
Regenerative
simulation
methods for local
area computer
networks

Local area computer network simulations are
inherently non-Markovian in that the underlying
stochastic process cannot be modeled as a
Markov chain with countable state space. We
restrict attention to local network simulations
whose underlying stochastic process can be
represented as a generalized semi-Markov
process (GSMP). Using "new better than used"
distributional assumptions and sample path
properties of the GSMP, we provide a
"geometric trials" criterion for recurrence in this
setting. We also provide conditions which
ensure that a GSMP is a regenerative process
and that the expected time between
regeneration points is finite. Steady-state
estimation procedures for ring and bus network
simulations follow from these results .

1 . Introduction
It is difficult to establish estimation procedures for local area
computer network simulations that explicitly incorporate
access control algorithms . Such simulations (see, e .g .,
Iglehart and Shedler [ 1, 2], Loucks, Hamacher, and Preiss
[3]) are inherently non-Markovian in the sense that the
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underlying stochastic process cannot be modeled as a
Markov chain with countable state space . Following [ I ] we
restrict attention to local network simulations whose
underlying stochastic process can be represented as a
generalized semi-Markov process (GSMP) .

Although steady-state estimation for an arbitrary GSMP is
a formidable problem, estimation procedures [1, 2, 4] are
available for GSMPs that are regenerative processes . To
establish the regenerative property for a GSMP, it is
necessary to show the existence of an infinite sequence of
random time points at which the process probabilistically
restarts . It is often the case that a GSMP associated with a
local area network simulation probabilistically restarts when
a particular event triggers a transition to some fixed state .
For specific models, however, it is nontrivial to determine
conditions (distributional assumptions) under which the
underlying GSMP returns infinitely often to the fixed state .

A "geometric trials" argument given in [I] establishes a
recurrence criterion for a stochastic process IX(t) : t >_ 0}

with right-continuous and piecewise-constant sample paths
and countable state space, S. Let I T„ : n >_ 01 be an
increasing sequence of finite state transition times for
IX(t) : t ? 0). The process IX(T„): n ? 0) hits state s' E S
infinitely often with probability one provided that
PIX(T„) = s' I X(T„_), • • •, X(TO)l >_ S as. for some S > 0 .
This geometric trials recurrence criterion avoids the often
unrealistic "positive density" assumptions needed in
arguments (cf. [4]) based on general state space Markov
chain theory .

In this paper, using sample path properties of the GSMP,
we provide conditions which permit application of the
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geometric trials recurrence criterion in the GSMP setting .
Our approach is to postulate the existence of a distinguished
random time in the interval [T„_„ T„) and a set of
distinguished events determined by the state of the system at
the distinguished time such that X(T„) = s' if each of the
distinguished events occurs "soon enough" before time T,, .
We show that (X(T„ ): n ? 0} hits state s' infinitely often
with probability one if the clock setting distributions
associated with the distinguished events have "new better
than used" (NBU) distributions and satisfy a "positivity"
condition. We also establish additional conditions on the
building blocks of the GSMP which ensure that the
successive times at which I X(T„ ): n ? 01 hits state s' are
regeneration points for the process {X(t) : t ? 01 and that the
expected time between regeneration points is finite .

2> Regenerative generalized semi-Markov
processes
Heuristically, a GSMP (Matthes [5], K6nig, Matthes, and
Nawrotzki [6, 7]) moves from state to state in accordance
with the occurrence of events associated with the occupied
state . Each of the several possible events associated with a
state competes to trigger the next transition, and each of
these events has its own distribution for determining the
next state. At each state transition of the GSMP, new events
may be scheduled. For each of these new events, a clock
indicating the time until the event is scheduled to occur is
set according to an independent (stochastic) mechanism . If a
scheduled event does not trigger a transition but is associated
with the next state, its clock continues to run ; if such an
event is not associated with the next state, it is abandoned .

Let Sbe a finite or countable set of states and E _ { e„ e2,
	 , em 1 be a finite set of events . For s E S, E(s) denotes the

set of all events that can occur when the GSMP is in state s .
When the process is in state s, the occurrence of an event
e e E(s) triggers a transition to a state s' . We denote by
p(s' ; s, e) the probability that the new state is s' given that
event a triggers a transition in state s . For each s E S and e e
E(s) we assume that p( . ; s, e) is a probability mass function .
The actual event e e E(s) which triggers a transition in state
s depends on clocks associated with the events in E(s) and
the speeds at which these clocks run . Each such clock
records the remaining time until the event triggers a state
transition . We denote by r,(?0) the deterministic rate at
which the clock associated with event e; runs in state s ; for
each s e S, rs, = 0 if e, (4 E(s) . We assume that r, > 0 for
some e; E E(s). (Typically in applications, all speeds r, are
equal to one . There are, however, models in which speeds
other than unity as well as state-dependent speeds are
convenient . For example, zero speeds are needed in
queueing systems lyith service interruptions of the
preemptive-resume type; cf. Shedler and Southard [8] .) At a
transition from state s to state s' triggered by event e*, new
clock times are generated for each e' E N(s' ; s, e*)
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E(s') - (E(s) - 1 e* 1). The distribution function of such a
new clock time is denoted by F( . ; s', e', s, e*), and we
assume that F(0; s', e', s, e*) = 0. For e' E O(s' ; s, e*) _
E(s') n (E(s) - 1e*1), the old clock reading is kept after the
transition . For e' E (E(s) - {e*1) - E(s'), event e' ceases to
be scheduled after the transition .

