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The use of satellite data, particularly Landsat
images, for geologic mapping provides the
geologist with a powerful tool. The digital format
of these data permits applications of image
processing to extract or enhance information
useful for mapping purposes. Examples are
presented of lithologic classification using
texture measures, automatic lineament detection
and structural analysis, and use of registered
multisource satellite data. in each case, the
additional mapping information provided relative
to the particular treatment is evaluated. The goal
is to provide the geologist with a range of
processing techniques adapted to specific
mapping problems.

fetrpciusiion

The applications of image processing to remote sensing data
for geologic mapping of the earth increased dramatically
with the launch of the first Landsat satellite in 1972. The
digital format of these data and the prior development of
image processing technology for planetary images provided a
natural motivation for the early studies of computer-based
analyses of earth imagery [1-2]. In addition, geologists were
accustomed to using aerial photography and photo-
Interpretation as a tool in geologic mapping. In the
beginning satellite images were used in much the same way
as standard photographs: An interpreter drew contacts
between different units on the basis of tone, geomorphologic
characteristics, vegetation cover, etc. The main advantage of
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satellite images was seen to be their synoptic coverage,
presenting large areas of the earth’s surface under uniform
conditions of illumination and without the boundaries
present in standard photo-mosaics. This characteristic was
particularly useful for structural analysis, as the continuity of
tectonic features was more easily verifiable. This approach,
however, failed to take advantage of the digital characteristic
of the data, which allows application of enhancement
procedures to select and ameliorate the display of that part
of the data useful for a particular application. For example,
structural analysis of a region is greatly facilitated by images
in which faults, fractures, and shear zones appear clearly,
without the masking effect of surface cover variations. This
can be done with spatial filters, for instance.

The significant advances in image processing technology
achieved in the last seven or eight years are attested to by the
publication of numerous books dealing with the subject
[3-6]. In the specific area of geologic mapping, many
techniques detailed in the literature have already proved
useful. In general, two geologic themes are treated: lithologic
mapping and structural analysis. In this paper we present
three new applications of image processing that deal with the
problem of creating better images for geologic mapping. In
the first part, the use of supervised classification methods for
lithologic discrimination is described, with emphasis on the
incorporation of spatial information with the radiometric
data. In the second part, the application of automatic
lineament detection and the generation of rose diagrams are
described. The third part discusses the combination of two
satellite data sets with widely differing spatial and spectral
characteristics. The areas used for the analyses are all found
in southeastern France; they are part of a more
comprehensive geologic remote sensing study of this region *
now in progress.

Image processing was performed using the [BM 7350
terminal, a 1024 X 1024-resolution, inteiligent color display
system with an arithmetic logic unit for performing
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Simplified geologic map of southern France with three regions studied (A, eastern Provence; B, Cevennes; C, western Provence). 1, Fault. 2,
Alluvium and basins. 3, Sedimentary cover rocks. 4, Basement rocks.

operations on locally stored data [7]. The High-Level Image
Processing System (HLIPS) software package performed
most of the processing in the local environment. The
processing and display device was attached to an IBM Model
3031 computer, providing access to large data files and the
capability of performing complex operations in the host if
necessary.

Litheologic classification using iexiurs measures

o Introduction, data utilized, and description of area

The process of making geologic maps using Landsat data
presents the geologist with several problems: characterization
of units, their differentiation, and tracing boundaries
between them. There are many approaches for processing
the image data to provide an improved rendition of the area
of interest; in general these fall into two broad categories,
image enhancement and classification. The former has as its
goal the enhancement of image displays for later photo-
interpretation; the latter method, with which this study is
concerned, seeks to use the computer’s ability to process
statistical information to automatically assign pixels to a
class and produce classification or thematic maps. In
addition to using the spectral information, we calculated a
texture parameter to incorporate spatial information into the
analyses. A supervised classificationtalgorithm, the Bayesian
maximum likelihood classifier, was used to produce thematic
maps based on training areas. The different maps were
combined to produce the final map.
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The data utilized were taken from Landsat scene 23834-
30046, acquired June 16, 1980. A 40 by 40-kilometer
subarea was extracted from the scene for detailed analyses
using the four Multi-Spectral Scanner (MSS) bands.

