workpiece, or a cleverly
designed mechanism, e.g., [4], provides the necessary “give”
to make up for any positioning errors that result. Limiting
factors for this approach include the design time and cost
associated with special fixtures and the fact that different
steps in a task may require different compliances. To get
around these limits, there has been considerable attention to
controlling the force exerted by the robot, rather than its
position, and then relying on software to synthesize whatever
effective compliance is required, e.g., [5-9]. Friction and
inertia create practical difficulties for implementing these
methods on existing robots. There has been considerable
recent activity in building “direct drive” manipulators that
substantially eliminate friction [10, 11], and in designing
“wrists” with redundant actuators to avoid the inertias
associated with “big” joints [12, 13]. These research activities
may be expected to have a significant effect on future
industrial robots, but they are not a panacea for applications
which are not well adapted to force compliance. These
difficulties are particularly relevant in electronics
manufacturing, since electronic parts are often small and
delicate and since it may not be possible to design parts with
chamfers or other features to facilitate force-compliant
assembly.

Endpoint sensing methods rely on sensors to measure part-
workpiece or tool-workpiece misalignments directly and then
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move the robot accordingly. If force sensing is used, this is
reduced to a comphance method. However, many other
forms of endpoint sensing have been used, including vision
[14-16], touch [14, 17], proximity [18, 19], and so forth.
The principal factors limiting the alignment precision that
can be achieved with endpoint sensing methods are the
resolution of the sensing system and the motion resolution
of the robot. The motion resolution of robots used in
present-day electronics manufacturing (i.e., the size of the
smallest incremental motions that they can reliably make) is
typically a bit better than 0.1 mm. However, many future
applications are likely to require precision on the order of
0.01 mm [16]. The difficulty of achieving these precisions
with existing robot designs is exacerbated by the need to
retain a large working volume and high motion speed.

The manipulation approach reported in this paper uses
endpoint sensing to measure part misalighments and a fine-
positioning wrist to get around the resolution limitations of
the robot. This approach may be summarized as follows:

1. Use the coarse joints of the robot to bring the tool or part
into approximately the desired position and orientation
relative to the workpiece.

2. Use the fine-motion joints to null out the sensed
misalignment.

Subsequent sections of this paper describe the architecture
of our experimental system, the fine-positioning wrist, and
two application experiments illustrating the approach.

System architecture

& Objectives

Experience with an earlier system [20] and with a number of
applications within IBM convinced us that the key problem
with industrial robots was not so much manipulation as the
integration of a broad spectrum of capabilities, including
manipulation, sensing, computation, and connections to
factory control systems and data bases [3]. Addressing this
problem required a control computer and powerful software,
providing three main classes of function: configurability,
flexible user interfaces, and reliability.

& Components

The principal components of the system are a system
controller, operator interface hardware, robot and sensor
hardware, and system software. Each component is described
briefly below.

System controller

The system controller is responsible for coordination of all
activity at the robot workstation. It consists of an IBM
Series/1 minicomputer, together with data processing
peripherals and workstation interface electronics. Data
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processing peripherals vary somewhat according to the
particular application requirements but normally include
such items as keyboard, display terminal, printer, diskette
drives, hard disk, and teleprocessing attachments to other
computer systems.

The workstation interface electronics performs a number
of functions, including positional control of robot joints,
safety interlocks, and robot power controls, input of sensor
values, and output of control signals to miscellaneous
devices at the workstation. The original Research and IBM
7565 implementations of these functions used
nonprogrammable custom-designed electronics. The robot
had analog position feedback, and joint control was
accomplished by analog “PD” loops with some
compensation for the nonlinearities of the hydraulic
actuators.

In order to facilitate experimentation with more advanced
control methods and to simplify problems associated with
interfacing many different robots and sensors to the system,
we developed a family of programmable attachments called
“RRA cards.” Each attachment has a standard base,
consisting of a Series/1 channel interface, a 4K-byte shared
memory, a Motorola M68000 processor, timers,
miscellaneous support chips, and a custom sensor interface
area. These attachments have been used for a number of
robot and device control applications.

Operator interface

Operator interface hardware includes an operator’s console
on the robot and a hand-held pendant containing a small
display and a number of switches and lights. Except for
safety-related functions, the interpretation of all operator
input/output is determined by application software.

