
Analysis of
manufacturing
systems by the
Research
Queueing
Package

by We-Min Chow
Edward A. MacNair
Charles H. Sauer

Many aspects of manufacturing systems can be
analyzed using simulation to model the system’s
behavior. The Research Queueing Package
(RESQ) is a tool developed to construct and
solve models of systems with jobs contending
for service from many resources. The
capabilities of RESQ are described in order to
understand the model elements which are
available for representing manufacturing
systems. Then an analysis of several work-in-
process (WIP) policies is presented using RESQ
models solved by simulation. Four WIP
management policies are analyzed and
compared for a future assembly manufacturing
line: (1) a push system, (2) a pull system, (3) a
transfer line, and (4) a closed loop system.

1. Introduction
Manufacturing systems are very expensive to design. Once
they are implemented, it is sometimes costly to improve
their efficiency. When designing a system, it is often difficult

OCopyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other

330 portion of this paper must he obtained from the Editor.

to decide which of the many possible akernatives would give
the best performance. After a system is running, it is a
complicated task to improve its operation and plan for
future changes. Because of contention for service, limited
waiting areas, parallel operations, simultaneous activities,
multiple interactions, and complex decision mechanisms,
the operation of manufacturing systems is not easy to
predict. The complexity of such systems requires the use c
methods and procedures to understand their behavior.

,f

Performance modeling [1-41 is a technique employed to
study the behavior of manufacturing systems. Modeling is an
art which requires much intuition to accurately represent the
behavior of these systems, and the methods used to produce
the performance measures of the models employ
sophisticated mathematical techniques. Modeling tools help
simplify an analyst’s job of constructing and solving models,
and the Research Queueing Package (RESQ) [5- IO] is a tool
developed to aid performance analysts.

Manufacturing systems are composed of many
components which we call resources. Examples of resources
are work stations, tools, buffers, robots, storage areas,
presses, baths, transfer units, conveyor mechanisms, and
people. Customers make use of the resources, visiting the
resources and requesting service from them. While a
customer is receiving service, other customers can amve to
request service from the same resource. This causes
contention among the customers for the resources and
results in queues or waiting lines. The amount of contention

WE-MIN CHOW, EDWARD A. MacNAIR. AND CHARLES H. SAUER IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

and the length of the service requests affect the behavior of
the system. This contention for resources in the system is the
fundamental issue which must be understood in studying the
operation of these systems.

In this paper features of RESQ are briefly discussed and
illustrated by a model that solves an actual problem. Section
2 presents RESQ modeling elements and functions.

Section 3 discusses four operating policies for an assembly
line: (1) a push system, (2) a pull system, (3) a transfer line,
and (4) a closed loop. A description of the assembly line is
presented along with details of the four policies. The section
also includes an overview of the RESQ models and an
explanation of the results. The Appendix contains the entire
model with annotations.

2. RESQ modeling elements, solution methods,
and performance measures
The model elements are the building blocks of a modeling
tool. Once we understand what the model elements are and
how to use them, it becomes a relatively simple task to use a
tool like RESQ to build a model of a complex system if we
understand how the system operates. We just need to know
which elements to use and in which order to use them. By
putting the building blocks together in different fashions, we
can construct many different models.

Customers
In building models we focus our attention on the customers
circulating through the model and demanding service from
the resources. The customers can represent many different
kinds of entities. They can be people, manufacturing tasks,
parts to be assembled, and many more items found in
systems. Each place a customer visits in a model is called a
node. There are several different kinds of nodes, which
represent various kinds of actions performed when a
customer arrives at that location. The collection of nodes
visited by a customer and the order in which they are visited
is referred to as the routing.

Different kinds of customers are distinguished by different
attributes. Some examples of attributes of customers include
the type of job, the priority level, the number of times the
customer should visit a portion of the model, the time of
arrival at or departure from a particular node, and many
other identifying characteristics. The attributes are attached
to the customers and can be interrogated while making
routing decisions or when determining how much service a
customer demands.

There are certain instances when we want the customers
to make copies of themselves, with the original customer and
the copies possibly proceeding over different paths. If we
want 1 0 0 pieces of a subassembly to amve at a service center
all at the same time, we can have one customer split itself
into 1 0 0 separate customers which then progress separately
through the model. The copies which are produced can be

IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

One class, One class, Infinite
one server two servers sewer

1 Three service centers.

independent customers which follow different paths, or they
can be related to one another and join back together again at
an appropriate place in the model.

customer copies, depending upon whether the customers are
related or not. The nodes are called split, fission, and fusion
nodes. Customers passing through a split node generate
unrelated customers. The fission and fusion nodes are used
in pairs. Customer copies generated at a fission node are
joined together at a corresponding fusion node. Only a single
customer leaves the fusion node. This occurs after all of the
related customers amve.

Different nodes are associated with the generation of

Service centers
Service centers are the major model elements used in RESQ.
They are composed of one or more servers, one or more
waiting lines, and a queueing discipline or scheduling
algorithm for determining which customer to put into
service next. The customers arrive at the service centers and
request a certain amount of service. This service is usually
determined by a service time distribution specified when
defining the service center.

Figure 1 shows a service center with a single server, one
with two servers, and one with an infinite number of servers.
A circle is used to represent a server at an active resource.
The waiting lines, which are shown as a rectangle with one
side missing and a vertical line in the middle, are also called
classes. Some service centers have more than one class.
Several reasons for having multiple classes at a service center
involve specification of different service time distributions,
different priority levels, and alternate routing paths. The
classes are the nodes at service centers which are used in the
routing definition. Since there is no waiting at an infinite
server, there are no waiting lines shown with the symbol of
the IS center. There can still be multiple classes at an infinite
server, so that customers can have various routing paths.

When a customer amves at a service center other than an
infinite server, the customer waits in line until a server is
free. When a server is available, customers are scheduled
according to the queueing discipline. Some commonly used
queueing disciplines include first-come-first-served (FCFS),
last-come-first-served (LCFS), processor sharing, round 331

WE-MIN CHOW, EDWARD A. MacNAIR, AND CHARLES H. SAUER

332

WE-MIN CHOW, EDWARD A. MacNAIR, AND CHARLES H. SAUER IBM J . RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

ALI REI

robin, preemptive priority, and non-preemptive priority. The
queueing discipline determines whether the service may be
preempted by other jobs amving at the service center or
whether the server is shared among the customers. A
customer’s activity is usually focused on the resources of a
service center and typically has no interaction with other
modeling elements while at a service center.

When a customer is put into service, the amount of
service requested can be specified in two different ways. The
first approach is to specify a service time equal to the
amount of time spent in service during a single visit to the
service center. The second method is to specify an expression
for the work demand and a rate of service. The rate of
service is the amount of work a server can perform in one
unit of time. The service time is then calculated as the work
demand divided by the service rate.

probability distribution. Some of the commonly used
probability distributions are constant, discrete, uniform,
Erlang, exponential, hyperexponential, and normal.

The amount of service requested is normally specified by a

Passive centers
Given only customers and service centers as model elements,
there are many situations which exist in systems which are
difficult or impossible to represent accurately. Passive centers
permit us to represent many of these complex features.

