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A method  for  discretizing  the  semiconductor 
transport  equations  using  generalized  mobility 
models  is  developed as an  extension of  the 
Scharfetter-Gummel  finite  difference  approach. 
The  method  is  sufficiently  general  to  be 
applicable  to  nearly  arbitrary  empirical  mobility 
models  (including  those  for MOS surface 
effects) and  may be used on a  variety of  mesh 
types  in  two  or  three  dimensions.  The  impact  of 
generalized mobility  models  on  the  sparsity  of 
our  resulting discrete  equations  is  discussed. 
Convergence  rate of a  Newton’s  method 
linearization of the nonlinear  system of 
equations  is  measured  and  interpreted.  Some 
computational  results  from  a  study  of  short- 
channel  MOSFETs  are  presented  to  illustrate  the 
approach. 

1. Introduction 
Many physical models have been proposed  for the 
simulation of different classes of semiconductor devices, and 
a  correspondingly wide range of  numerical  algorithms have 
been developed to  obtain solutions  for practical device 
analysis [ 1-51, The  approach which is the most successful, 
however, in  terms of generality and practicality, and is 
certainly the most widely used, is the macroscopic  model 
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involving the  semiconductor  transport  equations [6]. The 
model  describes  electrostatic fields in terms of the Poisson 
equation, charge  conservation in  terms of continuity 
equations, and  transport properties due  to drift and diffusion 
in terms of hole and electron current  transport equations. 

Analysis of the behavior of small  (submicron  geometry) 
devices for VLSI has revealed the necessity of  incorporating 
into  the model  descriptions of nonlinear  transport properties 
due  to special scattering processes, camer heating, 
quantization effects, etc.  These physical phenomena 
probably  represent the limits  of validity of the macroscopic 
model itself, and  the model  may  eventually  have to be 
replaced with a  microscopic quantum  transport theory. 
However, until the  conduction mechanisms are better 
understood and faster solution  algorithms are developed, the 
most  practical approach is to  improve  the macroscopic 
model by introducing nonlinear,  empirical  mobility  relations 
into  the  current  transport  equations.  The earliest mobility 
models attempted  to  account for bulk effects, such  as 
velocity saturation  and  impurity scattering, by introducing 
dependence  on electric field magnitude, doping density, and 
lattice temperature [7-1 I]. Some mobility  models also 
describe MOS  surface conduction.  This is done by a 
dependence  on  components of the electric field relative to 
current direction and surface orientation,  dependence  on 
position  within the device to describe surface scattering, and 
dependence on camer density to  account for screening 
effects [ 12- 151. The physical appropriateness of such  models 
has also been discussed [ 161. 

equations via finite differences (Scharfetter-Gummel 
approach [9]) or finite elements, and their  subsequent 
solution using coupled or decoupled  techniques, have been 
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widely  discussed in the literature [6,  17, 181. While  physically 
motivated mobility models have  usually  been a part of these 
previous works,  issues involved in mobility model evaluation 
in the discrete environment have  usually  been  glossed over. 
This lack  of completeness has often been attributed to the 
relatively  weak variation in mobility values compared to, 
say, camer concentrations or  current densities. However,  as 
one goal of device simulation is increasing understanding of 
internal device behavior, physically motivated mobility 
models must be properly discretized. Where statements 
about mobility evaluation have  been made [ 191, mobility 
evaluation for the continuity equation at ( i ,  j )  seems to 
introduce excessive nodal coupling, namely to ( i  f 1, j f I), 
( i  f 2, j ), and ( i, j -+ 2), in addition to the usual four nearest 
nodes to ( i ,  j )  (notation as in Fig. 4, shown later). While this 
coupling can be irrelevant in decoupled solution methods or 
in approximate Newton's methods which do not differentiate 
mobility when assembling the Jacobian matrix, a rigorous 
Jacobian matrix evaluation is essential to correct small-signal 
ac simulation [20,21]. Our formulation allows proper 
accuracy to be attained with  less nodal coupling than cited 
above. Our development of physically motivated mobility 
models  is  in the context of a well-known  hybrid finite 
element-finite difference discretization scheme [22-251 and is 
therefore applicable to arbitrary device shapes and mesh 
refinements. 

In this paper, a discretization method extending the 
290 Scharfetter-Gummel finite difference approach is  first 

reviewed in Section  2. Discretization of  generalized mobility 
models possessing quite arbitrary functional forms is 
introduced. Next, the impact of  generalized mobility models 
on sparsity and convergence rate of the discrete equations is 
discussed in Section 3. Finally, some computational results 
from a study of short-channel MOSFETs are presented in 
Section 4 to illustrate our amroach. 

2. Discretization 
This section begins by stating the  continuum equations 
taken as describing semiconductor device behavior. A review 
of the Scharfetter-Gummel/control volume approach to the 
discretization of these equations follows. The discrete form 
of a quite arbitrary mobility model is described  next within 
the context of our chosen discretization scheme. The final 
subsection presents comments specific to rectangular meshes 
and describes the straightforward extension of this two- 
dimensional formulation to three dimensions. 