Robot and sensor hardware

The key design objectives for both the robot and the sensors
were modularity and configurability. The system architecture
makes no assumptions about the kinematic structure of the
manipulator, which it views simply as a collection of
position-controlled “joints” together with associated power
and safety interlocks. The system provides coordinated
straight-line motion in configuration space, and kinematic
transformations are handled by built-in subroutines.

This approach has been fairly successful in allowing us to
use a number of different robot configurations with the
system. The most common configuration has been a
cartesian structure similar to the IBM 7565. Other
configurations have included an IBM 7535 SCARA-type
robot and a number of specialized structures put together for
particular applications.

The present robot in our laboratory is a two-armed
cartesian electric-drive manipulator developed for use in
IBM clean room manufacturing. Each arm consists of three
linear actuators providing X, Y, and Z motions, three rotary
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actuators providing Roll, Pitch, and Yaw motions, and a
gripper with linearly actuated fingers. For the application
experiments described in this paper, the Pitch, Roll, and
Gripper actuators of one arm have been removed and
replaced with an extremely accurate planar wrist providing
fine motions in the X and Y directions.

Sensors typically include force transducers and a light
beam presence sensor mounted in the fingers, several solid
state television cameras, and miscellaneous application-
specific sensors, such as empty-feeder indicators.

Software

One component of the system controller software provides
an interactive programming environment for a high-level
programming language, AML [21, 22], which is used for all
application programming. A second software component
performs trajectory planning, motion coordination, sensor
monitoring, and other real-time activity in response to
commands from the AML interpreter. A third component
supplies standard supervisor services, such as file and
terminal I/O.

o AML language

Objectives and overview

The principal programming interface to the robot
workstation is the AML language [3, 21, 22]. AML was
designed to be a well-structured, semantically powerful
interactive language that would be good for robot
programming. The central idea was to provide an expressive
base language with simple subsets which would be usable by
programmers with a wide variety of experience. Although
the language primitives have been chosen to provide a
natural way of describing manufacturing applications, we
make a clear distinction between the language constructs and
the semantics of the application environment. No special
syntax is supplied for robotic concepts. Instead, all access to
system functions is accomplished through calls to system-
defined subroutines that are called exactly like those written
by a user. This transparency provides a natural mechanism
for system extensibility through the use of subroutine
libraries for customization of the runtime environment for
particular application domains.

Language summary

AML supports a number of “scalar” data types, including
INTeger, REAL, and STRING, and provides the usual unary
and binary operations on them. A number of auxiliary types
useful in the construction of application subroutine libraries
and debugging packages are also supported. The language
supports ordered lists, called “aggregates,” of scalar and/or
aggregate AML objects. The language includes constructs,
somewhat reminiscent of APL’s [23], for generalized
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operations over aggregate objects. Variables are typed and
are declared by binding an identifier to the value produced
by evaluating an expression. For example,

var: NEW 2 + ((1,2),3.5);

would bind the identifier var to an aggregate data object
whose initial value is ((3,4),5.5).

The language is expression-oriented, in the sense that
every legal AML construct produces a value which may be
used as a part of some other expression. Expressions are
evaluated left-to-right, and the grouping of expressions is
determined by operator precedence and parentheses as in
most common programming languages. The normal
constructs of structured programming,

IF el THEN e2 ELSE e3
WHILE el DO e2
REPEAT el UNTIL e2
BEGIN el; ... en END

are supported by the language and also produce values.
AML subroutine definitions have the general form

subr_name: SUBR (formal__1, . . ., formal_n);
statement__1;
statement_.2; -- Comments are preceded

: - by a -’ as this
statement _k; -- example indicates.

END;
and are called by expressions with the general form
subr_name (expression_1, .. ., expression_n).

The language supports both “by value™ and “by reference”
passing of parameters and has a number of special constructs
provided for building subroutine packages.

& Vision system

Our system supports attachment of up to four 128 X 128-
pixel solid state binary cameras to the Series/1 controller.
The programming interface, AML/V [24], is an extension of
AML. It was designed to provide the power and ease of use
of AML for machine vision application development, and to
allow close coupling of robot control and vision sensing. The
latter capability is very important if endpoint sensing is
being used to improve robot accuracy, since communication
delays can have a significant effect on system throughput and
since application data may be used to provide input to the
vision system.

