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Many  aspects  of  manufacturing  systems  can be 
analyzed using  simulation  to  model  the  system’s 
behavior.  The  Research  Queueing  Package 
(RESQ) is  a  tool  developed  to  construct  and 
solve  models  of  systems  with jobs contending 
for  service  from  many  resources.  The 
capabilities of RESQ are  described  in  order  to 
understand  the  model  elements  which  are 
available for representing  manufacturing 
systems.  Then  an  analysis  of  several  work-in- 
process (WIP)  policies  is  presented  using RESQ 
models  solved  by  simulation.  Four  WIP 
management  policies  are  analyzed  and 
compared  for  a  future  assembly  manufacturing 
line: (1) a  push  system, (2) a  pull  system, (3) a 
transfer  line,  and (4) a  closed  loop  system. 

1. Introduction 
Manufacturing systems are very expensive to design. Once 
they  are  implemented, it  is sometimes costly to  improve 
their efficiency. When designing a system,  it is often difficult 
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to decide which of the  many possible akernatives would give 
the best performance. After a system is running, it  is a 
complicated  task to improve  its  operation  and plan  for 
future changes. Because of contention for service, limited 
waiting areas, parallel operations, simultaneous activities, 
multiple  interactions, and complex  decision  mechanisms, 
the  operation of manufacturing systems is not easy to 
predict. The complexity  of  such  systems  requires the use c 
methods  and procedures to  understand  their behavior. 

,f 

Performance modeling [ 1-41 is a technique employed to 
study  the behavior  of manufacturing systems. Modeling is an 
art which requires much  intuition  to accurately  represent the 
behavior  of  these systems, and  the  methods used to  produce 
the performance  measures  of the models employ 
sophisticated mathematical techniques.  Modeling  tools help 
simplify an analyst’s job of  constructing and solving models, 
and  the Research Queueing Package (RESQ) [ 5- IO] is a tool 
developed to  aid performance analysts. 

Manufacturing systems are  composed of many 
components which we call resources. Examples of resources 
are work  stations,  tools, buffers, robots, storage areas, 
presses, baths,  transfer  units,  conveyor  mechanisms, and 
people. Customers  make use of the resources, visiting the 
resources and requesting service from them. While a 
customer is receiving service, other  customers  can  amve  to 
request service from  the  same resource. This causes 
contention  among  the  customers for the resources and 
results in queues or waiting lines. The  amount of contention 
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and the length of the service  requests  affect the behavior of 
the system. This contention for  resources in the system  is the 
fundamental issue  which  must  be understood in studying the 
operation of these  systems. 

In this paper features of  RESQ are briefly  discussed and 
illustrated by a model that solves an actual problem.  Section 
2 presents  RESQ  modeling elements and functions. 

Section 3 discusses four operating policies  for an assembly 
line: (1 )  a push  system, (2) a pull  system, (3) a transfer line, 
and (4) a closed  loop. A description of the assembly  line  is 
presented  along  with details of the four policies. The section 
also includes an overview  of the RESQ  models and an 
explanation of the results. The Appendix contains the entire 
model  with annotations. 

2. RESQ modeling  elements,  solution  methods, 
and  performance  measures 
The model elements are the building  blocks of a modeling 
tool. Once we understand what the model elements are and 
how to use them, it becomes a relatively simple task to use a 
tool like  RESQ to build a model of a complex  system  if we 
understand how the system  operates. We just need to know 
which elements to use and in  which order to use them. By 
putting the building  blocks together in  different  fashions, we 
can construct many different  models. 

Customers 
In  building models we focus our attention on the customers 
circulating through the model and demanding service  from 
the resources. The customers can represent many different 
kinds of entities. They  can be people, manufacturing tasks, 
parts to be assembled, and many more items found in 
systems.  Each  place a customer visits in a model is called a 
node. There are several  different kinds of nodes,  which 
represent various kinds of actions performed  when a 
customer arrives at that location. The collection of nodes 
visited by a customer and the order in which  they are visited 
is  referred to as the routing. 

Different kinds of customers are distinguished by different 
attributes. Some examples of attributes of customers include 
the type of job, the priority level, the number of times the 
customer should visit a portion of the model, the time of 
arrival at or departure from a particular node, and many 
other identifying  characteristics. The attributes are attached 
to the customers and can be interrogated while making 
routing decisions or when determining how much service a 
customer demands. 

There are certain instances when  we want the customers 
to make  copies of themselves,  with the original customer and 
the copies  possibly  proceeding  over  different paths. If  we 
want 1 0 0  pieces  of a subassembly to  amve at a service center 
all at the same time, we can  have one customer split  itself 
into 1 0 0  separate customers which then progress  separately 
through the model. The copies  which are produced  can be 
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independent customers which  follow  different  paths, or they 
can be related to one another and join back  together  again at 
an appropriate place  in the model. 

customer copies, depending upon whether the customers are 
related or not. The nodes are called  split,  fission, and fusion 
nodes. Customers passing through a split node generate 
unrelated customers. The fission and fusion nodes are used 
in pairs. Customer copies  generated at a fission node are 
joined together at a corresponding fusion node. Only a single 
customer leaves the fusion node. This occurs after all of the 
related customers amve. 

Different nodes are associated  with the generation of 

Service centers 
Service centers are the major model elements used in RESQ. 
They are composed of one or more servers, one or more 
waiting  lines, and a queueing discipline or scheduling 
algorithm for determining which customer to put into 
service  next. The customers arrive at the service centers and 
request a certain amount of service. This service  is  usually 
determined by a service time distribution specified  when 
defining the service center. 

Figure 1 shows a service center with a single  server, one 
with  two  servers, and one with an infinite number of  servers. 
A circle is  used to represent a server at an active  resource. 
The waiting  lines,  which are shown as a rectangle  with one 
side  missing and a vertical line in the middle, are also  called 
classes. Some service centers have  more than one class. 
Several  reasons for having multiple classes at a service center 
involve  specification of different  service time distributions, 
different priority levels, and alternate routing paths. The 
classes are the nodes at service centers which are used in the 
routing definition. Since there is no waiting at an infinite 
server, there are no waiting lines shown  with the symbol of 
the IS center. There can still be multiple classes at an infinite 
server, so that customers can have  various routing paths. 

When a customer amves at a service center other than an 
infinite  server, the customer waits in line until a server  is 
free.  When a server  is  available, customers are scheduled 
according to the queueing discipline. Some commonly used 
queueing disciplines include first-come-first-served (FCFS), 
last-come-first-served  (LCFS),  processor sharing, round 331 
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robin, preemptive  priority, and non-preemptive  priority. The 
queueing discipline determines whether the service may be 
preempted by other  jobs  amving  at  the service center or 
whether the server is shared among  the customers. A 
customer’s  activity  is usually focused on  the resources  of a 
service center  and typically has  no  interaction with other 
modeling elements while at a service center. 

When a customer is put  into service, the  amount of 
service requested can  be specified in  two different ways. The 
first approach is to specify a service time  equal  to  the 
amount of time  spent in service during a single visit to  the 
service center.  The second method is to specify an expression 
for the work demand  and a rate of service. The rate  of 
service is the  amount of work a server can perform in  one 
unit of time. The service time is then calculated as  the work 
demand divided by the service rate. 

probability distribution.  Some of the  commonly used 
probability distributions  are  constant, discrete, uniform, 
Erlang, exponential,  hyperexponential, and  normal. 