•

	

Example I (token ring)
Consider a unidirectional ring network having a fixed
number of ports, labeled l, 2, • • • ,N in the direction of
signal propagation ; see Figure 1 . (In the figure, i, j, and k
denote three of the N ports .) At each port message packets
arrive according to a random process . A single control token
(denoted by T in Fig. 1) circulates around the ring from one
port to the next. The time for the token to propagate from
port j - 1 to port j is a positive constant, R,_ 1 (j - 1 = N if
j = 1) . When a port observes the token and there is a packet
queued for transmission, the port converts the token to a
connector (C) and transmits a packet followed by the token
pattern ; the token continues to propagate if there is no
packet queued for transmission . By destroying the connector
prefix the port removes the transmitted packet when it
returns around the ring . Assume that the time for port j to
transmit a packet is a positive random variable, Lj , with
finite mean. Also assume that packets arrive at individual
ports randomly and independently of each other : The time
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from end of transmission by port; until the amval of the 
next packet for transmission by port; is a positive random 
variable, A,, with finite mean. Note that there is at most one 
packet queued for transmission at any time at any particular 
port. 

For t 2 0 set N( t )  = j if at time t port ; - 1 is transmitting 
or the token is propagating to port; and set 

2 if port j is transmitting a packet at time t, 

1 if there is a packet queued for 
transmission at port j at time t, 

J =  1,2, ..., N.Thenset 

X(t) = vIw, . . . I  X,w; w ) ) .  ( 1 )  

The process {X(t): t 2 0 )  defined by Eq. ( I )  is a GSMP with 
a finite state space 

S = {(xl, . . ., x,; n): n = 1, 2, . . ., or N 

3 = 0, 1, or 2 with at most one x, = 2) 

and event set E = { e l ,  e,, . . ., e3,J, where e,,, = “end of 
transmission by port j,” e3,-, = “observation of token by 
port j,” and e,j = “amval of packet for transmission by port 
j,”; = 1,2, . . ., N. For s = ( x l ,  . . ., x,; n) E S, the event 
sets E(s)  are as follows. The event “end of transmission by 
port;” E E(s) if and only ifx, = 2. The event “observation 
of token by port;” E E(s) if and only if xj-, # 2 and n = j .  
The event “amval of packet for transmission by port;” 
E E(s) if and only if xj = 0. 

If e = “end of transmission by port;,” then the state 
transition probability p(s’;  s, e) = 1 when 

s = (XI, . . -, Xj-I ,  2, Xj+I, . . .) x,;; + I )  E S 

3’ = (XI, . . ., 0, x,+l, . . ., x,;j + 1) E S. 

and 

If e = “observation of token by port;,” then p(s ’ ;  s, e) = 1 
when 

s = (xl, . . ., 
and 

1, x,+~, . . ., x,; j )  E S 

s‘ = (xl, . . ., x,,-~, 2, xj+l ,  . . ., xN; j + 1)  

and when 

s = (XI, . . ., Xj+ 0, xj+l, . . ., x,;A E S 

and 

s’ = (XI, . . .) xj+ 0, xj+l, . . .) x,;j +’l). 

If e = “arrival of packet for transmission by port;,” then 
p(s’;  s, e)  = I when 
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s = (XI, ..., XI+ 0, xj+I,  . . .) x,; n) E S 

s’ = (XI, . . ., x , - I ’  1 ,  

and 

. . ., xN;  n). 

(Take j + 1 = 1 if; = N.) All other state transition 
probabilities p(s’; s, e) are equal to zero. 

The distribution functions of new clock times for events 
e‘ E N(s’; s, e*) are as follows. If e‘ = “end of transmission 
by port J,” then the distribution function F(x;  s’, e’, s, e*) = 
P (  L, 5 x). If e’ = “observation of token by port j,” then the 
distribution function F(x;  s’, e’, s, e*) = l[Rj-,,m)(x). If e’ = 
“amval of packet for transmission by port j,” then the 
distribution function F(x; s’, e‘, s, e*) = P { A j  5 x ) .  

Following Whitt [9], formal definition of a GSMP is in 
terms of a general state space Markov chain (GSSMC) which 
describes the process at successive epochs of state transition. 
For s E S, define 

C(s) = {(cl, . . ., cM): c, 2 0 and ci > 0 

if and only if e, E E(s); 

c,r;’ # cjril for i # j with cicjrsirsj > 0). (2) 

The conditions in Eq. (2) ensure that no two events 
simultaneously trigger a transition (as defined below). The 
set C(s) is the set of possible clock readings in state s. The 
clock with reading c, and event e, are said to be active in 
state s if e, E E(s). For s E S a n d  c E C(s), let 

(3) 

where c,r;‘ is taken to be +m when r3, = 0. Also set 

c: = c:(s, c )  = c, - t*(s, c)r,,, e, E E(s) (4) 

and 

i* = z*(s, c) = i such that e, E E(s)  and c:(s, c) = 0. ( 5 )  

Beginning in state s with clock vector c, t*(s, c) is the time to 
the next state transition and i*(s, c) is the index of the 
unique triggering event e* = e*(s, c) = e;,,,. 

space 
Next consider a GSSMC {(S,,, C,,): n 2 0) having state 

c = u ({s) x C(sN 
SES 

and representing the state (S,,) and vector (C,,) of clock 
readings at successive state transition epochs. (The ith 
coordinate of the vector C, is denoted by C,,, .) The 
transition kernel of the GSSMC {(S,,, C,,): n 2 0) is 

P((4 4, ’4) 

= ~ ( 3 ’ ;  s, e*) n F(a,; s’, e,, 3, e*) II ~~,,,o,,(c~), ( 6 )  
P,€N(S’ )  e,EO(s’) 

where N(s’) = N(s’ ;  s, e*), U(s’) = U(s’; s, e*), and 

A = Is’) x {(c;, . . ., ch) E C(s’): c,’ 5 a, for e, E E(s’)). 
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The set A is the subset of Z which corresponds to the GSMP 
entering state s’ with the reading c,‘ on the clock associated 
with event e, E E(s’) set to a value in [0, a,]. [We suppose 
that the clock setting distributions are such that P((s, c), 2 )  
= 1 for all (s, c) E 2.1 

Finally, the GSMP is a piecewise constant continuous 
time process constructed from the GSSMC ((S,, C,): n I 0) 
in the following manner. Set {, = 0 and denote by {, the 
time of the nth state transition, n 2 0. [We assume that 

P(sup {, = +m I (So, C,)) = 1 as .  

for all initial states (So, C,).] Then set 

I l l ,  

X ( t )  = S N ( r ) ,  (7) 

N ( t )  = max(n 2 0: {n I t ) .  (8) 

where 

The process (X( t ) :  t I 0 )  defined by Eq. (7) is a GSMP. 
Henceforth we restrict attention to GSMPs in which all 
speeds rs, are equal to 1. 