AML/V images are stored as AML strings and may be
packed binary, run-length-coded binary, or gray-scale
representations of the TV input. System-defined subroutines
provide a number of image processing functions. Image I/O
functions allow the user to define “logical vision input
devices,” control their operating parameters, and acquire
images. Additional I/O functions support display of images
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on raster output devices (such as TV monitors) and storage/
retrieval operations on disk files. Image-to-image functions
perform boolean operations on packed binary and run-coded
binary images, image windowing and shifting on run-coded
images, arithmetic operations on gray-scale images, and
conversion between the various representations. Irhage
analysis functions provide histogramming and binary region
analysis functions.

Planar fine-positioner

We decided to concentrate initially on precise motion in the
XY plane, since many of the principles of coarse-fine motion
could still be studied, and since a planar fine-positioner
could be applied to several practical problems in electronic
testing and assembly. We wanted a device that was fast,
strong, and as free as possible from backlash, friction, or
hysterests.

We used a single direct-drive two-dimensional actuator
rather than coupling a pair of linear actuators together to
achieve two-dimensional motion. This parallel arrangement
maintains symmetry between the X and Y axes, offering the
advantage of nearly identical inertia for each axis, while
eliminating the problems of serial kinematics stack buildup
and resulting error accumulation.

Figure 1 shows an overall view of the fine-positioner. The
design combines four major elements: electromagnetic drive,
flexure spring suspension, lateral effect device position
sensor, and digital control system. Subsequent sections
provide a brief description of each design element and
summarize its operational modes. A fuller discussion of the
design may be found in [25].

o Design

Two-dimensional motor

Many actuator technologies can be considered, including
shape memory alloys, magnetostriction, piezoelectrics,
pneumatics, hydraulics [12, 26}, electrodynamics [13], and
electromagnetics. The need for high actuation speed,
contamination-free operation, large motion range, good
stiffness range, and controllability narrowed the choice to
either an electrodynamic or an electromagnetic drive. A
further need to generate fairly high forces in a small package
led to the selection of an electromagnetic drive based on the
Sawyer motor principle {27]. The Sawyer motor is really a
linear stepping motor which operates by permanent magnet
flux-steering. In the fine-positioner device, it is used as a
direct-drive analog positioner with a total range of one step.

Flexure spring assembly

A flexure spring assembly supports the moving armature
without friction or backlash. This assembly allows motion in
the X and Y directions, but is rigid in the Z direction and in
torsion about Z. As the springs bend in a slight arc, some Z
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motion (worst case 11 um) occurs which can be
compensated for in most robotic applications. We are
considering alternative flexure arrangements that would
practically eliminate this deflection but that may be less
compact.

Position sensor

A commercially available semiconductor lateral-effect cell
[28] provides noncontact position sensing in two
dimensions. A light-emitting diode (LED) attached to the
moving armature produces a spot of light whose position is
measured by the fixed lateral-effect cell. The position of the
light spot on the cell surface is determined by measuring the
generated photocurrents in four electrodes arranged on the
periphery of the square active surface of the cell.

In addition to the built-in position sensor, the fine-
positioner is normally operated in a manner which requires
a separate external sensing means. External sensors can take
many forms, including fiber optics, image sensors, or other
means appropriate to the task, and may sometimes be used
in place of or together with the internal sensor in
servocontrol of the fine-positioner.

Controller

The fine-positioner open-loop response is very underdamped
due to the frictionless suspension and can be closely
modeled as a second-order complex pole with natural
frequency w, = 17.5 Hz and damping ratio { = 0.03. After
amplification, voltages proportional to the lateral-effect
currents are sampled by a multiplexed 12-bit analog-to-
digital converter (ADC) and an M68000-based
microcomputer on the RRA card. The control algorithm
running in the microcomputer computes the required
control efforts from commanded and measured positions,
establishing proper values of currents in the drive coils
through a pair of 12-bit digital-to-analog converters (DAC)
on the RRA card. We have experimented with z-transform
direct design algorithms as well as analog and digital
proportional integral derivative (PID) controllers. Figure 2
shows the response obtained for large and small step position
commands with a digital PID controller. Since peak
dynamic performance depends greatly on the detailed
characteristics of the servo controller, we are continuing to
refine the algorithms.

e Fine-positioner operation
A brief listing of the fine-positioner specifications appears in
Table 1. Our primary emphasis has been on using the device
as a high-precision positioner attached to a general-purpose
robot. Other modes of operation include use as a variable
compliance device, variable forcing device, or measuring
device.