Allocate and release
Passive centers are mainly used to model a resource which
has a limited number of elements that are allocated to
customers, held by the customers while they receive service
at service centers, and then released by the customers. The
major difference between service centers and passive centers
is that a service center has one or more servers actively
engaged in providing service to customers. This is not the
case at a passive resource, where there are no servers actively
providing service. However, there are elements called tokens
which are in some ways analogous to servers. There is

usually a limited number of tokens at the passive center.
These tokens can be used to represent a finite number of
elements of a resource such as the number of positions in a
buffer and other limited resources.

As an example of a passive center, we will consider how to
represent buffer contention. Figure 2 depicts a passive center
with the number of tokens, which is shown in the box, being
equal to the number of buffer positions. The rectangular box
is the pool of tokens from which the buffer positions are
requested. ALl is an allocate node where customers request
tokens. If the number of tokens remaining in the pool is less
than the number of tokens a customer requests, the
customer waits in the line associated with the allocate node
until a sufficient number of tokens become available. It is
important to remember that customers retain possession of
the tokens until they are explicitly released. Tokens are
returned to the pool when a customer holding tokens from
the passive resource passes through release node RE 1. The
customer flow is shown with solid lines and arrows. The flow
of tokens is illustrated with dashed lines.

The passive center facilitates the representation of many
situations where customers simultaneously hold multiple
resources. A customer acquiring tokens from a passive center
can request service at service centers and can also request
tokens from other passive centers. This type of model
element is a very powerful extension to conventional
queueing networks.

Figure 2 shows one allocate node and one release node.
However, there is no restriction on the number of allocate or
release nodes which belong to a passive center. There is also
no one-to-one correspondence necessary between allocate
and release nodes. There can be any number of allocate
nodes and any number of release nodes.

Create and destroy
With only allocate and release nodes, there is no way to
change the number of tokens at a passive center. There are
times when we would like to increase or decrease the
number of tokens. This can be accomplished as shown in
Figure 3 by using create and destroy nodes. A customer
going through a create node adds a specified number of new
tokens to the pool, and a customer holding tokens when it is
routed through a destroy node discards the tokens it holds.
This permits the number of tokens associated with a passive
center to change dynamically. One use for these model
elements is to hold customers in the queue at an allocate
node until another customer creates tokens for them to
advance. This is a type of synchronization which is very
common in contention systems. When a passive center is
used to count the number of parts in an assembly work
station, for instance, amvals of part trays can be modeled by
a create node, while consumption of parts is represented by a
destroy node. An assembly job can be processed only if there
exists a sufficient quantity of parts. These model elements

can also be used for communication between independent
processes.

Model variables and status
In order to make certain types of decisions, we use two
different types of variables. One type of variable, which was
discussed briefly in the section on customers, is used to hold
the set of attributes of each customer. The variables which
contain the customer attributes are called job variables. The
other type of variable is accessible by all customers. This
type of variable is a global variable in the sense of a variable
in a programming language. As customers proceed through
the model, these global variables can be assigned values and
used in ways similar to the job variables.

All job variables are automatically initialized to a value of
zero, and global variables are initialized to a specified value
when they are defined. They must be explicitly assigned
other values as the model is progressing. In order to assign
values to the job variables and the global variables, we need
a special kind of node which we designate as a set node. As
customers pass through a set node, one or more assignments
are made to the job variables or the global variables. The
symbol for a set node is a rectangular box, as shown in
Figure 4. The assignment statements can contain
expressions. In this case a global variable counting the
number of failures is being incremented by one.

In addition to making decisions based on the values of
variables, we can also interrogate the status of various
conditions of the model. Some of these conditions include
the queue lengths at classes, service centers, allocate nodes,
and passive centers, the number of servers or tokens which
are available for service or allocation, the number of
customers related to a customer which has gone through a
fission node, and the number of tokens a customer holds
from a passive center. These conditions provide the status of
the model necessary to control the flow of customers
through the network.

Chains
Chains are used to classify different types of customers into
different collections of routing paths. A path consists of all
the nodes visited by a customer. When a model contains
different types of customers, it is convenient to define
separate chains for each customer type. However, different
types of customers may belong to the same chain. In this
case, the customer attributes can be used to identify the
customer type, and routing decisions can send customers to
different resources.

By using different chains for different types of customers,
the model need not explicitly check the customer type. This
is implicit in the chain to which the customer is assigned.
Customers and nodes are uniquely assigned to one chain. A
customer in one chain can never visit a node which belongs
to a different chain, and a node which belongs to one chain

IBM J . RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

Allocate /

Destroy r l Pool of tokens

I + Create

"l-- v=v+1

8 A set node.

cannot be used in a routing statement of another chain. This
does not preclude customers in different chains from
contending with one another. A center representing either an
active or passive resource can have nodes belonging to
different chains. The customers belonging to the different
chains can still contend for the same servers or tokens.

There are two types of chains. An open chain usually
contains one or more sources where customers enter the
chain and a sink where customers depart. It is possible for an
open chain to contain no source. In this case, customers
must be initialized at one or more nodes of the chain. Open
chains permit the number of customers in the chain to vary.
There are customers amving and departing at various times,
and the number of customers present is continually
changing. An open chain is frequently used to model a
system where the population is not static.

specify the chain population, and these customers always
remain in the chain. A system that has a finite number of
customers is conveniently represented by a closed chain. An
example of this is using a closed chain to represent jigs on a
circular conveyor. When we can identify a relatively small,
fixed number of customers in a chain, a closed chain is the
appropriate model element to use.

A closed chain contains a fixed number of customers. We

WE-MIN CHOW, EDWARD A. MacNAIR, AND CHARLES H. SAUER

One other type of node which is sometimes useful in
routing statements is a dummy node. Nothing happens to a
job at a dummy node. This type of node provides a place for
a job to visit with no actions occurring. An example of using
a dummy node to initialize jobs at the beginning of a
simulation is given in Section 3.

Submodels
A submodel is a parameterized portion of a model. We can
define a submodel which contains any subset of resources
present in the model and make one or more copies of the
submodel. Submodels can be used to clarify the structure of
a model, to avoid duplication of effort within a model, to
permit sharing of parts of models, to vary the number of
model elements at solution time, and to solve the submodel
separately and replace the submodel with a flow equivalent
server.

The structure of the model can be clarified by constructing
submodels for the major subsystems to be represented. The
submodels can be used to represent high-level abstractions of
the subsystems which can be easily connected to form the
overall system. If a model contains subsystems which are
similar, we can construct a submodel representing one copy
of the subsystem with parameters which capture the
differences. Then the submodel can be duplicated for each
subsystem with different values supplied for each copy of the
submodel. This is sometimes referred to as hierarchical
modeling.

Very frequently models are required to have a variable
number of resources. The number of resources can be
specified as a model parameter, and a submodel can be built
to represent one of the resources. RESQ permits an arbitrary
number of copies of the submodel to be created based on the
value of a model parameter.

Hierarchical decomposition is a widely used technique for
simplifying the solution of certain types of models. The
model is decomposed into one or more submodels which are
solved separately from the remainder of the model. Results
from a submodel solution are used to characterize a flow
equivalent server, which is used in place of the submodel in
an aggregate model. The flow equivalent server is usually a
queue-dependent server with appropriately chosen service
rates.

