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simulation
methods for local
area computer
networks

by Peter J. Haas
Gerald S. Shedler

Local area computer network simulations are
inherently non-Markovian in that the underlying
stochastic process cannot be modeled as a
Markov chain with countable state space. We
restrict attention to local network simulations
whose underlying stochastic process can be
represented as a generalized semi-Markov
process (GSMP). Using “new better than used”
distributional assumptions and sample path
properties of the GSMP, we provide a
“geometric trials” criterion for recurrence in this
setting. We also provide conditions which
ensure that a GSMP is a regenerative process
and that the expected time between
regeneration points is finite. Steady-state
estimation procedures for ring and bus network
simulations follow from these results.

1. intreduction

It is difficult to establish estimation procedures for local area
computer network simulations that explicitly incorporate
access control algorithms. Such simulations (see, e.g.,
Iglehart and Shedler [1, 2], Loucks, Hamacher, and Preiss
[3]) are inherently non-Markovian in the sense that the
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underlying stochastic process cannot be modeled as a
Markov chain with countable state space. Following [1] we
restrict attention to local network simulations whose
underlying stochastic process can be represented as a
generalized semi-Markov process (GSMP).

Although steady-state estimation for an arbitrary GSMP is
a formidable problem, estimation procedures [1, 2, 4] are
available for GSMPs that are regenerative processes. To
establish the regenerative property for a GSMP, it is
necessary to show the existence of an infinite sequence of
random time points at which the process probabilistically
restarts. It is often the case that a GSMP associated with a
local area network simulation probabilistically restarts when
a particular event triggers a transition to some fixed state.
For specific models, however, it is nontrivial to determine
conditions (distributional assumptions) under which the
underlying GSMP returns infinitely often to the fixed state.

A “geometric trials” argument given in [1] establishes a
recurrence criterion for a stochastic process { X(¢): ¢t = 0}
with right-continuous and piecewise-constant sample paths
and countable state space, S. Let {7,: n = 0} be an
increasing sequence of finite state transition times for
{X(2): t = 0}. The process {X(T,): n = O} hits state ' € .5
infinitely often with probability one provided that
PIX(T)=s"| X(T,.), .-, X(T,)} = é a.s. for some 5 > 0.
This geometric trials recurrence criterion avoids the often
unrealistic “positive density” assumptions needed in '
arguments (cf. {4]) based on general state space Markov
chain theory.

In this paper, using sample path properties of the GSMP,
we provide conditions which permit application of the
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geometric trials recurrence criterion in the GSMP setting.
Our approach is to postulate the existence of a distinguished
random time in the interval [T,_, 7,) and a set of
distinguished events determined by the state of the system at
the distinguished time such that X(7,) = s’ if each of the
distinguished events occurs “soon enough” before time T ,.
We show that {X(T): n = 0} hits state s” infinitety often
with probability one if the clock setting distributions
associated with the distinguished events have “new better
than used” (NBU) distributions and satisfy a “positivity”
condition. We also establish additional conditions on the
building blocks of the GSMP which ensure that the
successive times at which {X(T,): n = 0} hits state 5" are
regeneration points for the process {X(¢): ¢ = 0} and that the
expected time between regeneration points is finite.

2. Regenerative generalized semi-Markov
processes
Heuristically, a GSMP (Matthes [5], Konig, Matthes, and
Nawrotzki [6, 7]) moves from state to state in accordance
with the occurrence of events associated with the occupied
state. Each of the several possible events associated with a
state competes to trigger the next transition, and each of
these events has its own distribution for determining the
next state. At each state transition of the GSMP, new events
may be scheduled. For each of these new events, a clock
indicating the time until the event is scheduled to occur is
set according to an independent (stochastic) mechanism. If a
scheduled event does not trigger a transition but is associated
with the next state, its clock continues to run; if such an
event is not associated with the next state, it is abandoned.
Let S be a finite or countable set of szates and E = {e, e,
-+, ,,) be a finite set of events. For s € S, E(s) denotes the
set of all events that can occur when the GSMP is in state s.
When the process is in state s, the occurrence of an event
e € E(s) triggers a transition to a state s’. We denote by
p(s’; s, e) the probability that the new state is s” given that
event e triggers a transition in state s. Foreach s € Sand e €
E(s) we assume that p(-; s, e) is a probability mass function.
The actual event e € E(s) which triggers a transition in state
s depends on clocks associated with the events in E(s) and
the speeds at which these clocks run. Each such clock
records the remaining time until the event triggers a state
transition. We denote by r,,(=0) the deterministic rate at
which the clock associated with event e, runs in state s; for
eachs € S, r, =0if ¢, & E(s). We assume that r;; > 0 for
some e, € E(s). (Typically in applications, all speeds r,; are
equal to one. There are, however, models in which speeds
other than unity as well as state-dependent speeds are
convenient. For example, zero speeds are needed in
queueing systems ith service interruptions of the
preemptive-resume type; cf. Shedler and Southard [8].) Ata
transition from state s to state s’ triggered by event e*, new
clock times are generated for each ¢’ € N(s'; s, €*) =
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Token ring.

E(s") — (E(s) — {e*}). The distribution function of such a
new clock time is denoted by F(-; s’, €', s, €*), and we
assume that F(0; s”, €', 5, e*) =0.For ¢’ € O(s'; 5, €*) =
E(s’) N (E(s) — {e*}), the old clock reading is kept after the
transition. For ¢’ € (E(s) — {e*]) — E(s’), event ¢’ ceases to
be scheduled after the transition.

o Example 1 (token ring)

Consider a unidirectional ring network having a fixed
number of ports, labeled 1, 2, - - -, N in the direction of
signal propagation; see Figure 1. (In the figure, i, j, and k
denote three of the N ports.) At each port message packets
arrive according to a random process. A single control token
(denoted by T in Fig. 1) circulates around the ring from one
port to the next. The time for the token to propagate from
port j — 1 to port j is a positive constant, R,_, (j — 1 = N if
j=1). When a port observes the token and there is a packet
queued for transmission, the port converts the token to a
connector (C) and transmits a packet followed by the token
pattern; the token continues to propagate if there is no
packet queued for transmission. By destroying the connector
prefix the port removes the transmitted packet when it
returns around the ring. Assume that the time for port j to
transmit a packet is a positive random variable, L;, with
finite mean. Also assume that packets arrive at individual
ports randomly and independently of each other: The time
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from end of transmission by port j until the arrival of the
next packet for transmission by port j is a positive random
variable, 4,, with finite mean. Note that there is at most one
packet queued for transmission at any time at any particular
port.