We have already mentioned that the device can be used to
execute rapid submicron motions in X and Y over a total
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Two-dimensional planar fine-positioner.

Open-loop

Closed-loop

0.8 pm

()

Position vs time trace: (a) large step response; (b) small step
response.

Table 1 Planar fine-positioner characteristics.

Approximate physical dimensions 76 mm on a side

Approximate mass 1 kg
Force 13N
Motion range +0.9 mm
Positional resolution with internal sensor 0.5 um
Closed-loop bandwidth with PID controller 52 Hz
Rise time (10% to 90%) for |-mm move 8 ms
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range of approximately 1.8 mm, which is large enough to
accommodate most errors in robot positioning. The ability
to execute fine motions has many applications in science and
engineering as well as in robotics.

Alternatively, by varying the closed-loop gain parameter
(in our implementation this is done simply by changing
coeflicients in the computer control program), the
compliance can be varied over a range from much greater
than to much less than the natural spring compliance.

In some applications, it is desirable to exert known forces
on a workpiece. If negligible motion occurs, the force exerted
on the armature is proportional to the coil current. For
direct force measurement, an external transducer can also be
mounted on the armature.

By using the built-in sensor, the device can be used as a
passive measuring device, in a mode where the coil drive
currents are disabled. Applications such as parts profiling
can be accomplished by sensing the relationship between a
mechanical probe or stylus attached to the movable
armature and the fixed part of the device.

5 i

;i;‘ TCM board: (a) assembled board; (b) signal plane traces.
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Since the device incorporates digital control, operation
can be switched between the various modes described above
as necessary to perform a given task.

Application experiments
& Trace probing

Application overview
The electronic components of IBM mainframe computers
are packaged in high-density thermal conduction modules
(TCMs), each of which can accommodate up to 118 chips.
The TCMSs have 1800 I/O pins and plug into special high-
density printed circuit boards (“TCM boards”) with zero-
insertion-force connectors. The TCM boards measure 600
mm X 700 mm and contain twelve power planes and six
signal planes, each of which can contain several thousand
signal lines [29].

In order to improve system reliability and to reduce the
cost of reworking, it is very desirable to perform exhaustive

Robotic system for TCM-board probing.
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electronic testing of the signal planes before they are
assembled into the TCM board. Testing requires that
electronic probes be placed at the ends of each signal line. If
a defect is found, it must be localized by probing points
along the line. The lines are only 80 ym wide and can be
spaced as close together as 150 um, as illustrated in Figure 3.

The probes must be placed within %20 um of the center of
a line in order to avoid damage to the product. Maintaining
this accuracy over a large area is quite challenging with a-
conventional robot. The problem is exacerbated by the
manufacturing tolerances in producing the sublaminates
[30]. Consequently, a coarse-fine manipulation strategy that
relies on a robot to get the probes “close” to their targets and
direct sensing of the lines coupled with fine manipulation to
“home in” seems natural.

System overview

A robotic system for electronic testing of TCM boards is
illustrated in Figure 4. The robot has two arms, each of
which has three coarse actuators, providing X, Y, and Z
motions, and a fine-positioning mechanism providing fine
XY motions. Each fine-positioner carries an electronic test
probe and a fiber-optic sensor for detecting circuit wires, as
shown in Fig. 4.

The sensor is quite simple. Light from an LED source is
passed through the optical fiber and shines on the TCM
board. A photodetector then measures the amount of light
reflected back up through the fiber. Figure 5 shows the
sensor output when the fine-positioner is used to scan it over
two closely spaced TCM-board wires.

Job cycle

The application consists of two phases: a setup phase, in
which a sublaminate is placed under the robot and an initial
calibration is done to determine the transformation relating
sublaminate coordinates to robot coordinates, and a test
phase in which each wire is tested as follows:

1. Read design data for next wire.

2. Place the probes at the endpoints of the wire and conduct
the test (see below). If the test is successful, go on to the
next wire. Otherwise, conduct a binary search along the
wire to determine the location of the defect to within a
few millimeters. Note that the possibility of multiple
defects in a single wire cannot be ignored.