Continuum equations 
The semiconductor transport equations consist of the 
Poisson equation 

V . ( E V ~ )  = -g(p - n + ND - N J ,  (1) 

together with the continuity equations for  holes and 
electrons, 

The hole and electron current densities are assumed to be 
given  by the equations 

The Einstein relation between  diffusivities and mobilities is 
assumed to hold: 

D = -  kT 
4 

F .  

Notation in this section  is standard. The reader is  referred to 
the list of symbols in the Appendix. 

The Scharfetter-Gummel/control volume approach 
The above equations are discretized by a hybrid  finite 
element-finite difference method [22-251 using the 
Scharfetter-Gummel approach [9] for computing camer 
current densities. The discretization methods are discussed 
in the context of a nonuniform, two-dimensional triangular 
mesh. 

The discretization of the Poisson equation (1) is 
independent of the mobility model  used, and since 
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techniques  for the discretization  of  elliptic  partial differential 
equations  are widely known, they  are  not described here. It 
suffices to  note  that since the Poisson equation is coupled to 
the  remaining  equations,  the charge weighting scheme used 
for the Poisson equation  must be identical to  the  one used 
for  the  continuity  equations. As long as this  identity  is 
satisfied, a finite element  approach  can be used for the 
Poisson equation even  though finite differences are used to 
discretize the  current  continuity equations. 

of “control  volumes.” The discrete form of the divergence 
operator in the  continuity  equations is  derived by assigning 
to  each  node  in  the mesh a control volume. The  volume is 
bounded by the perpendicular  bisectors of all element edges 
emanating  from a given node, as shown in Figure 1. 
Currents entering or leaving the  control  volume  through  the 
perpendicular  bisectors  (considered as flux cross sections) are 
then  summed  and set equal to  the  rate of change of camer 
density at  the node, weighted by the  control volume. 
Summing over all elements e( i )  which contain node i, the 
result  is (see Figure 2 for element  notation) 

The  continuity  equations (2) are treated  using the  method 

Here, J: (4) is the hole  (electron) current density flowing 
along the side k in a  counterclockwise  direction and f, is the 
flux cross  section  for the side k (similarly for  side j ) .  v,  is the 
control  volume associated with the  node i. Gf,   Rf ,  and 
api/at are  the  functions G,, R,, and appt evaluated at node i 
(similarly for CY, R:, and ani/at). A time stepping  algorithm 
is used to  convert  the  time derivatives to discrete form; in 
our case fully implicit time discretization is employed. 

Although Jk may be viewed as  the  current density flowing 
from  node i to  node j (J , :  j + k;  4: k + i ) ,  J, is  actually an 
averaged value of the projection  of the  current density 7 
onto a unit vector in  the direction  of the mesh edge i + j ,  
e.g., 7. S,. A  discrete form of the  transport  equations (3) 
giving the  current density Jk was derived originally by 
Scharfetter and  Gummel[9],  and extended to two 
dimensions by Slotboom [26]. By assuming that  the 
components of the electric field E and  current density 7 
along an edge are varying sufficiently slowly to be treated as 
constant along the edge, the  current  transport  equation (3b) 
can be reduced to a  one-dimensional,  linear, first-order 
ordinary differential equation for the  camer density n 
[similarly (3a)  for holes]. This  equation  can be integrated to 
yield n along  the  element edge, and by setting n ( 2 J  = n, at 
the nodes [p(<,) = p ,  for holes], the following equations 
may be derived  for the Scharfetter-Gummel current densities 
Jk : 

where 

b: ( i i )  is the average hole  (electron)  mobility  along edge k, 
which is of length L,, and P is the inverse thermal voltage 
q/kT. [The asterisk in equation  numbers here and later 
indicates that  the  equation is equally valid with a cyclic 
permutation of indices of the two-dimensional element; i.e., 
( i ,  j ,  k )  can be replaced with ( j ,  k, i )  or ( k ,  i, j ) . ]  

0 Discrete form ofgeneralized  mobility  models 
To incorporate a generalized mobility into  the Scharfetter- 
Gummel  formulation, consider the electron  mobility  model - 
pLn = PJE, j ,  S, 2, N,  n, T ) ,  (7 )  

where E is the electric field, j the unit current density 
direction  vector, S the  unit  normal  to  an insulator- 
semiconductor interface, ; is position, and N,  n, and  Tare 
doping,  electron  density, and  temperature, respectively. 

electric field components relative to  current direction 

- 

This  form is sufficiently general to  include  dependence  on 
29 1 
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(E . j ,  E : j ) ,  surface orientation ( E . $  E X S),  or some 
hybrid [ (E  X j ) .(S X j )  (see [13])]. In addition, explicit 
dependence on position 2 and  the standard dependencies on 
doping density N, camer concentration n (or p for  hole 
mobility), and lattice temperature T are included. The 
approach used is to derive appropriate discrete 
representations for the average along an element edge  of 
each mobility argument and  to then substitute these 
expressions into the functional form of the mobility. This 
discrete average mobility along an element edge  is then used 
in the Scharfetter-Gummel current density expressions (6). 
The overall method is thus independent of the specific form 
of the mobility model  used, as given in (7). To be quite 
specific, and for simplicity, arguments for the mobility (7) 
are determined along edge k of an element as shown in Fig. 
2. Cyclic permutations of indices generate analogous 
expressions for mobility arguments along edges i and j .  