For ¢ = 0 set N(1) = j if at time ¢ port j — | is transmitting
or the token is propagating to port j and set

2 if port j is transmitting a packet at time ¢,

1 if there is a packet queued for

X(1) = L A
f( ) transmission at port ; at time I,

0 otherwise,

Jj=1,2, ..., N. Then set
X(1) = (X, (1), -~ -, Xp(1); N()). 1

The process {X(¢): t = 0} defined by Eq. (1) is a GSMP with
a finite state space

S={x, -, xynn=12 ..., 0rN;

x, =0, 1, or 2 with at most one x; = 2]

and event set £ = {e,, ¢,, - - -, e}, where €;;_, = “end of
transmission by port j,” e;; | = “observation of token by
port j,” and e,; = “arrival of packet for transmission by port
57i=12,---,N.Fors={(x, -, xy; n} € S, the event
sets E(s) are as follows. The event “end of transmission by
port j” € E(s) if and only if x; = 2. The event “observation
of token by port j” € E(s) if and only iij_, #2and n=j.
The event “arrival of packet for transmission by port j”
€ E(s) if and only if x;= 0.

If e = “end of transmission by port j,” then the state
transition probability p(s’; s, ¢) = 1 when

$=00, Xy 2, X, o X JH ES
and
S’ = (xp M) xj_p 07 xj+p ] x}v;j+ 1) € S

If e = “observation of token by port j,” then p(s’; 5, e) = 1
when

s=(x, o X, X, o, X)) ES
and

S =Xy Xy 2K, e X i+ )
and when

s={(x, s Xy 0, X, L X ) ES
and

S =X, X 0, X, s X +*1).

If e = “arrival of packet for transmission by port j,” then
p(s’; s, e) = 1 when
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s=0X, X 50, X, L, XM ES

-1
and

=X s X LXy s oo, Xy 1)

(Take j + 1 = 1 if j = N.) All other state transition
probabilities p(s’; s, ) are equal to zero.

The distribution functions of new clock times for events
e’ € N(s'; 5, e*) are as follows. If ¢’ = “end of transmission
by port j,” then the distribution function F(x; s’, ¢’, s, €*) =
P{L, = x}. If ¢’ = “observation of token by port j,” then the
distribution function F(x; s', ¢, 5, €*) = Rj_,.w)(x)‘ Ife’ =
“arrival of packet for transmission by port j,” then the
distribution function F(x; 5', €, 5, €*) = P{4, < x}.

Following Whitt [9], formal definition of a GSMP is in
terms of a general state space Markov chain (GSSMC) which
describes the process at successive epochs of state transition.
For s € §, define

C(S) = {((:17 .
if and only if ¢, € E(s);

-1
Cilsi

)¢ z0and ¢, >0

# cjrs'jI for i 5 j with c.cirr,, > 0} 2)

The conditions in Eq. (2) ensure that no two events
simultaneously trigger a transition (as defined below). The
set C(s) is the set of possible clock readings in state s. The
clock with reading c; and event ¢, are said to be active in
state s if ¢, € E(s). For s € S and ¢ € C(s), let

t* = ¥, ¢) = min {c,.r:,.l}, 3)
{ie;,€E(s)}

where c,7' is taken to be +o when r,, = 0. Also set

¥ =c¥(s, ¢) = ¢, — 1%s, O)r,, €€ E(s) 4
and
i* = j*(s, ¢) = i such that ¢, € E(s) and c¢}(s,¢) = 0. (5)

Beginning in state s with clock vector c, t*(s, ¢) is the time to
the next state transition and i*(s, ¢) is the index of the
unique triggering event e* = e*(s, ¢) = ey, .

Next consider a GSSMC {(S,, C,): n = 0} having state
space

I =U (s} x Cs)
sES

and representing the state (.S,) and vector (C,) of clock
readings at successive state transition epochs. (The ith
coordinate of the vector C, is denoted by C,,,.) The
transition kernel of the GSSMC {(S,, C,): n = 0} is

P((s, ), 4)

Il Fla;s,e,s e I lguleh) (6)

eEN(s") &E€0(s")

where N(s’) = N(s'; 5, e*), O(s’) = O(s'; s, €*), and

= p(s'; 5, e*)

A=1{s"} X {(c], -+, cp)) € C(s'): ¢] = a, for e, € E(s')).
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The set A is the subset of £ which corresponds to the GSMP
entering state s’ with the reading ¢; on the clock associated
with event e, € E(s’) set to a value in [0, a,]. [We suppose
that the clock setting distributions are such that P((s, ¢), =)
= 1forall (s,c) € 2.]

Finally, the GSMP is a piecewise constant continuous
time process constructed from the GSSMC {(S,, C,): n = 0}
in the following manner. Set {, = 0 and denote by ¢, the
time of the nth state transition, # = 0. [We assume that
Plsup ¢, = +o | (S, Cp)) = | ass.

n=1

for all initial states (S, C;).] Then set

X(t) = Sy %
where
N =max{nz0: {, < t]. 8)

The process [ X(¢): t = 0 defined by Eq. (7) is a GSMP.
Henceforth we restrict attention to GSMPs in which all
speeds 7, are equal to 1.

