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device simulation
using generalized
mobility models

by Steven E. Laux
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A method for discretizing the semiconductor
transport equations using generalized mobility
models is developed as an extension of the
Scharfetter-Gummel finite difference approach.
The method is sufficiently general to be
applicable to nearly arbitrary empirical mobility
models (including those for MOS surface
effects) and may be used on a variety of mesh
types in two or three dimensions. The impact of
generalized mobility models on the sparsity of
our resulting discrete equations is discussed.
Convergence rate of a Newton’s method
linearization of the nonlinear system of
equations is measured and interpreted. Some
computational results from a study of short-
channel MOSFETSs are presented to illustrate the
approach.

1. Introduction

Many physical models have been proposed for the
simulation of different classes of semiconductor devices, and
a correspondingly wide range of numerical algorithms have
been developed to obtain solutions for practical device
analysis [1-5]. The approach which is the most successful,
however, in terms of generality and practicality, and is
certainly the most widely used, is the macroscopic model
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involving the semiconductor transport equations [6]. The
model describes electrostatic fields in terms of the Poisson
equation, charge conservation in terms of continuity
equations, and transport properties due to drift and diffusion
in terms of hole and electron current transport equations.

Analysis of the behavior of small (submicron geometry)
devices for VLSI has revealed the necessity of incorporating
into the model descriptions of nonlinear transport properties
due to special scattering processes, carrier heating,
quantization effects, etc. These physical phenomena
probably represent the limits of validity of the macroscopic
model itself, and the model may eventually have to be
replaced with a microscopic quantum transport theory.
However, until the conduction mechanisms are better
understood and faster solution algorithms are developed, the
most practical approach is to improve the macroscopic
model by introducing nonlinear, empirical mobility relations
into the current transport equations. The earliest mobility
models attempted to account for bulk effects, such as
velocity saturation and impurity scattering, by introducing
dependence on electric field magnitude, doping density, and
lattice temperature [7-11]. Some mobility models also
describe MOS surface conduction. This is done by a
dependence on components of the electric field relative to
current direction and surface orientation, dependence on
position within the device to describe surface scattering, and
dependence on carrier density to account for screening
effects [12-15]. The physical appropriateness of such models
has also been discussed [16].

Techniques for the discretization of the macroscopic
equations via finite differences (Scharfetter-Gummel
approach [9]) or finite elements, and their subsequent

solution using coupled or decoupled techniques, have been 289
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Control volumes for a triangular mesh.

widely discussed in the literature [6, 17, 18]. While physically
motivated mobility models have usually been a part of these
previous works, issues involved in mobility model evaluation
in the discrete environment have usually been glossed over.
This lack of completeness has often been attributed to the
relatively weak variation in mobility values compared to,
say, carrier concentrations or current densities. However, as
one goal of device simulation is increasing understanding of
internal device behavior, physically motivated mobility
models must be properly discretized. Where statements
about mobility evaluation have been made [19}, mobility
evaluation for the continuity equation at (i, j) seems to
introduce excessive nodal coupling, namely to (i £ 1, j + 1),
(i +2,j),and (i, j + 2), in addition to the usual four nearest
nodes to (/, j) (notation as in Fig. 4, shown later). While this
coupling can be irrelevant in decoupled solution methods or
in approximate Newton’s methods which do not differentiate
mobility when assembling the Jacobian matrix, a rigorous
Jacobian matrix evaluation is essential to correct small-signal
ac simulation [20, 21]. Our formulation allows proper
accuracy to be attained with less nodal coupling than cited
above. Our development of physically motivated mobility
models is in the context of a well-known hybrid finite
element-finite difference discretization scheme [22-25] and is
therefore applicable to arbitrary device shapes and mesh
refinements,

In this paper, a discretization method extending the
Scharfetter-Gummel finite difference approach is first
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reviewed in Section 2. Discretization of generalized mobility
models possessing quite arbitrary functional forms is
introduced. Next, the impact of generalized mobility models
on sparsity and convergence rate of the discrete equations is
discussed in Section 3. Finally, some computational results
from a study of short-channel MOSFETs are presented in
Section 4 to illustrate our approach.