Mobility arguments in this general case include both 
scalars and vectors. For scalar quantities, a discrete form can 
be obtained simply by forming an appropriate average along 
edge k. For vector quantities, obtaining the needed 
magnitude and direction is more complex, potentially 
requiring the use  of quantities at adjacent nodes k and k' as 
well (see  Fig. 2). The approach is  simplified by calculating 
the contributions to the current from node combinations 
( i jk)  and ( i j k ' )  separately, which permits element-wise 
assembly  of the global matrix of equations. Finally, it  is 
crucial to note that to ensure local and global conservation 
of charge, we must have Jk depend on quantities at nodes i 
and j antisymmetrically; i.e., Jk must reverse  sign if i and j 
are interchanged in the formulation of Jk. The Scharfetter- 
Gummel  current density expressions (6) possess this 
antisymmetry property for constant mobility; hence, the 
mobility calculated along edge k must be unaffected if 
indices i and j are interchanged during argument evaluation. 

For scalar quantities, the mobility is evaluated by 
averaging along edge k. Our precept is to average the 
physical quantities defined along an element edge  exactly  as 
that  quantity is  defined  in functional form in the overall 
formulation. Accordingly, the total impurity concentration, 
which  in our case  varies as a step function between nodes, is 
averaged  as 

" 

- N J  + NJ 
N ,  = - 

2 .  
Camer densities, in contrast, are assumed in the derivation 
of  the current density expressions (6) to vary exponentially 
with position, and hence should be averaged accordingly. 
Directly  averaging the exponential form  of p and n along 
edge k yields 

P k  = p,Q(Ak)  P , Q ( - A k ) ,  (9a*) 

f i k  = n,Q(Ak)  + n,Q( -Ak) ,  (9b*) 

Lattice temperature Tis usually assumed to be constant 
throughout the device, in which  case no averaging is 
necessary. For T slowly  varying  with position, linear 
interpolation can be  used, but more detailed thermal effects 
which involve hole and electron temperatures imply the use 
of some energy balance relations, and are therefore beyond 
the scope  of this analysis. 

Vector quantities require extraction of both magnitude 
and direction from values  of scalar quantities at the nodes. 
Explicit dependence on position is easily treated by using 
the midpoint of  edge k:  

- x i  + x, 
x .  =- mtd 2 .  

A unit vector S is defined as being normal to  the 
semiconductor-insulator interface at the interface point ?s 

closest to ;mid, as shown in Figure 3. The distance from the 
interface is then 

d, = I(x,,~ - x,).SI. 
- - 

( 1  1) 

Potential varies  linearly over the triangular element in this 
formulation. The components of the electric field along 
element edges i, j ,  k are 

Only  two of these components are independent, since they 
are related by the expression 

L,E, + L,E, + LkEk = 0. (13) 

The electric field E may therefore be reconstructed from any 
pair of components along the element edges: 

- 

1 

a! 
2 = 7 [ (E,  - P I E k ) S J  + ( E k  - P i E ~ ) S k l  ( 144 

where 

p, = s ~ . s ,  = COS e,, p k  = s,.s, = COS ekr p ,  = s,.s, = cos e,, " 

0, = S, X S k . i  = sin 0,. 

The problem of determining a current direction j is made 
where  difficult by the fact that  the Scharfetter-Gummel current 292 
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density expressions(-6) lead to  an  ambiguous definition of 
the  current density J within  a  triangular element.  The 
Scharfetter-Gummel current densities  along the edges are 
assumed  to represenf average values  of the  components of 
the  current density J along the edges: 

J ,  = J . S , ;  J, = J . i J ;   J ,  = J . S , .  

This suggests that  the  current density J can be recovered 
from  pairs  of com_ponents along the edges, as was done for 
the electric field E. However, the Scharfetter-Gummel 
current densities  as given by (6) are all independent, since 

L , J ,  + L,JJ + L,J, # 0, (16) 

and therefore the  three possible compositions formed  from 
pairs of sides, 

- - + 

( 1 5 )  
+ 

are all different. For  the purpose  of casulating mobility 
along edge k, a vector current density J ,  existing in the 
vicinity of edge k is  required. This is obtained by a weighted 
average of the two vector compositions which involve edge 
k:  

Using flux cross  sections to form this average more heavily 
weights the Scharfetter-Gummel current density  composition 
which includes  the  shorter of the  two edges i andj ;  current 
density  along  a shorter edge is assumed to be known more 
accurately. By defining the weighting factors 

( I9a*) 

the  current density J ,  may be expressed as 
- 

+ 

J k  = [ w k , ( J k  - P J ~ , )  + w k / ( J k  - P , J / ) l s k  

+ W k , ( J ,  - P J J k ) j ,  + WkJ(JJ - P , J k ) S J ,  (20*) 

and  the  current direction  at edge k is finally given by 

j ,  = 7k/t7kt. ( 2  I*) 

Since this result is normalized to unity  magnitude, an 
arbitrary  constant mobility can  be used to initially determine 
J, , Jl,  and J,  . 