The characteristic property of a regenerative stochastic
process (Smith [10]) is that there exist random time points,
referred to as regeneration points or regeneration times, at
which the process probabilistically restarts. The essence of
regeneration is that the evolution of the process in a cycle
(i.e., between any two successive regeneration points) is a
probabilistic replica of the process in any other cycle. In the
presence of mild regularity conditions, a regenerative
stochastic process { X(2): t = 0} has a limiting distribution
(X(1) = X as t — o) provided that the expected time
between regeneration points is finite. Furthermore, the
regenerative structure ensures that the behavior of the
process in a cycle determines the expected value of a
function of the limiting random variable X as a ratio of
expected values. These results have important implications
for simulation and are the basis for the regenerative method
for simulation analysis; see Crane and Iglehart [11] and Eqgs.
(14)~(16) below.

e Definition 2

The real (possibly vector-valued) stochastic process
{X(2): t = 0} is a regenerative process in continuous time
provided that

i. There exists a sequence of stopping times {7,: k = 0}
such that {7, ,, — T,: k = 0} are independent and
identically distributed;

ii. Forevery sequence of times 0 <f, <, < ... <¢,
(m = 1) and k = 0, the random vectors {X(¢)), - -+, X(2,)}
and {X(T, +t)), - --, X(T, + t,)} have the same
distribution and the processes {X(?): t < T,} and
{X(T, + t): t = 0} are independent.

[Recall that a stopping time for a stochastic process
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{X(r): t = 0} 1s a random variable T (taking values in [0, »))
such that for every finite ¢ = 0 the occurrence or
nonoccurrence of the event {7 < ¢} can be determined from
the history {X(u): u < ¢} of the process up to time ¢.]
Recurrence properties of the underlying stochastic process
of a discrete event simulation are needed to establish
estimation procedures based on regenerative processes.
Lemma 3 is a special case of a generalized Borel-Cantelli
lemma due to Doob [12, p. 324]; see [1, Lemma 4] for an
elementary proof using a “geometric trials” argument.

o Lemma 3

Let {Y,: n = 0] be a sequence of random variables defined
on a probability space (2, % P) and taking on values in a

set, S. Let s’ € S. Suppose that there exists § > 0 such that

PlY,=5s"1Y,_, -, Y}=das

foralinz 1. Then P{Y, =s" i.0.}] = L.

Lemma 3 provides a means of showing that the
underlying stochastic process of a simulation returns
infinitely often to a fixed state. Specifically, let {X(¢): ¢ = 0}
be a stochastic process with right-continuous and piecewise-
constant sample paths and countable state space, S. Let s’ €
S and suppose that {T,: n = 0} is an increasing sequence of
finite (T, < = a.s.) state transition times for {X(¢): ¢ = 0}
such that

PiX(T)=s"| X(T,_), -, X(T)} = é as.

for some 6 > 0. Then P{X(T,) = s’ i.0.} = | by Lemma 3
[with Y, = X(T)].

Using “new better than used” distributional assumptions
and the sample path structure of the process, Proposition 5
provides sufficient conditions for recurrence in the GSMP
setting.

o Definition 4
The distribution F of a positive random variable A is new
better than used (NBU) if

PlA>x+y| A>y} = P{4d > x}

forall x, y = 0.

See Barlow and Proschan [13] for a discussion of NBU
distributions. Note that every increasing failure rate (IFR)
distribution is NBU. Also, if 4 and B are independent
random variables with NBU distributions, then the
distributions of 4 + B, min (4, B), and max (4, B) are NBU.

Let {X(2): t = 0} be a GSMP with countable state space, .S,
and event set, E = {e,, ---, e,,}. Suppose that {T,: n = 0} is
an increasing sequence of finite (7, < » a.s.) state transition -
times such that for some ¢* € E and $* C S: T, = 0 and

T,=inf{t > T,_,: at time ! event &* triggers a

transition in some state s* € S*}, n = 1. 9)
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Let s, € S. Proposition 5 postulates the existence of a
distinguished random time (T:) in the interval [T _,, T,)
defined by Eq. (9), and a set {e,: k € K(s™)} of distinguished
events determined by the state s of the system at time 7',
such that X(T,) = s; when each of the distinguished events
occurs prior to some time T, + R, (s*) (>T7). The
proposition asserts that {X(7): n = 0} hits state s, infinitely
often with probability one if the clock setting distributions
associated with the distinguished events are NBU and satisfy
a “positivity” condition which guarantees the existence of
8>0asin Lemma 3.

Let {T;: n = 0} be a sequence of state transition times,
and denote the state space of {X( T:): nz= 0} by S Set
(T = (S, C)): 0= 1= N(T,)}, where N(-) is given by
Eq. (8). Also set
K'= U K(s.

stest
When X(7T7) = s~ we denote by S, (s") the latest time less
than or equal to T/, at which the clock associated with event
e, [k € K(s")] was set, and by 4, (s") the setting on the
clock at time S, (s").

o Proposition 5

Assume that there exist state transition times { T:: n=0},
and for s* € S™, event sets {¢,: k € K(s")} and identically
distributed collections of random variables {R,,,: k € K(s")},
independent of {4, (X(T})): k € K(T7))} and &(T,), such
that

i T,_,=< T, as. and forx, x,, -+, x,_, € Sand
stest,
PX(T,) = 55, X(T}) = 5", X(T,_)) = X5 -+,

X( To) = -xo}

\%

PiS,(s") + A,,(s") = T, + R, (s"),
k€ K(s), X(T,) = 5",
X(T_)=x

n—1>

t X(To) = xo};

ii. For all ¢, (k € K™), the clock setting distribution
F(.;s',¢e,s €)= F(-;¢e)andis NBU;
jii. There exists 3> 0 such that for s* € S*

8(s") = Pl S R, (s kEK(s) =6,

where the random variable 4,(s") has distribution
F(-; e,) and {4,(s"): k € K(s")} are mutually
independent and independent of {R, ,(s*): k € K(s)}.