The area studied is located in the eastern part of Provence
(A in Figure 1). Basement rocks are represented by a
crystalline complex consisting of granites, gneisses, schists,
and amphibolites. The younger sedimentary cover consists of
volcanic rocks (rhyolites and volcanoclastics), limestones,
dolomites, argillites, and alluvium. The structural history is
complex: the area was strongly deformed during the
Pyrennean orogeny and later during the Alpine orogeny. The
basement rocks are characterized by reverse faults, and the
cover rocks by thrust faulting and décollements.
Physiographically, the area is heavily vegetated, with dense
pine forests covering elevated regions. The valleys and basins
are moderately cultivated, further masking the underlying
lithologies.

o Processing techniques used
A false-color infrared composite was produced [Figure 2(a)]
using MSS bands 4, 5, and 7, and a lithologic interpretation
map [Figure 2(b)] was created from this image to serve as a
reference for judging the improvements brought by the
classification analyses.

Further data processing was performed in the following
manner:

o Extraction of spectral characteristics of representative
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1 Eastern Provence region: (a) Landsat false-color infrared composite. (b) Geologic interpretations of (a) and (c): 1, Phyllades; 2, Micgschist;
3 3, Gneiss; 4, Quartzite; 5, Micaschist. A, Alluvium; B, Jurassic; C, Bathonien; D, Bajocien; E, Lias; F, Triassic; G, Permian; H, Carboniferous;
! 1, Gneiss; J, Phyllades; K, Micaschist; L, Fault; M, Possible fault; N, Possible contact. (c) Composite classification map utilizing masks of
1  intermediate classification maps on which each unit is best classified.

training areas from MSS bands which had been destriped e Combination of the classification maps using criteria of
by means of a histogram adjustment technique; concordance, and assessment of accuracies to produce the
e Creation of segmented images, and extraction of the final map.
spectral characteristics of those images by using the same
training areas; Training areas were defined on the image by using the
e Creation of a texture image, and extraction of texture detailed geologic maps as references. The histograms of each
measures using the training areas; class were extracted from the four MSS bands. For those
¢ Applications of a supervised classification algorithm using which were bimodal or plurimodal, the training areas were
the above parameters to produce thematic maps; redefined to generate unimodal histograms.
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Summary of best classification results.

MSS SEG  SEGT
Quartzite X

Phyllades
Micaschist X
Gneiss

Permian X
Triassic

Jurassic

Alluvium X
Vegetation X

Unit

L I

MSS—Muitispectral scanner data only.
SEG—Multispectral scanner data with segmentation.
SEGT—Multispectral scanner data with segmentation and textural information.

From visual interpretation of the color composite, it
appeared that lithologic units were heterogeneous on a scale
of a few pixels; this was verified in studying the histograms
for the training areas. The heterogeneity is due to shadowing,
changes in vegetation cover, land use disturbances, etc. In
order to homogenize or smooth the images before
classification, a segmentation procedure was applied to the
data. Previous work [8] demonstrated that this technique
effectively improved classification accuracy.

The creation of the segmented image was accomplished by
means of a contour extraction program [8]:

1. Filtering the image by using a gradient operator to
produce an angle image and a gradient image, using the
following two kernels successively:

11 0=1—-1] |1 2321
230-3-2 |13 431
134 0—4-3land] 0 0 O 0 0.
23 0-3-2] |-1-3-4-3-1|
11 0-1-1] |-1-2-3-2-1]

2. Elimination of the points where the gradient was not a
local maximum in its direction.

3. Searching for the nearest neighbors of each point, taking
into account the gradient direction. For each point of the
contour a predecessor was defined and a successor
numbered from 0 to 9 according to their position, 0
corresponding to the absence of a neighbor. A neighbors
image was thus created where, for each pixel, the
predecessor and the successor were indicated.

4. Construction of the contours from the neighbors image,
linking the points in such a fashion as to favor those
which were more linear. This was done in two steps: 1)
Linking a point to its successor if the latter had the
former as its predecessor; we thus created a first table of
contours containing for each contour the coordinates of
its origin and its end, and its length; the neighbors image
allowed us to follow the contours. 2) Next, for each
contour we determined its predecessor and successor; we
linked the contours, following the same rule as for the
points. We obtained a new table of contours and
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modified the neighbors image by following the contours,
taking the shortest route.

Contours more than nine pixels long were retained. These
contours were then treated to form closed segments. Finally,
the segments were filled with the average radiometric value
of the pixels contained within. The segmentation process
reduced the intraclass means and increased the interclass
means, which should have improved classification accuracy.