The  amount of service requested is normally specified by a 

Passive centers 
Given only customers  and service centers as model  elements, 
there  are  many  situations which exist in systems which are 
difficult or impossible to represent  accurately. Passive centers 
permit us to represent many of  these  complex features. 

Allocate and release 
Passive centers are mainly used to  model a resource which 
has a limited number of elements  that  are allocated to 
customers, held by the  customers while they receive service 
at service centers, and  then released by the customers. The 
major difference between service centers and passive centers 
is that a service center has one or more servers actively 
engaged in  providing service to customers. This is not  the 
case at a passive resource, where there  are  no servers actively 
providing service. However, there  are  elements called tokens 
which are  in  some ways analogous  to servers. There is 

usually a limited number of tokens  at  the passive center. 
These tokens  can be used to represent a finite number of 
elements of a resource  such  as the  number of  positions  in a 
buffer and  other limited resources. 

As an example of a passive center, we  will consider how to 
represent buffer contention. Figure 2 depicts a passive center 
with the  number of  tokens, which is shown in  the box, being 
equal  to  the  number of buffer positions. The rectangular  box 
is the pool of tokens  from which the buffer positions are 
requested. ALl is an allocate node where customers request 
tokens. If the  number of tokens remaining in  the pool is less 
than  the  number of tokens a customer requests, the 
customer waits  in the line associated with the allocate node 
until a sufficient number of tokens become  available. It is 
important  to  remember  that  customers retain possession of 
the  tokens until  they are explicitly released. Tokens  are 
returned to  the pool when a customer holding tokens  from 
the passive resource passes through release node RE 1. The 
customer flow is shown with solid lines and arrows. The flow 
of tokens is illustrated  with  dashed lines. 

The passive center facilitates the representation of many 
situations where customers simultaneously  hold  multiple 
resources. A customer  acquiring  tokens  from a passive center 
can request service at service centers and  can also request 
tokens from  other passive centers. This type  of  model 
element is a very powerful extension to  conventional 
queueing networks. 

Figure 2 shows one allocate node  and  one release node. 
However, there is no restriction on  the  number of allocate or 
release nodes which belong to a passive center. There is  also 
no one-to-one  correspondence necessary between allocate 
and release nodes. There  can be any  number of  allocate 
nodes and  any  number of release nodes. 

Create  and destroy 
With only  allocate and release nodes, there is no way to 
change the  number of tokens  at a passive center. There  are 
times when we would like to increase or decrease the 
number of  tokens. This  can  be accomplished as shown in 
Figure 3 by using  create and destroy nodes. A customer 
going through a create node  adds a specified number of new 
tokens  to  the pool, and a customer holding tokens when  it is 
routed through a destroy node discards the  tokens it holds. 
This  permits  the  number of tokens associated with a passive 
center  to change  dynamically. One use for  these  model 
elements is to hold customers  in  the  queue  at  an allocate 
node until another  customer creates tokens for them  to 
advance. This is a type  of  synchronization which is very 
common in contention systems. When a passive center is 
used to  count  the  number of  parts  in an assembly work 
station, for  instance, amvals of  part  trays can be modeled by 
a create node, while consumption of parts is represented by a 
destroy node. An assembly job  can be processed only if there 
exists a sufficient quantity of  parts.  These model  elements 



can also be used for  communication between independent 
processes. 

Model variables and status 
In order  to  make certain types of decisions, we use two 
different types of variables. One  type of variable, which was 
discussed briefly in  the section on customers, is used to hold 
the set of attributes of each customer. The variables which 
contain  the  customer  attributes  are called job variables. The 
other type of variable  is accessible by all customers. This 
type  of variable is a global variable in  the sense of a variable 
in a programming language. As customers proceed  through 
the model,  these global variables can be assigned values and 
used in ways similar to  the  job variables. 

All job variables are automatically initialized to a value of 
zero, and global variables are initialized to a specified value 
when  they are defined. They must be explicitly assigned 
other values as  the model is progressing. In  order  to assign 
values to  the  job variables and  the global variables, we need 
a special kind  of node which we designate as a set node. As 
customers pass through a set node,  one or more assignments 
are  made  to  the  job variables or the global variables. The 
symbol  for a set node is a rectangular box, as shown  in 
Figure 4. The assignment statements  can  contain 
expressions. In  this case a global variable counting  the 
number of failures is being incremented by one. 

In addition  to  making decisions based on the values of 
variables, we can also  interrogate the  status of various 
conditions of the model. Some of these conditions  include 
the  queue lengths at classes, service centers,  allocate nodes, 
and passive centers, the  number of servers or tokens which 
are available  for service or allocation, the  number of 
customers related to a customer which has  gone through a 
fission node, and  the  number of tokens a customer holds 
from a passive center.  These conditions provide the  status of 
the  model necessary to  control  the flow of customers 
through  the network. 

Chains 
Chains  are used to classify different types  of customers  into 
different collections of routing  paths. A path consists of all 
the nodes visited by a customer.  When a model  contains 
different types  of  customers,  it  is convenient  to define 
separate chains for  each customer type. However, different 
types  of customers  may belong to  the  same chain. In this 
case, the  customer  attributes  can be used to identify the 
customer type, and routing  decisions can  send  customers  to 
different resources. 

By using different chains for different types  of  customers, 
the model need not explicitly check the  customer type. This 
is implicit  in the chain to which the  customer is assigned. 
Customers  and nodes are uniquely assigned to  one chain. A 
customer in one  chain  can never visit a node which belongs 
to a different chain,  and a node which belongs to  one  chain 
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cannot be used in a routing  statement of another chain. This 
does  not preclude customers  in different chains  from 
contending with one  another. A center representing  either an 
active or passive resource can have  nodes belonging to 
different chains. The  customers belonging to  the different 
chains  can still contend for the  same servers or tokens. 

There  are  two types  of  chains. An  open  chain usually 
contains  one or more sources  where customers  enter  the 
chain  and a sink  where customers depart. It is possible for an 
open  chain  to  contain  no source. In this case, customers 
must be initialized at  one or more nodes  of the chain. Open 
chains  permit  the  number of customers  in  the chain to vary. 
There  are  customers  amving  and  departing  at various  times, 
and  the  number of customers present  is continually 
changing. An open chain is frequently used to  model a 
system where the  population is not static. 

specify the chain population,  and these customers always 
remain in the  chain. A system that has a finite number of 
customers is conveniently  represented by a closed chain. An 
example  of this is using a closed chain  to represent jigs on a 
circular  conveyor. When we can identify a relatively small, 
fixed number of customers  in a chain, a closed chain is the 
appropriate  model  element  to use. 

A closed chain  contains a fixed number of  customers. We 
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One other type of node which  is sometimes useful  in 
routing statements is a dummy node. Nothing happens to a 
job at a dummy node. This type of node provides a place  for 
a job  to visit  with no actions occurring. An example of  using 
a dummy node to initialize jobs at the beginning of a 
simulation is  given  in  Section 3. 