It is important  to  note  that  although  the mobility is 
expressed in terms of current  and  the  current  depends  on 
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4 Determination of  distance from aerniconductor-insulator interface. 

mobility, the expression  for current is not implicit. This is 
because only the  current direction affects the mobility, while 
the mobility  in turn affects only the  current magnitude (if 
the Einstein  relation holds). In practice, Scharfetter-Gummel 
current densities  along all three edges of  a  triangular element 
are first calculated using an  arbitrary  constant mobility. 
From these, the  current directions,  obtained  as  outlined 
above, are in turn used to  determine  the mobility  along the 
element edges. Finally, the original Scharfetter-Cummel 
current densities are scaled using the values of the mobility 
calculated. 

Comments on and extensions of the method 
The discretization method described above for triangular 
meshes can be readily applied to rectangular  meshes as well. 
If a  triangular  mesh  is  constructed so that  the shortest edges 
of  each  triangular element  are aligned with the  coordinate 
directions, as shown in Figure 4, then  the flux cross  sections 
for each diagonal element edge are zero. As a result, 
Scharfetter-Cummel  currents  along  the diagonals  may be 
ignored, and  the mesh is effectively rectangular  in  nature. If 
the Scharfetter-Gummel/control volume approach as 
described here is applied  directly to the  formation of 
continuity  equations  at ( i ,  j )  using the triangular mesh of 
Fig. 4(a),  coupling is to  the  four nearest neighbor  nodes 
indicated. Using the triangular mesh of Fig. 4(b), the 
mobility  evaluation  couples to all eight neighboring  nodes 
indicated. As constructs of type Fig. 4(a) will not cover  a 
rectangular domain,  our  method produces variable coupling 
to between four  and eight nodes  for  a  triangulation of a 293 
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rectangular mesh. Techniques for discretization on 
rectangular meshes are not based directly on approaches for 
triangular meshes,  however. Since finite  difference  meshes do 
not contain diagonal mesh segments, neither possibility  for 
diagonal orientation may  be favored. Since mobility along 
edge ( i  + 1/2, j )  must be unchanged whether calculated in 
the context of nodal equation (i, j )  or ( i  + 1, j )  [analogously 
for  all four mesh directions emanating from (i, j ) ] ,  nodal 
equation (i, j )  must minimally couple to all  eight  nearest 
neighbors, as shown  in  Fig. 4(b). As cited previously [ 191, 
even  larger coupling is not precluded. The mobility 
formulation described generates no more nodal coupling 
than a finite  difference approach; in fact, coupling vanes 
over the rectangular mesh and is often less. This coupling is 
irrelevant for decoupled methods or for approximate 
Newton’s methods where mobility derivatives are not 
included in the Jacobian. Small-signal ac analysis,  however, 
does not permit this liberty to be taken. 

dimensions is  difficult in practice, it  is at least 
Although the extension of the above methods to three 

294 straightforward conceptually [23,25]. Triangular mesh 
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techniques could be generalized to tetrahedral meshes. 
Instead, right triangular prism finite elements have  been 
selected. At present, this only permits 3D meshes to be 
created by replication of a 2D mesh in the z-axis direction. 
To date these elements have  been  sufficient  for our needs. 
This element has control volumes bounded by planar 
perpendicular bisectors,  with Scharfetter-Gummel current 
densities flowing along element edges as before.  Electric 
fields are evaluated rigorously at element edge midpoints 
consistent with the chosen 3D shape function for the 
potential: 

4 3 &  Y, z )  = a, + a,x + a,Y 

+ a,z + a,xz + a,yz. 

Current direction is calculated similarly to the scheme 
described for current density components in the x-y plane; z- 
direction current density components are appropriate 
averages  of the three z-directed Scharfetter-Gummel current 
densities present in the 3D element. 

3. Implementation  and  convergence 
experiments 
This section highlights the salient features of the FIELDAY 
[22-251 simulation program that relate to the mobility 
modeling of Section 2 and presents selected  results  of 
computational experiments aimed at understanding the 
convergence behavior of the program. 

Implementation 
The FIELDAY  device simulation program is a two- or three- 
dimensional transient device simulation program based on 
the Scharfetter-Gummel/control volume approach. For some 
years, the program has offered both decoupled and coupled 
solution approaches [27], with the coupled solution method 
favored  for typical device problems. As such, the coupled 
method is assumed in all that follows. The Newton’s method 
matrix equations are solved by using direct matrix 
factorization techniques. Implementation of the mobility 
formulation of  Section 2 was quite straightforward in 
concept. As our program also allows  small-signal ac 
simulation [20], most of the programming involved the 
differentiation of the mobility formulation with  respect to 
the independent variables (+, n, p )  as required for Jacobian 
formulation in the ac case.  However,  for non-ac simulation 
needs, the code skips mobility differentiation by default. This 
leads to  an increase in matrix sparsity but to a decrease in 
measured asymptotic convergence rate of the program, as 
will be seen; however, this loss of asymptotic convergence 
rate rarely  penalizes the typical user,  who terminates 
program execution well  away from truncation. 

as possible the functional form of the mobility model from 
the details of  model evaluation and global matrix assembly. 
This has  been accomplished by localizing the mobility model 

The overall  goal in implementation was to isolate as much 
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into a single FORTRAN function. For  ac  simulation this 
function  must also return partial  derivatives  of the mobility 
with respect to all function  arguments. All other aspects  of 
problem  discretization are separate and removed from this 
function,  making  the  introduction of alternate  or exploratory 
mobility  models  simple for the typical program user. 