Solution methods
RESQ permits the use of two solution methods. An analytic
solution involves solving equations to produce the
performance measures. Simulation is a statistical experiment
which observes the behavior of the model and generates the
performance measures from the observations. An analytic
approach is usually a faster solution method and is
preferable when it is applicable. The problem is that many
simplifying assumptions must be made in order to be able to
solve a model analytically. Simulation is much more general 334

WE-MIN (

and can be applied to very complex situations. The price
which must be paid for this generality is the longer time
required to obtain accurate performance measures.

Because of the randomness inherent in the results of a
simulation, a statistical analysis must be performed on the
results to indicate their accuracy. RESQ provides three
methods for producing confidence intervals and an
automatic stopping procedure for detecting a specified level
of accuracy.

Performance measures
We are interested in several different performance measures
calculated by the solution technique. The utilization of a
resource is the fraction of time a server or token is busy. The
queue length is the number of customers waiting or in
service. The throughput is the customer completion rate, or
the number of customers that complete their service in a
given unit of time. The queueing time is the time a customer
spends in the waiting line and in service at a center. The
queueing time at a passive resource is the time a customer
spends waiting for and holding tokens. The time it takes for
a customer to travel between any two points in a model is
called the response time. We are interested in mean values
for these results and sometimes in the distributions of the
queue length, the queueing time, and the response time.

on the simulation results. There are three methods of
producing confidence intervals and a sequential sampling
procedure for detecting when the results have reached a
specified level of accuracy. It is also possible to delete some
of the transient data at the beginning of simulation runs.

The next section discusses a RESQ simulation study for
the work-in-process (WIP) management policies.

A useful feature of RESQ is the output analysis performed

3. Analysis of WIP management policies
One of the major problems in a manufacturing system is the
control of work in process. WIP is a semiproduct in a
production line, including the items in the tools as well as
those awaiting processing or transportation. A good WIP
management policy can eliminate unnecessary on-line
inventory, save storage space, reduce material handling cost,
and improve the system throughput.

Consider a manufacturing system that is composed of a
number of different work stations. If a work station is
manually operated, the cycle time for producing a piece of
product is typically a random variable, due to the
inconsistency of human behavior. On the other hand, an
automated work station is subject to failure and a
production cycle time may be interrupted by breakdowns.
Because of cycle time variation, a work station may
temporarily become a bottleneck and keep the stations
immediately downstream idle for a significant amount of
time. Consequently, cycle time variation means
underutilized work stations and possibly an insufficient

:HOW, EDWARD A. MacNAIR, AND CHARLES H. SAUER IBM 1. I; LES. DEVELOP. VOL. 29 NO. 4 JULY 1985

Assembly flow

PllO Ploo

start l k
Po70 PO80

f Assembly flow chart.

system capacity. There are at least three alternatives for
solving such a problem:

1. Increase the system capacity by installing more work
stations.

2. Control the cycle time variation by introducing more
automated work stations and improving the tool
reliability.

3. Allow more WIP so that no work stations can trap
enough WIP to keep others idle.

Choosing among these alternatives is a complicated problem.
One must consider the ultimate manufacturing cost. In this
paper we consider the last approach only. A future assembly
line is used as the study case throughout the discussion in
this section. Different WIP management policies are
investigated by a RESQ simulation model, and descriptions
of the models and their results are presented.

Description of system
The assembly line under consideration consists of 13
different operations, including assembly, inspection and test,
and rework stations. The manufacturing process flow chart is
shown in Figure 5, where operation numbers PO50, PO60,
and PO90 are inspection and test, PI00 to PI 30 are rework,
and the rest are assembly operations. The yield factor
observed at each test station is a random variable ranging
from 0.90~ to 1.05y, where y is the average yield. The
defective assembly units are sent to rework stations. The
rework flow does not necessarily have a single path. Different
routes may be taken, according to a certain probability
distribution. Let be the routing probability from operation
i to operation j and e, be the start factor at operation i
(the expected number of visits to operation i by the same
assembly job). For a given (pu], [eJi = I , 2 , . . ., 13) can be
obtained by solving
13

C p,,ei + 1= e , ,
I= I

13

1 piJei = ej, j = 2, . . ., 13.
I= I

The mean cycle time of each operation has been estimated
by engineers. According to past experience, it is believed that
a manual operation cycle time can never be less than 80% of
its mean value. Since we are dealing with a new assembly
line, neither the distribution nor any higher moments are
available. In this study we investigate WIP policies with
different coefficients of variation by using the distributions
provided by the RESQ package [5-IO].

Under the current management policy, the assembly line
is operated for eight hours a shift, three shifts a day. Each
operator may have two 15-minute break periods and one 40-
minute lunch time. During a break the line is never shut
down; only one half of the operators leave the line. After
their return, the other half take a break for the same amount
of time. The automated work stations are operated
continuously. Thus the manual stations and the automated
stations have different effective working hours.

Work stations may be subject to failure. The well-known
machine repairman model [1 I] can be used to evaluate the
station reliability as a function of the interval between
successive failures, the repair time, the number of repairmen,
and the number of stations.

number of work stations of operation i, ni, is the least integer
greater than or equal to

For a given daily production demand D, the minimal

e, D
Tiri/s, ’
-

where

Ti = effective working hours for operation i,

ri = the reliability of a type-i station, and

si = the mean cycle time of operation i.

Note that the line capacity is by no means equivalent to
the capacity derived from the tooling only. Very often the
material handling system can be the bottleneck. Design of
the material handling system should be closely related to the
WIP management policy. One simple example is the use of a
conveyor system for WIP storage and transport from one 335

IBM J. RES. DEVELOP, VOL. 29 NO. 4 JULY 1985 WE-MIN CHOW, EDWARD A. MacNAIR, AND CHARLES H. SAUER

work station to another. A relatively short conveyor line
limits the WIP size and therefore reduces the line
throughput. We do not consider any specific material
handling system. Instead we assume that there are limited
buffers associated with operations. The material handling
delay is small and negligible, at least compared to the
operation cycle times.

WIP policies analyzed
We are going to compare four different WIP management
policies:

1. a PUSH system,
2. a PULL system,
3 . a TRANSFER LINE, and
4. a CLOSED LOOP system.

In Method 1 one acquires all assembly parts according to
a production schedule. Typically the quantity of each
individual part is determined by the material requirement
planning (MRP) technique [121. Parts are “pushed to the
assembly line until the staging area becomes empty.

Method 2 is derived from the well-known KANBAN
system [131, in which each operation has two buffers, one for
input and the other for output. In this study, we assume that
each operation has a single buffer for both input and output.
This buffer, for instance, can be a multilevel storage rack
placed in front of work stations. WIP can be stored into and
retrieved from the rack by an automatic storage and retrieval
device. The same rack can be used for both input and output
queues. When the buffer is full, no input is allowed and the
immediate upstream operation may be blocked. For the
same total buffer size, the buffer sharing policy has less
blocking probability than the conventional KANBAN
system.

The ideal case for a transfer line (Method 3) requires a
fixed uniform cycle time for each operation so that
subassemblies are moved from operation to operation at the
same pace. If all the cycle times are constant but not
uniform, the line throughput is uniquely determined by the
operation that has the minimal ratio of the number of work
stations per operation to the cycle time [141. We are sure
that the WIP level is minimum. Thus in a transfer line we
assume that no buffers are used.