Submodels 
A submodel is a parameterized portion of a model. We can 
define a submodel which contains any subset of resources 
present  in the model and make one or more copies of the 
submodel. Submodels can be  used to clarify the structure of 
a model, to avoid duplication of  effort  within a model, to 
permit sharing of parts of  models, to vary the number of 
model elements at solution time, and to solve the submodel 
separately and replace the submodel with a flow equivalent 
server. 

The structure of the model can be  clarified  by constructing 
submodels for the major subsystems to be represented. The 
submodels can be  used to represent high-level abstractions of 
the subsystems  which can be  easily connected to form the 
overall  system. If a model contains subsystems  which are 
similar, we can construct a submodel representing one copy 
of the subsystem  with parameters which capture the 
differences. Then the submodel can be duplicated for  each 
subsystem  with  different  values  supplied for each  copy of the 
submodel. This is sometimes referred to as hierarchical 
modeling. 

Very frequently models are required to have a variable 
number of resources. The number of resources can be 
specified as a model parameter, and a submodel can be built 
to represent one of the resources.  RESQ permits an arbitrary 
number of copies of the submodel to be created based on the 
value of a model parameter. 

Hierarchical decomposition is a widely  used technique for 
simplifying the solution of certain types of models. The 
model is decomposed into one or more submodels which are 
solved  separately  from the remainder of the model.  Results 
from a submodel solution are used to characterize a flow 
equivalent server,  which  is  used in place  of the submodel in 
an aggregate  model. The flow equivalent server  is  usually a 
queue-dependent server  with appropriately chosen  service 
rates. 

Solution methods 
RESQ permits the use  of  two solution methods. An analytic 
solution involves  solving equations to produce the 
performance measures. Simulation is a statistical experiment 
which  observes the behavior of the model and generates the 
performance measures  from the observations. An analytic 
approach is usually a faster solution method and is 
preferable  when  it  is  applicable. The problem is that many 
simplifying assumptions must be made in order to be able to 
solve a model  analytically. Simulation is much more general 334 
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and can be applied to very  complex situations. The price 
which must be  paid for this generality  is the longer time 
required to obtain accurate performance measures. 

Because  of the randomness inherent in  the results of a 
simulation, a statistical analysis must  be  performed on the 
results to indicate their accuracy.  RESQ  provides three 
methods for producing confidence intervals and an 
automatic stopping procedure for detecting a specified  level 
of accuracy. 

Performance measures 
We are interested in  several  different performance measures 
calculated by the solution technique. The utilization of a 
resource  is the fraction of time a server or token is  busy. The 
queue length  is the number of customers waiting or in 
service. The throughput is the customer completion rate, or 
the number of customers that complete their service in a 
given unit of time. The queueing time is the time a customer 
spends in the waiting  line and in service at a center. The 
queueing time at a passive  resource  is the time a customer 
spends waiting for and holding  tokens. The time it  takes  for 
a customer to travel  between any two points in a model  is 
called the response time. We are interested in mean values 
for  these  results and sometimes in the distributions of the 
queue length, the queueing time, and the response time. 

on the simulation results. There are three methods of 
producing confidence intervals and a sequential sampling 
procedure for detecting when the results  have  reached a 
specified  level  of  accuracy. It is  also  possible to delete some 
of the transient data  at the beginning  of simulation runs. 

The next  section  discusses a RESQ simulation study for 
the work-in-process (WIP) management policies. 

A useful feature of  RESQ is the output analysis  performed 

3. Analysis of WIP management  policies 
One of the major problems in a manufacturing system  is the 
control of  work in process. WIP is a semiproduct in a 
production line, including the items in the tools as well as 
those awaiting  processing or transportation. A good WIP 
management policy can eliminate unnecessary  on-line 
inventory, save  storage  space,  reduce material handling cost, 
and improve the system throughput. 

Consider a manufacturing system that is  composed of a 
number of different  work stations. If a work station is 
manually operated, the cycle time for producing a piece  of 
product is typically a random variable, due to the 
inconsistency of human behavior. On the other hand, an 
automated work station is  subject to failure and a 
production cycle time may  be interrupted by breakdowns. 
Because  of  cycle time variation, a work station may 
temporarily become a bottleneck and keep the stations 
immediately downstream idle  for a significant amount of 
time. Consequently, cycle time variation means 
underutilized work stations and possibly an insufficient 
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system  capacity. There are at least three alternatives for 
solving  such a problem: 

1. Increase the system  capacity by installing more work 
stations. 

2.  Control the cycle time variation by introducing more 
automated work stations and improving the tool 
reliability. 

3. Allow more WIP so that no work stations can trap 
enough WIP to keep others idle. 

Choosing among these alternatives is a complicated problem. 
One must consider the ultimate manufacturing cost.  In this 
paper we consider the last approach only. A future assembly 
line  is  used  as the study case throughout the discussion  in 
this section.  Different  WIP management policies are 
investigated by a RESQ simulation model, and descriptions 
of the models and their results are presented. 

Description of system 
The assembly  line under consideration consists of 13 
different operations, including assembly, inspection and test, 
and rework stations. The manufacturing process flow chart is 
shown in Figure 5, where operation numbers PO50, PO60, 
and PO90 are inspection and test, PI00 to PI 30 are rework, 
and the rest are assembly operations. The yield  factor 
observed at each  test station is a random variable  ranging 
from 0.90~ to 1.05y, where y is the average  yield. The 
defective  assembly units are sent to rework stations. The 
rework flow does not necessarily  have a single path. Different 
routes may  be taken, according to a certain probability 
distribution. Let be the routing probability  from operation 
i to operation j and e, be the start factor at operation i 
(the expected number of  visits to operation i by the same 
assembly job). For a given (pu],   [eJi = I ,  2 ,  . . ., 13) can be 
obtained by solving 
13 

C p,,ei + 1= e , ,  
I= I 

13 

1 piJei = ej,  j = 2, . . ., 13. 
I= I 

The mean  cycle time of each operation has been estimated 
by engineers.  According to past  experience,  it is  believed that 
a manual operation cycle time can  never be  less than 80% of 
its mean  value.  Since we are dealing  with a new  assembly 
line, neither the distribution nor any higher moments are 
available.  In this study we investigate WIP policies  with 
different  coefficients of variation by  using the distributions 
provided by the RESQ  package [5-IO]. 

Under the current management policy, the assembly line 
is operated for eight hours a shift, three shifts a day.  Each 
operator may  have  two 15-minute break  periods and one 40- 
minute lunch time. During a break the line is  never shut 
down; only one half  of the operators leave the line.  After 
their return, the other half take a break for the same amount 
of time. The automated work stations are operated 
continuously. Thus the manual stations and the automated 
stations have  different  effective  working  hours. 

Work stations may  be subject to failure. The well-known 
machine repairman model [ 1 I ]  can be  used to evaluate the 
station reliability as a function of the interval between 
successive  failures, the repair time, the number of repairmen, 
and the number of stations. 

number of  work stations of operation i, ni, is the least  integer 
greater than or equal to 

For a given  daily production demand D, the minimal 

e, D 
Tiri/s, ’ 
- 

where 

Ti = effective  working hours for operation i, 

ri = the reliability of a type-i station, and 

si = the mean cycle time of operation i. 

