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reductio:
context selection
for compression
of gray-scale
images

by Stephen Todd
Glen G. Langdon, Jr.
Jorma Rissanen

In the compression of muitilevel (color or gray)
image data, effective compression is obtained
economically by judicial selection of the
predictor and the conditioning states or contexts
which determine what probability distribution to
use for the prediction error. We provide a cost-
effective approach to the following two
problems: (1) to reduce the number of coding
parameters to describe a distribution when
several contexts are involved, and (2) to choose
contexts for which variations in prediction error
distributions are expected. We solve Problem 1
(distribution description) by a partition of the
range of values of the outcomes into
equivalence classes, called buckets. The result
is a special decomposition of the error range.
Cost-effectiveness is achieved by using the
many contexts only to predict the bucket
(equivalence class) probabilities. The
probabilities of the value within the bucket are
assumed to be independent of the context, thus
enormously reducing the number of coding
parameters involved. We solve Problem 2
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(economical contexts) by using the buckets of
the surrounding pixels as components of the
conditioning class. The bucket values have the
desirable properties needed for the error
distributions.

1. introduction

In this paper we describe an approach to the lossless
compression of gray-scale images. The approach is similar to
prior black/white image compression techniques [1]. In [1],
to encode each bilevel pixel (picture element) value z we
look at the values in its previously encoded neighbors, and
use these values as a conditioning state, or context w. For
each context w we collect statistics on the probability of the
value of the pixel to be encoded, and use these probabilities
as expectations to drive an arithmetic encoder. We use the
term parameter to denote a coding probability or other
quantity similarly related to the coding probability. (For
example, the length of a Huffman codeword is related to
minus the log of the coding probability of the event which
the codeword represents.)

For black/white images, the use of the m neighboring pixel
values to define each context yields 2™ distinct contexts. (In
[1], m was 7 or 10.) For a straightforward extension of [1] to
gray-scale images with |z| levels, we would have |z|™
contexts, each context requiring |z | coding probabilities.
The value |z| X z™ is quite large for 8-bit pixels (|z| = 256)
and three neighboring pixels as contexts; this yields too large
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a number of parameters to be conveniently stored and/or
transmitted.

Most of the work on compressing images deals with lossy
techniques; see Netravali and Limb [2]. Both lossy and
lossless image compression can benefit from prediction
techniques (see Mussman [3]). In medical imaging, the
application requires lossless techniques. For example, see
Lehmann and Macovski [4], who use a predictor and
adaptively select which of four Huffman codes to use on the
basis of the mean prediction error of neighboring pixels. In a
sense, the Lehmann and Macovski approach has four
contexts, and a code for each context; they reduce the
number of codewords (coding parameters) needed by using
81 codewords for the most common error values, and a
“copy codeword” for a fixed-length error value to follow.

The approach in this paper reduces the number of coding
parameters while using a large number of contexts. Although
we study images of 8-bit pixels, i.e., illumination values from
0 through 255, the approach is also valid for 12-bit pixels or
any other resolution.

The ordinary prediction methods need only as many
coding parameters as are required to describe the prediction
error. A linear combination of the surrounding pixels
provides a prediction of the current pixel value, and a single
distribution is needed to encode the difference. In general,
the difference may be any value from +255 to —255.
However, for most images the value 0 should be the most
popular error value. The predictive method is a powerful
way to take into account the values of the neighbors and
generate a single distribution instead of, say, 256 X 256 X
256 distributions. However, increased compression can be
achieved by the assignment of an independent distribution
to each context w,. For example, if the current pixel is in a
“smooth” area, context w,, the error distribution e(w,)
should be concentrated near “0,” with a high probability for
error “0.” On the other hand, if the current pixel is in
context w,, an area of the picture which has “edges” (sharply
changed values), the prediction error e(w,) is expected to be
large (relatively small probability for error of “0”). Clearly,
we are dealing with different distributions.