The method for conducting each electronic test may be
summarized as follows:

1. Using the board-to-robot transformation determined in
the calibration phase, compute the robot coordinates
corresponding to the circuit features to be probed.

2. Move both arms to these coordinates.
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Fiber-optic sensor output: (a) shows the output of the fiber-optic sen-
sor when it is swept past a pair of TCM-board wires spaced 0.15 mm
apart. (b) shows the output of the differential sensor as it is swept past
a TCM-board wire. The sensors and these figures were supplied by

ST

Mark Johnson, IBM Research.

3. Use the fine-positioners to scan the optic probes rapidly
across the circuit features. Use the resulting data to
determine the center of each feature.

4. Move each fine-positioner so that the electronic probes
are centered over the features.

5. Conduct the electronic test.

Probe placement sensitivity

One difficulty often encountered with endpoint-sensing
methods is that of finding an independent means of verifying
that the method is achieving its desired result. We used the
apparatus illustrated in Figure 6 to investigate the ability of
the fine-positioner and fiber-optic sensor combination to
compensate for small variations in wire placement and robot
inaccuracies. A lateral-effect cell was attached and a small
piece of TCM-sublaminate was affixed to a micrometer
stage. A probe attached to the fine-positioner armature
carried both the fiber-optic sensor and an LED so arranged
that the light spot from the LED fell on the lateral-effect cell
when the fiber-optic sensor was centered over a sublaminate
wire.
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Probe placement sensitivity experiment aparatus: The micrometer
stage is used to displace the small section of TCM board by known
amounts, and the lateral-effect cell is used to measure the probe dis-
placement after the wire is located.

SRR

Table 2 Probe placement sensitivity experiment results: Five
trials were made for each displacement value. Mean and standard
deviation lateral cell readings are given.

Wire displacement Lateral cell reading

(um) (pm)

0 730.1 £ 1.6

5 723.7x2.1
10 7309 £ 1.1
t5 731.2+0.9
20 725.1 £ 2.6
25 7282+ 1.4
30 7319+ 1.4
35 732009
40 7329 +£0.7
45 7329+ 0.7
50 732.5+0.8
75 7328 £ 0.4

The robot was then repeatedly moved to a nominal wire
position, the optic probe was scanned over the wire, and the
resulting data were used to center the optic probe over a line,
as described in the previous section. The lateral-effect cell
was then read to determine the relative placement of the
probe to the sublaminate board. After five trials, the
micrometer stage was used to displace the sublaminate by a
known amount, and the process was repeated. Table 2 shows
the results obtained. The probe placément relative to the line
varied by at most about 10 um when the wire was displaced
over 75 um, well within the +20-gm precision required by
the application. The principal limiting factor was a 25-Hz
room vibration coupled to the robot frame.
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In a subsequent experiment, a differential sensor
consisting of one illumination fiber and two detection fibers
was used to generate a direct measurement of the probe-to-
wire alignment error. This error signal was fed back to the
microprocessor controlling the fine-positioner, which used
the information to “lock” the probe onto the line. When this
was done, the probe stayed centered on the wire within 1-2
um, even in the presence of the room vibration and static
frame deflections of 25 um or so.

& Disk slider assembly

Requirements

The high storage density of IBM 3370 and 3380 disk
products requires that the distance between the recording
head and the spinning magnetic disk be extremely small and
almost constant. To accomplish this, the head is supported
by a small “slider” which rides on an air cushion created
between the slider and the disk [31, 32]. The slider has two
rails and is supported by a leaf-spring suspension, as shown
in Figure 7. It is approximately 3 mm wide and 4 mm long.
Since the alignment of the slider with respect to the
suspension can have a significant effect on its flying
characteristics, both its position and orientation must be
tightly controlled during assembly. In this application
experiment, we wish to place the slider on the suspension so
that its center is displaced at most 10 zm relative to its
nominal location in the XY plane, and its orientation about
the Z axis is controlled to within +0.15°.

Hardware

The experimental setup is shown in Figure 8. A standard
carrier was used to dispense sliders, and a specially
constructed carrier was used to hold both suspensions and
completed slider-suspension assemblies. For this experiment,
we simply bolted the carriers to the table. An actual
production application would include provisions for
replacing them at appropriate times, and would probably
include some sensing scheme to locate them relative to the
robot.