The closed loop system (Method 4) attempts to control
the WIP level through parts feeding. A simple procedure has
been developed to synchronize the feeding speeds of different
parts. Logically we may consider that each feed is composed

tray can make k assemblies. The part-j feeding sequence is
characterized by a list of elements. For instance, if n, = 3
and k = 2 , the feeding list is

LJ = (I , I , 1 , o,o, 0).

Each element in the list corresponds to an assembly. The
value of an element indicates that that number of trays
should be fed to the line. According to L, three trays of partj
are sent to three type-i work stations, respectively, for the
first three assemblies. Since each tray contains two assembly
parts, no additional feed is needed for the next three
assemblies (this is indicated by three zeros). LJ is used as a
wraparound list such that the feeding schedule for partj
starts all over again for every six assemblies. If a bad part is
detected, the list content may be modified by shifting all
elements to the left. Thus the pattern becomes Lj = (1, 1, 0,
o,o, 1).

The number of assemblies does not have to be an integer.
Assume that k = 0.4 and n = 2. L, becomes (3, 3 , 2, 2).
However, if k is greater than or equal to 1 as in most real
cases, L, is always a 0-1 list. Finally, after the feeding lists
have been obtained for all parts, the part feeding
synchronization is achieved by linking the lists to the
assembly serial numbers.

can always maintain a fixed number of assemblies or
assembly parts in the line. A completed set of parts is
released to the line when and only when a good assembly
has just left the production line. The only controllable
variable is the total number of subassemblies in the line. For
a given throughput, the minimal WIP level can be found by
a simple searching procedure.

Description of models
There is a trade-off between the model run time and the
model programming effort. One can construct a
“customized” model for each individual WIP management
policy or develop a single “generic” model which can be
applied to all different policies. To simplify our discussion,
the remainder of this section presents only the latter
approach.

(1) an active queue that serves as an assembly station, a
tester, or a rework station, and (2) a passive queue that
represents a buffer. Since there are break times for operators,
a manual operation is modeled by two active queues
associated with the same passive queue. One of the active
queues does not operate during the break time and becomes

Because of part synchronization, the closed loop system

In our RESQ model, there are two types of FCFS queues:

of a set of parts for exactly one assembly. This procedure an inactive queue. In our model, we use the job routing
links the logical feed to the physical material moves. We mechanism (discussed later) to convert an active queue into
illustrate this procedure by a simple example as follows. an inactive one and vice versa. If both queues are active, the

Assume that all parts are delivered by trays and part type j amvals always join the one with smaller queue length. This
is used at operation i. The packing density of part type j , d,, is called “smallest queue first” discipline. The number of

336 equals k assemblies per tray; i.e., the number of parts in the servers in the two active queues can be either identical (if the

WE-MIN CHOW, EDWARD A. MacNAIR, AND CHARLES H. SAUER IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 I

number of work stations is even) or different by one (if the
number is odd). The automated operations and the manual
operations of a single station are never shut down, and
therefore are modeled by single active queues.

For simplicity, we combine the work cycle time with the
possible station down time as the service time of the queue.
The interval between failures is often subject to an
exponential distribution. In our model, each work cycle
experiences a Bernoulli trial to determine the occurrence of
failure. Thus the number of cycles between successive
failures is a geometric random variable. If the work cycle
time is small compared to the interval between failures, this
approach will be close to the exponential assumption. Down
time is composed of the waiting time for a repairman and
the repair time, which can either be obtained from past
machine records or estimated by the repairman model. See
Oates [151 for an alternative method of modeling failures.

WIP size. This is similar to a queueing system with a finite
job waiting room. The number of tokens in the passive
queue is equal to the sum of the buffer size and the number
of work stations. For the push system and the closed loop
system, the number of tokens can be arbitrarily large so that
the line behavior is not affected by the buffer space. (These
two systems may be simulated by a different model in which
no passive queues exist, thereby reducing the simulation run
time.) Associated with each operation there is exactly one
passive queue. A token can be interpreted as a working
permit. Each piece of work must own a token before its
entrance to an operation (an active queue). A token must be
obtained from the next operation before the current token is
released. Token exchange implies a physical move from an
operation to the operation immediately downstream.

In our model, identical work stations (performing the
same operation) share the same buffer. This assumption may
not always be valid. The assumption is justified for a process
layout in which identical stations are placed together. For a
product layout where the identical stations are distributed to
separate areas, the assumption approximates the “smallest
queue first” discipline. Any precise models must be layout
dependent and cannot be generic.

form a closed chain. Obviously, this is exactly the case for
the closed loop system. For the push system, we can choose
a large job population such that the work stations of the first
operation (Polo) are fully utilized. For convenience, a
dummy node may be used as a job reservoir which
dispatches new assembly jobs and receives completed ones.
The pull system and transfer line can be treated in the same
fashion, except that the numbers of tokens are different. The
population size is equal to the total number of tokens.

The rework flows in the assembly process constitute
feedback loops. When the finite buffers are installed, a
deadlock situation may arise. This problem can be resolved

For each operation, a passive queue is used to regulate the

The job flows follow the process flow chart (see Fig. 5) and

by either priority queueing disciplines or large buffer sizes for
rework operations. In reality, a priority discipline means a
more complicated shop floor control system. For a
production yield close to 90% or higher, the rework flow
volumes are relatively small. A small amount of additional
buffer space for each rework operation serves the purpose.

Because of rework loops, outbound traffic at a node may
take different routes. This feature is handled by using the job
variable. For instance, a job leaving PO50 may take either of
two values: the value is I (or 2) if the job goes to PO60 (or
P120). Similarly, an amval has a value equal to 2 (or 3 or 4)
if it comes from PO50 (or PO60 or PI 10). The value of the
job variable is assigned at set nodes.

The production yields at different assembly stages are
random variables and are treated as global variables in the
RESQ model. Random number generators are invoked at set
nodes to assign the values of these global variables. These
values are interpreted as the routing probability.

yield and assembly cycle time are considered to be
independently, identically distributed. This may not be the
case in real world problems. It is possible to generate a
sequence of autocorrelated variables in the model. One can
set up an autoregressive or a moving average model [161 at a
set node to generate the yield value. To deal with
autocorrelated assembly time, we can adopt the multiclass
concept: An active queue may serve a number of classes of
jobs. Upon its amval, a job joins one of the classes with a
certain probability. This probability can be evaluated by any
model for an autocorrelated sequence.

Discussion of results
An assembly line with a capacity of 500 assemblies a day has
been studied by RESQ simulation. The model input includes

It is worthwhile to mention that random variables such as

0 number of work stations per operation,
buffer size per operation,

0 mean and coefficient of variation of each operation cycle

0 mean time between failures,
mean time to repair,

0 duration of each break period,
0 duration of lunch time,
0 average yield factors,
0 initial queue size at each operation,

total population size.

time,

In the pull system, we assume that each assembly or test
operation is equipped with a four-unit buffer while each
rework station has a 25-unit buffer. When the closed loop
system is simulated, we have to know the total number of
assemblies in the line. Three different numbers are used:
100, 150, and 200.

replication method. The convergence of the simulation
Confidence intervals are obtained by the independent

337

,ND CHARLES n. SAUER IBM J. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985 WE-MIN CHOW, EDWARD A. MacNAIR, P

Table 1 Summary of simulation results.