The program currently  contains eight different mobility 
models selected from  the literature [7-9, 12-14, 16,281, as 
well as  two  mobility  models [ 15,291 developed  in-house. 
Temperature  dependence of the models was implemented 
either  as specified by the original reference or by utilizing 
general expressions  of temperature  dependence of  mobility 
[ 10, 1 11. A  multiplicity of mobility  models were 
implemented primarily to allow  direct comparisons between 
published  mobility  models to be made easily and equitably. 

Convergence experiments 
In the early phases of  program  development,  a severely 
degraded asymptotic convergence  rate was observed 
whene_ver a mobility function was evaluated with E = 

max(E.j, 0). Use  of  this  particular argument is quite 
peTasive in  mobility  modeling,  as  it yields the  component 
of E in  the direction  of  carrier current flow. Initially,  Aitken 
extrapolation [30] was invoked with dramatic  improvement 
in  convergence  rate; however, the real cause  of our  poor 
convergence performance was traced to  the  argument itself. 
Unfortunately, in regions of minute  current flow (in our 
case, electron current  in  an n-MOSFET well below the Si- 
SiO, interface), where  carrier concentrations  much less than 
the  intrinsic  carrier  concentration  are  found,  current 
information is quite noisy. As a result, this vector dot 
product is quite noisy, causing the local carrier  quasi-Fermi 
solution to become perturbed in  response to small  mobility 
changes. Because our program  convergence  for  carriers is 
based on  monitoring ~ ~ A n / r ~ ~ ~ ~  or IlAp/pll,, which 
asymptotically  measures  convergence  of  quasi-Fermi levels 
(assuming converged  potential), a net loss in convergence 
rate was observed. This problem was quite easily rectified by 
implementing a dynamic range limitation  (DRL) feature  in 
the evaluation  of this  argument  as follows. The program 
calculates the  maximum  current density J,,, present  in the 
device domain; for any  current densities below a value rJ,, 
(y - for our 16.8 decimal digit arithmetic),  this 
problematic  argument is set to zero  prior to mobility 
evaluation. DRL has never been observed to alter device 
solutions in any meaningful way; however, roughly the  same 
dramatic  improvement in convergence rate was obtained as 
for Aitken  extrapolation. Figure 5 depicts  this initially poor 
convergence  rate  for an n-MOSFET using mobility  after 
Reference 14, as well as  the  two  improvements (Aitken and 
DRL) described. The  same  rather  crude initial guess was 
used in all cases. A final curve using both  Aitken and DRL 
shows little net improvement over  either of the two 
approaches individually. Note  that  the  companion plot of 

IIA+II, versus iteration  number  (not shown) does  not show 
this  behavior  but rather reaches truncation (-l0-l2) in less 
than 20 iterations for all four curves. 

Examination of each  curve in Fig. 5 shows a  predictable 
lack of quadratic convergence.  Although Newton’s method is 
being practiced here, the  Jacobian matrix is assembled 
neglecting derivatives of mobility with respect to 
independent variables (+, n, p ) .  Figure 6 clarifies this 
situation  for the  same n-MOSFET and mobility  model using 
a  somewhat improved initial guess for the solution. Four 
curves  showing the various combinations of proper aFJa$ 

and &/an evaluation  (hole continuity  equation  not solved in 
this  example) are presented.  Linear convergence is observed 
for all combinations where the Jacobian is based on 
nonrigorous  mobility  differentiation, with correct 
differentiation with respect to n seemingly more  important 
than differentiation with respect to +. Quadratic convergence 
is clearly demonstrated when proper  Jacobian formation is 
practiced. The  companion plot  of  potential convergence 
versus iteration number  (not  shown) shows qualitatively 
similar results, except that convergence  here is roughly 2-3 
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5 10 15 20 25 

Iteration  number 

iterations faster, and  the case of aj&n = &/a$ = 0 
converged  second fastest of the  four  combinations. 

One final convergence experiment merits  discussion. In 
our case, as is often done,  Jacobian assembly/matrix 
factorization  steps are  not performed at every Newton’s  step, 
but  rather  the previously factored Jacobian is used for n 
steps  (here n = 2 was appropriate [ 3 I]) before a new 
Jacobian is calculated. The  attendant savings in matrix 
assembly/factorization are  traded against a potentially 
slowed convergence  path. Figure 7 quantifies  this 
expectation. Quadratic convergence is observed for  both 
cases where mobility  differentiation was included  in the 
Jacobian,  but convergence was slowed by using the 
algorithm of executing two “simple” Newton’s steps to every 
“full”  step. This  same conclusion  holds in  the case of linear 
convergence  resulting  when  mobility  differentiation was 
neglected in  Jacobian  formation. Qualitatively  similar  results 
are seen in  the  companion potential  convergence  plot (not 
shown). 