The characteristic property of a regenerative stochastic 
process (Smith [lo]) is that there exist random time points, 
referred to as regeneration points or regeneration times, at 
which the process probabilistically restarts. The essence of 
regeneration is that the evolution of the process in a cycle 
(i.e., between any two successive regeneration points) is a 
probabilistic replica of the process in any other cycle. In the 
presence of mild regularity conditions, a regenerative 
stochastic process (X( t ) :  t I 0 )  has a limiting distribution 
( X ( t )  =$ X as t + m) provided that the expected time 
between regeneration points is finite. Furthermore, the 
regenerative structure ensures that the behavior of the 
process in a cycle determines the expected value of a 
function of the limiting random variable X as a ratio of 
expected values. These results have important implications 
for simulation and are the basis for the regenerative method 
for simulation analysis; see Crane and Iglehart [ 1 I ]  and Eqs. 
(14)-(16) below. 

Definition 2 
The real (possibly vector-valued) stochastic process 
(X( t ) :  t r 0 )  is a regenerativeprocess in continuous time 
provided that 

i. There exists a sequence of stopping times { T,: k 2 0) 
such that ( T,,, - T,: k 2 0) are independent and 
identically distributed; 

ii. Forevery sequence of times 0 < t ,  < t, < . . . < t, 
( m  I 1) and k r 0, the random vectors {X( t , ) ,  . . ., X(t,)) 
and {X( Tk + t , ) ,  . . ., X (  T, + t,)) have the same 
distribution and the processes ( X( t): t < T,) and 
( X (  T, + t): t z 0 )  are independent. 

[Recall that a stopping time for a stochastic process 

( X ( t ) :  t 2 O] is a random variable T (taking values in [0, m)) 

such that for every finite t 2 0 the occurrence or 
nonoccurrence of the event { T 5 t )  can be determined from 
the history ( X( u): u 5 t )  of the process up to time t.] 

Recurrence properties of the underlying stochastic process 
of a discrete event simulation are needed to establish 
estimation procedures based on regenerative processes. 
Lemma 3 is a special case of a generalized Borel-Cantelli 
lemma due to Doob [ 12, p. 3241; see [ 1, Lemma 41 for an 
elementary proof using a “geometric trials” argument. 

Lemma3 
Let ( Y,: n 2 0) be a sequence of random variables defined 
on a probability space ( Q ,  Z P )  and taking on values in a 
set, S. Let s‘ E S. Suppose that there exists 6 > 0 such that 

P( Y, = s’ I Y,,-,, . . ., Yo] 2 6 a s .  

for all n 2 1. Then P( Y, = s’ Lo.] = 1. 
Lemma 3 provides a means of showing that the 

underlying stochastic process of a simulation returns 
infinitely often to a fixed state. Specifically, let (X( t ) :  t 2 0 )  
be a stochastic process with right-continuous and piecewise- 
constant sample paths and countable state space, S. Let s’ E 
S and suppose that { T,,: n 2 0 )  is an increasing sequence of 
finite (T ,  < 00 a.s.) state transition times for (X( t ) :  t 2 0 )  
such that 

PIX( T,) = s’ I X (  T,-,), . . ., X( To)) 2 6 as .  

for some 6 > 0. Then PIX( T,) = s’ Lo.) = 1 by Lemma 3 
[with Y, = X( T,)]. 

Using “new better than used” distributional assumptions 
and the sample path structure of the process, Proposition 5 
provides sufficient conditions for recurrence in the GSMP 
setting. 

Definition 4 
The distribution F of a positive random variable A is new 
better than used (NBU) if 

197 
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P ( A  > x  + y I A > y )  I P ( A  > x )  

for all x, y I 0. 
See Barlow and Proschan [ 131 for a discussion of NBU 

distributions. Note that every increasing failure rate (IFR) 
distribution is NBU. Also, if A and B are independent 
random variables with NBU distributions, then the 
distributions of A + B, min (A,  B) ,  and max (A ,  B )  are NBU. 

Let ( X ( t ) :  t 2 0 )  be a GSMP with countable state space, S, 
and event set, E = (el, . . . , e,). Suppose that T,: n 2 0 )  is 
an increasing sequence of finite (T ,  < m as.) state transition 
times such that for some e* E E and S* C S:  To = 0 and 

T, = inf(t > Tn-,: at time t event e* triggers a 

transition in some state s* E S*), n 2 1. (9) 197 
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Let s; E S. Proposition 5 postulates the existence of a 
distinguished random time (c) in the interval [ T,,-l, T,) 
defined by Eq. (9), and a set { e,: k E K(s+))  of distinguished 
events determined by the state s+ of the system at time c 
such that X( T,,) = s; when each of the distinguished events 
occurs prior to some time T: + Rn,,(s+) (> c). The 
proposition asserts that (X( T,,): n 0) hits state s6 infinitely 
often with probability one if the clock setting distributions 
associated with the distinguished events are NBU and satisfy 
a "positivity" condition which guarantees the existence of 
6 > 0 as in Lemma 3. 

Let { c: n z 0 )  be a sequence of state transition times, 
and denote the state space of ( X (  c): n B 0) by f. Set 
M( T:) = {(S/, C/): 0 5 1s N( c)), where N( .) is given by 
Eq. (8). Also set 

K+ = u K(s'). 