A standard vacuum pen was mounted to the fine-
positioner and was used to transport both sliders and
suspensions. This required us to make some undesirable
compromises in the vacuum head design. The small size
required for picking up the sliders made it difficult to hold
the suspension firmly enough to prevent it from rotating
about the pen axis while being moved to the assembly
fixture. In a production application, two pens would
probably be used. This would permit better design and
would reduce the cycle time, since both parts (the slider and
the suspension) could be brought to the assembly fixture at
the same time.

The assembly fixture was a translucent block, backlit to
provide a high-contrast image for the binary vision system.
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§ IBM slider-suspension assembly.

The field of view of the 128 X 128-pixel TV camera was
approximately 7 mm X 7 mm, so that each pixel
corresponded to a square approximately 55 um on a side.
The camera was rotated relative to the fixture so that the
slider and suspension were tilted in the image. This tilting
was necessary to achieve subpixel resolution for the slider-
suspension alignment (see below). The block was machined
to provide a small “platform™ for the suspension, and a
suction port was used to hold the suspension in place during
assembly. In order to get around the difficulties encountered
in transporting the suspension, several alignment pins were
added to the fixture, so that the suspension was
approximately oriented. These could probably be eliminated
in a production application.

Job cycle
An AML program for performing slider-suspension assembly
is shown in Figure 9. The execution steps are as follows:

Step 1 Get a suspension.
Using the vacuum pen, pick up the next suspension
from the suspension carrier and place it in the
assembly fixture. Turn on the fixture suction to hold
the suspension in place.

Locate the suspension.
Use the vision system to locate the suspension.

Apply a drop of glue to the suspension.

For this experiment, we used a heat-setting epoxy.
Since our primary interest was in demonstrating
visual alignment of the head to the suspension, we
chose to do this step manually with a hypodermic
needle. In an actual production application, any one
of a number of techniques could be used to
automate it.
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Jjob_cycle: SUBR;

step_l: . next_suspension;
gel_suspension;.
susp_to_fixture;
susp_xyw = locate_suspension;
apply_glue;
next_slider;
get_slider;
safe_z__move(ARM,tv_slan‘on);
adjust_slider;
cure_glue;
pen_vacuum(OFF);
replace_suspension;
BRANCH(step_1);

step_2:
step 3:
step_4.

step 5.
step_6:

step_7:

AML program for slider-suspension assembly: Significant sub-
routines are shown in subsequent figures. An actual production
program would include a number of other elements, including oper-
ator interfaces, links to the production control system, and error
recovery procedures.

Get a slider.

Using the vacuum pen, pick up the next slider from.
the slider carrier. Using the coarse joints of the
robot, move the slider to its approximate final
position relative to the suspension.

Use visual feedback to adjust the slider relative to
the suspension.

Cure the glue.

Return the completed suspension.
Using the vacuum pen, pick up the completed
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get _suspension: SUBR;
pen_pickup(suspension_pallet(susp_no),0.05,
susp_dwell, 0.3,<0.02,0.1,0.15);
MOVE(ZIT,safe_z,,<SPEED,0.5,0.5>);
END;

pen_pickup:SUBR(loc,
approach_dz DEFAULT 0.020,
dwell_time DEFAULT .25,
depart_dz DEFAULT safe__z-loc(3),
depart_ctl DEFAULT DEFAULT);
safe_z _move(ARM,loc+<0, O,approach__dz,0,0,0>);
MOVE(ZIT, loc(3));
pen_vacuum(ON); DELAY(dwell__time);
DMOVE(ZIT,depart_dz,,depart__ctl);
END;

susp_to_fixture: SUBR;
safe_z_movelarm, fixture+ fixture_appl);
MOVE(ARM, fixture+ fixture_app2);
MOVE(ARM, fixture);
fixture_vacuum(ON};
pen_vacuum(OFF); delay(.5);
scrub_fp(4,.2);
MOVE(ZIT,safe_z);
END;

scrub_fp: SUBR(ndf);
i: NEW 0;
f0: NEW QGOAL(fp);
WHILE n GE i=i+1 DO
BEGIN
MOVE(fp.f0+4df,.<1.,1.,1.,05);
MOVE(fp.f0-df,,< 1.,1.,1,0>);
END;
MOVE(fp,f0,<1.,1.,1.,1>);
END;

-- remember where we start

-- full speed, accel, no settling
-- full speed, accel, no settling

-- full speed, accel, settling

AML subroutines for getting a suspension.

suspension assembly and return it to the suspension
assembly.