Convergence  results  similar to those  described  have  been 
296 qualitatively observed with all the mobility  models 

1 0 Full only, no mobility  derivatives V Simplelfull, no mobility  derivatives 
0 Full only,  mobility  derivatives 
V Simple/full, mobility  derivatives 

8 - - 
x . 
- 2 - 

$ llAnlnllm versus iteration  number  with  and without proper mobility 1 differentiation and modified Newton’s method. 

implemented  to  date  in  the program. Some models take 
somewhat longer to converge to  the  same accuracy  tolerance 
when  started from  the  same initial guess, but  the differences 
are  not appreciable. Table 1 shows the  number of  iterations 
and  the CPU times required (on  an IBM  308 1) for 
convergence  of an n-MOSFET-biased VG = 1.4 V, VD = 3 V, 
and VB = -0.75 V starting  with a crude initial guess. To 
expedite  mobility model identification, the following 
mnemonics  are used to refer to  the given references: VS [7], 
CT [8], SG [9], TB [ 161, CTY [29], SGY [ 121, TBY [ 141, FO 
[28], BW [ 151, and SS [ 131. In  addition,  CONS  denotes use 
of a constant mobility. From  Table 1 ,  the fastest 
convergence was for CONS  in 3 1 iterations; the slowest for 
VS in 57 iterations.  Most physically interesting  models 
require about 45 iterations;  hence,  little  penalty is paid  for 
switching between these  various  mobility models. 

4. Computational  results for short-channel 
MOSFETs 
Two examples  of computational results from a study of 
short-channel MOSFETs are discussed in  order  to illustrate 
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the mobility  modeling approach of  Section 2. The model n- 
MOSFET  to be discussed has the following salient features: 
metallurgical channel length L,,, = 1.1 pm, source- and 
drain-substrate junctions modeled  as  step junctions with 
Nqyme, - Nqdrain, = 2 x 10 cm-3 and NA(sub) = 3.3 x 10’’ 
cm , single acceptor-type  threshold  adjust implant  to yield 
threshold voltage VT - I V assuming  n+ polysilicon gate and 
to, = 22.5 nm, T = 300 K. The  computational mesh 
contains 962 nodes and 1822 elements. 

20 - 

Transfer characteristics 
The transfer  characteristic ( I D  versus VG) at low VD is one of 
the first measurements performed during  routine laboratory 
characterization of MOSFETs. This plot is an excellent 
indicator of inversion layer mobility and device threshold 
voltage. As such,  this  plot illustrates the differences between 
the various  mobility  models implemented  in FIELDAY. 
Figure 8 shows such  a  plot  for the  same  MOSFET differing 
only by the mobility  model selected for the  computation.  In 
addition  to  the eleven mobility  models listed in  Table 1, 
three  additional curves are shown in Fig. 8, designated by 
VSx, CTx,  and SGx. These  mobility  models are exactly the 
VS, CT,  and SG models, respectively, with one  important 
difference: A different electric field strength argument is used 
to evaluate the mobility function.  The eleven mobility 
models  in  Table 1 have quite distinctive dependencies-but 
do depend  on  one  argument in common: Ell = max(E.j, 0) 
as previously introduced.  One possible alternative to E , 
which was previously seen to cause some convergence 
problems and is complex  to calculate, is as follows. Instead 
of  forming the vector dot  product between electric field and 
current flow direction at each element edge as  for E , 
numerical current flow is in some sense constrained to lie 
along element edges. Thus, in an ad hoc fashion, one might 
hypothesize that  the electric field in  the  current flow 
direction is approximated by ESlde, the  magnitude of the 
electric field along  an  element side. Estde is seen to be the 
absolute value of the right-hand sides of Eqs. ( 12a-c). As an 
added  bonus  to easy computation, use of Eside does speed up 
convergence  somewhat, typically requiring 20 percent fewer 
Newton’s iterations than  the use of Ell to evaluate the  same 
mobility function. Unfortunately,  this argument is 
admittedly nonphysical,  retaining an undesirable 
dependence  on mesh orientation. It is the use of this 
argument, ESlde, with mobility functions VS, CT,  and SG. 
that is designated VSx, CTx,  and SGx in Fig. 8. 

The fourteen  curves of Fig. 8 naturally fall into two 
groups: those with no dependence on gate electric field (solid 
lines) and those with explicit dependence  on gate field 
(dotted lines). Obviously,  models  without gate field 
dependence  are  inappropriate for MOSFET modeling  but 
may be the models  of  choice in bipolar  transistor  modeling. 
The relatively small differences between the solid curves are 
due  to  the low field mobility values for  electrons at  the 
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0.3 
No gate field dependence 

0.2 

0. I 

0 
I 2  3 4 

Table 1 Iterations  and CPU time required for eleven mobility 
models. 

Mnemonic Iterations CPU time 
(S) 

CONS 
vs 
CT 
SG 
TB 
CTY 
SGY 
TBY 
FO 
BW 
ss 

31 
51 
46 
46 
46 
41  
46 
40 
46 
46 
44 

148 
284 
251 
242 
24 I 
288 
235 
212 
245 
273 
242 

interface  as given by each  model.  These low field mobility 
values are (1) SG, SGx, TB: 659 cm*/V-s; (2) CT, CTx: 646 
cm2/V-s; (3) CONS, VS,  VSx: 600 cm2/V-s. The ordering  of 
the curves agrees precisely with the  order of these low  field 
mobility values. Note that  the models using Eslde (x  suffix) 
are remarkably close to their Ell counterparts. 