2. Discretization

This section begins by stating the continuum equations
taken as describing semiconductor device behavior. A review
of the Scharfetter-Gummel/control volume approach to the
discretization of these equations follows. The discrete form
of a quite arbitrary mobility model is described next within
the context of our chosen discretization scheme. The final
subsection presents comments specific to rectangular meshes
and describes the straightforward extension of this two-
dimensional formulation to three dimensions.

o Continuum equations
The semiconductor transport equations consist of the
Poisson equation

V(eVY) = —q(p — n+ Ny ~ N,), O

together with the continuity equations for holes and
electrons,

- 3
v.J,= q(Gp - R, - a—i’) (2a)
.7 = q(cn ~R - %’;) (2b)

The hole and electron current densities are assumed to be
given by the equations

—

J, == q(u,pV¥ + D, Vp), (3a)
J, = q(=u,nVy + D Vn). (3b)

The Einstein relation between diffusivities and mobilities is
assumed to hold:
kT
D=—u. 4
p 4)
Notation in this section is standard. The reader is referred to
the list of symbols in the Appendix.

e The Scharfetter-Gummel/control volume approach
The above equations are discretized by a hybrid finite
element-finite difference method [22-25] using the
Scharfetter-Gummel approach [9] for computing carrier
current densities. The discretization methods are discussed
in the context of a nonuniform, two-dimensional triangular
mesh.

The discretization of the Poisson equation (1) is
independent of the mobility model used, and since
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techniques for the discretization of elliptic partial differential
equations are widely known, they are not described here. It
suffices to note that since the Poisson equation is coupled to
the remaining equations, the charge weighting scheme used
for the Poisson equation must be tdentical to the one used
for the continuity equations. As long as this identity is
satisfied, a finite element approach can be used for the
Poisson equation even though finite differences are used to
discretize the current continuity equations.

The continuity equations (2) are treated using the method
of “control volumes.” The discrete form of the divergence
operator in the continuity equations is derived by assigning
to each node in the mesh a control volume. The volume is
bounded by the perpendicular bisectors of all element edges
emanating from a given node, as shown in Figure 1.
Currents entering or leaving the control volume through the
perpendicular bisectors (considered as flux cross sections) are
then summed and set equal to the rate of change of carrier
density at the node, weighted by the control volume.
Summing over all elements e(i/) which contain node /, the
result is (see Figure 2 for element notation)

ap;
2 (i - 1) = au (67 - R - 2, 0
e(i)
n n n n ani
-2 (e = i) = qu; <Gi —R; _E> (5b)
e(d)

Here, J% (J}) is the hole (electron) current density flowing
along the side k in a counterclockwise direction and f, is the
flux cross section for the side & (similarly for side j). v, is the
control volume associated with the node i. G%, RY, and
dp,/dt are the functions G,, R,, and dp/dt evaluated at node i
(similarly for G7, R}, and dn,/3t). A time stepping algorithm
is used to convert the time derivatives to discrete form; in
our case fully implicit time discretization is employed.

Although J, may be viewed as the current density flowing
from node i to node j (J;: j — k; J;: k—i),J, is actualb' an
averaged value of the projection of the current density J
onto a unit vector in the direction of the mesh edge i — j,
c.g., .7-§k. A discrete form of the transport equations (3)
giving the current density J, was derived originally by
Scharfetter and Gummel [9], and extended to two
dimensions by Slotboom [26]. By assuming that the
components of the electric field E and current density J
along an edge are varying sufficiently slowly to be treated as
constant along the edge, the current transport equation (3b)
can be reduced to a one-dimensional, linear, first-order
ordinary differential equation for the carrier density »
[similarly (3a) for holes]. This equation can be integrated to
yield n along the element edge, and by setting n(x J=n,at
the nodes [ p(X 2) = b, for holes], the following equations
may be derived for the Scharfetter-Gummel current densities
Ji:
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Element notation.

-P

q

I = E“Z [p.Z(A,) - p,Z(=A,)), (62%)
o 4Ry

J= ﬂ_Li (n,Z(A,) — m,Z(=4))], (6b%)

where

A= B =), Z(u) = o

i, (ji;) is the average hole (electron) mobility along edge &,
which is of length L,, and 3 is the inverse thermal voltage
g/kT. [The asterisk in equation numbers here and later
indicates that the equation is equally valid with a cyclic
permutation of indices of the two-dimensional element; i.e.,
(i, J, k) can be replaced with (J, k, i} or (k, i, j).]

e Discrete form of generalized mobility models
To incorporate a generalized mobility into the Scharfetter-
Gummel formulation, consider the electron mobility model