Getting a suspension

The AML code for picking up a suspension and transporting
it to the assembly fixture is shown in Figure 10. A common
subroutine, pen_ pickup, is used for picking up both
suspensions and sliders. This subroutine moves the arm to
the pickup point, turns on the pen vacuum, waits for a
specified time, then lifts the pen by a specified amount. The
code for placing a suspension into the assembly fixture is
also straightforward. The arm is moved through an
appropriate approach trajectory to the setdown point, the
fixture vacuum is turned on, and the pen vacuum is turned
off. The fine-positioner then makes several quick back-and-
forth motions to break the pen suction, and the arm moves
up to a clear plane.

Locating the suspension
The 2D position and orientation of the suspension are
determined as follows:

Step 1  Acquire a run-coded binary image rc of the
suspension; a typical image is shown in Figure 11.

Step 2 Extract a “centerline” image of the suspension
(shown superimposed on the original suspension
image in Figure 12) by evaluating the AML/V
expression:

Binary image of suspension.
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Suspension centerline, superimposed on suspension image.
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rc_suspension_center =
RCOR(RCSHIFT({rc,suspension_half_
width, WHITE),
RCSHIFT{(rc,-suspension__half_
width WHITE))

where suspension_half_width is a vector that would
span slightly less than half the small dimension of
the rectangular suspension. This vector is obtained
during calibration. The technique is insensitive to
up to +5° variations in its orientation.

Step 3 Perform binary region analysis on rc_suspension_
center;, from second-moment features of the white
centerline region, determine the suspension
orientation.

Step 4 Perform binary region analysis on rc; use the
centroid of the white region lying most nearly on
the centerline (the locating hole in Fig. 11) as the
XY coordinates for the suspension.

Subpixel resolution is obtained for both position and
orientation parameters, since region features are derived
from sums of values over all pixels in the region (cf. [33]).

Getting the slider
The AML code for picking up a slider is shown in Figure 13.
The principal complication arose because the clearance

get_slider: SUBR (loc DEFAULT slider_tray(slider_no));
pen_pickup(loc,,slider_dwell,. 02);
scrub_fp(3,<0.,0.05>);
MOVE(ZIT,safe_z);
END:

AML subroutine for getting a slider.

between the rails of the slider and the tip of the vacuum pen
was only 0.2 mm. This is comparable to the potential slider-
vacuum tip misalignment at the pickup point. In order to
ensure that the vacuum tip is not cocked on the rails, the
fine-positioner makes a small “scrubbing™ motion before the
robot lifts the slider out of its nest. This motion takes almost
no time and has the added benefit of squaring up the slider
somewhat, thus significantly reducing rotational
misalignments at the assembly fixture.

Locating the slider
The 2D position and orientation of the slider are determined
as follows:

Step 1  Acquire a run-coded binary image rc of the slider;
Figure 14 shows a typical image.

Step 2 Extract a binary image of the slider’s “minor axis”
(shown in Figure 15, superimposed on the slider

£ Binary image of slider.
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Slider minor axis, superimposed on slider image.
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Slider major axis, superimposed on slider image.

o

adjust_slider: SUBR;

slider_target: NEW susp_xyw + slider-offset(susp_xyw(3));

e_xyw: NEW slider -xyw;
tvw: NEW tool_vect(ggoal(6));
loop:
slider_xyw:= find : slider;
e _xyw.= slider: xyw - slider__target,
IF-ABS(e xyw(2)] GT r_tot THEN
BEGIN

DMOVE(xyw,(-tvw+tvwsstool_vect(qgoal(6)-. xyw(2))J¥<e xyw(2)>);

NULL OUTARM(6);
BRANCHfloop);
END;
[F DOT(e 316 (D)) GT'xp_tol*xy_tol THEN
BEGIN
dmove_in: camf-e_xyw(1));
BRANCH(loop);
END;
END;

i

AML subroutine for adjusting slider.

image) by evaluating the AML/V expression

rc_slider_minor_axis =

RCOR(RCSHIFT{(rc,slider_half_

length, WHITE),

RCSHIFT{(rc,-slider_half_length, WHITE}))

where slider_half_length is a vector that would
span slightly less than half the long dimension of the
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Step 3 Compute X, Y, and 6 parameters for the minor axis
using first- and second-moment features derived
from binary region analysis of rc_slider_minor_
axis.