When X( c) = s+ we denote by S,,,(s+) the latest time less 
than or equal to c at which the clock associated with event 
e, [k  E K(s+)] was set, and by A,,,,(s+) the setting on the 
clock at time S,,,,(S+). 

S + € P  

Proposition 5 
Assume that there exist state transition times ( T:: n 2 01, 
and for s+ E S+, event sets (e,: k E K(s')) and identically 
distributed collections of random variables {R,,,k: k E K(s')), 
independent of (An,,(X( c)): k E K( c))) and M( c), such 
that 

i. T , , - , ~ T ~ a . s . a n d f o r x o , x , ,  ..., x , - , E S a n d  
s+ E s+, 
P(X(T,) = s;, X(c) = s+, X(T,-I) = x ~ - ~ ,  . . ., 

X(T0) = xol 

2 p{S,,,k(s+) + I + Rn,k(s+)> 

k E K(s+); X( T:) = s+, 

X( Tn-J = . . ., X( To) = 4)); 

ii. For all e, ( k  E K+), the clock setting distribution 
F( .; s', e,, s, e) = F (  .; e,) and is NBU; 

iii. There exists 6 > 0 such that for s+ E s' 
6(s+) = P{A,(s+) 5 Rn,,(s+), k E K(s')) z 6, 

where the random variable A,(s+) has distribution 
F(  .; e,) and (Ak(s+): k E K(s')) are mutually 
independent and independent of {R,,,(s+): k E K(s+)). 

Then 

PIX( T,) = s; I X (  Tn-l), . . ., X( To)} z 6 a.s. 

so that PIX( T,,) = $6 Lo.) = 1. 

Proof Let s+ E S' and xo, . . . , x,,-~ E S. Lemma 10 of the 
Appendix shows that 
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and Lemma 3 implies that PIX( T,) = s; Lo.) = 1. 

8 of [ 11) on the building blocks of a GSMP which ensure 
that regeneration points exist and that the expected time 
between regeneration points is finite. We establish conditions 
on the sets of old and new events which ensure that the 
GSMP probabiiistically restarts whenever (at some time T,,) 
event e* triggers a transition to state s;. A geometric trials 
condition guarantees that this occurs infinitely often with 
probability one. 

0 
Proposition 6 gives a set of new conditions (cf. Proposition 

Proposition 6 
Let ( T,,: n z 0) be an increasing sequence of stopping times 
that are finite ( T ,  < m a.s.) state transition times as in Eq. 
(9). Suppose that there exist s, s; E S and 6 > 0 such that 

PIX( T,,) = s; I X( T,,-i), . . ., X( To)} 2 6 a.s. ( 1  1) 

Also suppose that for s* E S*, (i) the set O(s;; s*, e*) = 
E(s;) n (E(s*) - { e * ) )  = 0, (ii) the set N(s;; s*, e*) = 

E(s;) - (E(s*) - I e*)) = N(s6; s, e*), and (iii) the clock 
setting distribution F(  .; s;, e', s*, e*) = F(  .; s;, e', s, e*) for 
all e' E N(s6; s, e*). Then ( X ( t ) :  t Z 0) is a regenerative 
process in continuous time. Moreover, if 

El T,,,, - T,,) I c < m 

for all n 2 0, then the expected time between regeneration 
points is finite. 
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Proof Using Lemma 3, Eq. ( 1  1) implies that event e* 
triggers a transition to state s6 from some state s* E S* 
infinitely often with probability one. Furthermore, at such a 
time T,,, the only clocks that are active have just been set, 
since O(s6; s*, e*) = 0 for all s* E S*. The joint distribution 
of X (  T,,) and of the clocks set at time T, depends on the past 
history of [ X ( t ) :  t 2 0) only through si, the previous state s*, 
and the trigger event e*. Since the new events and clock 
setting distributions are the same for all s*, the process 
{ X (  t): t 2 0)  probabilistically restarts whenever 
{ X (  T,,): n 5 0 )  hits state 36. 

To show that the expected time between regeneration 
points is finite, assume for convenience that X (  To) = X ( 0 )  = 

$6. Set X ,  = X (  T,) and D,, = T,,, - T,,, n 2 0. Observe that 
the random indices p, such that XB. = X (  Tan) = s6 form a 
sequence of regeneration points for the process 
{ (Xa ,  Dn): n 2 01; this follows from the fact that the process 
[ D,: n 5 1 )  starts from scratch when X (  TB.) = si. Let 7k = 
/3k+l - Pk, k z 1. The 7k are i.i.d. as 71 and the argument in 
the proof of Lemma 4 in [ I ]  shows that 

P{7 ,  > n )  5 (1 - a)”, 

so that E{7,) < m. Thus the expected time between 
regeneration points for the process {(X,,, D,,): n B 01 is finite. 
Since Els,)  < 00 and Eq. ( 1  1) ensures that 71 is aperiodic, 
(X,,, D,,) + ( X ,  D )  as n -+ m. Using the continuous mapping 
theorem we have D,, - D as n -+ m and, since D, z 0 and 
E{D,,) 5 c < w, 

by Theorem 25.1 1 in 1141. Since 7 )  is aperiodic, E(7,) <a, 
and E{ 101) < m, 

so that 

E {;yo1 c 0, I <m, 

and the expected time between regeneration points for 
{ X ( t ) :  t z 0) is finite. 