H, = p,"(E, j’ 3‘7 }9 N,n T), ™

where E is the electric field, j the unit current density
direction vector, § the unit normal to an insulator-
semiconductor interface, Xis position, and N, n, and T are
doping, electron density, and temperature, respectively.
This form is sufficiently general to include dependence on
electric field components relative to current direction
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(E-], E >_<*j), surface orientation (1_::-§, E X §), or some
hybrid [(E X j)-(§ X ) (see [13])]. In addition, explicit
dependence on position X and the standard dependencies on
doping density N, carrier concentration # (or p for hole
mobility), and lattice temperature 7 are included. The
approach used is to derive appropriate discrete
representations for the average along an element edge of
each mobility argument and to then substitute these
expressions into the functional form of the mobility. This
discrete average mobility along an element edge is then used
in the Scharfetter-Gummel current density expressions (6).
The overall method is thus independent of the specific form
of the mobility model used, as given in (7). To be quite
specific, and for simplicity, arguments for the mobility (7)
are determined along edge k of an element as shown in Fig.
2. Cyclic permutations of indices generate analogous
expressions for mobility arguments along edges 7/ and j.
Mobility arguments in this general case include both
scalars and vectors. For scalar quantities, a discrete form can
be obtained simply by forming an appropriate average along
edge k. For vector quantities, obtaining the needed
magnitude and direction is more complex, potentially
requiring the use of quantities at adjacent nodes k and k’ as
well (see Fig. 2). The approach is simplified by calculating
the contributions to the current from node combinations
(ijk) and (ijk’) separately, which permits element-wise
assembly of the global matrix of equations. Finally, it is
crucial to note that to ensure local and global conservation
of charge, we must have J, depend on quantities at nodes §
and j antisymmetrically; i.e., J, must reverse sign if i and j
are interchanged in the formulation of J,. The Scharfetter-
Gummel current density expressions (6) possess this
antisymmetry property for constant mobility; hence, the
mobility calculated along edge k must be unaffected if
indices / and j are interchanged during argument evaluation.
For scalar quantities, the mobility is evaluated by
averaging along edge k. Our precept is to average the
physical quantities defined along an element edge exactly as
that quantity is defined in functional form in the overall
formulation. Accordingly, the total impurity concentration,
which in our case varies as a step function between nodes, is
averaged as
N +N,
Ny = 5 (8%)
Carner densities, in contrast, are assumed in the derivation
of the current density expressions (6) to vary exponentially
with position, and hence should be averaged accordingly.
Directly averaging the exponential form of p and n along
edge k yields

P = p,0(4) + p,Q(=4)), (92%)
= n,0(4,) + n,Q(—Ay), (9b%)
where
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1
e — 1

1
Qu) =7, ~

Lattice temperature 7T is usually assumed to be constant
throughout the device, in which case no averaging is
necessary. For T slowly varying with position, linear
interpolation can be used, but more detailed thermal effects
which involve hole and electron temperatures imply the use
of some energy balance relations, and are therefore beyond
the scope of this analysis.

Vector quantities require extraction of both magnitude
and direction from values of scalar quantities at the nodes.
Explicit dependence on position X is easily treated by using
the midpoint of edge k:

X+ X
mid 2

(10%)

X
A unit vector § is defined as being normal to the
semiconductor-insulator interface at the interface point x,

closest to X, as shown in Figure 3. The distance from the
interface is then

d, = (X — X.)-51. (11)

Potential varies linearly over the triangular element in this
formulation. The components of the electric field along
element edges i, j, k are

- \l/k—lﬁj
= F.§=——m 12
E; =E3, I (12a)
T A V=¥
§=Ew=——z—, (12b)
- ¥, =¥
E =E3§ =~- ij (12¢)

Only two of these components are independent, since they
are related by the expression

LE, + LE + LE,=0. (13)

The electric field £ may therefore be reconstructed from any
pair of components along the element edges:

— 1 . .
E==[E - pE)S + (E, — p,-Ej)sk] (14a)
9;
1 . R
= ? [(E, — p,E)S, + (E, — p,E)S] (14b)
J
1 R R
= ;_2 [(E, - pkEj)s,' + (EJ - pkE,')sj]» (I4C)
k
where

p, =58, =cosb,p =5.-5=cosf,,p =55 =cosd,

I
2

0, =8 X35 2=sinf, 0, =8 %X5.2=sing,,
o, =5 X5§-2=sind,.

The problem of determining a current direction j is made
difficult by the fact that the Scharfetter-Gummel current
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density expressions (6) lead to an ambiguous definition of
the current density J within a triangular element. The
Scharfetter-Gummel current densities along the edges are
assumed to represent average values of the components of
the current density J along the edges:

J=T5s J=d8 Jo=d5, (15)

This suggests that the current density J can be recovered
from pairs of components along the edges, as was done for
the electric field E. However, the Scharfetter-Gummel
current densities as given by (6) are all independent, since

(16)

and therefore the three possible compositions formed from
pairs of sides,

LJ,+ LJ + LJ #0,

- 1 R )

ij = ? [(Jj - pi']k)sj +(J— PiJj)sk]s (17a)

- 1 ) .