Then
PIX(T) = s} | X(T,_), ---, X(T))} = 6 as.
so that P{X(T,) = sji0.} = I

Proof Lets*€S"and x,, ---, x,_, €S. Lemnma 10 of the
Appendix shows that
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PIS, (s") + A, (s7) = T, + R, (s"), k € K(s");
sSLXT_)=x,_, -
SPIX(TH =5, X(T,_)) = X,_, -+~

X(Ty) = X}- (10)

X(T7) - X(Ty) = xo}

v

Using Eq. (10),

PIX(T,) = 5§ X(T,_) = X,_,, -
Y PIX(T,) = 55, X(T,) = 5",

- X(To) = X}

1

stest
X(T,,_l) =X -1 "7 X(To) = xo’
2 Y PSS () +A4,6)s T, + R,
stes*
k€ K(s™); X(T}) = s",
X(T,,_l) = X -1 "% X(To) = xo}:
= ¥ SPX(TH=5",
stest
' X(T,_ ) =x,_, - X(Ty) = X}
=5 PIX(T,_)=x,_,, -, X(Ty) = x,}.

It follows that

PUX(T) = s, | X(T,_), -+ X(T)} = b as.

and Lemma 3 implies that P{X(T,) = s} i.0} = 1. O

Proposition 6 gives a set of new conditions (cf. Proposition
8 of [1]) on the building blocks of a GSMP which ensure
that regeneration points exist and that the expected time
between regeneration points is finite. We establish conditions
on the sets of old and new events which ensure that the
GSMP probabilistically restarts whenever (at some time 7,
event e* triggers a transition to state s,. A geometric trials
condition guarantees that this occurs infinitely often with
probability one.

e Proposition 6

Let {T,: n = 0} be an increasing sequence of stopping times
that are finite (T, < 0 a.s.) state transition times as in Eq.
(9). Suppose that there exist s, s, € S and § > 0 such that

PLX(T) = s, | X(T,_), -+, X(T)} = b as. (1

Also suppose that for s* € S*, (i) the set O(s]; s*, €*) =
E(sp) N (E(s*) — {e*}) =1, (ii) the set N(s;; s*, e*) =

E(s}) — (E(s*) — {e*}) = N(sg; s, e*), and (iii) the clock
setting distribution F(-; s;, €', s*, e*) = F(-; 55, €', 5, €*) for
all e’ € N(s5; 5, €*). Then {X(¢): t = 0] is a regenerative
process in continuous time. Moreover, if

EiT,,,—Tlsc<w»

for all n = 0, then the expected time between regeneration
points is finite.
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Proof Using Lemma 3, Eq. (11) implies that event e*
triggers a transition to state s, from some state s* € S*
infinitely often with probability one. Furthermore, at such a
time T, the only clocks that are active have just been set,
since O(s;; 5*, e*) = @ for all s* € S§*. The joint distribution
of X(T,) and of the clocks set at time 7, depends on the past
history of {X(¢): ¢ = 0} only through s/, the previous state s*,
and the trigger event ¢*. Since the new events and clock
setting distributions are the same for all s*, the process
{X(t): t = 0} probabilistically restarts whenever

{X(T,): n = 0} hits state s;.

To show that the expected time between regeneration
points is finite, assume for convenience that X(7T,) = X(0) =
55.8et X, =X(T,)and D,=T,,, — T,, n = 0. Observe that
the random indices g, such that X, 8 = X( Tﬂ") = s, form a
sequence of regeneration points for the process
{(X,, D_): n = 0}; this follows from the fact that the process
{D,: n = 1} starts from scratch when X(T} ) = 5,. Let 7, =
Bisr — B k= 1. The 7 are i.i.d. as 7, and the argument in
the proof of Lemma 4 in [1] shows that

Plr,>n} = (1 —-9),

so that E{r,} < oo, Thus the expected time between
regeneration points for the process {(X,, D,): n = 0} is finite.
Since E{r,} < and Eq. (11) ensures that r, is aperiodic,
(X,, D,)= (X, D) as n — oo, Using the continuous mapping
theorem we have D, = D as n — o and, since D, = 0 and
EiDj=<c<o,

E{|D|} = E{D} < lim E{D,} < c < o

by Theorem 25.11 in [14]. Since 7, is aperiodic, E{r,} < o,
and E{|{D|} < o,

E{ rin D"}

E{D} = ————,
{D} Efr)
so that
-1
E{ ¥ D,} < o,
j=0

and the expected time between regeneration points for
{X(£): t =0} is finite. O

Note that the result of Proposition 6 also holds if
condition (1) is replaced by (i") O(s,; s,, €*) # & and for any
e’ € O(sy; 5, €*) the clock setting distribution
F(-;s', €', s, €) is exponential with mean A~' independent of
s, 87, and e. [Assumption (i’) ensures that no matter when
the clock for event ¢’ € O(sy; 5, €*) was set, the remaining
time until event ¢’ triggers a state transition is exponentially
distributed with mean A\™'.] Also note that the state
transition times {7,: n = 0} defined by Eq. (9) are necessarily
stopping times if

p(s*; s*, e¥) =0 (12)
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for all s* € S* and
(13)

for all s* € $* and s € S. [Conditions (12) and (13) imply
that every occurrence of event e* in a state s* € S* and
hence every state transition time T, can be determined by
observing the sample paths of { X(¢): ¢ = 0}.]