Note that the line  capacity is  by no means equivalent to 
the capacity  derived  from the tooling only. Very  often the 
material handling system can be the bottleneck. Design of 
the material handling system should be  closely related to the 
WIP management policy. One simple example is the use of a 
conveyor  system  for  WIP  storage and transport from one 335 
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work station to another. A relatively short conveyor line 
limits the WIP size and therefore reduces the line 
throughput. We do not consider any specific material 
handling system. Instead we assume that there are limited 
buffers  associated  with operations. The material handling 
delay  is  small and negligible, at least compared to the 
operation cycle times. 

WIP policies analyzed 
We are going to compare four different WIP management 
policies: 

1. a PUSH system, 
2. a PULL system, 
3 .  a TRANSFER LINE, and 
4. a CLOSED LOOP system. 

In Method 1 one acquires all  assembly parts according to 
a production schedule. Typically the  quantity of  each 
individual part is determined by the material requirement 
planning (MRP) technique [ 121. Parts are “pushed to the 
assembly line until the staging area becomes empty. 

Method 2 is derived from the well-known  KANBAN 
system [ 131, in  which  each operation has two buffers, one for 
input  and  the  other for output. In this study, we assume that 
each operation has a single  buffer  for both input  and  output. 
This buffer,  for instance, can be a multilevel  storage  rack 
placed in front of  work stations. WIP can be stored into  and 
retrieved from the rack by an  automatic storage and retrieval 
device. The same rack can be  used  for both input  and  output 
queues. When the buffer  is  full, no  input is allowed and the 
immediate upstream operation may be blocked. For the 
same total buffer  size, the buffer sharing policy  has  less 
blocking probability than  the conventional KANBAN 
system. 

The ideal  case  for a transfer line (Method 3) requires a 
fixed uniform cycle time for each operation so that 
subassemblies are moved from operation to operation at the 
same pace. If all the cycle times are constant but not 
uniform, the line throughput is uniquely determined by the 
operation that has the minimal ratio of the number of  work 
stations per operation to the cycle time [ 141.  We are sure 
that  the WIP level  is minimum.  Thus in a transfer line we 
assume that  no buffers are used. 

The closed loop system (Method 4) attempts to control 
the WIP level through parts feeding. A simple procedure has 
been developed to synchronize the feeding  speeds of different 
parts. Logically  we may consider that each  feed  is composed 

tray can make k assemblies. The part-j feeding sequence is 
characterized by a list  of elements. For instance, if n, = 3 
and k = 2 ,  the feeding  list  is 

LJ = ( I ,  I ,  1 ,  o,o, 0). 

Each element in the list corresponds to an assembly. The 
value of an element indicates that that  number of trays 
should be  fed to the line. According to L, three trays of partj  
are sent to three type-i work stations, respectively,  for the 
first three assemblies. Since each tray contains two assembly 
parts, no additional feed  is  needed  for the next three 
assemblies (this is indicated by three zeros). LJ is  used as a 
wraparound list such that the feeding schedule for partj  
starts all over again for  every  six  assemblies.  If a bad part is 
detected, the list content may be modified by shifting all 
elements to the left. Thus  the pattern becomes Lj = (1, 1, 0, 
o,o, 1). 

The number of  assemblies does not have to be an integer. 
Assume that k = 0.4 and n = 2. L, becomes (3, 3 ,  2, 2). 
However, if k is greater than or equal to 1 as in most real 
cases, L, is always a 0-1 list. Finally, after the feeding lists 
have  been obtained for  all parts, the part feeding 
synchronization is  achieved by linking the lists to the 
assembly  serial numbers. 

can always maintain a fixed number of  assemblies or 
assembly parts in the line. A completed set  of parts is 
released to the line when and only when a good assembly 
has just left the production line. The only controllable 
variable is the total number of subassemblies in the line. For 
a given throughput, the minimal WIP level can be found by 
a simple searching procedure. 

Description of models 
There is a trade-off  between the model run  time  and the 
model programming effort. One can construct a 
“customized” model  for each individual WIP management 
policy or develop a single “generic” model which can be 
applied to all  different  policies. To simplify our discussion, 
the remainder of this section presents only the latter 
approach. 

(1) an active queue that serves as an assembly station, a 
tester, or a rework station, and (2) a passive queue that 
represents a buffer. Since there are break times for operators, 
a manual operation is modeled by two active queues 
associated  with the same passive queue. One of the active 
queues does not operate during the break time and becomes 

Because  of part synchronization, the closed loop system 

In our RESQ model, there are two types of FCFS queues: 

of a set  of parts for  exactly one assembly. This procedure an inactive queue. In our model, we  use the job routing 
links the logical  feed to the physical material moves.  We mechanism (discussed later) to convert an active queue into 
illustrate this procedure by a simple example as follows. an inactive one and vice  versa.  If both queues are active, the 

Assume that all parts are delivered by trays and part type j amvals always join  the  one with smaller queue length. This 
is  used at operation i. The packing density of part type j ,  d,, is  called “smallest queue first” discipline. The number of 

336 equals k assemblies per tray; i.e., the number of parts in the servers in the two active queues can be either identical (if the 
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number of work stations is even) or different by one (if the 
number is  odd). The  automated  operations  and  the  manual 
operations of a single station  are never shut  down,  and 
therefore are modeled by single active  queues. 

For simplicity, we combine  the work cycle time with the 
possible station  down  time  as  the service time of the  queue. 
The interval between failures is often  subject to  an 
exponential distribution.  In  our model,  each  work cycle 
experiences a Bernoulli  trial to  determine  the occurrence  of 
failure. Thus  the  number of cycles between successive 
failures is a geometric random variable. If the work cycle 
time is small compared  to  the interval between failures, this 
approach will be close to  the exponential assumption. Down 
time is composed of the waiting time for a repairman  and 
the repair time, which can  either be obtained  from past 
machine records or estimated by the  repairman  model. See 
Oates [ 151 for an alternative method of  modeling failures. 

WIP size. This is  similar to a queueing system with a finite 
job waiting room.  The  number of tokens  in  the passive 
queue is equal to  the  sum of the buffer size and  the  number 
of work  stations. For  the push system and  the closed loop 
system, the  number of tokens  can be arbitrarily large so that 
the line  behavior is not affected by the buffer space. (These 
two  systems may  be simulated by a different model in which 
no passive queues exist, thereby  reducing the  simulation  run 
time.) Associated with each operation  there is exactly one 
passive queue. A token can be interpreted  as a working 
permit. Each piece of work must own a token before its 
entrance  to  an  operation  (an active  queue). A token must be 
obtained  from  the next  operation before the  current token  is 
released. Token exchange  implies a physical move  from  an 
operation  to  the operation  immediately  downstream. 