A photointerpreter uses spatial information to
discriminate units, in addition to the spectral information
(tone or color). The spatial information is expressed as
texture at a variety of scales and is in general related to the
drainage pattern developed on different rock types. We
calculated a texture measure by applying a gradient operator
to MSS band 6 to detect brightness edges, then filtering this
image with a 7 by 7 average filter. The size of the filter was
based on examination of the image and on observation that
the minimal natural frequency of morphological features
observable was on the order of 250 m. This texture image
was used as an additional variable for the classifications.

The supervised classifications were done using a Bayesian
maximum likelihood classifier. This algorithm is commonly
used for classifying Landsat data and has been found to be
very effective [9]. The method is based on selection of
training areas from which statistics are extracted for the
variables (channels). The rest of the image is classified point
by point by assigning a pixel to the class which it resembles
most closely from a statistical standpoint.

The final classification map was produced in two steps.
First, a map was produced from three classification runs by
keeping only those pixels which were assigned to the same
class on all three; the rest of the area was left unclassified.
Second, the blank areas were replaced by class maps chosen
from the three classifications after comparison with the
geologic maps to determine which classification produced
the most accurate result for a particular class. These masks
were used to fill in the blank areas on the concordance map.

o Results of classifications

The first classification was done using the original MSS
channels, with nine classes defined from training areas. Some
of the classes were accurately represented on the thematic
map; the majority, however, were misclassified. In addition,
the map appeared to have many isolated misclassified pixels,
giving an impression of noise. By using the segmented
image, all of these isolated pixels were eliminated, and in
addition there was an improvement in the accuracy of
classification of several classes. The third classification,
adding the texture image to the segmented channels,
improved the classification, particularly for those classes
having similar spectral values but different morphological
characteristics.
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The final classification map [Figure 2(c)] was produced as
described above. The masks were produced from the
classifications which were the most accurate on a class-by-
class basis (Table 1).

An interpretive geologic map was prepared from the final
classification map. After comparison with the interpretation
of the false-color composite, the improvements were added
to the cartography. They appear in Fig. 2(b) as areas with
numerals 1 to 5. Significant areas of the basement massifs
are now mappable, where little detail appeared on the color
composite. This is due to the effects of the segmentation,
which increased the classification accuracy, and to the
addition of a texture channel to the spectral data. This
methodology combines different image parameters and
allows the interaction of the geologist in the selection of the
masks to be combined.

Automatic lineament detection and struclural
anaiysis

o Introduction, data utilized, and region studied

This section describes a comparison between manual and
automatic analysis methods for structural studies of Landsat
data. Structural analysis of images usually involves the
creation of photo-interpretation maps, showing faults, folds,
and fractures (where recognizable), and lineaments, or linear
and curvilinear features where doubt exists as to the origin of
the feature. A standard method of summarizing this
information is in the form of rose diagrams, which are polar
plots of direction versus frequency of occurrence of faults,
fractures, etc. These plots are normally constructed
manually; however, we developed a method for
automatically extracting linear features from images, then
producing rose diagrams for any region desired, including
the entire image. The area analyzed is the Cevennes region
in southern France (B in Fig. 1).

The primary data used for regional analysis were taken
from Landsat scene 22451-29136, acquired October 8§, 1981;
a 60 by 80-km subarea was extracted for analysis [Figure
3(a)]. MSS band 7 was used for processing because of the
minimal atmospheric scattering effects in this wavelength
region.

/’/ The Cevennes region is located along the southeastern

" border of the Massif Central, which is underlain by
basement rocks consisting of gneiss, schist, and granite.
Unconformably overlying part of the basement is a
moderately thick sequence of Mesozoic sedimentary rocks,
primarily limestones. The dominant structure in the region
is the NE-SW-trending Cevennes fault zone. This fault,
which has been active since at least the Permian period of
the Paleozoic Era, currently demonstrates left lateral
displacement. It is thought by some [10] that this feature
represents a major transform fault which has greatly affected
the tectonic development of southern France since before the
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Alpine orogeny. The fault zone is expressed in the
topography by a series of subparallel, elongate ridges and
valleys that form a zone of disruption tens of kilometers
wide. [t separates a region of little-deformed cover rocks to
the northwest from an area of moderately to intensely
deformed sediments to the southeast. Other faults in the area
trend east-west and north-south, but are of less tectonic
importance.

o Processing techniques used

The algorithm implemented [11] was used to detect
structural features having a maximum local brightness
gradient. Once these contours were found, several shape
parameters were calculated to select appropriate features.