Ji= 7 [(Je = pj']i)sk +(J; - ijk)Si]’ (17b)
J

- 1 3 A

JU = ? [(-], - pk-]j)s,' + (J] - ka,')Sj]s (17C)
k

are all different. For the purpose of calculating mobility
along edge k, a vector current density J, existing in the
vicinity of edge k is required. This is obtained by a weighted
average of the two vector compositions which involve edge
k:

F = Jiidi S i
k= f,+fj

Using flux cross sections to form this average more heavily
weights the Scharfetter-Gummel current density composition
which includes the shorter of the two edges i and j; current
density along a shorter edge is assumed to be known more
accurately. By defining the weighting factors

(18%)

/;
Wy = ———s, (192%)
YL+ e
oo (19b*)
kj (f, +j})trf,
the current density 7k may be expressed as
Je=Iw,(J, — o) + wi(J, — piJj)]f‘k
+ wlJ, = 0,005 + w(J, — p, )3, (20%)
and the current direction at edge 4 is finally given by
Je= Tl Tl (1%

Since this result is normalized to unity magnitude, an
arbitrary constant mobility can be used to initially determine
Ji,J,and J,.

It is important to note that although the mobility is
expressed in terms of current and the current depends on
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Determination of distance from semiconductor-insulator interface.

mobility, the expression for current is not implicit. This is
because only the current direction affects the mobility, while
the mobility in turn affects only the current magnitude (if
the Einstein relation holds). In practice, Scharfetter-Gummel
current densities along all three edges of a triangular element
are first calculated using an arbitrary constant mobility.
From these, the current directions, obtained as outlined
above, are in turn used to determine the mobility along the
element edges. Finally, the original Scharfetter-Gummel
current densities are scaled using the values of the mobility
calculated.

e Comments on and extensions of the method

The discretization method described above for triangular
meshes can be readily applied to rectangular meshes as well.
If a triangular mesh is constructed so that the shortest edges
of each triangular element are aligned with the coordinate
directions, as shown in Figure 4, then the flux cross sections
for each diagonal element edge are zero. As a result,
Scharfetter-Gummel currents along the diagonals may be
ignored, and the mesh is effectively rectangular in nature. If
the Scharfetter-Gummel/control volume approach as
described here is applied directly to the formation of
continuity equations at (i, j) using the triangular mesh of
Fig. 4(a), coupling is to the four nearest neighbor nodes
indicated. Using the triangular mesh of Fig. 4(b), the
mobility evaluation couples to all eight neighboring nodes
indicated. As constructs of type Fig. 4(a) will not cover a
rectangular domain, our method produces variable coupling

to between four and eight nodes for a triangulation of a 293
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rectangular mesh. Techniques for discretization on
rectangular meshes are not based directly on approaches for
triangular meshes, however. Since finite difference meshes do
not contain diagonal mesh segments, neither possibility for
diagonal orientation may be favored. Since mobility along
edge (i + 1/2, j) must be unchanged whether calculated in
the context of nodal equation (i, j) or (i + 1, j) [analogously
for all four mesh directions emanating from (i, )], nodal
equation (i, /) must minimally couple to all eight nearest
neighbors, as shown in Fig. 4(b). As cited previously [19],
even larger coupling is not precluded. The mobility
formulation described generates no more nodal coupling
than a finite difference approach; in fact, coupling varies
over the rectangular mesh and is often less. This coupling is
irrelevant for decoupled methods or for approximate
Newton’s methods where mobility derivatives are not
included in the Jacobian. Small-signal ac analysis, however,
does not permit this liberty to be taken.

Although the extension of the above methods to three
dimensions is difficult in practice, it is at least
straightforward conceptually [23, 25]. Triangular mesh
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techniques could be generalized to tetrahedral meshes.
Instead, right triangular prism finite elements have been
selected. At present, this only permits 3D meshes to be
created by replication of a 2D mesh in the z-axis direction.
To date these elements have been sufficient for our needs.
This element has control volumes bounded by planar
perpendicular bisectors, with Scharfetter-Gummel current
densities flowing along element edges as before. Electric
fields are evaluated rigorously at element edge midpoints
consistent with the chosen 3D shape function for the
potential:

diplx, ¥, 2) = ay + a\x + a,y
+ a,z + a,xz + asyz. (22)

Current direction is calculated similarly to the scheme
described for current density components in the x-y plane; z-
direction current density components are appropriate
averages of the three z-directed Scharfetter-Gummel current
densities present in the 3D element.

3. Implementation and convergence
experiments

This section highlights the salient features of the FIELDAY
[22-25] simulation program that relate to the mobility
modeling of Section 2 and presents selected results of
computational experiments aimed at understanding the
convergence behavior of the program.

