
170

n approac
FT calculations

using stdar
microprocessors

The use of the DFT as an everyday tool is now
commonplace, principally due to advances in
hardware technology. Special-purpose VLSI
chips for signal processing are available . In this
paper, we describe an approach which marries
the Winograd Fourier Transform Algorithm
(WFTA) with a state-of-the-art 16-bit general-
purpose microprocessor for the purpose of DFT
calculation. The heart of the approach is the
real-input 240-point WFTA, which has been
carefully optimized for time and space. In
particular, an implementation for the 10-MHz
M68000 executes in 10.8 ms. A simple hardware
module is described which implements the
optimized software . The use of the module for
the inverse transform and for the complex case
is also discussed. Advantages to the approach
taken in this paper are the low cost/
performance ratio and the general-purpose
nature of the system that allows many non-
signal-processing functions to be performed by
the microprocessor.

1 . introduction
The DFT has become an everyday tool for a broad spectrum
of applications, in large part due to advances in hardware
technology. In signal analysis [11, speech processing [2, 3],

°Copyright 1985 by International Business Machines Corporation .
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration aqd (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems . Permission to republish any other
portion of this paper must be obtained from the Editor .

JAMES T . RAYFIELD AND HARVEY F. SILVERMAN

by James T . Rayfield
Harvey F. Silverman

image processing [4], sonar signal processing [5], seismic
processing [6], and numerous other areas ranging from
mechanical vibration analysis to the analysis of I/O
referencing for computer programs [7], DFT techniques are
being adopted as the costs go down .

The price paid for using the DFT in an everyday
environment has until recently been measured in terms of
thousands of dollars . This level has been achieved in several
pieces of test equipment such as the Nicolet Oscilloscope [8] .
VLSI is currently causing the latest revolution in the use of
the DFT, in that the use of special-purpose digital signal
processing chips is becoming widespread . The most widely
used of these is the Texas Instruments TMS-320 [9], upon
which a fixed-point, real-valued DFT of 256 points can be
computed in 4 .86 ms [10] . (This figure does not include the
double-buffered I/O or windowing that is needed in most
applications .) Because the TMS-320 currently costs $150, a
substantial reduction in systems cost to the end user is easy
to predict .

This paper describes an approach to the calculation of the
DFT which potentially offers many end users even lower
cost than does a special-purpose VLSI implementation . The
ideas here are not profound; the WFTA and the real/
complex symmetry algorithms are well known to DFT
experts ; multi-microprocessor structures are well known to
hardware and systems experts . However, the combination of
using 1) WFTA, 2) a standard general-purpose
microprocessor, 3) a tightly optimized assembler-language
version of the WFTA for a particularly "good" selection of N
and for some useful applications, and 4) algorithmic,
hardware, and software extensions based on using a real
WFTA as a building module is rather unique . In fact, there
are strong advantages to this combination, although at first a

IBM J. RES. DEVELOP. VOL. 29 NO . 2 MARCH 1985



cursory reading of [ 11 ] might lead one to believe that the
WFTA is ill-suited to the general-purpose computer
environment. The WFTA fits the integer/general-purpose
microprocessor environment very well .

Although the WFTA in combination with a standard
microprocessor has been discussed by Gibson and McCabe
[ 12], the approach taken is to discuss the more traditional
complex implementation and a general-N system as
suggested in [ 13, 14] . In sharp contrast, we advocate the use
of a single-N, real-input, highly optimized implementation as
a modular building block for a DFT calculation system. This
is reasonable for our application-real-time speech
spectrography-and for several others . Most of all, however,
it is a most suitable scheme to allow the highest level of time
optimization for a standard microprocessor . This is because
1) reasonable microprogrammed multiplication is an
instruction set member, although its calculation time is
substantially larger than that for addition, 2) sophisticated
modes of addressing are available, 3) the number of general-
purpose registers has grown, and 4) register/register
operations are quite fast . As a result, for the WFTA which
was optimized, the percentages of time taken by
multiplication, addition, memory reads, and memory writes
were evenly balanced .

One of the important aspects of this paper is the
comparison of DFT calculation systems . Many real
implementations suffer due to the additional processing
required for windowing, or due to I/O operations. Thus, we
shall compare performance in three ways . First, when only
operations for the DFT are considered (i .e ., one assumes that
no windowing is done, the input data are already in
memory, and the output data are written to memory) .
Second, the cost of using an N-point time window is added
to the first measure. Third, the cost of obtaining N points of
data and of outputting N transform points [(N/2) - 1
complex plus two real values] in an interrupt-driven fashion
is considered . Here, it is assumed that two input and two
output buffers are used so that the process can proceed in
real time ; one buffer is used to accumulate data while the
other is used for the transform process. The method for
comparison is cited in each case .