The six remaining mobility  models are all explicitly 
influenced by the increase  in  gate field for  increasing VG. 
This results in  a transconductance degradation as VG 
increases and is reflected by the slow decrease in g,,, = 

dID/dVG as VG increases  in Fig. 8. Transconductance versus 
VG is shown explicitly in Figure 9 for all mobility  models 
under  the bias conditions of Fig. 8. Note that  the various 
mobility models  show significant differences in  predicted 
current flow and  transconductance; in all cases parametric 
values for each model are as  provided  in the cited references. 
Each model is supposedly  a  good fit to experimental data; 
since the models disagree among themselves, a large spread 
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- 
. - -" " No gate  field dependence 

Gate field dependence 
- V,=O.lO v 

SG, SGx, TB CT,  CTx CONS 

----"--""_________ 
BW 

""_ 
""" 

SS 

I I I I I I 
1 2 3 4 

S G D  

"E,,  < O"Ey > 0- Si - SiO, , interface 

x axis (km) 

/x. I 
~~~~~ L A %  b A b  

I '. Average  electron flux path in the  pinch-off  region of an  n-MOSFET. 
f i  Curve A is the  result  for  any  of  the  eleven  mobility models of Table 1; 

in the hardware which calibrated each model is implied. The 
obvious conclusion is that a MOSFET mobility model must 
be calibrated to a given fabrication process and potentially 

298 recalibrated for each new technology generation. 
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Data of the type shown in Fig. 8 are nearly universally 
used to extract device threshold voltage. This is done by 
finding the VG axis intercept of a line drawn tangent to the 
device characteristic at its point of inflection (typically 
occumng for VG - 0.5 to 1 V above threshold). The VG 
intercept found is then equated to V, + 0.5 V,. Results of 
such a V, extraction for the fourteen curves of  Fig. 8 are 
given in Table 2. The V, values  listed are very  tightly 
grouped, having an average value of 0.98689 V with a 
standard deviation of 0.00408 V. Virtual independence of V, 
from mobility is an anticipated result, as alternate definitions 
of V, based on a fixed  degree  of band bending I321 or on  an 
integral of inversion charge [33] do not depend on mobility 
at all. For extraction of V, as was done here, the mobility 
model  selected is extremely noncritical. 

Pinch-off 
The preceding subsection might leave the impression that 
selected simulations might be performed using Eside instead 
of E to evaluate mobility. While this is true in some cases, 
it  is certainly not universally appropriate, as will  now be 
seen. The occurrence of  pinch-off in an n-MOSFET biased 
such that VG 5 V, + V, is a well-known  effect. It is at this 
point, at the drain end of the channel, that electrons are 
forced to  dip away from the Si-SiO, interface on their course 
from source to drain. Electron current here consists of both 
drift and diffusion components. Additionally, high electric 
fields and a highly two-dimensional field pattern have made 
this vicinity in the MOSFET cross section one of great 
interest. Biases  of VG = 2.4 V, VD = 2 V, and VB = -0.75 V 
have been simulated for the fourteen mobility forms 
discussed  previously. Plots of the average electron flux path 
in the vicinity  of the pinch-off point have  been examined 
and the results fall  very convincingly into two categories. 
(Average electron flux path denotes the flux path above and 
below  which 50 percent of the electron current flows.) The 
flux path of Figure 10 curve A represents the result obtained 
by using any of the eleven mobility models of Table 1, i.e., 
all models except those using Eside as an argument. Figure 10 
curve B shows the flux path obtained using any of the three 
mobility models having Eside as an argument. Three 
important features of the problem are also shown in this 
figure: ( I )  the point where the y-directed interface electric 
field  reverses  sign from negative (smaller x) to positive 
(larger x ) ;  (2) the point of minimum electron density at the 
Si-SiO, interface denoted by * (the pinch-off point); and (3) 
the location of the  drain. As electrons pass the E,, inflection 
point while moving from source to drain, they veer into the 
negative y direction. The interface electron concentration 
drops markedly, reaching a minimum prior to increasing to 
meet the highly doped drain (point *). Once into the highly 
doped drain, electrons assume a path of minimum resistance 
until collected at the  (distant) drain contact. Most 
noteworthy in comparing curves A and B is the extent of this 
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Table 2 Threshold  voltage  extracted  for  fourteen mobility 
models. 

Mnemonic VT 

(VI 

CONS 0.99 I30 
v s x  0.98923 
vs 0.98968 
CTx 0.98940 
CT 0.98979 
SGx 0.98935 
SG 
TB 

0.98971 
0.98970 

CTY 0.98 162 
SGY 0.98165 
TBY 0.98 I59 
FO 0.98996 
BW 
ss 

0.98191 
' 0.98145 

dip below and around the pinch-off point. Correct behavior 
is given  by curve A; curve B exaggerates this dip for the 
following  reason. The mesh in this region is rectangular in 
nature, running parallel to  the axis directions. For curve B, 