& Implementation

The FIELDAY device simulation program is a two- or three-
dimensional transient device simulation program based on
the Scharfetter-Gummel/control volume approach. For some
years, the program has offered both decoupled and coupled
solution approaches [27], with the coupled solution method
favored for typical device problems. As such, the coupled
method is assumed in all that follows. The Newton’s method
matrix equations are solved by using direct matrix
factorization techniques. Implementation of the mobility
formulation of Section 2 was quite straightforward in
concept. As our program also allows small-signal ac
simulation [20], most of the programming involved the
differentiation of the mobility formulation with respect to
the independent variables (¢, n, p) as required for Jacobian
formulation in the ac case. However, for non-ac simulation
needs, the code skips mobility differentiation by default. This
leads to an increase in matrix sparsity but to a decrease in
measured asymptotic convergence rate of the program, as
will be seen; however, this loss of asymptotic convergence
rate rarely penalizes the typical user, who terminates
program execution well away from truncation.

The overall goal in implementation was to isolate as much
as possible the functional form of the mobility model from
the details of model evaluation and global matrix assembly.
This has been accomplished by localizing the mobility model
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into a single FORTRAN function. For ac simulation this
function must also return partial derivatives of the mobility
with respect to all function arguments. All other aspects of
problem discretization are separate and removed from this
function, making the introduction of alternate or exploratory
mobility models simple for the typical program user.

The program currently contains eight different mobility
models selected from the literature [7-9, 12-14, 16, 28], as
well as two mobility models (15, 29] developed in-house.
Temperature dependence of the models was implemented
either as specified by the original reference or by utilizing
general expressions of temperature dependence of mobility
[10, 11]. A multiplicity of mobility models were
implemented primarily to allow direct comparisons between
published mobility models to be made easily and equitably.

o (Convergence experiments

In the early phases of program development, a severely
degraded asymptotic convergence rate was observed
whenever a mobility function was evaluated with £ =
max(E-Jj, 0). Use of this particular argument is quite
per_\:asive in mobility modeling, as it yields the component
of E in the direction of carrier current flow. Initially, Aitken
extrapolation [30] was invoked with dramatic improvement
in convergence rate; however, the real cause of our poor
convergence performance was traced to the argument itself.
Unfortunately, in regions of minute current flow (in our
case, electron current in an n-MOSFET well below the Si-
SiO, interface), where carrier concentrations much less than
the intrinsic carrier concentration are found, current
information is quite noisy. As a result, this vector dot
product is quite noisy, causing the local carrier quasi-Fermi
solution to become perturbed in response to small mobility
changes. Because our program convergence for carriers is
based on monitoring ]| An/n|. or {|Ap/pl.., which
asymptotically measures convergence of quasi-Fermi levels
(assuming converged potential), a net loss in convergence
rate was observed. This problem was quite easily rectified by
implementing a dynamic range limitation (DRL) feature in
the evaluation of this argument as follows. The program
calculates the maximum current density J,, present in the
device domain; for any current densities below a value v/,
(v ~ 10™"% for our 16.8 decimal digit arithmetic), this
problematic argument is set to zero prior to mobility
evaluation. DRL has never been observed to alter device
solutions in any meaningful way; however, roughly the same
dramatic improvement in convergence rate was obtained as
for Aitken extrapolation. Figure S depicts this initially poor
convergence rate for an n-MOSFET using mobility after
Reference 14, as well as the two improvements (Aitken and
DRL) described. The same rather crude initial guess was
used in all cases. A final curve using both Aitken and DRL
shows little net improvement over either of the two
approaches individually. Note that the companion plot of

ax
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Iteration number

{|An/n||., versus iteration number with and without Aitken extrapola-
tion and DRL.

v

Ayl versus iteration number (not shown) does not show
this behavior but rather reaches truncation (~ 10’12) in less
than 20 iterations for all four curves.

Examination of each curve in Fig. 5 shows a predictable
lack of quadratic convergence. Although Newton’s method is
being practiced here, the Jacobian matrix is assembled
neglecting derivatives of mobility with respect to
independent variables (¢, 1, p). Figure 6 clarifies this
situation for the same n-MOSFET and mobility model using
a somewhat improved initial guess for the solution. Four
curves showing the various combinations of proper du/dy
and du/on evaluation (hole continuity equation not solved in
this example) are presented. Linear convergence is observed
for all combinations where the Jacobian is based on
nonrigorous mobility differentiation, with correct
differentiation with respect to # seemingly more important
than differentiation with respect to . Quadratic convergence
is clearly demonstrated when proper Jacobian formation is
practiced. The companion plot of potential convergence
versus iteration number (not shown) shows qualitatively
similar results, except that convergence here is roughly 2-3
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O ap/d=oulon=0

0 /o= 0; dp./on correct
A /3 correct; dp/dn=0
¥ 0u/df, dwidn correct

o

llAntn]

10 [~

O Full only, no mobility derivatives
¥V Simple/full, no mobility derivatives
@ Full only, mobility derivatives
W Simple/full, mobility derivatives

©

||An/n||

10

107

it o

||An/nl|,, versus iteration number with and without inclusion of
9/ and dp/dn in the Jacobian.