In  our model,  identical  work stations (performing the 
same  operation)  share  the  same buffer. This  assumption  may 
not always be valid. The  assumption is justified for a process 
layout in which identical stations  are placed together. For a 
product layout  where the identical stations  are distributed to 
separate  areas, the  assumption  approximates  the “smallest 
queue first” discipline. Any precise models must be layout 
dependent  and  cannot be generic. 

form a closed chain. Obviously, this is exactly the case for 
the closed loop system. For  the push system, we can choose 
a large job  population such that  the work  stations  of the first 
operation  (Polo)  are fully utilized. For convenience, a 
dummy  node  may be used as a job reservoir which 
dispatches new assembly jobs  and receives completed ones. 
The pull system and transfer  line can be treated in  the  same 
fashion,  except that  the  numbers of tokens  are different. The 
population size is equal  to  the total number of tokens. 

The rework flows in the assembly process constitute 
feedback loops. When  the finite buffers are installed, a 
deadlock  situation may arise. This problem can be resolved 

For each operation, a passive queue is used to regulate the 

The  job flows follow the process flow chart (see Fig. 5) and 

by either priority queueing disciplines or large buffer sizes for 
rework operations. In reality, a priority  discipline means a 
more complicated shop floor control system. For a 
production yield close to 90% or higher, the rework flow 
volumes are relatively small. A small amount of additional 
buffer space  for each rework operation serves the purpose. 

Because of rework loops, outbound traffic at a node may 
take different routes. This feature  is  handled by using the  job 
variable. For instance, a job leaving PO50 may  take either of 
two values: the value is I (or 2) if the  job goes to PO60 (or 
P120). Similarly, an  amval  has a value equal  to 2 (or 3 or 4) 
if it  comes  from PO50 (or PO60 or  PI 10). The value of the 
job variable is assigned at set nodes. 

The  production yields at different assembly stages are 
random variables and  are treated as global variables in the 
RESQ model.  Random  number generators are invoked at set 
nodes to assign the values  of  these global variables. These 
values are  interpreted  as  the routing  probability. 

yield and assembly cycle time  are considered to be 
independently,  identically  distributed. This  may  not be the 
case in real world problems. It is possible to generate a 
sequence  of  autocorrelated variables in  the model. One  can 
set up  an autoregressive or a moving average model [ 161 at a 
set node  to generate the yield value. To deal with 
autocorrelated assembly time, we can  adopt  the multiclass 
concept: An active queue  may serve a number of classes of 
jobs. Upon its amval, a job  joins  one of the classes with a 
certain  probability. This probability can be evaluated by any 
model  for an  autocorrelated sequence. 

Discussion of results 
An assembly line with a capacity  of 500 assemblies a day has 
been  studied by RESQ  simulation.  The model input includes 

It is worthwhile to  mention  that  random variables such  as 

0 number of  work stations per operation, 
buffer size per operation, 

0 mean  and coefficient of  variation  of each  operation cycle 

0 mean  time between failures, 
mean  time  to repair, 

0 duration of  each  break  period, 
0 duration of lunch  time, 
0 average yield factors, 
0 initial queue size at each operation, 

total population size. 

time, 

In  the pull  system, we assume  that each assembly or test 
operation is equipped with a four-unit buffer while each 
rework station  has a 25-unit buffer. When  the closed loop 
system is simulated, we have to know the total number of 
assemblies in the line. Three different numbers  are used: 
100,  150, and 200. 

replication method.  The convergence  of the  simulation 
Confidence  intervals are  obtained by the  independent 
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Table 1 Summary of simulation  results. 

Low varia- High  varia- 
tion tion 

Average work station  utilization 
Push system 
Pull system 

Closed loop ( 1 0 0  ASM) 
Transfer  line 

(1  50  ASM) 
(200 ASM) 

Average WIP level 
Push system 
Pull system 
Transfer  line 
Closed loop (100 ASM) 

(1  50 ASM) 
(200 ASM) 

Throughput (pieces per day) 
Push system 
Pull system 
Transfer  line 
Closed loop (100 ASM) 

( 1  50  ASM) 
(200  ASM) 

Average  residence time (h) 
Push system 
Pull system 
Transfer  line 
Closed loop ( 1 0 0  ASM) 

(1 50 ASM) 
(200 ASM) 

0.92 
0.79 
0.72 

1043 
51 

5 

496 
492 
453 

48. I 
4.4 
2.8 

0.90 
0.69 
0.58 
0.77 
0.8 I 
0.81 

1044 
44 
4 

52 
99 

148 

496 
426 
358 
469 
492 
495 

48.1 
4.5 
2.9 
4.0 
5.8 
8.7 

ASM-assemblies. 

process is examined by comparing the width of a 90% 
confidence interval to its corresponding estimate. Normally 
we accept the simulation result if the confidence interval to 
mean ratio (CITMR) is no more than 15%. 

It  is important to point out that the results  from a 
simulation model are highly dependent on the assembly 
cycle time behavior. Indeed, the existence of WIP is in part 
due to the cycle time fluctuations. Independent studies 
reported in professional journals have concluded that the 
manual assembly  work time distribution is  positively  skewed 
and has a coefficient  of variation (the ratio of standard 
deviation to mean) between 0.1 and 0.5 [ 17, 181. Since the 
average  cycle times estimated by engineers contain other 
factors such as human fatigue, material handling delay, etc., 
the coefficient  of variation (CV) should be larger than that 
reported in the existing  papers.  In our study, two  cases are 
investigated: 

a. Low variation: CV = 0.5 for the push and the pull 

CV = 0.1 for the transfer line  case. 
systems, 

b.  High variation: CV = 2 for  all methods. 

These numbers are applied to manual assembly stations 
only. All testers are automated stations and have CY = 0.1. 338 
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Line performance measures are estimated on the basis  of 
three replications of 80 hours of simulated time (an initial 
eight hours of statistics in each  replication is discarded to 
eliminate the transient stage), including work station 
utilization, WIP  level, throughput, and WIP production lead 
time (amount of time that an assembly remains in the line). 
A summary of the simulation results  is attached. The 
average utilization, WIP  level, throughput, and average 
production lead time are all  positively correlated. The 
throughput estimates should be close to the  true value under 
the given assumptions, for the CITMR of the throughput at 
PO90 is  consistently  below 3%. The numerical results are 
summarized in Table 1. 

Under the push  system, a large amount of WIP can 
quickly absorb any cycle time fluctuations. Consequently we 
do not detect any performance difference  between the low- 
variation and the high-variation  cases.  Both  cases produce 
496 pieces a day. The average  WIP  sizes are about 1050 and 
the average production lead time is two  days (48.06 hours). 

The pull  system  is more sensitive to the cycle time CV, 
owing to the limited amount of WIP. The throughputs differ 
from  each other by 492 - 426 = 66. Under the high- 
variation assumption, the line production is  significantly 
below the 500 daily demand. 

far  below our requirement in the high-variation  case.  When 
CV = 0.1 (close to constant), the throughput is still too low 
due to the yield problem. 

For the closed loop system,  only the high-variation  cycle 
time has  been  investigated.  It has been found that if the total 
number of subassemblies  is 100, the throughput is  lower 
than  the requirement. For 150 subassemblies, the line 
throughput is 492. If the value is increased to 200, the line 
can produce 495 pieces a day.  Since the CITMR is 2%, the 
difference  between the last  two  cases  is  statistically 
insignificant. 