Low varia- High varia-
tion tion

Average work station utilization
Push system
Pull system

Closed loop (1 0 0 ASM)
Transfer line

(1 50 ASM)
(200 ASM)

Average WIP level
Push system
Pull system
Transfer line
Closed loop (100 ASM)

(1 50 ASM)
(200 ASM)

Throughput (pieces per day)
Push system
Pull system
Transfer line
Closed loop (100 ASM)

(1 50 ASM)
(200 ASM)

Average residence time (h)
Push system
Pull system
Transfer line
Closed loop (1 0 0 ASM)

(1 50 ASM)
(200 ASM)

0.92
0.79
0.72

1043
51

5

496
492
453

48. I
4.4
2.8

0.90
0.69
0.58
0.77
0.8 I
0.81

1044
44
4

52
99

148

496
426
358
469
492
495

48.1
4.5
2.9
4.0
5.8
8.7

ASM-assemblies.

process is examined by comparing the width of a 90%
confidence interval to its corresponding estimate. Normally
we accept the simulation result if the confidence interval to
mean ratio (CITMR) is no more than 15%.

It is important to point out that the results from a
simulation model are highly dependent on the assembly
cycle time behavior. Indeed, the existence of WIP is in part
due to the cycle time fluctuations. Independent studies
reported in professional journals have concluded that the
manual assembly work time distribution is positively skewed
and has a coefficient of variation (the ratio of standard
deviation to mean) between 0.1 and 0.5 [17, 181. Since the
average cycle times estimated by engineers contain other
factors such as human fatigue, material handling delay, etc.,
the coefficient of variation (CV) should be larger than that
reported in the existing papers. In our study, two cases are
investigated:

a. Low variation: CV = 0.5 for the push and the pull

CV = 0.1 for the transfer line case.
systems,

b. High variation: CV = 2 for all methods.

These numbers are applied to manual assembly stations
only. All testers are automated stations and have CY = 0.1. 338

WE-MIN C

Line performance measures are estimated on the basis of
three replications of 80 hours of simulated time (an initial
eight hours of statistics in each replication is discarded to
eliminate the transient stage), including work station
utilization, WIP level, throughput, and WIP production lead
time (amount of time that an assembly remains in the line).
A summary of the simulation results is attached. The
average utilization, WIP level, throughput, and average
production lead time are all positively correlated. The
throughput estimates should be close to the true value under
the given assumptions, for the CITMR of the throughput at
PO90 is consistently below 3%. The numerical results are
summarized in Table 1.

Under the push system, a large amount of WIP can
quickly absorb any cycle time fluctuations. Consequently we
do not detect any performance difference between the low-
variation and the high-variation cases. Both cases produce
496 pieces a day. The average WIP sizes are about 1050 and
the average production lead time is two days (48.06 hours).

The pull system is more sensitive to the cycle time CV,
owing to the limited amount of WIP. The throughputs differ
from each other by 492 - 426 = 66. Under the high-
variation assumption, the line production is significantly
below the 500 daily demand.

far below our requirement in the high-variation case. When
CV = 0.1 (close to constant), the throughput is still too low
due to the yield problem.

For the closed loop system, only the high-variation cycle
time has been investigated. It has been found that if the total
number of subassemblies is 100, the throughput is lower
than the requirement. For 150 subassemblies, the line
throughput is 492. If the value is increased to 200, the line
can produce 495 pieces a day. Since the CITMR is 2%, the
difference between the last two cases is statistically
insignificant.

Now let us compare the closed loop system with the pull
system under the same cycle time variation. It can be seen
that for a slightly higher WIP level (52 vs 44), the closed loop
system has a smaller average production lead time (4.0 hours
vs 4.5 hours) and 10% higher throughput (426 vs 469). If the
WIP level is increased to 99 (the total number of
subassemblies is 150), the closed loop system can produce
492 - 426 = 66 more products each day and the average
production lead time is 5.8 - 4.5 = 1.3 hours longer as
compared with the pull system.

If the transfer line concept is adopted, the throughput falls

Conclusion
The RESQ modeling elements, solution methods, and
performance measures have been introduced. The modeling
elements allow us to represent the behavior of complicated
manufacturing systems. The solution methods produce
accurate performance measures which can be used to predict
the operation of a system.

'HOW. EDWARD A. MacNAIR. AND CHARLES H. SAUER IBM J. RES. I XVELOP. VOL. 29 NO. 4 JULY 1985

Four different WIP management policies have been
studied under the given assumptions. Although only the
estimated average values are reported in the paper, the
simulation programs are capable of collecting the variances
and even the statistical distributions.

The push system is frequently used to achieve a high tool
utilization, but is notorious for its large WIP size. One must
carefully plan for the initial parts inventory and the parts
delivery lead time. The example in Table I suggests that the
studied assembly line under the push system has too much
WIP. The major problem here is how to reduce the lead
time for parts delivery.

The pull system with limited buffer sizes is very sensitive
to the cycle time variations. An intensive study in cycle time
behavior is a necessary step in the analysis of a continuous
flow manufacturing system. The major design problem in a
pull system is the buffer allocation. Unfortunately, no
efficient analytical algorithm is available [191.

It does not seem likely that an efficient transfer line could
be used for the studied assembly. The complexity of the
product leads to nonuniform cycle times, while the manual
operations create a large cycle time variation. For the low-
variation case, we have assumed CV = 0.1. But the system
can only produce 453 pieces a day and the average work
station utilization is as low as 0.72. This implies that even if
the cycle times are all constant, we still have to face the yield
problem.

The closed loop system is an interesting case for its
simplicity and efficiency. This system has only one variable,
that is, the total number of subassemblies. The optimal
solution can be obtained by a simple search procedure. This
optimal solution is a function of cycle time variations.
Under the optimality condition, if all subassemblies are
"evenly" distributed over the assembly line, the production
line is running as a continuous flow. On the other hand, if
congestion occurs at a certain operation, any additional parts
supply simply creates an even worse traffic problem and little
improvement on the line throughput can be expected.

Future research
Since almost all the manufacturing problems are linked
together, this study is by no means complete. Three
immediate problems are identified: parts feeding, machine
reliability, and material handling. It has been shown by
simulating a closed loop system that parts metering can be
an effective approach to controlling the WIP level. We
should extend this study to explore the best parts feeding
method.

Although machine reliability has been explicitly modeled
in the current study, the model run length of each case is
never long enough to reflect any "short-term" impact caused
by the reliability problem. (If the model predicts a
throughput of 495, it merely says that the long run average is
495.) For instance, a line consists of three machines for

500 X 10/3 or 1667 hours. When the RESQ model is
evaluated, it takes about five hours of CPU time on an IBM
4341 machine. Since RESQ is a PL/I-based solution
package, it is unlikely that the model run time will decrease
significantly if other simulation languages are used.
Obviously this prevents us from conducting even a moderate
number of experiments. To overcome this difficulty, a
hybrid hierarchical modeling approach may be helpful (i.e.,
using an analytical model to drive a simulation submodel).