Iteration number

[|An/n||,, versus iteration number with and without proper mobility
differentiation and modified Newton’s method.

iterations faster, and the case of du/on = du/dy =0
converged second fastest of the four combinations.

One final convergence experiment merits discussion. In
our case, as is often done, Jacobian assembly/matrix
factorization steps are not performed at every Newton’s step,
but rather the previously factored Jacobian is used for n
steps (here n = 2 was appropriate [31}) before a new
Jacobian is calculated. The attendant savings in matrix
assembly/factorization are traded against a potentially
slowed convergence path. Figure 7 quantifies this
expectation. Quadratic convergence is observed for both
cases where mobility differentiation was included in the
Jacobian, but convergence was slowed by using the

algorithm of executing two “simple” Newton’s steps to every
“full” step. This same conclusion holds in the case of linear
convergence resulting when mobility differentiation was
neglected in Jacobian formation. Qualitatively similar results
are seen in the companion potential convergence plot {not
shown).

Convergence results similar to those described have been
qualitatively observed with all the mobility models
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implemented to date in the program. Some models take
somewhat longer to converge to the same accuracy tolerance
when started from the same initial guess, but the differences
are not appreciable. Table 1 shows the number of iterations
and the CPU times required (on an IBM 3081) for
convergence of an n-MOSFET-biased V=14V, V=3V,
and V; = —0.75 V starting with a crude initial guess. To
expedite mobility model identification, the following
mnemonics are used to refer to the given references: VS [7],
CT [8], SG [9], TB [16], CTY [29], SGY [12], TBY [14], FO
[28], BW [15], and SS [13]. In addition, CONS denotes use
of a constant mobility. From Table 1, the fastest
convergence was for CONS in 31! iterations; the slowest for
VS in 57 iterations. Most physically interesting models
require about 45 iterations; hence, little penalty is paid for
switching between these various mobility models.

4. Computational results for short-channel
MOSFETs

Two examples of computational results from a study of
short-channel MOSFETs are discussed in order to illustrate
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the mobility modeling approach of Section 2. The model n-
MOSFET to be discussed has the following salient features:
metallurgical channel length L__, = 1.1 um, source- and
drain-substrate junctions modeled as step junctions with
Nosourcer = Noxaram = 2 X 10 cm™ and N, ., = 3.3 % 10"
em”’ single acceptor-type threshold adjust implant to yield
threshold voltage V. ~ 1 V assuming n" polysilicon gate and
t,, = 22.5 nm, T = 300 K. The computational mesh

contains 962 nodes and 1822 elements.

& Transfer characteristics

The transfer characteristic (1, versus V) at low V/, is one of
the first measurements performed during routine laboratory
characterization of MOSFETs. This plot is an excellent
indicator of inversion layer mobility and device threshold
voltage. As such, this plot illustrates the differences between
the various mobility models implemented in FIELDAY.
Figure 8 shows such a plot for the same MOSFET differing
only by the mobility model selected for the computation. In
addition to the eleven mobility models listed in Table 1,
three additional curves are shown in Fig. 8, designated by
VSx, CTx, and SGx. These mobility models are exactly the
VS, CT, and SG models, respectively, with one important
difference: A different electric field strength argument is used
to evaluate the mobility function. The eleven mobility
models in Table | have quite distinctive dependencies but
do depend on one argument in common: £ = max(E-}j, 0)
as previously introduced. One possible alternative to £,
which was previously seen to cause some convergence
problems and is complex to calculate, is as follows. Instead
of forming the vector dot product between electric field and
current flow direction at each element edge as for £,
numerical current flow is in some sense constrained to lie
along element edges. Thus, in an ad hoc fashion, one might
hypothesize that the electric field in the current flow
direction is approximated by ., the magnitude of the
electric field along an element side. E is seen to be the
absolute value of the right-hand sides of Eqgs. (12a-c). As an
added bonus to easy computation, use of £, does speed up
convergence somewhat, typically requiring 20 percent fewer
Newton’s iterations than the use of £ to evaluate the same
mobility function. Unfortunately, this argument is
admittedly nonphysical, retaining an undesirable
dependence on mesh orientation. It is the use of this
argument, E,. , with mobility functions VS, CT, and SG,
that is designated VSx, CTx, and SGx in Fig. 8.