Under the conditions of Proposition 6, X(f) = X as
t — . Let f be a real-valued (measurable) function having
domain S. From n cycles the standard regenerative method
[11] provides the strongly consistent point estimate

e = ¢* whenever p(s; s*, ¢) > 0 and p(s; s*, e*) > 0

.o Y(n)

F(n) = ) (14)

and the asymptotic 100(1 — 2v)% confidence interval

. ) z,_s(n) | zl_ys(n)}

In=[r(n —— Hn _ (15
) ) -F(n)n”2 T'(n)n”2 )

for r(f) = E{f(X)]. In Eq. (14),

Ymy=n" T Y.(f)

m=1

and

n

Hny=n'3 1,
m=1

[For m = 1, 7, is the length of the mth cycle and Y, (/) is
the integral of f(X(-)) over the mth cycle.] The quantity s(n)
is a strongly consistent point estimate for () = var(Y,(f)
—r(fy)andz_, = &7'(1 — v), where @ is the distribution
function of a standardized normal random variable, N(0, 1).
Confidence intervals are based on the central limit theorem

n'2{#(n) = r(S)}
o f)Elr ]}
as n — o, Equation (16) [and thus Eq. (15)] holds if

o(f') < w. It can be shown that when S is finite or fis
bounded, o(f) < w0, provided that for some ¢ > 0

= N, 1) (16)

E{(T,,, - T)"}<b<w
forall n = 0.

3. Ring and bus network models

The following examples illustrate the use of the GSMP
model as a formal specification of a discrete event simulation
of a local area computer network and the application of
Propositions 5 and 6. These results are also applicable to the
token ring and collision-free bus network models in
Examples (4.1) and (A4.3) of [2].

e Example 7
Recall the token ring model of Example 1. Following [1], set

X(1) = (Z,8), ---, Zp(2); M(1); N(1)), (17) 199
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where
| if there is a packet queued for
Z(n = transmission at port j at time ¢,
0 otherwise;
M) = j if port j is transmitting a packet at time ¢,

0 if no port is transmitting a packet at time ¢,

and N(¢) = j if at time ¢ port j — 1 is transmitting a packet or
the token is propagating to port j.

The process {X(¢): ¢ = 0} is a GSMP with a finite state
space, S, and event set, £ = {e,, - -, &y,,}, Where ey, =
“observation of token,” e, , = “end of transmission,” and
e, = “arrival of packet for transmission by port j,” j= 1, 2,
.-+, N.Fors=(z,, -- -, zy; P1; n) € S, the event sets E(s)
are as follows: The event “end of transmission” € E(s) if
and only if m > 0 and “observation of token” € E(s) if and
only if m = 0. The event “arrival of packet for transmission
by port j” € E(s)if and only if z; =0 and m#j,j =1, 2,

., N.
As an application of Propositions 5 and 6, take s; =
0, 1, ---, 17 1; 2). Let &* = “observation of token” and S$* =
{(z,, - +» 2y 0; 1) € S} so that T, is the ath time at which
port 1 observes the token, n = 0. Observe that 7, < o a.s.
since
N

E{T,-T,_}<R + --+Ry+ X E[L} <o (18)
j=1

forall n = 1.

Let T be the first time after 7,_, that the token leaves
port N so that S$* = S* Observe that X(T,) = s} if, while the
token is propagating from port N to port 1, there is an
arrival of a packet for transmission at every port that does
not have a packet queued for transmission at time T: Thus,
fors* = (z}, -, zmym*;n") €8T, set K(s7) = {k: z; = 0}
sothat K* = {1, 2, - --, N}. Take R, ,(s") = R, for all
k € K(s") and s* € S*. Then condition (i) of Proposition 5
is satisfied. Assume that the distribution of 4, is NBU and
that

5j=P[Ast,,}>0
forj=1,2, ..., Nsothat

N
asH= 11 o,=I18=6>0.
jeKsh i=1
Then P{X(T,) = s{ i.0} = 1.

A transition of the process {X(¢): ¢t = 0} defined by Eq.
(17) to state s, can occur when event e* is the trigger event
only if &* occurs in state s* = (1, ---, 1; 0; 1) and in this
case the set O(s{; s*, e*) = @. Since Eqgs. (12) and (13) hold
and P{X(T,) = s; i.0.} = 1, the successive times 7, at which
e* triggers a transition (in state s*) to state s; are stopping
times and regeneration points for the process {X(¢): ¢ = 0.
The expected time between those regeneration points is finite
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by Eq. (18). At these time points there is a packet queued for
transmission at ports 2, 3, ..., N and port 1 starts
transmission of a packet. Furthermore, if E {Lf”} < o for

some ¢ > 0, then
2+¢
sup E{(T,., — T} < w
and the remarks following Eq. (16) apply.

o Example 8 (collision-free bus network)

Consider a bus network (Eswaran, Hamacher, and Shedier
[15]) with N ports, numbered 1, 2, -+, N from left to right;
see Figure 2. Message packet traffic on the passive bilateral
bus is transmitted/received by port j at tap B(j). In addition
to the bus, a one-way logic control wire also links the ports.
Associated with each port j is a flip-flop, S(J), called the send
Slip-flop. The signal P(j), called the OR-signal, tapped at the
control wire input to port j is the inclusive OR of the send
flip-flops of all ports to the left of port j. Denote by T the
end-to-end bus propagation delay. [For technical reasons, T
actually must be the end-to-end propagation delay plus a
small (fixed) quantity.] Denote the actual propagation delay
along the bus between port i and port jby T(i, j), ,j= 1,2,
-«+,N.Thus, T(i,j)=T(, iy < Tfor all i, jand T(i, j) +
T(j, k)= T(, k) for all i <j < k. Let R(j) be the
propagation delay (including gate delays) along the control
wire from port jtoport N, j= 1,2, ..., N; thus, R(1) =
R(Q2) = .- = R(N) = 0. Denote by R(i, j) the propagation
delay along the control wire from port i to port j. We assume
that signal propagation along the control wire is slower than
along the bus and that delays along shorter sections of each
path scale proportionally: R(1) > T and R(i, j) > T(i, j) for
all , J.

Specification of distributed control scheme Al is in terms
of an algorithm for an individual port j. Packets (for
transmission by port j) which arrive while an execution of
the algorithm by port j is in progress queue externally. Upon
completion of this execution of the algorithm, one of any
such packets immediately becomes available to port j for
transmission and the next execution of the algorithm begins.

Algorithm Al

e Set S(j)to 1.

e Wait for a time interval R(j) + T.

e Wait until the bus is observed (by port j) to be idle AND
P(j) = 0; then start transmission of the packet,
simultaneously resetting S(;) to 0.