Step 4 Extract a binary image of the slider’s “major axis”
(shown in Figure 16 superimposed on the slider
image) by evaluating the AML/V expression

re_slider_major_axis =
RCAND(RCNOT{(RCSHIFT{rc,slider_half_
width,BLACK)),
RCNOT(RCSHIFT(rc,-slider_half_
width, BLACK)),
RCSHIFT(rc,1.*slider_half_width, BLACK),
RCSHIFT(rc,-1.I*slider_half__width, BLACK))

where slider__half_width is a vector that would span
slightly less than half the short dimension of the
rectangular slider.

Step 5 Compute X, Y, and § parameters for the minor axis
using first- and second-moment features derived
from binary region analysis of rc_slider_minor—
axis.

Step 6 Compute slider X, Y from the intersection of the
minor and major axes, and ¢ from the orientation of
the minor axis.

As with the suspension, subpixel resolution is obtained for
both position and orientation parameters, since region
features are derived from sums of values over all pixels in
the region. By experimentally moving the slider by known
amounts, we were able to verify that resolutions on the order
of 0.2 pixels, corresponding to displacements of about 10
wm, were obtained.

Adjusting the slider

The AML code for aligning the slider with respect to the
suspension is shown in Figure 17. An iterative approach is
used:

Step 1 Determine the position and orientation of the slider,
using the method described above. Compute the
displacement and orientational misalignment
relative to the suspension.

Step 2 If the slider is correctly oriented relative to the
suspension, go to Step 3. Otherwise move the coarse
X, Y, and 4 joints to correct for the misalignment
while keeping the slider in the camera’s field of
view, and go back to Step 1.
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Step 3 If the slider’s displacement relative to the suspension
is small enough, stop. Otherwise, move the fine-
positioner X and Y actuators by an appropriate
amount to correct for the misalignment and go back
to Step 1.

The principal complications with this approach arise from
using the coarse joints to correct for angular misorientations.
The distance from the axis of the § motor to the tip of the
vacuum pen is about 14 cm. Thus each 1° of rotation
correction introduces an additional 0.24-mm lateral
displacement of the slider. In principle, up to 4° orientation
could be compensated by using the fine-positioner axes.
However, we found that the 8 joint was slow enough that it
made sense to move the coarse X and Y motors as well and
to reserve the full range of the fine-positioner for Step 3.

The final motions are made using the fine-positioner
actuators. For various reasons, we found it most convenient
to compute the desired displacement in camera coordinates.
The necessary camera-to-fine-positioner transformation is
determined by using the fine-positioner to displace a slider
by known amounts and then calling the find__slider
subroutine. The transformation is then computed by
ordinary least squares.

Conclusion

This paper has described an endpoint-sensing method for
achieving very precise alignment of a part or tool with
respect to a workpiece. Our approach relies on the coarse
joints of a robot to bring a tool or part within the “capture
range” of a fine-positioning system carried by the robot,
which is then used to null out sensed misalignments. To
investigate this approach, we have developed a compact
“wrist” mechanism capable of making fast and extremely
precise motions in two directions. We have used it in several
application experiments which demonstrate the feasibility of
achieving roughly an order-of-magnitude improvement in
the effective precision of a robot (from about 0.1 mm to 0.01
mm) while retaining a large working volume and high speed
for long motions. The principal requirement is that it be
possible to sense the misalignment between the tool or part
and the workpiece.

Many applications require the ability to correct small
rotational misalignments as well as displacement errors. In
this paper, we used a “coarse” wrist motor to supply these
corrections. Work is proceeding on an XY8, model of the
fine-positioner that will allow fast rotational motions
through small fractions of 1°. Work is also proceeding on
additional endpoint-sensing experiments, and on
investigation of other operating modes such as force
compliance.
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