The fourteen curves of Fig. 8 naturally fall into two
groups: those with no dependence on gate electric field (solid
lines) and those with explicit dependence on gate field
(dotted lines). Obviously, models without gate field
dependence are inappropriate for MOSFET modeling but
may be the models of choice in bipolar transistor modeling.
The relatively small differences between the solid curves are
due to the low field mobility values for electrons at the
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Table 1 Iterations and CPU time required for eleven mobility
models.
Mnemonic Iterations CPU time
(s)
CONS 31 148
VS 57 284
CT 46 257
SG 46 242
TB 46 241
CTY 47 288
SGY 46 235
TBY 40 212
FO 46 245
BW 46 273
SS 44 242

interface as given by each model. These low field mobility
values are (1) SG, SGx, TB: 659 sz/V-S; (2) CT, CTx: 646
cm’/V-s; (3) CONS, VS, VSx: 600 cm’/V-s. The ordering of
the curves agrees precisely with the order of these low field
mobility values. Note that the models using £, (x suffix)
are remarkably close to their £ counterparts.

The six remaining mobility models are all explicitly
influenced by the increase in gate field for increasing V.
This results in a transconductance degradation as Vg
increases and is reflected by the slow decrease in g, =
al,/dV,; as Vg increases in Fig. 8. Transconductance versus
V; is shown explicitly in Figure 9 for all mobility models
under the bias conditions of Fig. 8. Note that the various
mobility models show significant differences in predicted
current flow and transconductance; in all cases parametric
values for each model are as provided in the cited references.
Each model is supposedly a good fit to experimental data;
since the models disagree among themselves, a large spread
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Curve A is the result for any of the eleven mobility models of Table 1;
curve B is for mobility evaluated using £
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in the hardware which calibrated each model is implied. The
obvious conclusion is that a MOSFET mobility model must
be calibrated to a given fabrication process and potentially
recalibrated for each new technology generation.
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Data of the type shown in Fig. 8 are nearly universally
used to extract device threshold voltage. This is done by
finding the V; axis intercept of a line drawn tangent to the
device characteristic at its point of inflection (typically
occurring for V;; ~ 0.5 to 1 V above threshold). The V
intercept found is then equated to ¥} + 0.5 V. Results of
such a I} extraction for the fourteen curves of Fig. 8 are
given in Table 2. The V. values listed are very tightly
grouped, having an average value of 0.98689 V with a
standard deviation of 0.00408 V. Virtual independence of V;
from mobility is an anticipated result, as alternate definitions
of V; based on a fixed degree of band bending [32] or on an
integral of inversion charge [33] do not depend on mobility
at all. For extraction of V' as was done here, the mobility
model selected is extremely noncritical.

& Pinch-off

The preceding subsection might leave the impression that
selected simulations might be performed using £, instead
of E to evaluate mobility. While this is true in some cases,
it is certainly not universally appropriate, as will now be
seen. The occurrence of pinch-off in an n-MOSFET biased
such that Vg s V, + V., is a well-known effect. It is at this
point, at the drain end of the channel, that electrons are
forced to dip away from the Si-Si0, interface on their course
from source to drain. Electron current here consists of both
drift and diffusion components. Additionally, high electric
fields and a highly two-dimensional field pattern have made
this vicinity in the MOSFET cross section one of great
interest. Biases of V; =24V, Vy,=2V,and Vp=-075V
have been simulated for the fourteen mobility forms
discussed previously. Plots of the average electron flux path
in the vicinity of the pinch-off point have been examined
and the results fall very convincingly into two categories.
(Average electron flux path denotes the flux path above and
below which 50 percent of the electron current flows.) The
flux path of Figure 10 curve A represents the result obtained
by using any of the eleven mobility models of Table 1, i.e.,
all models except those using E,, as an argument. Figure 10
curve B shows the flux path obtained using any of the three
mobility models having E_,, as an argument. Three
important features of the problem are also shown in this
figure: (1) the point where the y-directed interface electric
field reverses sign from negative (smaller x) to positive
(larger x); (2) the point of minimum electron density at the
Si-Si0, interface denoted by * (the pinch-off point); and (3)
the location of the drain. As electrons pass the E  inflection
point while moving from source to drain, they veer into the
negative y direction. The interface electron concentration
drops markedly, reaching a minimum prior to increasing to
meet the highly doped drain (point *). Once into the highly
doped drain, electrons assume a path of minimum resistance
until collected at the (distant) drain contact. Most
noteworthy in comparing curves A and B is the extent of this
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Table 2 Threshold voltage extracted for fourteen mobility
models.