For ease of exposition we assume that T'(i, j) # T(k, j) for
distinct i, k and all j. In addition we assume that there can
be at most one packet in queue at each port. Specifically,
suppose that the time from end of transmission by port j
until the arrival of a next packet for transmission by port j is
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a positive random variable, A |, with finite mean. Also
suppose that the time for port j to transmit a packet is a
positive random variable, L,, with finite mean and (so that
Algorithm A2 of [15] guarantees transmission of all packets)
such that P{L; < R(1) + T} = 0.

Set

W) = (W@, -, Wy(1), (19)

where W(r) equals | if at time ¢ port j has set its flip-flop but
has not yet completed the R(j) + T wait, equals 2 if port j
has completed the R(j) + T wait but has not started
transmission, equals 3 if port j is transmitting, and equals 4
otherwise. Next set

U@ = (U(), ---, UO), (20)

where U(¢) equals & if port j observes transmission of a
packet by port k on the bus at time ¢, and equals 0
otherwise. Also set

V(t) = (Vz_l(t)y Vg,l(t)s V3,2(t)a V4,1(t)y M VN,N_l(t)); (21)

where V), (1) equals 1 if and only if S(k) = 1 at time

t — R(k, j), and equals 0 otherwise. [Port j observes P(j) = 1
at time ¢ if and only if V, ,(¢) = 1 for some k < j.] Finally, set
Z(t) = 1 if some port is transmitting at time 7 and this port
started transmission when it observed an end of
transmission; otherwise Z(z) = 0. Then set

X(0) = (W(2); Z(); UQr; V(@) (22)

The stochastic process { X(¢): 1 = 0} defined by Eq. (22) is a
GSMP with a finite state space, .S, and event set, E. The
events in the set F are: “end of transmission by port j,” “end
of wait for R(j) + T,” “setting (to 1) of flip-flop by port j,”
“observation by port j of start of transmission by port k # j,”
“observation by port j of end of transmission by port k # j,”
“observation by port j of end of transmission by port k # j
and start of transmission by port / # j,” “observation by port
J of the setting (to 1) of flip-flop by port & to the left,” and
“observation by port j of the resetting (to 0) of a flip-flop by
port kto the left,” j=1,2, ---, N.Fors = (w,, -+ -, wy; z;
Uy ooy Ups Vg, - o5 Uy ) € S the event sets E(s) are as
follows: The event set E(s) contains “setting (to 1) of flip-
flop by port j” if and only if w, = 4. The event “end of
transmission by port j” € E(s) if and only if w, = 3. The
event “end of wait for R(j) + T” € E(s) if and only if

w,= 1. The event “observation by port j of start of
transmission by port £~ € E(s) if and only if (i) w, = 3,
z=0,and u,5 k or (i) w, = 3, z = 1, and either ;= 0 or

u; =  for some / between k and j. The event “observation by
port j of end of transmission by port k™ € E(s) if and only if
U, = kand w, = | or 4 and either z = 0 or w, # 3 for all /
between j and k. The event “observation by port j of end of
transmission by port & # j and start of transmission by port
[#j"€ E(s) ifand only if u;= k, z = 1, and w; = 3 with /
between k and j. The event “observation by port j of setting
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of flip-flop by port k to the left” € E(s) if and only if w, = 1
and v, , = 0 for some k < j. The event “observation by port j
of resetting of flip-flop by port & to the left” € E(s) if and
only if w, = 3 and v;, = | for some k <.

Note that with this definition of the event sets E(s), no
“observation by port j of start of transmission by port k”
and “observation by port j of end of transmission by port /”
events can occur simultaneously in the GSMP model. To see
this, let & < / < j. Suppose that port k ends transmission of a
packet at time ¢ and that port / starts transmission of a
packet at time ¢’ = ¢ + T(k, /). Then the event “observation
by port j of end of transmission by port k and start of
transmission by port /” is scheduled at time ¢’ and (since
z=1and w, = 3 where / is between k and ;) the event
“observation by port j of end of transmission by port £”
(which was scheduled at time ¢) ceases to be scheduled at
time ¢’.

The distribution functions of new clock times for events
e’ € N(s'; s, e*) are as follows. If ¢’ = “end of transmission
by port j,” then the clock setting distribution function
F(x;s',e',s,e)=P|L; = x}. If ¢’ = “end of wait for
R(j) + T,” then the clock setting distribution function
Flx; ', €', 5, €*) = | ayerf(X)- If € = “setting (to 1) of
flip-flop by port j,” then the clock setting distribution
function F(x; s’, €', 5, *) = P{4, < x}. If ¢’ = “observation
by port j of start of transmission by port k,” then the clock
setting distribution function F(x; 5', €', 5, €*) = 1,7, (%)
If ¢’ = “observation by port j of end of transmission by port
k,” then the clock setting distribution function
Flx; s, €', 8, €*) = |14 j=(X). If € = “Observation by port -

j of end of transmission by port k and start of tra?smission
by port /, then the clock setting distribution F(x; s’, €’, s, €*)
= lizy=(X)- If ¢ = “observation by port j of setting of flip-
flop by port k to the left,” then the clock setting distribution
function F(x; s’, ¢’, s, e*) = 1 rgejy (%) Ife' =
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“observation by port j of resetting of flip-flop by port & to the
left,” then the clock setting distribution function
Flx; 57, €'y 5, €)= 1y o)

As an application of Propositions 5 and 6, take 5§ =
4,2,...,2,0;0,1,...,1;0,0, 1, ---,0, 1, - -+, 1). Let
e* = “end of transmission by port 1” and S$* =
{G, Wy, oWz L, o0, ) €Sty =0 for
Jj=2,3, ---, N} sothat T, is the nth time at which port 1
ends transmission, n = 0. Then port 1 ends transmission of a
packet with every other port j having observed the resetting
of port 1’s flip-flop, having a packet queued for transmission,
and having completed the R(;j) + T wait at time T, if
X(T,) = s;. Observe that

T,—T, ,=A,+R(1)+T+D,+L (23)

1n>

where L,, is distributed as L, 4,,, is distributed as 4,, and
D, is a non-negative random variable. Provided that the
distribution of L, is NBU, it can be shown that

E{D} = ¥ E{L},

Jj=2

so that
N

E{T,-T,_}<E{A}+R+T+ Y E{L} <

J=1

29

and therefore T, < o a.s.