In the next section, the 240-point real WFTA is
introduced and its implementation on a microprocessor is
discussed . A short description of general-purpose
microprocessor properties affecting the choice of the WFTA
is given next, followed by a detailed breakdown of the timing
of various parts of a specific implementation . In the
following section, software extensions are discussed, such as
complex calculation using the real implementation, and
inverse transform . Several tradeoffs are possible. The
construction of a module which can perform the basic
transform is introduced in the fourth section, along with
some indication as to how to apply the module as a building
element for faster operation or larger transform calculation .

IBM J . RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

2. implementation
The principal class of applications for which this WFTA
routine was programmed is real-time speech processing. This
imposed a number of constraints on the implementation .
Most speech processing requires a sampling rate on the order
of 6-12 kHz and a transform size which corresponds to a
duration of 20-40 ms . This length window is short enough
to include only a relatively stationary portion of the speech
signal but large enough to include several pitch periods . In
addition, it may be desirable in some applications to have
some overlap between adjacent windows in the time
domain . Together, these factors determine the minimum
throughput required for a real-time implementation .

Finally, it is often desirable to have sufficient idle time to
allow the processor to handle tasks other than the WFTA,
such as premultiplication of the input signal by a time-
domain window function, postprocessing of the transform
data, and miscellaneous control functions .

°

	

The 240-point WFTA algorithm
Window sizes ranging from 210 to 420 points were
considered on the basis of the above constraints on sampling
rate and window duration . Of the possible sizes in this range,
the 240-point algorithm was found to have the lowest
number of multiplications per point, 324/240 = 1 .35, and
was chosen for that reason ; also, 240 is a three-factor
algorithm (3, 16, 5) and three-factor algorithms are slightly
easier to optimize than are four-factor algorithms . However,
the additional cost per point of several other sizes in this
range is not that great . For example, the 336-point algorithm
has 1 .45 multiplications per point, and the 360-point
algorithm has 1 .47 multiplications per point .

A flow diagram for the 240-point WFTA is shown in
Figure 1 . The first step is a reordering of the input data into
three 80-point vectors. These vectors are processed by the
input additions of the three-point small-N algorithm and are
then formed into three groups of 16 five-vectors . Each of
these groups is processed by the input additions of the 16-
point small-N algorithm and emerges as 18 five-vectors .
Each of these 54 five-vectors is processed by the complete
five-point small-N algorithm, and each subgroup of 18 five-
vectors is recombined into a group of 16 five-vectors via the
output additions for the 16-point algorithm . These are
recombined into three 80-vectors, processed by the output
additions of the three-point algorithm, and then combined
into a 240-vector. This vector is reordered into the desired
output vector. The time taken for each phase of the coded
240-point algorithm and the size of that portion of the code
are given in Table 1 .

°

	

Pertinent features of general-purpose microprocessors
Some timings for representatives of two important families
of 16-bit microprocessors are given in Table 2 . Among the
significant points are that instructions exist for fixed-point

JAMES T. RAYFIELD AND HARVEY F. SILVERMAN

171



_1
-porn input adds

240

Reorder

80 80

240

Reorder

JAMES T . RAYFIELD AND HARVEY F. SILVERMAN

80

multiplication, but, as they are in microcode rather than
being implemented in hardware, multiplication requires an
order of magnitude more time than a simple addition . This
would imply that most of the time required by a standard
FFT implementation would be spent performing
multiplications. As the WFTA is the algorithm with the
minimum number of multiplications, it appears to be very
suitable for. implementation on such processors .

In addition, standard microprocessors have a large
selection of addressing modes, including indirect, indirect
plus displacement, auto-increment/decrement, and indirect
plus index register plus displacement . These constituted
significant aids to the implementation of the WFTA and
allowed us to achieve real-time performance for speech
spectrography.

°

	

Details of optimization
A number of optimizations contributed to the overall speed
of the implementation . For example, the reordering,
windowing, and first input additions were combined into the
same loop . This was done by fetching the data in a reordered
fashion, rather than having a separate reordering phase, and
by reordering the window coefficients so that they

Table 2 Basic microprocessor timing (16-bit operands, times in
microseconds) .

corresponded to the reordered data . In addition to reducing
loop overhead, this considerably reduces memory references
since intermediate results can be kept in registers . The
reordering offsets and window coefficients were combined
(alternatingly) into a single vector to allow access to them via
a single address register in auto-increment mode. This saves
many cycles, as auto-increment mode is free on the M68000 .