Mnemonic Ve
0

CONS 0.99130
VSx 0.98923
A 0.98968
CTx 0.98940
CcT 0.98979
SGx 0.98935
SG 0.98977
TB 0.98970
CTY 0.98162
SGY 0.98165

0.98159

0.98996

0.98191

0.98145

dip below and around the pinch-off point. Correct behavior
is given by curve A; curve B exaggerates this dip for the
following reason. The mesh in this region is rectangular in
nature, running parallel to the axis directions. For curve B,
current flow in the y-direction uses mobility based upon field
in the y-direction, which is much less than the field in the
primary current flow direction, i.e., the x-direction in this
vicinity. Accordingly, vertical currents are somewhat
exaggerated, as vertical mobilities at very nearly zero field
values are at least ten times larger than their horizontal
counterparts. Possessing enhanced vertical mobility,
electrons are self-evidently deflected deeper below the
interface in response to a very similar field strength.

In summary, although E_,, is convenient, it is
inappropriate upon examination of internal device solutions.
Although somewhat overstated, a similar conclusion applies
to any mobility modeling not striving to accurately discretize
physically motivated quantities in the evaluation of proper
mobility functional forms.

Summary
Semiconductor modeling based on the Scharfetter-Gummel/
control volume approach with generalized mobility models
has been presented. This scheme generates no more, and
often less, nodal coupling than finite difference formulations
on a rectangular mesh and supports the added flexibility of
local mesh refinement and arbitrary domain shapes without
reprogramming. Extensions of the technique to three-
dimensional device simulation are straightforward.
Expectations concerning the convergence rate of the
program have been borne out under various assumptions
concerning rigor and frequency of Jacobian assembly.
Second-order convergence was only observed when mobility
derivatives were included in the Jacobian matrix; otherwise,
only linear convergence was seen. A degraded convergence
rate was also observed and rectified, having been diagnosed
as relating to the manner in which mobility was evaluated.
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Selected computational results from a study of short-
channel MOSFETs illustrated the mobility modeling
approach introduced. Eleven different mobility functions
were exercised on an otherwise identical n-MOSFET;
although absolute drain currents and transconductances
predicted were in disagreement, extracted threshold voltages
were very similar, as expected. A simplification to mobility
evaluation approximating electric field in the direction of
current flow was suggested; however, unfavorable results
were obtained when internal distributions of carrier flux near
pinch-off were examined. Although artificially exacerbated,
this result demonstrates the appropriateness of striving for
maximum accuracy in mobility modeling through proper
discretization of physically motivated arguments.
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Appendix: List of symbols

Symbol Definition

Distance from insulator-semiconductor interface
Hole, electron diffusivities

Electric field

Electric field components along edges i (J, k)
max(E.j, 0)

Flux cross sections of triangular element for
edges i (j, k)

Hole, electron generation rates

Indices of a triangular element: counterclockwise
orientation

Unit current direction vector

Unit current direction vector extant for element
edge i (J, k)

Current density vector

Hole, electron current density vectors

Sl

©
x

Scharfetter-Gummel current densities along
element edges / (J, k)

Total current density vector extant for element
edge i (J, k)

Composition of Scharfetter-Gummel current
densities of edges p and ¢

Boltzmann constant

Lengths of element edges i (J, k)

N, + N, total impurity concentration
Average N on element edge i (J, k)

~ES
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Ny, N, Donor, acceptor impurity concentrations

J ] Hole, electron concentrations

Piaor Migjaey P(X i) (X i)

Piay» Py Average hole, electron concentrations along
element edge i (J, k)

q Electron charge

o) Carrier averaging function

R, R, Hole, electron recombination rates

$ Unit vector normal to insulator-semiconductor
interface

Sk Unit vectors along element edges / (J, k)
(counterclockwise directed)

t Time

Lo, Oxide thickness for MOSFET

T Lattice temperature

Vi Control volumes associated with vertices i (j, k)

Vs, Vb, Vi Gate, drain, substrate applied voltages for
MOSFET (Source at 0 V)

Vi MOSFET threshold voltage

Voq Weighting factors for current superpositions

X Position vector

—)Zi( ) Position vector for node i (J, k)

X, Point on insulator-semiconductor interface
closest to a position X,

z Unit vector in z coordinate direction

Z(-) Bernoulli function

8 q/kT, inverse thermal voltage

Ak Normalized potential difference ¥, — ¢; (¢, — ¥,,
¢j - ‘l’,)

Ay, An, Ap Potential, electron, hole update in Newton’s
method

€ Dielectric permittivity

050 Angle between §, §, (3, 35 5, §)

By My Hole, electron mobilities

TR Average mobility on element edge i (J, k)

Pk Dot products of unit element edge vectors

m Cross products of unit element edge vectors
Electrostatic potential

hel, Maximum norm of function £, i.e., max (] £|)
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