Let T, be the first time after 7,,_, that port 1 begins
transmission of a packet so that S* = $*. Observe that
X(T,) = s, if, at least R(1) + T time units before the end of
transmission by port 1, there is an arrival of a packet for
transmission at each port that does not have a packet
queued for transmission at time T; Thus, let ¢; = “setting of
flip-flop by port j” and for s* = (w"; 2" u*; v") € ST, set
K(s") = {k: w, = 4}so that K' = {2, ..., N}. Take
R, (s)=L, —(R(l)+ T foralls* € S* and k € K(s").
Then condition (i) of Proposition S is satisfied. Assume that
the distribution of 4, is NBU and that

5, =Pl4,+R()+ T=<L}>0,
j=2,3,---, N. It follows that
§=PA,+R(N+T=<L,j=23---,N>0
so that

5(s) = Pl4,+ R(1)+ T< L, j EK(s)} = 4.

Then P{X(T,) = sji0.f = 1.

A transition of the process { X(¢): ¢t = 0} defined by Eq.
(22) to state s§ can occur when event e* is the trigger event
only if * occurs in a state s* = (3,2, ---, 2; z; 1, .-, 150,
1, ---, 1) and in this case the set O(s¢; s*, e*) = . Since
Eqgs. (12) and (13) hold and P{X(T,)= s¢ i.0.} = 1, the
successive times T, at which e* triggers a transition (in state
s%) to state s4 are stopping times and regeneration points for
the process {X(#): t = 0}. The expected time between these
regeneration points is finite by Eq. (24). If, in addition,
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E{L3**} < » for some ¢ > 0, then
2+¢

SUPE{( Tt — T) <o

and the remarks following Eq. (16) apply.

4. Concluding remarks

It is sometimes possible to establish recurrence results under
weaker positivity assumptions than those required by
hypothesis (ii) of Proposition 5. For example, in the token
ring model of Example 7, P{X(T,) = sy i.0.} = 1 if the
distribution of 4;is NBU and P{4, = R, + --- + R} > 0.
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Appendix
Let {X(£): t = 0} be a GSMP with finite state space, .S, and
event set, E. Recall that {, is the time of the nth state
transition and that S, = X({,) is the state of the system at
time {,, n = 0. Also recall that C,, is the vector of clock
readings at time ¢{, and that C,,; is the ith coordinate of the
vector C, for ¢; € E(S,). Denote by i¥ = i*(S,_,, C,._,) the
index of the nth trigger event and let e = e and [, =
{i: e, € E(S ).

Let S5, 5 -+-, S, ESand ¢, ---, ¢ € Ewith
D(Ses Sicys e,.k) > (). Then the joint event

(X6 =5, €n =€, X(§,n) = 5,10

=, et =6, X0) =5, (A1)

n= in—1

is equtvalent to the joint event specified by the inequalities

Coipoy = Cir 1€ L, = i}

andm=0,1,.--.,n—1 (A2)
in conjunction with the equations
X(&)=S,=5,k=0,1,..-, n (A3)

If1, ={i,.},wewriteC,, <o

We assume throughout that E(s,) is the set of active
events at time ¢ = 0 and that all active clocks are reset at
time t = 0:

PIC, = xl=F(x;5', e,5,€)

for some s, s’ € Sand e € E (dependent on i), ¢, € E(s,). In
addition, we define N(s,; 5,,_,, €x) = E(s,) for m = 0.

Next observe that if ¢, € O(s,; s,_,, €¥) so that C, , is an
old clock reading, then

where {,, is the latest time prior to {, at which the clock
associated with event ¢, was set. This implies that any old
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clock reading C, ; appearing in Eq. (A2) can be expressed in
terms of one or more C,, , with ¢, € N(s,,; s,,_,, €,) and

m < k. Replacing in this manner all old clock readings
appearing in Eq. (A2) with expressions which involve only
new clock readings, we obtain an equivalent system of
inequalities which, in conjunction with Eq. (A3), we denote
by &,. We call &, the canonical representation of the joint
event given by Eq. (Al).

o Lemma 9

Let %, be the canonical representation of the joint
event given by Eq. (A1) and let j, ji,, - - , i, be indices
suchthat I <j <j,<... = j,(,,) < n. Suppose that
N(s;5 810 Jk) #3,k=1,2, ..., l(n). Select € €

N(s € jk) and denote by 55,, the set of inequalities

I’Jk

G+ G > Sk =12, ().

ok
Either the set of inequalities { &, %, | has probability zero or
there exists 527; C % such that (i) { &, 5?;} and { ¥, %} are
algebraically equivalent and (ii) no random variable C‘jbik in
¥ appears in Z.