The extraction of contours having a strong local gradient
was accomplished by the method described earlier in the
section on lithologic classification. This contour image
contains all the brightness gradients in the image which are
somewhat linear; however, many remain which are curved,
meandering, or tortuous in shape. Those of interest in a
structural study are the ones which are more or less linear, as
most faults and fractures tend to be linear. The undesired
contours are eliminated by calculating a criterion of linearity
which compares the total length of the contour to the
euclidean distance between the end points. This parameter
has a value of 1 for a straight line, increasing with the
sinuosity and curvature of the line. By selecting an
appropriate threshold value, sinuous contours are largely
eliminated.

The lineament image thus created was used as a mask for
the angle image produced by the gradient program. The new
masked angle image was then used to produce the rose
diagrams by calculating the frequency of points as a function
of angle, regrouping the data into ten-degree classes, and
plotting these data in a polar graph. This automatic
procedure was applied to the Landsat data, and the rose
diagrams were compared with those manually calculated
from the same image.

The lineament map produced by standard photo-
interpretation of the MSS band 7 image was also compared
with the lineament image automatically produced using the
treatment described above.

o Analysis of data

The comparison between the lineament map [Figure 3(b)}
and the thresholded contour image [Figure 3(c)] shows that
95% of the lineaments on the MSS 7 interpretation are
represented on the contour image, even if only partially. The
contour image contains many additional lines which come
from relief features, the hydrographic network, etc. All main’
fault directions are present, as are lineament intersections.
The interpreted faults are generally longer than the
corresponding contours, the interpretation (morphology)
allowing the geologist to link consecutive segments even if

M. ABRAMS ET AL.
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Cevennes region: (a) MSS band 7 of study area. (b) Lineament interpretation map produced from (a). (c) Contour image generated from MSS
band 7. (d) Fault map compiled from published sources.
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the connection does not appear clearly on the image. Some
faults are not seen on the contour image; this is particularly
true of faults in the basement, which are identifiable by the
interpreter on the basis of texture boundaries alone. It is also
true of faults which consist of a succession of small
segments, some of which may have been eliminated by the
thresholding on the contour image. These differences
notwithstanding, a satisfactory correspondence was found
between the lineament interpretation map and the
automatically generated thresholded contour image. A
comparison with the compiled geologic fault map [Figure
3(d)] indicates that most of the mapped faults are found on
both lineament maps. On the contour image, the faults are
represented by short aligned segments, whereas on the
lineament interpretation they are more continuous. Faults
which are missing on the lineament maps tend to be minor
features, with little offset, some thrust faults with complex
surface expressions, or faults which are too near to others to
be individually resolved.

Four regions, outlined on the MSS 7 image [Fig. 3(a)},
have been selected to illustrate the rose diagrams that were
produced automatically and manually (Figure 4). The first
row shows the rose diagrams computed manually from the
lineament interpretation; the second, those produced
automatically from the contour image. One can note the
good likeness between the rose diagrams corresponding to
the same area. Principal directions are the same for rose
diagrams drawn from the manual lineament interpretation
and the contour image. For example, in area A, the principal
directions found on the lineament map are 30, 80, and 170
degrees. On the automatically generated rose diagram, these
same directions are prominently seen. The additional peaks
at 10 and 60 degrees are due to stream directions, which the
interpreter eliminated from the lineament map. In general,
however, the rose diagrams produced automatically from the
image are in very good agreement with those produced
manually.

Multisource data analysis

e Introduction, data utilized, and region studied

This section presents a study of the geologic utility of
coregistered Landsat and Heat Capacity Mapping Mission
(HCMM) data. The data utilized consisted of Landsat MSS
data (scene 210-30, acquired June 16, 1980) and visible and
thermal data from HCMM (October 31, 1978). The HCMM
satellite operated between 1978 and 1980, acquiring images
in two spectral bands: the visible and near-infrared (0.5-1.1
um), and the thermal infrared (10.5-12.5 upm). Data were
collected during the day and at night, with a ground
resolution of 500 m {12]. In addition to the visible and
thermal images, a derived image was available, called
Apparent Thermal Inertia (ATI). This image is calculated by
the formula
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. Landsat MSS 7
lineament map
(manual)

(@}

@ Contour image
(automatic)

Comparison of rose diagrams of Cevennes region for areas indi-
cated on Fig. 3(a). The diagrams are computed from the lineament
interpretation and the contour image.