Now  let  us compare the closed loop system  with the pull 
system under the same cycle time variation. It can be  seen 
that for a slightly  higher  WIP  level (52 vs 44), the closed loop 
system has a smaller  average production lead time (4.0 hours 
vs 4.5 hours) and 10% higher throughput (426 vs 469). If the 
WIP  level  is  increased to 99 (the total number of 
subassemblies  is 150), the closed loop system can produce 
492 - 426 = 66 more products each  day and the average 
production lead time is 5.8 - 4.5 = 1.3 hours longer as 
compared with the pull  system. 

If the transfer line concept is adopted, the throughput falls 

Conclusion 
The RESQ  modeling elements, solution methods, and 
performance measures  have  been introduced. The modeling 
elements allow  us to represent the behavior of complicated 
manufacturing systems. The solution methods produce 
accurate performance measures  which can be used to predict 
the operation of a system. 
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Four different WIP management policies  have  been 
studied under the given assumptions. Although  only the 
estimated average  values are reported in the paper, the 
simulation programs are capable of collecting the variances 
and even the statistical distributions. 

The push  system  is frequently used to achieve a high tool 
utilization, but is notorious for its large  WIP  size. One must 
carefully  plan  for the initial parts inventory and the parts 
delivery  lead time. The example in Table I suggests that the 
studied assembly  line under the push  system has too much 
WIP. The major problem  here is  how to reduce the lead 
time for parts delivery. 

The pull  system  with limited buffer  sizes  is  very  sensitive 
to the cycle time variations. An intensive study in cycle time 
behavior is a necessary step in the analysis of a continuous 
flow manufacturing system. The major design  problem  in a 
pull  system  is the buffer allocation. Unfortunately, no 
efficient analytical algorithm is  available [ 191. 

It does not seem  likely that an efficient transfer line  could 
be  used for the studied assembly. The complexity of the 
product leads to nonuniform cycle  times,  while the manual 
operations create a large  cycle time variation. For the low- 
variation case,  we  have assumed CV = 0.1. But the system 
can  only produce 453 pieces a day and the average  work 
station utilization is as low as 0.72. This implies that even if 
the cycle times are all constant, we still  have to face the yield 
problem. 

The closed loop system  is an interesting case for its 
simplicity and efficiency. This system  has  only one variable, 
that is, the total number of subassemblies. The optimal 
solution can  be obtained by a simple search procedure. This 
optimal solution is a function of  cycle time variations. 
Under the optimality condition, if  all subassemblies are 
"evenly" distributed over the assembly line, the production 
line  is running as a continuous flow. On the other hand, if 
congestion occurs at a certain operation, any additional parts 
supply  simply creates an even  worse  traffic  problem and little 
improvement on the line throughput can  be  expected. 

Future  research 
Since almost all the manufacturing problems are linked 
together, this study is  by no means complete. Three 
immediate problems are identified: parts feeding, machine 
reliability, and material handling.  It has been  shown  by 
simulating a closed loop system that parts metering can be 
an effective approach to controlling the WIP  level.  We 
should extend this study to explore the best parts feeding 
method. 

Although machine reliability has been  explicitly  modeled 
in the current study, the model run length of each  case  is 
never  long enough to reflect any "short-term" impact caused 
by the reliability  problem.  (If the model  predicts a 
throughput of 495, it  merely  says that the long run average  is 
495.) For instance, a line  consists  of three machines for 

500 X 10/3 or 1667  hours.  When the RESQ model is 
evaluated, it takes about five hours of CPU time on an IBM 
4341 machine. Since RESQ is a PL/I-based solution 
package,  it is unlikely that the model run time will decrease 
significantly if other simulation languages are used. 
Obviously this prevents us from conducting even a moderate 
number of experiments. To overcome this difficulty, a 
hybrid  hierarchical  modeling approach may  be  helpful  (i.e., 
using  an analytical model to drive a simulation submodel). 

At the early  stage  of the line study, one often  assumes an 
adequate material handling system. This, however,  may not 
always  be the case.  When a conveyor  system  is  used,  traffic 
blockage  may occur due to congestion or deficient 
accumulation area on the conveyor  line.  On the other hand, 
if a handler [20] is adopted, a poor layout  may  result in an 
investment for extra handlers. An integrated study of line 
configuration, material handling system,  reliability, parts 
feeding, and WIP management should be carried out. 

Appendix 
The following  is a description of the RESQ model 
containing the passive queues representing the buffers. 
Numeric parameters are symbolic names which are assigned 
values  when the model is evaluated. Numeric parameters 
can be scalars,  vectors, or matrices. The numeric parameters 
defined  here are used  for the number of  work stations, the 
mean and coefficient  of variation of  service time, buffer 
sizes, probabilities in  discrete distributions, variables in 
routing decisions, initial populations, the chain population, 
the number of  replications, limits for each replication, the 
total solution time, the initial portion discarded  from  each 
replication, and the initial seed  for the random number 
generator. 

M O 0 E L : W I P  
/" s t u d y   o f  wip management p o l i c ~ e s   f o r  an assembly l i n e  ./ 
/" s t a t i o n s  050 060 and 090 a re   i nspec t i on  01 test o p e r a t i o n s  ',/ 
/" t h e   r e s t  are  assembly or rework   s ta t i ons  ' /  

1' b u f f e r s  a r e  p r o v i d e d  between operations ' /  
/" h a l f   o f  t h e  assembly s t a t i o n s  are  c losed du r ing   b reak  ' /  
/" y i e l d   f a c t o r s   a r e  random  numbers / 
/ "  work   cyc le   t ime  i s   charac ter8zed by mean and var iance ' /  
/ "  NUS = no o f  work s t a t l o n s  ' /  
/+ MCT = mean c y c l e  t t m e  " /  
/" CVT = c o e f f .   o f   v a r l a t l a n  o f  cyc le   t ime  / 
/" BSIZE = b u f f e r  s i z e  " /  
/ "  F R T  = f a i l u r e   r a t e   p e r  c y c l e  ' /  
/" FTM = m e a n  f a i l u r e  t ~ m e  : /  
/ "  F C V  = c o e f f .   o f   v a r i a t i o n   o f   f a i l u r e  t ime ' /  
/ "  BK T   L H   T  = break  t ime and lunch  t ime / 
/ "  65-86 B9-= y i e l d   f a c t o r s  " /  
/ 'L B I I  B I Z  = branching probabilities ./ 
/ "  I N Q   l N Q l  OUTQ = i n i t i a l  queue Sizes ' /  
/', P O P S I Z E  = p o p u l a t i o n   s i z e  '/ 

M E T H 0 D : S I M U L A T I O N  
N U M E R I C   P A R A M E T E R S . N W S ( 1 3 )   M C T ( 1 3 )   C V T ( I 3 )  BSIZE(l3) F R T ( I 3 )  
N U M E R I C   P A R A H E T E R S : F T M ( I ) )   F C V ( 1 3 )  BK T L H  T 6 5  86  89 611 B I Z  
N U M E R I C   P A R A M E T E R S : I N Q ( 1 3 )   I N Q l ( 1 3 )  OUTQ P O P S I Z E  
NUMERIC  PARAME1ERS:NREP  TSIM  NEVT 0 CNT  TCPU  PCT 0 SD 