Note that the result of Proposition 6 also holds if 
condition (i) is replaced by (i’) O(si; so, e*) # 0 and for any 
e‘ E O(si; so, e*) the clock setting distribution 
F (  .; s’, e’, s, e) is exponential with mean A-I independent of 
s, s’, and e. [Assumption (i’) ensures that no matter when 
the clock for event e’ E O(si; so, e*) was set, the remaining 
time until event e‘ triggers a state transition is exponentially 
distributed with mean A-I.] Also note that the state 
transition times { T,: n z 01 defined by Eq. (9) are necessarily 
stopping times if 

p(s*; s*, e*) = 0 (12) 
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for all s* E S* and 

e = e* whenever p(s ;  s*, e) > 0 and p(s;  s*, e*) > 0 

for all s* E S* and s E S. [Conditions (12) and (1 3) imply 
that every occurrence of event e* in a state s* E S*, and 
hence every state transition time T,,, can be determined by 
observing the sample paths of { X ( t ) :  t z 01.1 

t -+ 00. Letfbe a real-valued (measurable) function having 
domain S. From n cycles the standard regenerative method 
[ 1 11 provides the strongly consistent point estimate 

(1 3) 

Under the conditions of Proposition 6, X ( t )  + X as 

and the asymptotic 100( 1 - 2y)% confidence interval 

for r ( f )  = E { f ( X ) ) .  In Eq. (14), 
n 

Y(n)  = n-I 1 Y,(f) 
m= 1 

and 
n 

?(n )  = n-’ c 7,. 

m= I 

[For m z 1, 7, is the length of the mth cycle and Y,(f) is 
the integral off(X( .)) over the mth cycle.] The quantity s(n) 
is a strongly consistent point estimate for ~ ( f )  = var( Y , ( f )  
- r ( f ) r , )  and z ~ - ~  = @ - I (  1 - y), where 0 is the distribution 
function of a standardized normal random variable, N(0, 1). 
Confidence intervals are based on the central limit theorem 

(16) 

as n -+ m. Equation ( 16) [and thus Eq. ( 15)] holds if 
~ ( f )  < 00. It can be shown that when S is finite orfis 
bounded, u ( f )  < w, provided that for some E > 0 

znd bus ~~~~~~~ ~~~~~~S 

The following examples illustrate the use of the GSMP 
model as a formal specification of a discrete event simulation 
of a local area computer network and the application of 
Propositions 5 and 6. These results are also applicable to the 
token ring and collision-free bus network models in 
Examples (A. 1) and (A.3) of [2]. 

Example 7 ’ 
Recall the token ring model of Example 1. Following [ 11, set 

X ( t )  = (ZI(t), . . ., ZAG; M(t) ;  N ( N ,  (17) 199 
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where 

1 if there is a packet queued for 
transmission at port j at time t, Z,(t) = 

0 otherwise; 

if port j is transmitting a packet at time t ,  

0 if no port is transmitting a packet at time t ,  

i r M ( t )  = 

and N( t )  = j if at time t port j - 1 is transmitting a packet or 
the token is propagating to portj. 

The process { X ( t ) :  t 2 0) is a GSMP with a finite state 
space, S, and event set, E = { e l ,  . . . , eN+,), where eN+, = 
“observation of token,” eN+, = “end of transmission,” and 
el = “arrival of packet for transmission by port j,” j = I ,  2 ,  
. . ., N. For s = (z,, . . ., zN;  m; n )  E S, the event sets E(s) 
are as follows: The event “end of transmission” E E(s)  if 
and only if m > 0 and “observation of token” E E(s)  if and 
only if m = 0. The event “amval of packet for transmission 
by port j” E E(s)  if and only if Z, = 0 and m # j ,  j = 1, 2 ,  

As an application of Propositions 5 and 6, take s; = 

(0, 1, . . ., 1; 1; 2) .  Let e* = “observation of token” and S* = 
{(zl, . . ., z N ;  0; 1) E S )  so that T,, is the nth time at which 
port 1 observes the token, n 2 0. Observe that T,, < m as .  
since 

..., N. 

N 

El T,, - Tn-,)  5 R ,  + . . . + RN + C E{LJ)  < CQ (18) 
,= I 

for all n 2 I .  
Let TZ be the first time after Tn-l that the token leaves 

port N so that S+ = S*. Observe that X( T,) = s; if, while the 
token is propagating from port N to port 1, there is an 
amval of a packet for transmission at every port that does 
not have a packet queued for transmission at time c. Thus, 
for s+ = (z;, . . ., z i ;  m+; n+) E s’, set ~(s’) = {k: z:= Ol 
so that K+ = { 1, 2 ,  . . ., N ) .  Take RJs’) = R, for all 
k E K(s+) and s+ E S’. Then condition (i) of Proposition 5 
is satisfied. Assume that the distribution of A, is NBU and 
that 

6, = P(A, 5 R,) > 0 

f o r j =  1,2, ..., Nsotha t  
N 

6(s’) = fl 6, r fl 6, = 6 > 0. 
JSK(S+) /’I 

Then PIX( T,) = s6 i.0) = 1. 
A transition of the process { X(t):  t 2 0 )  defined by Eq. 

(17) to state s6 can occur when event e* is the trigger event 
only if e* occurs in state s* = ( I ,  . . . , 1; 0; 1) and in this 
case the set O(s& s*, e*) = 0. Since Eqs. (12) and (1 3) hold 
and P ( X (  T,,) = s6 i.0.) = 1, the successive times T,, at which 
e* triggers a transition (in state s*) to state s6 are stopping 
times and regeneration points for the process { X ( t ) :  t 2 0) .  
The expected time between those regeneration points is finite 

by Eq. (18). At these time points there is a packet queued for 
transmission at ports 2, 3, . . . , N a n d  port 1 starts 
transmission of a packet. Furthermore, if E (Ly ) < CQ for 
some E > 0, then 

supE((T,,+, - T,,?) < m 

and the remarks following Eq. ( 16) apply. 