Proof For fixed k, observe that the variable G, ;, appears
only in those inequalities in %, corresponding to state

transitions at times fjk, s“jkﬂ, -+, ¢, There are two cases to

consider.
Casei. For some k and j, = / < n — 1, £, contains the
inequalities
-1
5{( Mk -3 ) < LC) i€l — i}
m=j
or

I_
-2 G <w
Jk i LR ’
m=j

where %(-) denotes an expression written in
canonical form. By the structure of the GSMP this
means that

-1
K(CM;H) = g( lk-’k 2 m+|>’

m=j,

<r + Z m,m,>

= Z(n) = £8,)
This contradicts the corresponding inequality in &

which implies that

ll

%(Cb,.k + 5‘)

so that { ¥, %} has probability zero.
Case ii. For every &,
-1
LCpp) < %(qb,.k - X G, )
m=j,

I=juje+ 1, --,n—1.  (Ad)
This is equivalent to

!
g(clk”k ;’k) > %(‘(}k + E Cm,i;m) = ‘%(g-lﬂ)’
m=jk
I=jei+ 1, -,n—1
IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

But clearly, (for every k) each of these equations is
implied by the inequality

#(C,, + 5) > L6,

which is an element of &. Since the only
inequalities in %, which contain the random
variable Cjk ;, are those in Eq. (A4), the required
subset Z is formed by deleting (for each k) the
inequalities in Eq. (A4). OO

e Lemma 10
Lets*€S and x,, - - -,
Proposition 5,

X, € 5. Under the conditions of

P{S,(s7) + A, (s") = T, + R, (s), k € K(s™);
X(TH=5,X(T,_)=2x,_, -
=8 PLX(T))=s", X(T,_) = x

X(T,) = x,}
X(Ty) = x,).

> " s

Proof Set

={X(T,) = 53, X(T,_) = x,_;, -+, X(T) = x;}

and let § Vﬁ,: i=1,2, ...} be the (countable) set of all joint
events of the form
V = ‘X(g_](m)) Sitiny e}:i,n) = eij(i,n)’ © eT = ei,’

X(0) = x,},

where {;,,= T, and 5, = 5, and there exist /; < - .. <
l, Isuchtha‘t§‘,}_= Tjands,l,——-xj,j= 1,2, .-.,n=1.Also
let £; ,, be the canonical representation of the joint event
V! . Next consider the joint event

(S5 + A4, () = T) + R, (s, k € K(s"), U,}.

If S, (s7) = T, then the vacuous statement {4, ,(s*) > 0}
can be written as {S, ,(s7) + 4,,(s) > TH L If S, (s < T,
then S, ,(s*) + 4,,(s") > T, since 4,,(s") is by definition
the clock reading for an event that is active at time 7.
Thus, the joint events

(S,u(sT) + 4,57 = T, + R, (), k € K(s™); U} (AS)
and
(S,(5T) + 4,(s) = Ty + R, (s7),

S, (s + 4,5 >T,, ke K(s™y, Uy} (A6)

are equivalent.

Now observe that for every sequence ¥/ of states and
trigger events, Snvk(sJ') corresponds to some {;, ,,, and T: to .
some §j; - Also, An,k(s+) corresponds 10 some Cy; , 4y miinsy?
miinio € N(Stimop Siimio-1> €xtmio a0 Ry (57
corresponds to some R, (s"). Since U, is the disjoint
union of the events ¥, we can combine the above results to
obtain

where ¢
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PiS, (5T + A, (s = Ty + R, (D), k € K(s™); Uy}

.
= 3 PtCmimiinio = Sjimy = Sttimiy T Raimals )
i

Cl(i.n,k),m(i.n,k) > g‘j(i,n) - (I(i.n.k)’ k€ K(s+); ¥ ;(i,n)}’ (A7)

where all terms of probability zero are excluded from the
sum. By Lemma 9, we can replace 55;(,.,,,) with 507;(,.,")
without altering the value of the sum.

Setting

Zj(i.n).l(i.n.k) = 2 (fj(i,n) - g—l(i,n,k))

Jiny—1 I(i,nk)—1
= .%( E Cvj’i;“ - 2 q,‘;_H)s
j=0 =0

and denoting the set of random variables appearing in the
'canon_ical representation £({, » = $yinp) (K€ K(s") and
in Z;,,, by % it follows from Lemma 9 and the
independence assumptions on A4, ,(s") and R, (s*) that we
can write

+
P{C, = Ziimiinp T Ry m iS5 )s

. i
Cl(i,n,k),m(i,n.k) > iy i miy ke K(s), & j

(4,m,k),m(i,n,k)

(i,n)};

= f f PiCimpmiinis = Liimimio®) + Taim»
C

Kimbmiinio > L

(i,n),l(i.n,k)(v)a

k € K(s"WdFy(r)dF  (v), (A8)
where F and F are the joint distribution functions of

{R, (s, k € K(s")} and % respectively. [Note that the
outer integration is over values v which satisfy the equations
and inequalities in f]'i(,.,n).] Using hypothesis (ii) of
Proposition 5, we have that

P{Cl(i.n.k),M(i,n.k) = Zj(i.n.).l(i.n.k)(v) + Tatimies

.
Chinprmingy = Ligmuini®) k € K(s7)}

H+ P{ Cl(i.n.k),m(i,n,k) = j(i,n),l(i,n,k)(v) + rq(i,n),k’
keK(s™)

C[(i,n,k),m(i,n,k) > Zj(i,n),l(i,n,k)(v)’

Im ir {Crlimppmiingy = Tatimil
keK(s*)

v

X P {Cl(i,n,k),m(i,n,k) > Zj(i,n),l(i,n,k)(v)}]
+
= PlCinprminty = Tatumr k € K(s7)}

x P {CI(i,n,k),m(i,n,k) > Zj(@n),/(i,n,k)(”)a ke K(5+)}¢

/
Using hypothesis (iii), substituting the right-hand side into
Eq. (A8) and integrating yields

PETER J. HAAS AND GERALD S. SHEDLER

PiClimismtimis = Siimy = Stimiy + Rogimpic»
. i
Climirmtingy > Siimy — Sttiniy & € K(57); & im

z4P {Cl(i,n,k)‘m(i.n.k) > fj(i,n) - g_/(i,n,k), ke K(5+);

Llimb  (A9)

Substituting Eq. (A9) into Eq. (A7) and using Lemma 9,

PIS (s + A, (=T, + R, ("), keK(sY);UY

= 2 8 P{Cy; piomiinio > Siim = Sinky k € K(s*); @/:.;

=5 PSS, (s7) + A, (sT) > T, ke K(s™y, Uy

=5 P{U,}.

The last equality follows by the same reasoning that leads to
the equivalence of the events in Egs. (A5) and (A6). O
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