/" NUS = N+NI  THE  LATTER I S  CLOSED  FOR  BREAK ' /  

Numeric identifiers are symbolic  names  which are 
assigned  values in the model construction phase.  They are 
constants which can be scalars,  vectors, or matrices. Their 
values  can be numbers or arithmetic expressions. 339 
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N U M E R I C   I D E N T I F I E R S :   N ( l 3 )   N l ( l 3 )  / INVOKE WORK STATION  QUEUES "/ 
N .   C E I L i N W S i I ) / Z )  C E I L i N W S ( Z ) / Z )   C E l L ( N W S ( j ) / Z )   C E I L ( N W S ( 4 ) / 2 )  ++ Q U E U E '   p o l o Q  

C E l L ( N W S ( 5 ) / 2 )  C E I L ( N W S ( 6 ) / 2 )   C E I L [ N W S ( 7 ) / 2 )   C E I L ( N W S ( 8 ) / 2 )  ++ TYPE:  WsQ: N ( l ) ; M c T ( 1 ) ; c v T ( I ) ; F R T ( 1 ) ; F T M ( 1 ) ; F C V I 1 ) ; P 0 1 0  
C E l L ( N W S ( 9 ) / Z )  C E I L ( N W S ( I O ) / Z )   C E l L ( N W S ( 1 1 ) / 2 )  ++ Q U E U E :   P O I I Q  

N I .   N W S ( I ) - N ( l )   N W S ( Z ) - N I Z )   N W S ( ? ) - N ( j )  N W S ( 4 ) - N ( 4 )  
C E I L ( N W S ( l Z ) / Z )   C E I L ( N W S ( I j ) / Z )  T Y P E :  WSQ: N I ( l ) ; M C T ~ l ) ; C V T ~ l ) ; F R T ~ 1 ) ; F T M ~ 1 ) ; F C V ~ 1 ) ; P 0 1 1  

N W S ( 5 1 - N i 5 )   N W S I 6 ) - N ( 6 )   N W S i 7 ) - N ( 7 )   N W S ( 8 1 - N i 8 )  
N W S I Y ) - N ( 9 )   N W S ( I O ) - N i l O )   N W S i I I ) - N ( I I )  
N W S i I 2 ) - N ( 1 2 )   N W S ( 1 3 ) - N ( 1 3 )  

t+ 

++ 
++ 

QUEUE:  P040'Q 

Q U E U E -   P 0 4 1 Q  

QUEUE P 0 5 0 Q  

T Y P E :  WSQ: N ( 4 ) ; H C T i I I ) ; C V T ( C ) ; F R T ( 4 ) , F T M ( 4 ) ; F C V ( 4 ) ; P 0 4 0  

T Y P E :  WSQ: N 1 ( 4 ) ; M C T ( 4 ) ; C V T i 4 ) ; F R T ( 4 ) ; F T M ( 4 ) ; F C V ( 4 ) ; P 0 4 1  

TYPE:   USQ:  N W s ( 5 ) ; M C T ( 5 ) ; C V T ( 5 ) ; F R T ( 5 ) ; F T M ( 5 ) ; F C V ( 5 ) ; P O 5 0  

T Y P E :  WSQ: NWS(6) ;MCT(6 ) ;CVT(6 ) ;FRT(6 ) ;FTM(6) ;FCV(6 ) ;P060  

TYPE:   USQ:  N ( 7 ) ; M C T ( 7 ) ; C V T ( 7 ) ; F R T ( 7 ) ; F T H ( 7 ) ; F C V ( 7 ) ; P 0 7 0  

T Y P E :  WSQ: N l ( 7 ) ; M C T ( 7 ) ; C V T ( 7 ) ; F R T ( 7 ) ; F T M i 7 ) ; F C V ( 7 ) ; P 0 7 1  

T Y P E :  WSQ: N ( 8 ) , M C T ( 8 ) ; C V T ( l ) ; F R T ( 8 ) ; F T M ( 8 ) ; F C V ( 8 ) ; P 0 8 0  

TYPE:  WSQ: N l i 8 ) ; M C T ( 8 ) ; C V T ( 8 ) ; F R T ( 8 ) ; F T M ( 8 ) ; F C V ( 8 ) ; P 0 8 1  

TYPE:  WSQ: N W S ( 9 ) ; M C T ( 9 ) ; C V T ( 9 ) ; F R T ( S ) ; F T M ( S ) ; F C V ( S ) ; P O S O  

Global variables are symbolic names which are assigned QUEUE:   P060Q 

initial values. Global variables can be assigned new values as QUEUE : PO7OQ 

the simulation is running,  and  their  current values can be QUEUE:   P071Q 

checked to  make routing decisions. BK and LH are used in QUEUE: POROQ 

routing  decisions  related to break and  lunch times. BR5, 
BR6, and BR9 are branching probabilities. CLOCK is the QUEUE:  PO9OQ 

simulation clock. 

QUEUE:   P081Q 

GLOBAL  VARIABLES:  BK LH BR5 BR6 BR9 C L O C K  
B K :  I 

B R 5 :  6 5  
L H :  I 

B R 6 :   6 6  
B R 9 :   8 9  
CLOCK:  0 

Queue types are parameterized versions of queues.  They 
can  contain  numeric  parameters  to  permit  queues with 
values to be invoked from a common definition.  They 
contain  node  parameters  to assign actual node names. The 
following two  queue types are for the work  stations and  the 
buffers. The  numeric  parameters in the  queue type  for the 
work stations  represent the  number of servers and values 
used in the work demand  distribution expression. The node 
parameter is used as the class at  the active queue.  The 
numeric  parameter in the buffer passive-queue-type 
definition is used to specify the  number of tokens. The node 
parameters  are used as allocate and release node names. 

Q 
/ wc 

!UEUE T Y P E .  WSQ 
IRK STATION  QUEUES ' /  

NUMERIC  PARAMETER. NO WS M-CT  CV-T F  RT  F-TM F-CV 
NODE  PARAMETER WS TYPE 

: v )  ++ 

The following queue definitions are based on  the BFQ 
queue  type definition.  They  represent the buffer queues. 

Q U E U E :   P O I 0 8  
/ INVOKE  BUFFER  QUEUES '/ 

T Y P E :   B F Q :   B S I Z E i I ) , G O I O ; R U I O  

QUEUE : P 130'8 
T Y P E :   B F Q :   B S l Z E i 1 3 ) ; G 1 3 0 . R 1 3 0  

Set nodes permit  the execution  of one  or  more assignment 
statements. The following set node definitions assign values 
to  job variables and global variables. Arithmetic assignments 
can be used in the assignments, as well as  samples from 
probability  distributions. 