n 

Example 8 (collision-jiree bus network) 
Consider a bus network (Eswaran, Hamacher, and Shedler 
[ 151) with N ports, numbered 1, 2, . . . , N from left to right; 
see Figure 2. Message packet traffic on the passive bilateral 
bus is transmitted/received by port j at tap B(j). In addition 
to the bus, a one-way logic control wire also links the ports. 
Associated with each port j is a flip-flop, S( j ) ,  called the send 
flip-flop. The signal P( j ) ,  called the OR-signal, tapped at the 
control wire input to port j is the inclusive OR of the send 
flip-flops of all ports to the left of port j .  Denote by T the 
end-to-end bus propagation delay. [For technical reasons, T 
actually must be the end-to-end propagation delay plus a 
small (fixed) quantity.] Denote the actual propagation delay 
along the bus between port i and port j by T( i, j ) ,  i, j = 1,2, 
. . ., N. Thus, T ( i , j )  = T(j ,  i )  < Tfor all i ,  j and T(i ,  j )  + 
T(j ,  k )  = T(i ,  k )  for all i < j  < k. Let R ( j )  be the 
propagation delay (including gate delays) along the control 
wire from port j to port N , j =  1, 2, . . ., N; thus, R( l )  2 
R(2)  2 . . . 2 R ( N )  = 0. Denote by R(i , j )  the propagation 
delay along the control wire from port i to port j .  We assume 
that signal propagation along the control wire is slower than 
along the bus and that delays along shorter sections of each 
path scale proportionally: R( 1 ) > T and R( i, j )  > T( i, j )  for 
all i ,  j .  

Specification of distributed control scheme A1 is in terms 
of an algorithm for an individual port j .  Packets (for 
transmission by port j )  which amve while an execution of 
the algorithm by port j is in progress queue externally. Upon 
completion of this execution of the algorithm, one of any 
such packets immediately becomes available to port j for 
transmission and the next execution of the algorithm begins. 

Algorithm A1 

Set S ( j )  to 1. 
Wait for a time interval R ( j )  + T. 
Wait until the bus is observed (by port j )  to be idle AND 
P( j )  = 0; then start transmission of the packet, 
simultaneously resetting S(j) to 0. 

For ease of exposition we assume that T(i, j )  # T(k, j )  for 
distinct i, k and all j .  In addition we assume that there can 
be at most one packet in queue at each port. Specifically, 
suppose that the time from end of transmission by p o r t j  
until the amval of a next packet for transmission by port j is 

PETER J.  HAAS AND GERALD S. SHEDLER IBM 1. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 



a positive random variable, A,, with finite mean. Also 
suppose that the time for port J to transmit a packet is a 
positive random variable, L,, with finite mean and (so that 
Algorithm A2 of [ 151 guarantees transmission of all packets) 
such that P{L, I R( 1) + T )  = 0. 

Set 

W t )  = ( W,(t), . . ., W,(t)), (19) 

where Wj(t) equals 1 if at time t port; has set its flip-flop but 
has not yet completed the R ( j )  + T wait, equals 2 if port; 
has completed the R(J )  + T wait but has not started 
transmission, equals 3 if port; is transmitting, and equals 4 
otherwise. Next set 

~ ( t )  = (u,(t), . . ., u,(t)), (20) 

where q(t) equals k if port j observes transmission of a 
packet by port k on the bus at time t ,  and equals 0 
otherwise. Also set 

’(‘1 = ( ’2,1(t)9 ’3,I(l)3 V3,2(t), V4.1(t)> ’ ’ . 7  ’N,,V-l(t))3 (21) 

where ?,,(t) equals 1 if and only if S ( k )  = 1 at time 
t - R(k,  j ) ,  and equals 0 otherwise. [Port; observes P(j) = 1 
at time t if and only if ?,Jt) = 1 for some k < j.] Finally, set 
Z(t)  = 1 if some port is transmitting at time t and this port 
started transmission when it observed an end of 
transmission; otherwise Z(t)  = 0. Then set 

W )  = ( W t ) ;  a t ) ;  U t ) ;  ’(t)). (22) 

The stochastic process { X ( t ) :  t 2 0) defined by Eq. (22) is a 
GSMP with a finite state space, S, and event set, E. The 
events in the set E are: “end of transmission by port j,” “end 
of wait for R ( j )  + T,” “setting (to 1) of flip-flop by port;,” 
“observation by port J of start of transmission by port k #J,” 

“observation by port; of end of transmission by port k # J,” 

“observation by port j of end of transmission by port k # J  

and’start of transmission by port 1 #J,” “observation by port 
j of the setting (to 1) of flip-flop by port k to the left,” and 
“observation by port; of the resetting (to 0) of a flip-flop by 
port k to the left,”j = 1, 2, . . -, N. For s = (w,, . . ., w N, . L’ 
u,, . . ., u,; v2,,,  . . ., v,,,-,) E S the event sets E(s) are as 
follows: The event set E(s) contains “setting (to 1) of flip- 
flop by port;” if and only if wj = 4. The event “end of 
transmission by port;” E E(s) if and only if wj = 3. The 
event “end of wait for R ( j )  + T” E E(s)  if and only if 
w, = 1. The event “observation by port j of start of 
transmission by port k” E E(s) if and only if (i) wk = 3, 
L = 0, and uj # k or (ii) wk = 3, z = 1, and either u, = 0 or 
uj = 1 for some 1 between k and j .  The event “observation by 
port j of end of transmission by port k” E E(s) if and only if 
u, = k and wk = 1 or 4 and either z = 0 or wl # 3 for all 1 
between J and k. The event “observation by port j of end of 
transmission by port k # j  and start of transmission by port 
l # J”EE(s ) i f andon ly i fu ,=k ,z=  l ,andw,= 3 w i t h l  
between k andj .  The event “observation by port; of setting 
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of flip-flop by port k to the left” E E(s)  if and only if wk = 1 
and vj,k = 0 for some k <J. The event “observation by port; 
of resetting of flip-flop by port k to the left” E E(s) if and 
only if wk = 3 and v , , ~  = 1 for some k <j .  