Consider the case where we have 625 contexts, hence 625
distributions. Each distribution deals with 511 (+255 to
—255) coding probabilities. We are now dealing with 625 X
510 parameters. We further reduce this number by

1. Reducing the number of parameters needed to
characterize the error distributions e(w,), regardless of
how the contexts w; are chosen.

2. Proposing a simple method to determine powerful
contexts w,.

The next section describes two plane predictors. The third
section describes alternatives predictors, and the fourth
section discusses parameter reduction and context selection.
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The fifth section describes an experiment, with results in the
sixth section and conclusions in the last section..

2. Two slane sredictors 107 yray-scale images
Figure 1 illustrates a portion of the two-dimensional matrix
of the illumination levels z(j, j) of an image, where value i
denotes the row and value j denotes the column. [We can
view levels z(i, j) as a third dimension.] Relative to pixel
z(i, j) at the origin, the figure shows a number of its
neighboring elements with their coordinates.

Following Harrison [5], we can pass a unique plane in 3-
space through the location (i, j) of the pixel to be encoded.
Let the pixel value f(J, j) be the height of the plane.

Let us pass the plane P, through the three already encoded
pixel points (i — 1, j— 1), (i — 1, ), and (i, j — 1) of
respective heights z(i — 1,7 — 1), z2(i — 1, ), and z(i, j — 1).
Plane P, can be used as function /'to estimate or “predict”
the pixel value z(, /) as follows. Define

C=z2(i,j— D+2i-1,)—z2(i—-Lj-D. ()

In terms of C,

fi,5) = C for 0'= C = 255,

and

f(i, j) = 0 for C = 0 and f(i, j) = 255 for C' = 255. 2)
We can convert the two-dimensional array {z(i, )} to a

linear one {z(t)}, t = 1, 2, - - -, obtained by scanning the

picture row by row (raster-scan order), starting in the

uppermost row and progressing from left to right. Use index

0 for the first row and column, and let there be M columns.

If the “current” pixel z(i, j) is z(2), the prediction error

sequence {e(t)} for 0 < f(0, 0) = 255 can be calculated from
the equation

) = 2(0) = fU, J)
y=2) — 2t = 1) = 2t — M) + 2t = M = 1), 3)

where M denotes the number of pixels in a row. In (3), put
2(f) = 0 for ¢ < 1. Importantly, the transformation (3), taking
the scanned sequence to the error sequence, is one-to-one.
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If the plane predictor P, above does its job properly, the
associated error sequence e(f) is purely random. To test this
we displayed the absolute values of the errors for an image of
a face using model P,. It turned out that the errors looked
quite random except for the contours, from which the image
still could be recognized as a face. Consequently, there must
have been information left in the error sequence, which by
suitable processing could be taken advantage of to improve
compression.

A second plane predictor, called P,, when passed through
the three pixels z(; — 1,7 — 1), z(i — 1, j + 1), and 2(i, j — 1),
gives the estimate f*(i, j) as follows. Let

C=z2(i,j= D+ [(i— 1, j+ D—2(—1,j=1)2],
so that in terms of C

4, )=Cfor0=Cs255,

fi,)=0for C=0,

and

[, j) = 255 for C = 255,

which yields the error sequence

e(r) = z(1) = /0, 0)
() =zt = 1) = [t — M+ 1) — 21 = M = D))/2.

3. Three simple predictors

In this section we describe three predictors for which the
error is very simple to compute. We have the trivial
predictor

Py e(t) = z(2).

The remaining two predictors respectively use for the
prediction the previous pixel (horizontal predictor P,) and
the pixel on the scan line above (vertical predictor P,):

P, e(t) = 2(t) — 2(t — 1),
P,: e(t) = () — 2(1 — M),

4. Parameter reduction and context selection
When the current pixel is in the vicinity of an edge, the error
associated with the surrounding pixels tends to be larger.
Thus, by combining contexts with the prediction model, we
can improve the compression.