SET  NODES:  SETJV 
A S S I G N M E N T   L I S T :   J V ( O ) = I  ++ 

B K = ( ~ O . 5 + C L O C K ) / 2 ) - F L O O R ~ ( O . 5 + C L O C K ) / Z )  +i 

L H = ( ( b . 2 5 + C L O C K ) / 8 ) - F L O O R ( ( 4 . 2 5 + C L O C K ) / 8 )  
SET  NODES.  RESET1  RESET2  RESET3 

SET  NODES:   SET050 

SET  NODES:   SET060 

A S S I G N M E N T   L I S T :   J V I O ) = I   J V ( O ) = I   J V ( O ) = I  

A S S I G N M E N T   L I S T :   J V I O ) = Z  

QUEUE  TYPE:  BFG 
NUMERIC  PARAMETER.  B  SIZE 
NODE PARAMETER:  GET-EF  REL-BF 
T Y P E .   P A S S I V F  
T O K E N S .  B  S I Z E  
f l (P1 F T F 5  
ALLOCATE NODE L I S T :   G E T   B F  

RELEASE NODE LIST REL-BF 

.. . . . 

NUMBER OF TOKENS TO ALLOCATE I 

END OF QUEUE TYPE  BFQ 

SET  NODES:   SET090 

SET NODES S E T I I O  

SET  NODES:  SETIZO 

S E T   N O D E S :   S E T I Z I  

SET  NODES:  P050BR 

SET  NODES:  P060BR 

SET  NODES.  P090BR 

A S S I G N M E N T   L I S T :   J V ( 0 ) = 3  

A S S I G N M E N T   L I S T :   J V ( 0 ) = 4  

A S S I G N M E N T   L I S T :   J V ( 0 ) = 5  

A S S I G N M E N T   L I S T :   J V I 0 ) = 6  

A S S I G N M E N T   L I S T :   J V ( 0 ) = 7  

A S S I G N M E N T   L I S T '  B R 5 = U N I F O R M ~ 6 5 ~ 0 . 9 , B 5 , . 3 3 . B 5 , B 5 ' 1 . 0 5 , . 6 7 )  

A S S I G N M E N T   L I S T :  BR6=UNIFORM(B6"0.9,86, .33,B6,86 1 . 0 5 , . 6 7 )  

ASSIGNMENT i I S T :  BR9=UNIFORH~B9~0 .9 ,B9 , .33 ,B9 ,B9 '1 .05 , .67 )  
DUMMY NODES:  JOBRSVR 

All of the  actual  queue definitions in this  model are based 
on  the previous two  queue types. The  parameter values are 
assigned to  the  numeric  and node parameters defined  in the  The chain  definition  in  this  model  is  a closed chain with a 
queue type  definitions  in the  order in which they were fixed population size specified by a numeric parameter. The 
defined above. The following queue definitions are based on routing statements show  how the  jobs  move  through  the 
the WSQ queue type. They  represent the work station nodes  of the model. Logical tests given in IF predicates are 
queues. used for  making routing decisions. 340 
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i F I  OW PATH ‘ i  

: R 1 3 0 - > P 0 2 0   P 0 2 1 ; I F i Q L i P O 2 I )   N i 2 ) ) = Q L ( P 0 2 0 ) ” N I ( 2 )  OR L H < L H   T  t+ 

. R O I O - > P 0 2 0   P 0 2 I ; l F ( Q L ( P 0 2 1 )   N ( 2 ) > = Q L ( P 0 2 0 ) ’ . N I ( 2 )  OR L H < L H _ T  ++ 

- P O 2 0  POZI->RESET1->G030-~R020 
- R 0 2 0 - > P 0 3 0  P O j I ; I F ( Q L ( P 0 3 1 ) ’ N ( ~ ) ~ = Q L I P O 3 0 ) ~ ’ ~ N I ( 3 )  OR LH<LH-T ++ 

: P O 3 0   P 0 3 I - > G 0 4 0 - > R 1 2 0   R 0 3 0 . I F ( J W ( 0 ) = 6 )   I f ( T )  
: R 0 3 0 - ~ P 0 4 0  P 0 4 1 ; I F ( Q L ( P 0 4 1 j ’ N ( 4 ) ~ = Q L i P 0 4 0 ) ’ N 1 ( 4 )  OR L H < L H   T  ++ 

- P O 4 0  P041-~RESET2-~G050-~R040-~PO5O-~PO5OBR 
, P 0 5 0 B R - > G 0 6 0   S E T O 5 O : B R S  ( I - B R S )  

OR BK<BK T )   I F ( T )  

OR B K < B K - T )   I F ( T )  

OR BK‘8K-T) I F ( T )  

OR B K < B K - T )   I F I T )  

: P O 7 0  P07I->RESET3->GO8O->RO?O 
OR BK<BK-  

: R 0 7 0 - > P 0 8 0   P O 8 l : I F ( O L ( P O 8 I )   N ( 8 ) ~ = O L ( P 0 8 0 ) ’ N I ( 8 )  OR L 

: P O 8 0   P 0 8 1 - ~ G 0 9 0 - > R 0 8 0 - ~ P O 9 0  
: P 0 9 0 - ~ P 0 9 O B R - > R 0 9 0   S E T 0 9 0 ; B R 9   ( I - B R 9 )  

OR BK<BK-  

R 0 9 0 - > P 1 0 0   J O B R S V R : I F ( J W ( O ) = 4 )   I F   ( T )  i’ JOB COMPL 
S E T 0 9 0 - ~ G 1 0 0 - > R 0 9 0  

.ETEO ’./ 

The distribution  of the  tokens in use is an  optional 
performance  measure which must be specified for  those 
passive queues of  interest. In  this  model all possible values 
related to token use are being requested  for all buffer queues. 

QUEUES  FOR  TOKEN USE D I S T .   P O I O B   P 0 2 0 B   P O 3 0 8   P O 4 0 B   P 0 5 m  PO6OB ++ 
P 0 7 0 B  P O 8 O B   P O 9 0 8   P I O O B   P I I O B   P I 2 0 8   P I ) O B  

HAX  WALUE: B S I Z E ( I )  

The  method of independent replications is used for 
generating  confidence intervals. Jobs  are initialized at  the 
specified nodes at  the beginning  of  each  replication.  Ninety 
percent  confidence  intervals are produced. Numeric 
parameters  are used to define the  number of replications, the 
percent  discarded at  the beginning  of  each  replication, 
various  replication  limits, maximum  run time, and  the 
random  number seed. 

TE D E F I N I T I O N  - 
V A L   M E T H 0 D : r e p I i c a t i o n r  

3BFLOW 
1. P O l O   P O 2 0   P O 3 0   P O 4 0   P O 5 0   P O 6 0   P O 7 0   P O 8 0  ~ 0 9 0  t 

P I 1 0   P I 2 0   P I 3 0  ++ 
PO21   PO31   PO41   PO71   PO81  JOBRSWR 

I N I T  P O P :   I N Q ( 1 )   I N D ( 2 )   I N 0 1  

SEED:SD 
TRACE  :NO 

END 

+ 

’ ) + +  
++ 
OUTQ 

NUMBER  OF REPL I C A ~ ~ D N S : N R E P  
~ ~~ ~~ 

R E P L I C   L I M I T S  - 
I N I T I A L   P O R T I O N   D I S C A R D E D :   P C T - D  

S I M U L A T E D   T l M E : T S l M  
EVENTS:NEWT 
QUEUES FOR DEPARTURE COUNTS: ~ 0 9 0 ~  

DEPARTURES: D CNT 
L I M I T  - CP SEC0ND:TCPO 
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