At the early stage of the line study, one often assumes an
adequate material handling system. This, however, may not
always be the case. When a conveyor system is used, traffic
blockage may occur due to congestion or deficient
accumulation area on the conveyor line. On the other hand,
if a handler [20] is adopted, a poor layout may result in an
investment for extra handlers. An integrated study of line
configuration, material handling system, reliability, parts
feeding, and WIP management should be carried out.

Appendix
The following is a description of the RESQ model
containing the passive queues representing the buffers.
Numeric parameters are symbolic names which are assigned
values when the model is evaluated. Numeric parameters
can be scalars, vectors, or matrices. The numeric parameters
defined here are used for the number of work stations, the
mean and coefficient of variation of service time, buffer
sizes, probabilities in discrete distributions, variables in
routing decisions, initial populations, the chain population,
the number of replications, limits for each replication, the
total solution time, the initial portion discarded from each
replication, and the initial seed for the random number
generator.

M O 0 E L : W I P
/" s t u d y o f wip management p o l i c ~ e s f o r an assembly l i n e ./
/" s t a t i o n s 050 060 and 090 a re i nspec t i on 01 test o p e r a t i o n s ',/
/" t h e r e s t are assembly or rework s ta t i ons ' /

1' b u f f e r s a r e p r o v i d e d between operations ' /
/" h a l f o f t h e assembly s t a t i o n s are c losed du r ing b reak ' /
/" y i e l d f a c t o r s a r e random numbers /
/ " work cyc le t ime i s charac ter8zed by mean and var iance ' /
/ " NUS = no o f work s t a t l o n s ' /
/+ MCT = mean c y c l e t t m e " /
/" CVT = c o e f f . o f v a r l a t l a n o f cyc le t ime /
/" BSIZE = b u f f e r s i z e " /
/ " F R T = f a i l u r e r a t e p e r c y c l e ' /
/" FTM = m e a n f a i l u r e t ~ m e : /
/ " F C V = c o e f f . o f v a r i a t i o n o f f a i l u r e t ime ' /
/ " BK T L H T = break t ime and lunch t ime /
/ " 65-86 B9-= y i e l d f a c t o r s " /
/ 'L B I I B I Z = branching probabilities ./
/ " I N Q l N Q l OUTQ = i n i t i a l queue Sizes ' /
/', P O P S I Z E = p o p u l a t i o n s i z e '/

M E T H 0 D : S I M U L A T I O N
N U M E R I C P A R A M E T E R S . N W S (1 3) M C T (1 3) C V T (I 3) BSIZE(l3) F R T (I 3)
N U M E R I C P A R A H E T E R S : F T M (I)) F C V (1 3) BK T L H T 6 5 86 89 611 B I Z
N U M E R I C P A R A M E T E R S : I N Q (1 3) I N Q l (1 3) OUTQ P O P S I Z E
NUMERIC PARAME1ERS:NREP TSIM NEVT 0 CNT TCPU PCT 0 SD

/" NUS = N+NI THE LATTER I S CLOSED FOR BREAK ' /

Numeric identifiers are symbolic names which are
assigned values in the model construction phase. They are
constants which can be scalars, vectors, or matrices. Their
values can be numbers or arithmetic expressions. 339

WE-MIN CHOW. EDWARD A. MacNAIR. AND CHARLES H. SAUER IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

N U M E R I C I D E N T I F I E R S : N (l 3) N l (l 3) / INVOKE WORK STATION QUEUES "/
N . C E I L i N W S i I) / Z) C E I L i N W S (Z) / Z) C E l L (N W S (j) / Z) C E I L (N W S (4) / 2) ++ Q U E U E ' p o l o Q

C E l L (N W S (5) / 2) C E I L (N W S (6) / 2) C E I L [N W S (7) / 2) C E I L (N W S (8) / 2) ++ TYPE: WsQ: N (l) ; M c T (1) ; c v T (I) ; F R T (1) ; F T M (1) ; F C V I 1) ; P 0 1 0
C E l L (N W S (9) / Z) C E I L (N W S (I O) / Z) C E l L (N W S (1 1) / 2) ++ Q U E U E : P O I I Q

N I . N W S (I) - N (l) N W S (Z) - N I Z) N W S (?) - N (j) N W S (4) - N (4)
C E I L (N W S (l Z) / Z) C E I L (N W S (I j) / Z) T Y P E : WSQ: N I (l) ; M C T ~ l) ; C V T ~ l) ; F R T ~ 1) ; F T M ~ 1) ; F C V ~ 1) ; P 0 1 1

N W S (5 1 - N i 5) N W S I 6) - N (6) N W S i 7) - N (7) N W S (8 1 - N i 8)
N W S I Y) - N (9) N W S (I O) - N i l O) N W S i I I) - N (I I)
N W S i I 2) - N (1 2) N W S (1 3) - N (1 3)

t+

++
++

QUEUE: P040'Q

Q U E U E - P 0 4 1 Q

QUEUE P 0 5 0 Q

T Y P E : WSQ: N (4) ; H C T i I I) ; C V T (C) ; F R T (4) , F T M (4) ; F C V (4) ; P 0 4 0

T Y P E : WSQ: N 1 (4) ; M C T (4) ; C V T i 4) ; F R T (4) ; F T M (4) ; F C V (4) ; P 0 4 1

TYPE: USQ: N W s (5) ; M C T (5) ; C V T (5) ; F R T (5) ; F T M (5) ; F C V (5) ; P O 5 0

T Y P E : WSQ: NWS(6) ;MCT(6) ;CVT(6) ;FRT(6) ;FTM(6) ;FCV(6) ;P060

TYPE: USQ: N (7) ; M C T (7) ; C V T (7) ; F R T (7) ; F T H (7) ; F C V (7) ; P 0 7 0

T Y P E : WSQ: N l (7) ; M C T (7) ; C V T (7) ; F R T (7) ; F T M i 7) ; F C V (7) ; P 0 7 1

T Y P E : WSQ: N (8) , M C T (8) ; C V T (l) ; F R T (8) ; F T M (8) ; F C V (8) ; P 0 8 0

TYPE: WSQ: N l i 8) ; M C T (8) ; C V T (8) ; F R T (8) ; F T M (8) ; F C V (8) ; P 0 8 1

TYPE: WSQ: N W S (9) ; M C T (9) ; C V T (9) ; F R T (S) ; F T M (S) ; F C V (S) ; P O S O

Global variables are symbolic names which are assigned QUEUE: P060Q

initial values. Global variables can be assigned new values as QUEUE : PO7OQ

the simulation is running, and their current values can be QUEUE: P071Q

checked to make routing decisions. BK and LH are used in QUEUE: POROQ

routing decisions related to break and lunch times. BR5,
BR6, and BR9 are branching probabilities. CLOCK is the QUEUE: PO9OQ

simulation clock.