In this section, we introduce “buckets” of predicted values
to reduce the number of parameters for the probability
distributions when contexts are employed. We also show a
second use for the “bucket”: as a component in the context
itself.

Problem 1—too many parameters 1o store
If we consider 100 contexts, for example, with 511
parameters per context, then we must deal with 51 100
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parameters. We can reduce the number of parameters
needed by partitioning the error range into equivalence
classes called error buckets, and only predicting the bucket
value. Consider, for example, dividing the range +255 .- 0
... =255 into five buckets. For 100 contexts, we need five
coding probabilities for each of the 100 distributions on the
buckets, so we need 500 error bucket parameters. Suppose
now that we assume that the error value within the bucket is
independent of the context. If we have approximately 103
values in each of the five buckets, we need an additional 5 x
103 or 515 parameters for values within the error buckets.
We have thus retained 100 contexts, but reduced the
parameter-handling problem from 51 100 parameters to

500 + 515 = 1015 parameters and effected a large cost
reduction (greater than 50 to 1) in parameter storage.

Problem 2—too many contexts

The single-context prediction model showed distinct
sensitivity to the presence of edges. In these areas, the
prediction errors are large, giving rise to a flatter distribution
about error value 0. We therefore suggest that the bucket
values, employed in Problem 1 as equivalence classes for the
predicted values, also be used as the components of the
context for selecting the probability distributions. Thus, for a
five-bucket range, let the error buckets of the three
surrounding pixels ({ — 1, j— 1), (i — 1, ), and (i, j — 1)
definea 5 X 5 X 5 = 625 context model for conditioning the
error distribution. The ideas discussed were tested, and the
results are given in the next section.

We may add additional components to the context. For
example, the range of intensity values may itself be
partitioned into equivalence classes for use as a context
component. Moreover, the equivalence classes employed in
the solution to Problem 1 need not be the same as those
employed in the solution to Problem 2.

e Performance calculation

When the picture is scanned under a simple predictor, let the
number of times e(¢) = k, k = =255, - - -, 255, be denoted
n(k). Then the entropy of the N-pixel image, /, as an
approximation to the ideal code length of the picture relative
to these linear models, is given by

I=Nlog N - Y [a(k) log n(k)],

where the sum is taken over all values k of the prediction
error, and N is the sum of the n(k), which also gives the
number of the pixels in the image. This formula is derived in
[6]. With arithmetic coding the picture can be encoded
without any loss of information with a code length exceeding
the ideal by a fraction of a percent. Hence, we can estimate
the potential compression from the entropy calculation.
Given I, the per-pixel entropy H is

H=(1/N)yx L
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Image of the face on an IEEE test chart.

e

5. The experimant

The 511 values of possible error were partitioned into five
equivalence classes such that each had roughly speaking the
same number of occurrences. A first pass of each image
determined the buckets. Because most errors have a small
absolute magnitude and cluster about 0, bucket 0 includes
small errors of both signs, bucket 1 includes medium-sized
positive errors, and bucket 2 large positive errors, while
buckets 3 and 4 are the negative counterparts of buckets 1
and 2, respectively. Three context components, each with
five values, yield 5° contexts w, each needing 511 coding
parameters P(e/w). Following the solution to Problem 1
(reduce parameter per error distribution), we use five buckets
b as the equivalence class for the range of e = e(?). If b(e)
(the bucket corresponding to the equivalence class for ¢) is a
variable ranging over these buckets for ¢, we can write
P(e/w) as follows:

P(e/w) = Ple/ble), w] x P{b(e)/w].
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Error image of the face using predictor P,.

As in Problem 1, we reduce parameters with an
approximation and assume that the distribution within each
bucket is independent of the context, and so replace
Ple/b(e), w] with Ple/b(e)].

Now we need only collect the 3125 (625 X 5) bucket
probabilities, plus 511 probabilities to determine the error
within the bucket, or 3636 parameters. As part of the
experiment, we tested the dependence on the number of
error buckets by running an experiment with 11 buckets as
well.