ATI = k 1 — albedo ’
Tday - Tnig,\n

where T, and T, are the registered day and night
temperature images, albedo is calculated from the visible and
near-infrared image, and k is a scaling factor. Thermal
inertia is a calculated physical characteristic of materials
which depends on density, specific heat, and conductivity. It
has been shown that ATI is a good approximation of
thermal inertia and is much easier to calculate [13].

The area studied is the western Provence region of
southeastern France (C in Fig. 1). It presents numerous
outcrops of light-colored rocks, essentially sandstones,
limestones, and dolomites of various ages, which are often
difficult to separate even in the field. Vegetation cover varies
from 100 percent pine forest cover at higher elevations to
more modest cover of 10 to 20 percent at lower elevations.
Valleys are typically cultivated or used for cattle grazing.

Landsat MSS data allow separation of materials whose
reflectances differ in the visible and near-infrared wavelength
regions. It is therefore possible to separate orange to pale red
Triassic limestones from white-gray Jurassic limestones and
dolomites. But it is very difficult to differentiate Upper
Jurassic limestones from dolomites of the same age.
Laboratory spectral. reflectance measurements of powders
show that in the 0.4-1.1-zm region, dolomite and limestone
have practically the same spectral response [14]. A
spectroradiometric study done in central France in 1980 [15]
presented the spectral responses of typical Triassic sandstone
and Cretaceous limestone. Even though their spectral
responses were significantly different when broken, fresh
surfaces were measured, there was little difference between
the responses of their natural surfaces. The visible and near-
infrared reflectances were strongly influenced by the presence
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thermal inertia values for dolomite of 0.075 and for
limestone of 0.045, due to large differences of diffusivity and
conductivity (thermal inertia is Vkpec, where « is specific heat,
p is density, and c¢ is conductivity). For the region studied,
therefore, thermal data should serve to improve mapping
capabilities for limestone/dolomite terrains.

e Data registration and display technigues
To produce an image combining the data from Landsat and
HCMM, it was first necessary to register the two types of
data to one another. This was done in three steps:
determination of control points, calculation of the
deformation model, and resampling. Because of the great
disparity in pixel size (80 m versus 500 m), both data sets
were resampled to 250 m to facilitate acquisition of ground
control points. The two data types were displayed side by

~ side on a display console, and common points were
identified on each. The deformation model to transform the
HCMM data to the Landsat geometry calculated a fifth-
degree polynomial surface which best fit the control points.
Finally, the HCMM data were transformed using this model
and resampled to 80-m pixels.

There are many techniques available for displaying
multivariate image data; the most commonly used is color
compositing, using red, green, and blue. The Landsat color
composite [Figure 5(a)] was produced in this manner,
projecting MSS channels 4, 5, and 7 in blue, green, and red,
respectively. The composite Landsat-HCMM image [Figure
5(b)} was produced in a different manner by using the color
space intensity, hue, and saturation (IHS). The intensity
channel was the first principal component computed from
the Landsat channels, the hue information came from the
HCMM nighttime thermal image, and saturation was kept
constant. The colors are related to nighttime temperatures,
and the intensities of the colors are modulated by the first
Landsat principal component.

Various visualizations were analyzed by using the ATI
image. In all cases composites with this image were less
useful than those using the nighttime thermal image. The
reason seems to lie in the nature of the ATI image. Because
the range and magnitude of the nighttime temperatures are
much less than those of daytime temperatures, the difference
is not very different from the daytime image minus a

LAHDERT (1Y

Western Provence study area: (a) Landsat false-color infrared com-

posite, with study areas A and B indicated. (b) Landsat-HCMM  constant. The daytime data are very strongly affected by

composite image; Landsat first principal component as intensity, topography and insolation anisotropies, so that they contain
HCMM night thermal image as hue, and saturation kept constant.

very little geologic information, making the ATI images of
little use in this region.

e Analysis of images
In certain areas, the Landsat data allow the recognition of
formational boundaries, and there are sufficient contours

of lichen and the development of surface weathering rinds. discernible to permit a satisfactory cartography of the
On the other hand, the thermal characteristics of limestones  geology. In other regions, however, the limits visible on the
184 and dolomites are distinctly different. Janza [16] reported image are not sufficiently distinct to permit an interpretive
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map to be drawn with great confidence. In addition, there
are areas where no geologic limits can be detected. Two such
regions were selected for analysis by means of the Landsat-
HCMM composite to evaluate the additional geologic
information obtained by combining reflectance and
emittance data. Interpretation maps for the regions based on
the Landsat image and the HCMM combined image are
shown in Figure 6.