Note that with this definition of the event sets E(s), no 
“observation by port j of start of transmission by port k” 
and “observation by port; of end of transmission by port I” 
events can occur simultaneously in the GSMP model. To see 
this, let k < 1 < j .  Suppose that port k ends transmission of a 
packet at time t and that port 1 starts transmission of a 
packet at time t‘ = t + T(k, I ) .  Then the event “observation 
by port J of end of transmission by port k and start of 
transmission by port I” is scheduled at time t’ and (since 
L = 1 and wl = 3 where 1 is between k a n d j )  the event 
“observation by port; of end of transmission by port k” 
(which was scheduled at time t )  ceases to be scheduled at 
time t ’. 

The distribution functions of new clock times for events 
e‘ E N(s’;  s, e*) are as follows. If e‘ = “end of transmission 
by port;,” then the clock setting distribution function 
F(x;  s’, e‘, s, e)  = P(L,  I x). If e’ = “end of wait for 
R(J )  + T,” then the clock setting distribution function 
F(x;  s’, e‘, s, e*) = IIRu)+T,m)(x). If e’ = “setting (to 1) of 
flipflop by port;,” then the clock setting distribution 
function F(x; s’, e‘, s, e*) = P { A j  I x). If e’ = “observation 
by port; of start of transmission by port k,” then the clock 
setting distribution function F(x;  s’, e’, s, e*) = l,,,,. (x). 
If e’ = “observation by port; of end of transmission by port 
k,” then the clock setting distribution function 
F(x; s’, e‘, s, e*) = 1,,,,,,,,(x). If e’ = “observation by port 
j of end of transmission by port k and start of tra;smission 
by port 1, then the clock setting distribution F(x; s’, e‘, s, e*) 
= l,,,,,,(x). If e’ = “observation by port; of setting of flip- 
flop by port k to the left,” then the clock setting distribution 
function F(x; s’, e’, s, e*) = I,R,u,,,,(x). If e’ = 
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“observation by port j of resetting of flip-flop by port k to the 
left,” then the clock setting distribution function 
F(x; s’, e‘, s, e*) = l [R(k, j ) ,m)(x).  

As an application of Propositions 5 and 6, take s i  = 
(4,2,.. . ,2;0;0,1,.. . ,1;0,0,1,~~~,0, I ,  ..., 1).Let 
e* = “end of transmission by port 1 ” and S* = 
((3, w2, . . ., wN; z ;  1, . . ., I ;  u )  E S: uj,, = 0 for 

j = 2, 3, . . ., N )  so that T, is the nth time at which port 1 
ends transmission, n 2 0. Then port 1 ends transmission of a 
packet with every other port j having observed the resetting 
of port 1’s flip-flop, having a packet queued for transmission, 
and having completed the R ( j )  + T wait at time T, if 
X( T,) = s6. Observe that 

T, - T,-, = A , ,  + R(1) + T + D, + L,,, (23) 

where L, ,  is distributed as L,, A , ,  is distributed as A , ,  and 
D, is a non-negative random variable. Provided that the 
distribution of L, is NBU, it can be shown that 

N 

EID,l 5 c E(Ljl, 
j -2  

so that 

E (  T,, - Tn-,)  5 E ( A , )  + R(1) + T + 
and therefore T, < m a s .  

Let T: be the first time after T,-, that port 1 begins 
transmission of a packet so that S+ = S*. Observe that 
X( T,) = s6 if, at least R( 1) + T time units before the end of 
transmission by port 1, there is an amval of a packet for 
transmission at each port that does not have a packet 
queued for transmission at time c. Thus, let ej = “setting of 
flip-flop by port j” and for s+ = (w+; z+; u+; v’) E S+, set 
K(s’) = { k :  wl = 4) so that ii? = (2, . . ., N ) .  Take 
&(s+) = L,  - (R( 1) + r )  for all s+ E S’ and k E K(s+). 
Then condition (i) of Proposition 5 is satisfied. Assume that 
the distribution ofA, is NBU and that 

N 

E(Ljj  < m (24) 
j -  I 

6, = P { A j  + R( I )  + T 5 L,)  > 0, 

j = 2, 3,  . . ., N .  It follows that 

d = P(A,  + R(1) + T s  L, ,  j =  2 ,  3, ..., N J  > 0 

so that 

6(s+) = P ( A j  + R( 1) + T 5 L,, j E K(s+)) 2 6. 

Then P ( X (  T,,) = $6 Lo.) = 1. 
A transition ofthe process { X ( t ) :  t 2 0) defined by Eq. 

( 2 2 )  to state s; can occur when event e* is the trigger event 
only if e* occurs in a states* = (3,  2, . . ., 2 ;  z ;  I ,  . . ., 1; 0, 
1, . . ., 1)  and in this case the set O(s6; s*, e*) = 0. Since 
Eqs. (12) and (13) hold and P ( X (  T,)= s6 i.o.1 = 1, the 
successive times T, at which e* triggers a transition (in state 
s*) to state s6 are stopping times and regeneration points for 
the process ( X ( t ) :  t 2 0). The expected time between these 
regeneration points is finite by Eq. (24). If, in addition, 
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E {  L:“ j < m for some c > 0, then 

 sup^((^,+, - T~Y)  < 
n 

and the remarks following Eq. (1 6) apply. 