current flow in the y-direction uses mobility based upon field 
in the y-direction, which  is much less than  the field in the 
primary current flow direction, i.e., the x-direction in this 
vicinity.  Accordingly,  vertical currents are somewhat 
exaggerated, as vertical mobilities at very nearly zero field 
values are at least ten times larger than their horizontal 
counterparts. Possessing enhanced vertical mobility, 
electrons are self-evidently  deflected deeper below the 
interface in  response to a very similar field strength. 

In summary, although Eside is convenient, it  is 
inappropriate upon examination of internal device solutions. 
Although somewhat overstated, a similar conclusion applies 
to any mobility modeling not striving to accurately discretize 
physically motivated quantities in the evaluation of proper 
mobility functional forms. 

Summary 
Semiconductor modeling based on  the Scharfetter-Gummel/ 
control volume approach with  generalized mobility models 
has been presented. This scheme generates no more, and 
often less, nodal coupling than finite  difference formulations 
on a rectangular mesh and supports the added flexibility of 
local  mesh refinement and arbitrary domain shapes without 
reprogramming. Extensions of the technique to three- 
dimensional device simulation are straightforward. 

Expectations concerning the convergence rate of the 
program have been borne out under various assumptions 
concerning rigor and frequency of Jacobian assembly. 
Second-order convergence was  only  observed  when mobility 
derivatives were included in the Jacobian matrix; otherwise, 
only linear convergence was seen. A degraded  convergence 
rate was also observed and rectified,  having  been  diagnosed 
as relating to the  manner in  which mobility was evaluated. 

Selected computational results from a study of short- 
channel MOSFETs illustrated the mobility modeling 
approach introduced. Eleven different mobility functions 
were  exercised on  an otherwise identical n-MOSFET; 
although absolute drain currents and transconductances 
predicted were in disagreement, extracted threshold voltages 
were  very similar, as expected. A simplification to mobility 
evaluation approximating electric field in the direction of 
current flow  was suggested;  however, unfavorable results 
were obtained when internal distributions of carrier flux near 
pinch-off  were examined. Although  artificially exacerbated, 
this result demonstrates the appropriateness of striving for 
maximum accuracy in mobility modeling through proper 
discretization of  physically motivated arguments. 
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Appendix: List of symbols 

Symbol Definition 

Distance from insulator-semiconductor interface 
Hole, electron diffusivities 
Electric  field 
Electcc field components along edges i ( j ,  k )  
max(E.j, 0) 
Flux  cross sections of triangular element for 
edges i ( j ,  k )  
Hole, electron generation rates 
Indices of a triangular element: counterclockwise 
orientation 
Unit current direction vector 
Unit current direction vector extant for element 
edge i ( j ,  k )  
Current density vector 
Hole, electron current density vectors 
Scharfetter-Gummel current densities along 
element edges i ( j ,  k )  
Total current density vector extant for element 
edge i ( j ,  k )  
Composition of Scharfetter-Gummel current 
densities of  edges p and q 
Boltzmann constant 
Lengths of element edges i ( j ,  k )  
NA + ND, total impurity concentration 
Average N on element edge i ( j ,  k )  299 
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N,,  NA Donor, acceptor impurity  concentrations 
P, n Hole,  electron concentrations - - 
p ! ( J , k ) >  nl (J ,k)  p(xi(j,k))> n ( X i ( J , k ) )  

@ , ( J , k ) ,  A, ( , , ,  Average hole, electron concentrations along 

4 Electron  charge 
Q ( . )  Camer averaging function 
R,, R, Hole,  electron recombination rates 
S Unit vector normal  to insulator-semiconductor 

element edge i ( j ,  k )  

interface 

’ i 0 . k )  Unit vectors along element edges i ( j ,  k )  
(counterclockwise  directed) 

t Time 
to, Oxide  thickness for MOSFET 
T Lattice temperature 

‘ , ( j .k )  Control volumes  associated with vertices i ( j ,  k )  
VG, V,, VB Gate,  drain, substrate  applied voltages for 

MOSFET (Source at 0 V)  

Weighting factors  for current superpositions 

Position vector for node i ( j ,  k )  

VT MOSFET threshold voltage 
5 
X Position vector 
-+ - 
x, Point  on insulator-semiconductor - interface 

closest to a  position xmid 
i Unit vector in z coordinate direction 
Z ( . )  Bernoulli function 
P q/kT, inverse thermal voltage 

Normalized  potential difference qk - 4, - $kr 

- +,) 
A$, An, Ap Potential,  electron, hole update in Newton’s 

method 
E Dielectric permittivity 

* O k )  Angle between j J ,  jk ( S k ,  S,;  S,, S,) 
pLp, pn Hole,  electron  mobilities 

p l ( J . k )  Average mobility on  element edge i ( j ,  k )  
P N / . k )  Dot  products of unit  element edge vectors 
6. , (J ,k)  Cross products of unit  element edge vectors 
+ Electrostatic  potential 
1) ( Ilm Maximum  norm of function (, i.e., max (I ( I) 
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