The first region (A) is located between St.-Maximin-la-
Ste.-Baume and the syncline of Rians; outcrops consist of
Jurassic to lower Cretaceous calcareous rocks. The second
region (B) is located west of Cuers and is underlain by
Triassic to lower Jurassic formations. In area A the
formations appear white to light yellow on the Landsat
image and are undifferentiable. On the combined image, it is
possible to separate the Jurassic formations which are
dominantly limestones from those which are marno-
calcareous. In addition a zone of dolomitization in the
Cretaceous formations appears on the image. In area B two
synclines are found, with dolomites stratigraphically above
argillites. In the northern syncline, the dolomitized Jurassic
rocks are clearly separable from the undolomitized
limestones. In the southern syncline, the contact between the
Triassic marno-calcareous rocks and the Jurassic dolomites

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

Interpretation maps of Landsat and Landsat-HCMM composite images: (2) Geologic interpretation map of areas A and B based on Landsat
image. (b) Geologic interpretation map of areas A and B based on Landsat-HCMM composite image.

is visible. None of these contacts are discernible on the
Landsat composite.

This example demonstrates a procedure for utilizing two
image data sets with greatly different spectral and spatial
characteristics. It was found that it is feasible to preserve the
data with higher spatial resolution and to resample the data
with low spatial resolution to the same pixel size. The IHS
display, using Landsat data as intensity and HCMM data as
hue, provides an image with the full Landsat resolution. The
geologic importance of combining data from a range of
spectral intervals is evident from the added discrimination in
carbonate terrains. Thermal data are particularly valuable for
those rock types whose reflectance signatures are not
discriminatory but whose thermal properties are significantly
different.

Geneval JsCUssion Al B

The purpose of image processing applied to remote sensing
data for geologic mapping is to provide the geologist with
tools (images and registered data) which improve his ability
and efficacy in the making of geologic maps. The availability
of satellite data in various spectral regions and at different
spatial resolutions presents a formidable challenge to extract
and display the most useful part of the data, depending on
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the problem being addressed. We have presented three new
approaches for using remote sensing data. First, we
developed processing algorithms to incorporate a textural
measure with the spectral information to improve the
accuracy of lithologic mapping. By using a series of thematic
maps and combining those which were the most accurate,
unit by unit, a satisfactory classification map was produced.
This technique has wider applications for analyzing different
types of data, treating them separately, and then combining
the results to produce the final map. In this way, disparate
physical measurements of the-surface can be used to
characterize desired units. Second, we developed a technique
to automatically produce lineament maps from image data.
This method eliminates the subjective bias inherent in
manual image interpretation. The image can be used as is
for structural analysis, or the information can be
summarized by using the automatic rose diagram program
developed. In both cases, the goal is to reduce the amount of
time needed to analyze images while trying to reproduce the
results arrived at manually. Third, we developed techniques
for combining satellite data of greatly different spatial
resolution and covering different parts of the electromagnetic
spectrum. The two types of data are complementary in that
each provides information about surface composition not
available in the other. In a dominantly calcareous terrain,
thermal data are indispensable for separating the rock types.
At the same time, the procedure described allows retention
of data of higher spatial resolution when combined with data
of much lower resolution.

These are but a few examples of the current developments
in image processing technology. The future presents a
picture of ever-increasing complexity: New satellite
instruments will be launched by several countries, providing
a nearly overwhelming quantity of earth observation data. In
addition, subsurface data (such as gravimetric and magnetic
anomaly maps) must be integrated with the surface data to
provide a more complete, three-dimensional picture of the
geologic environment. As always, the challenge will be to
develop new methods of data processing to extract the
maximum of useful information. But we should never lose
sight of the fact that this sophisticated technology only
provides an additional tool and cannot be used alone for
geologic mapping.
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