4. ~~~~~~~~~ 

It is sometimes possible to establish recurrence results under 
weaker positivity assumptions than those required by 
hypothesis (ii) of Proposition 5. For example, in the token 
ring model of Example 7, P { X (  T,) = s; Lo.) = I if the 
distribution of A, is NBU and P( A, 5 Rj + . . . + RN) > 0. 

~~~~~~~ w% 
The authors are grateful to the National Science Foundation 
for support under Grant MCS-8203483. 

Let { X( t ) :  t 2 0 j be a GSMP with finite state space, S, and 
event set, E. Recall that en is the time of the nth state 
transition and that S, = X( en) is the state of the system at 
time ln, n 2 0. Also recall that C, is the vector of clock 
readings at time en and that Cn,i is the ith coordinate of the 
vector C, for e, E E(S,). Denote by i: = i*(S,,-,, C,,...,) the 
index of the nth trigger event and let e: = e,; and I,  = 

(i: el E E(S,)j. 

p(sk;  sk-,,  eik) > 0. Then the joint event 
L e t s , , ~ , ,  ..., s , E S a n d e l l ,  - . - ,  e i a E E w i t h  

(xK,,) = s,, e: = ein, X(c,,-,) = J,-,, 

e,*-, = e,*,, . . ., e: = eil, X(O) = so) 

5 Cm,,, i E I, - {im+,l 

(Al) 

is equivalent to the joint event specified by the inequalities 

c , 
m.’Wl 

and m = 0, I ,  . . ., n - 1 (A2) 

in conjunction with the equations 

X ( l k )  = S, = s,, k = 0, 1, . . ., n. (A31 

If I,,, = ( im+,), we write Cm,iWl < m. 

We assume throughout that E(so) is the set of active 
events at time t = 0 and that all active clocks are reset at 
time t = 0: 

P( Co,l s x) = F ( x ;  s’, el, s, e )  

for some s, s’ E S and e E E (dependent on i), el E E(s,). In 
addition, we define N(s,,,; s,,-,, e:) = E(so) form = 0. 

Next observe that if e, E O(s,,; sn-,, e,*) so that Cfi,i is an 
old clock reading, then 

n- I 

C“., = e m , ,  - c ck,l,l f 
k=m 

where r,,, is the latest time prior to  {,, at which the clock 
associated with event e, was set. This implies that any old 
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clock reading Ck.l appearing in Eq. (A2) can be expressed in 
terms of one or more C,,,J with e, E N(sm; sm-,, e:) and 
m 5 k. Replacing in this manner all old clock readings 
appearing in Eq. (A2) with expressions which involve only 
new clock readings, we obtain an equivalent system of 
inequalities which, in conjunction with Eq. (A3), we denote 
by %. We call % the canonical representation of the joint 
event given by Eq. (Al). 

8 Lemma9 
Let Yn be the canonical representation of the joint 
event given by Eq. (Al)  and letj, ,  j 2 ,  . . . ,jl(,,) be indices 
such that 1 5 j ,  5 j ,  5 . . . 5 j/(,,) 5 n. Suppose that 
N(sJk; sJk-,, e:) # 0, k = 1, 2, . . ., I(n). Select e,k E 
N( sJk; sIk- e t )  and denote by % the set of inequalities 

S, + qklk > Cn, k = 1, 2, . . .) 4n). 

Either the set of inequalities { 3, 9" 1 has probability zero or 
there exists C % such that (i) 1 3, g) and { x, x )  are 
algebraically equivalent and (ii) no random variable CJk,k in 
2 appears in g. 
Proof For fixed k, observe that the variable qblk appears 
only in those inequalities in 2" corresponding to state 
transitions at times Gk, ck+,, . . . , {,. There are two cases to 
consider. 
Case i. For some k and jk 5 I I n - 1, Y, contains the 

inequalities 
/ I -  1 \ 

or 
I- I \ 

where %( .) denotes an expression written in 
canonical form. By the structure of the GSMP this 
means that 

/- I \ 

which implies that 
/ \ 

= Y(C/+J 5 H C J .  
This contradicts the corresponding inequality in 2 
so that { Lf,, %") has probability zero. 

Case ii. For every k, 
/ /-I \ 

l = j k , j k +  1, ..., n -  1. (A4) 
This is equivalent to 

4 
/ / \ 

l = j k  , j k +  1, ..., n -  1. 

But clearly, (for every k )  each of these equations is 
implied by the inequality 

Hqklk + h) > 'R(C"), 

which is an element of 3. Since the only 
inequalities in Yn which contain the random 
variable qbtk are those in Eq. (A4), the required 
subset g,, is formed by deleting (for each k )  the 
inequalities in Eq. (A4). 0 

Proof Set 

u,, = (X(c) = s i ,  X(T,,-J = x,,-,, . . ., X(To) = xoI 

and let { Vb: i = 1, 2, . . . , I  be the (countable) set of all joint 
events of the form 

Vi = IX($(1,n)) = sJ(t,!l)* e;r.?Z) = 'I,(,,"), ' ' ', e: = ' I '  

X ( 0 )  = xol, 

where = T,' and sA ,,,,) = s:, and there exist I, < . . . < 
such that {,,= T, ands,, = x,, J = 1, 2, . .., n - 1. Also 

let !Z;(z.n) be the canonical representation of the joint event 
V:. Next consider the joint event 

IS,,Js+) + ~ J s + )  I T: + R,Js+), k E K(s+); U,). 

If S,,,(S+) = T:, then the vacuous statement (An,k(s+) > 0) 
can be written as { S,,Js+) + 
then SJs+) + A,,(s+) > Ti since A J s + )  is by definition 
the clock reading for an event that is active at time T:. 
Thus, the joint events 

> c). If SJs+) < T i ,  

{Sm,k(s+) A n , k ( S + )  5 T: Rn,k(S+), k E K(s+); u,! (A51 

and 
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where all terms of probability zero are excluded from the 
sum. By Lemma 9, we can replace Y;(i,n) with %$i,n, 

without altering the value of the sum. 
Setting 

and denoting the set of random variables appearing in the 
canonical representation U( - {/(,,n,k)) (k  E K(s+)) and 
in g:(,,n) by %it follows from Lemma 9 and the 
independence assumptions on  A J s + )  and RnJs+) that we 
can write 

where FR and F,are the joint distribution functions of 
{Rq(r,n).k(~+),  k E K(s’)) and 9(respectively. [Note that the 
outer integration is over values v which satisfy the equations 
and inequalities in 5?J(l,n,.] Using hypothesis (ii) of 
Proposition 5, we have that 

Using hypothesis (iii), substituting the right-hand side into 
Eq. (A8) and integrating yields 204 
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The last equality follows by the same reasoning that leads to 
the equivalence of the events in Eqs. (A5) and (A6). Cl 
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