QUEUE: P081Q

GLOBAL VARIABLES: BK LH BR5 BR6 BR9 C L O C K
B K : I

B R 5 : 6 5
L H : I

B R 6 : 6 6
B R 9 : 8 9
CLOCK: 0

Queue types are parameterized versions of queues. They
can contain numeric parameters to permit queues with
values to be invoked from a common definition. They
contain node parameters to assign actual node names. The
following two queue types are for the work stations and the
buffers. The numeric parameters in the queue type for the
work stations represent the number of servers and values
used in the work demand distribution expression. The node
parameter is used as the class at the active queue. The
numeric parameter in the buffer passive-queue-type
definition is used to specify the number of tokens. The node
parameters are used as allocate and release node names.

Q
/ wc

!UEUE T Y P E . WSQ
IRK STATION QUEUES ' /

NUMERIC PARAMETER. NO WS M-CT CV-T F RT F-TM F-CV
NODE PARAMETER WS TYPE

: v) ++

The following queue definitions are based on the BFQ
queue type definition. They represent the buffer queues.

Q U E U E : P O I 0 8
/ INVOKE BUFFER QUEUES '/

T Y P E : B F Q : B S I Z E i I) , G O I O ; R U I O

QUEUE : P 130'8
T Y P E : B F Q : B S l Z E i 1 3) ; G 1 3 0 . R 1 3 0

Set nodes permit the execution of one or more assignment
statements. The following set node definitions assign values
to job variables and global variables. Arithmetic assignments
can be used in the assignments, as well as samples from
probability distributions.

SET NODES: SETJV
A S S I G N M E N T L I S T : J V (O) = I ++

B K = (~ O . 5 + C L O C K) / 2) - F L O O R ~ (O . 5 + C L O C K) / Z) +i

L H = ((b . 2 5 + C L O C K) / 8) - F L O O R ((4 . 2 5 + C L O C K) / 8)
SET NODES. RESET1 RESET2 RESET3

SET NODES: SET050

SET NODES: SET060

A S S I G N M E N T L I S T : J V I O) = I J V (O) = I J V (O) = I

A S S I G N M E N T L I S T : J V I O) = Z

QUEUE TYPE: BFG
NUMERIC PARAMETER. B SIZE
NODE PARAMETER: GET-EF REL-BF
T Y P E . P A S S I V F
T O K E N S . B S I Z E
f l (P1 F T F 5
ALLOCATE NODE L I S T : G E T B F

RELEASE NODE LIST REL-BF

.. . . .

NUMBER OF TOKENS TO ALLOCATE I

END OF QUEUE TYPE BFQ

SET NODES: SET090

SET NODES S E T I I O

SET NODES: SETIZO

S E T N O D E S : S E T I Z I

SET NODES: P050BR

SET NODES: P060BR

SET NODES. P090BR

A S S I G N M E N T L I S T : J V (0) = 3

A S S I G N M E N T L I S T : J V (0) = 4

A S S I G N M E N T L I S T : J V (0) = 5

A S S I G N M E N T L I S T : J V I 0) = 6

A S S I G N M E N T L I S T : J V (0) = 7

A S S I G N M E N T L I S T ' B R 5 = U N I F O R M ~ 6 5 ~ 0 . 9 , B 5 , . 3 3 . B 5 , B 5 ' 1 . 0 5 , . 6 7)

A S S I G N M E N T L I S T : BR6=UNIFORM(B6"0.9,86, .33,B6,86 1 . 0 5 , . 6 7)

ASSIGNMENT i I S T : BR9=UNIFORH~B9~0 .9 ,B9 , .33 ,B9 ,B9 '1 .05 , .67)
DUMMY NODES: JOBRSVR

All of the actual queue definitions in this model are based
on the previous two queue types. The parameter values are
assigned to the numeric and node parameters defined in the The chain definition in this model is a closed chain with a
queue type definitions in the order in which they were fixed population size specified by a numeric parameter. The
defined above. The following queue definitions are based on routing statements show how the jobs move through the
the WSQ queue type. They represent the work station nodes of the model. Logical tests given in IF predicates are
queues. used for making routing decisions. 340

WE-MIN CHOW. EDWARD A. MacNAIR, AND (3HARLES H. SAUER IBM 1. RES. I IEVELOP. VOL. 29 NO. 4 JULY 1985

i F I OW PATH ‘ i

: R 1 3 0 - > P 0 2 0 P 0 2 1 ; I F i Q L i P O 2 I) N i 2)) = Q L (P 0 2 0) ” N I (2) OR L H < L H T t+

. R O I O - > P 0 2 0 P 0 2 I ; l F (Q L (P 0 2 1) N (2) > = Q L (P 0 2 0) ’ . N I (2) OR L H < L H _ T ++

- P O 2 0 POZI->RESET1->G030-~R020
- R 0 2 0 - > P 0 3 0 P O j I ; I F (Q L (P 0 3 1) ’ N (~) ~ = Q L I P O 3 0) ~ ’ ~ N I (3) OR LH<LH-T ++

: P O 3 0 P 0 3 I - > G 0 4 0 - > R 1 2 0 R 0 3 0 . I F (J W (0) = 6) I f (T)
: R 0 3 0 - ~ P 0 4 0 P 0 4 1 ; I F (Q L (P 0 4 1 j ’ N (4) ~ = Q L i P 0 4 0) ’ N 1 (4) OR L H < L H T ++

- P O 4 0 P041-~RESET2-~G050-~R040-~PO5O-~PO5OBR
, P 0 5 0 B R - > G 0 6 0 S E T O 5 O : B R S (I - B R S)

OR BK<BK T) I F (T)

OR B K < B K - T) I F (T)

OR BK‘8K-T) I F (T)

OR B K < B K - T) I F I T)

: P O 7 0 P07I->RESET3->GO8O->RO?O
OR BK<BK-

: R 0 7 0 - > P 0 8 0 P O 8 l : I F (O L (P O 8 I) N (8) ~ = O L (P 0 8 0) ’ N I (8) OR L

: P O 8 0 P 0 8 1 - ~ G 0 9 0 - > R 0 8 0 - ~ P O 9 0
: P 0 9 0 - ~ P 0 9 O B R - > R 0 9 0 S E T 0 9 0 ; B R 9 (I - B R 9)

OR BK<BK-

R 0 9 0 - > P 1 0 0 J O B R S V R : I F (J W (O) = 4) I F (T) i’ JOB COMPL
S E T 0 9 0 - ~ G 1 0 0 - > R 0 9 0

.ETEO ’./

The distribution of the tokens in use is an optional
performance measure which must be specified for those
passive queues of interest. In this model all possible values
related to token use are being requested for all buffer queues.

QUEUES FOR TOKEN USE D I S T . P O I O B P 0 2 0 B P O 3 0 8 P O 4 0 B P 0 5 m PO6OB ++
P 0 7 0 B P O 8 O B P O 9 0 8 P I O O B P I I O B P I 2 0 8 P I) O B

HAX WALUE: B S I Z E (I)

The method of independent replications is used for
generating confidence intervals. Jobs are initialized at the
specified nodes at the beginning of each replication. Ninety
percent confidence intervals are produced. Numeric
parameters are used to define the number of replications, the
percent discarded at the beginning of each replication,
various replication limits, maximum run time, and the
random number seed.