We give the formula for the entropy of the image in terms
of the various occurrence counts. Let n(e/b, w) denote the
number of times value e(f) = e occurs in the bucket b at the
conditioning class w. First we calculate the contribution to
the N-pixel image entropy from the error within the bucket,
Ke/b). Letting !

T nle/b),

einb

nle/b) = ¥ n(e/b, w), n(b) =
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Taiie 1 Compression results in bits per pixel for six images.

Model No Buckets Image
conditioning
5 11
P, 6.80 4.77 3.94
P, 3.10 2.87 2.80
P, 3.74 2.89 2.65 face
P, 4.09 3.10 2.78
P, 3.28 2.82 2.70
P, 6.62 5.01 4.47
P, 5.79 4.89 4.67
P, 5.56 4.76 4.54 face with noisy background
P, 5.50 4.69 4.48
P, 5.37 461 441
P, 7.44 5.71 498
P, 5.05 4,71 4.19
P, 5.22 4.74 4.40 house
P, 5.34 4.79 4.22
P, 5.57 491 4.35
P, 6.05 4.40 3.86
P, 4.32 4.13 3.52
P, 4.13 3.98 3.68 landscape (satellite photograph)
P, 4.15 3.98 3.68
P, 4.17 3.96 3.35
P, 5.01 3.03 2.27
P, 1.98 1.77 1.69
P, 1.61 1.47 1.37 landscape (satellite photograph)
P, 2.05 1.71 1.54
P, 2.09 1.73 1.56
P, 6.80 5.12 4.42
P, 5.07 4.50 4.23
P, 4.82 4.30 4.02 liver (ultrasound image)
P, 5.06 4.31 4.00
P, 5.54 4.60 417
then 8. Resuits

We calculated the entropy of six images without a predictor
(P,), and relative to the four linear predictors P,, P,, P,, and
P, (see Table 1). The first column identifies the predictor,
and the second column shows the result (i.e., per-pixel
entropy in bits) with only the prediction error (a single
context). The third and fourth columns give the result using

I(e/b) = Y n(b) log n(b) — 3, n(e/b) log n(e/b).
b be
Next the contribution to the N-pixel image entropy from
determining the error bucket, denoted /(b/w), is calculated as
follows. Letting

n(b/w) = Y. n(e/b, w), n(w) = Y, n(b/w), respectively three five-bucket context components (625
4 4 contexts) and three eleven-bucket error distributions (1331
then contexts), with respectively five and eleven buckets

(equivalence classes) for the predicted error.

Two of the images are photographs of a face which forms
part of an IEEE test chart (see Figure 2). The background of
the original scan is heavily dotted with noise, and Fig. 2 is a
192 H = (1/N) x [I(e/b) + I(b/w)]. cleaned-up version. See Figure 3 for the error image. The

I(b/w) = ¥ n(w) log n(w) — 3. n(b/w) log n(b/w).

bw

The per-pixel entropy is
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third image, shown in Figure 4, is a photograph of Hursley
House, where the IBM United Kingdom Development
Laboratory is located. The fourth and fifth images in Table 1
are satellite pictures of landscape. The last test image is an
ultrasound scan of a human liver typically used for medical
diagnosis.

7. Conclysions
We can draw a number of conclusions from the results
shown in Table 1. The most striking result is that it is nearly
irrelevant which of the four last linear models is used if the
error sequence is conditioned under the bucket context
components: The end result is virtually the same with them
all. Second, conditioning appears to be quite effective, above
all when eleven buckets are used. An increase of the bucket
number from eleven improves the compression only slightly.
There is a great difference in the results between the first
and the second picture of a girl’s face. The reason is that the
background in the latter picture is dotted with high-
frequency noise, which has a lot of entropy, and which, as
expected, causes the plane models to be quite poor—in fact,
worse than no model at all.

o
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