TE D E F I N I T I O N -
V A L M E T H 0 D : r e p I i c a t i o n r

3BFLOW
1. P O l O P O 2 0 P O 3 0 P O 4 0 P O 5 0 P O 6 0 P O 7 0 P O 8 0 ~ 0 9 0 t

P I 1 0 P I 2 0 P I 3 0 ++
PO21 PO31 PO41 PO71 PO81 JOBRSWR

I N I T P O P : I N Q (1) I N D (2) I N 0 1

SEED:SD
TRACE :NO

END

+

’) + +
++
OUTQ

NUMBER OF REPL I C A ~ ~ D N S : N R E P
~ ~~ ~~

R E P L I C L I M I T S -
I N I T I A L P O R T I O N D I S C A R D E D : P C T - D

S I M U L A T E D T l M E : T S l M
EVENTS:NEWT
QUEUES FOR DEPARTURE COUNTS: ~ 0 9 0 ~

DEPARTURES: D CNT
L I M I T - CP SEC0ND:TCPO

Acknowledgments
Some of the information contained in Sections 1 and 2 is
based on [3]. We wish to thank all the people who have been
involved in the development of RESQ over the years and the
users who have helped guide its progress. We are also
grateful to the anonymous reviewers for their helpful
suggestions.

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

IO.

I I .

12.

13.

14.

15.

16.

17.

18.

19.

20.

H. Kobayashi, Modeling and Ana1.v.i~: An Introduction to
System Performance Evaluation Methodology. Addison-Wesley
Publishing Co., Inc., Reading, MA, 1978.
Computer Performance Modeling Handbook, S. S. Lavenberg.
Ed., Academic Press, Inc., New York, 1983.
E. A. MacNair and C. H. Sauer, Elements of Practical
Per/ormance Modeling, Prentice-Hall, Inc., Englewood Cliffs,
NJ, in press.
C. H. Sauer and K. M. Chandy, Computer System Performance
Modeling, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.
C. H. Sauer and E. A. MacNair, “The Research Queueing
Package Version 2: Availability Notice,” Re.\earch Report RA-
144, IBM Thomas J. Watson Research Center, Yorktown
Heights. NY, August 1982.
C. H. Sauer and E. A. MacNair, Srmulatron ofComputPr
Communication S.vstems, Prentice-Hall. Inc., Englewood Cliffs,
NJ, 1983.
C. H. Sauer. E. A. MacNair, and J. F. Kurose, “The Research
Queueing Package Version 2: Introduction and Examples,”
Research Report ”138. IBM Thomas J. Watson Research
Center, Yorktown Heights, NY. April 1982.
C. H. Sauer. E. A. MacNair. and J. F. Kurose, “The Research
Queueing Package Version 2: CMS Users Guide,” Research
Report “139, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY. April 1982.
C. H. Sauer, E. A. MacNair, and J. F. Kurose, “The Research
Queueing Package Version 2: TSO Users Guide,” Rexarch
Report “140, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, April 1982.
Charles H. Sauer, Edward A. MacNair, and Silvio Salza, “A
Language for Extended Queuing Network Models,” IBM J. Res.
Develop. 24, 747-755 (November 1980).
D. R. Cox and W. L. Smith, Queues, Methuen & Co. Ltd.,
London, 196 I .
J. Orlicky, Material Requirement Planning, McGraw-Hill Book
Co., Inc., New York, 1975.
R. W. Hall, Production Planning and Control In Japan, Ch. 4,
American Production and Inventory Control Society. Falls
Church, VA. 1981.
H. D. Friedman, “Reduction Methods for Tandem Queueing
Systems,” Oper Res. 13, 12 1 - 13 I (1965).
W. J. Oates, “Manufacturing Modeling Using RESQ.”
Proceedin,qs ofthe Winter Simulation Conference, Dallas. TX,
November 1984, pp. 357-359.
G. E. P. Box and G. M. Jenkins. Time Series Analysis:
Forecasting and Control, Holden-Day Publishing Co.. Inc.. San
Francisco. 1970.
G. M. Buxey and D. Sadjadi. “Simulation Studies of Conveyor-
Paced Assembly Lines with Buffer Capacity,” In/. J. Prod. Res.
14,607-624 (1976).
N. A. Dudley. “Work-Time Distributions,” Int. J. Prod. Res. 2.

Y. C. Ho. M. A. Eyler, and T. T. Chien. “A Gradient Technique
for General Buffer Storage Design in a Production Line,” Inr. J.
Prod. Res. 17, 557-580 (1979).
W. Chow, “An Analysis of Automated Storage and Retrieval
Systems in Manufacturing Assembly Lines,” Technical Report
T R 02.1082. IBM General Products Division, San Jose, CA,
November 1983.

337-344(1963).

Received October 18, 1984; revised January 23, 1985 34 1

WE-MIN CHOW. EDWARD A. MacNAIR. AND CHARLES H. SAUER IBM J . RES, DEVELOP. VOL. 29 NO. 4 JULY 1985

We-Min Chow IBM General Products Division, 5600 Cottle Road,
San Jose, California 95193. Dr. Chow is a member of the advanced
manufacturing engineering group in San Jose. He received a B.S.
degree in industrial management from Cheng Kung University,
Taiwan, China, and a Ph.D. in operations research from the
University ofCalifornia, Berkeley. From 1973 to 1982 he was a
research staff member at the IBM Thomas J. Watson Research
Center, where he conducted his research activities in computer
systems analysis and algorithms. Dr. Chow’s current interests include
design optimization of manufacturing lines, analysis of assembly
processes and material handling subsystems, and line operation
management.

Edward A. MacNair IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Mr. MacNair joined IBM in
1965. He has been a member of the research staff in the Computer
Science Department at the IBM Thomas J. Watson Research Center
since 1973. He is currently in the modeling and analysis software
systems group, developing modeling programs to solve extended
queueing networks. In addition, he is an adjunct staff member at the
IBM Systems Research Institute, teaching a course related to
performance modeling. He received a B.A. degree in mathematics in
1965 from Hofstra University and an M.S. in operations research in
197.2 from New York University. Mr. MacNair is a member of the
Association for Computing Machinery and the Operations Research
Society of America. He received a Research Division Outstanding
Contribution Award for his involvement with the Research
Queueing Package, a tool for the solution of generalized queueing
networks.

Charles H. Sauer IBM Engineering Systems Products, 11400
Burnet Road, Austin, Texas 78758. Dr. Sauer received his B.A. in
mathematics and his Ph.D. in computer sciences from the University
of Texas at Austin in 1970 and 1975, respectively. He joined IBM at
the Thomas J. Watson Research Center in 1975. From 1977 to 1979
he was an assistant professor of computer sciences at the University
of Texas at Austin. In 1979 he returned to the Watson Research
Center and in 1982 joined the IBM Communication Products
Division Laboratory in Austin. He is currently manager of system
design in the area of advanced information products. Dr. Sauer has
published two textbooks, Computer System Performance Modeling,
co-authored by K. M. Chandy, and Simulation of Computer
Communication Systems, co-authored by E. A. MacNair. Dr. Sauer
received an IBM Outstanding Innovation Award for creation and
basic design of the Research Queueing Package (RESQ). He is a
member of the Association for Computing Machinery.

342

WE-MIN CHOW, EDWARD A. MacNAIR, AND CHARLES H. SAUER IBM I. RES. DEVELOP. VOL. 29 NO. 4 JULY 1985