Fixed integer scaling was used throughout the
implementation, using a word length of 16 bits. The
program accepts an array of 12-bit integers, typically from
an A/D converter, in the range -2048 to +2047 as input,
leaving a factor of 16 of headroom . The intermediate results
are scaled down by a factor of 4 before the 16-point input
additions and by another factor of 4 before the five-point
algorithm, thus guaranteeing that no overflow can occur by
the end of the inner loop multiplications. Furthermore, if
overflow occurs during the five-point, 16-point, or three-
point output additions, the final results are guaranteed to be
correct. This is because all word-length additions and
subtractions are effectively done in modular arithmetic .
Thus, the output will be correct even if overflow occurs in
intermediate steps as long as the correct results are not
truncated at their final destination [15] .

IBM J . RES. DEVELOP . VOL. 29 NO . 2 MARCH 1985

I

Table I Timing summary by WFTA phase for 10-MHz
M68000 .

Phase Time
(ms)

Code size
(bytes)

Reordering/3-point input additions 1 .2076 88
16-point input additions 1 .3760 378
5-point complete algorithm 4.5212 186
16-point output additions 1 .8608 516
Reordering/3-point output additions 1 .8180 170

Subtotal 10.7836 1338

Windowing 2 .2572 26
Input/output 2 .3040 10

Total 15 .3448 1374

Operation 68000 80186

Memory cycle 0.4 0.500

Move reg to reg 0.4 0.375
Move mem[base] --> reg 0.8 1 .125
Move mem[base + displ] - reg 1 .2 1 .125
Move mem[base + displ + index] -* reg 1 .4 1 .125

Add/subtract reg to reg 0.4 0 .375
Multiply reg to reg (avg) 5 .4 4 .375
Multiply reg to reg (max) 7 .0 4 .625



We have implemented another version of the program by
using a simple variable-scaling method . For the 240-point
algorithm, after scaling by 4 before the 16-point input
additions, as in the fixed scaling, the program determines the
maximum data value after the 16-point input additions, and
shifts all the data at this stage up or down by the appropriate
number in an allowable shift range (say 3 down to 7 up) .
Results can be renormalized at the completion of the
WFTA. If, for example, a log magnitude is the only result
required, as in spectrography, all that is needed is to add the
appropriate constant to the final result .

All input additions in our implementation are real (non-
complex) additions as we have assumed real data . Also, all
multiplications are pure ; that is, they involve a real number
times a real number or an imaginary number times a real
number. For the 240-point implementation, each group of
six coefficients for the five-point algorithm is always of the
form (R, R, R, I, I, I) or (I, I, I, R, R, R), where R = real
and I = imaginary . (A WFTA implementation for another
window size results in two different complementary
patterns.) The pattern for each group of multiplications is
specified by a binary flag stored with each group of six
coefficients . This allows two different inner loops to be
coded, each of which handles one of the patterns . The code
to be executed is chosen by the single test for the six
coefficients, which is significantly faster than testing each
coefficient separately .

Many of the output additions for the five-point algorithm
are pseudo-additions ; that is, they involve a real number plus
an imaginary number . Thus, only data movement need be
done, not actual arithmetic operations in these cases. The
binary flags control where the results of the five-point
algorithm output additions are placed ; this is, indeed, the
only code in the inner loop which is controlled by the flags .
After these output additions, all data are treated as complex-
valued. The real and imaginary components are handled
separately by virtually identical sections of code .

The final output additions are combined in a loop with
the output reordering. Only 121 frequency points are
calculated, since the real-valued nature of the input data
yields a symmetric result ; that is, there are real-valued terms
for r = 0 and r = 120, and 119 complex terms for r =
[1, 119] .

°

	

Packaging
The current 240-point WFTA.is packed as a subroutine for
the C language. It is not set up as a double-buffered module .
It accepts three parameters : the address of the input array
(240 12-bit integers stored in 16-bit words), the address of
the output array (120 complex integers of four bytes each),
and the address of a scratch area (1520 bytes) . The input and
output arrays may both be placed at the beginning of the
scratch area to save memory . The size off the object code is
1338 bytes, and 1716 bytes of `constant data are needed . If

IBM J . RES . DEVELOP. VOL. 29 NO . 2 MARCH 1985

t'

	

Timing summary (no windowing) .

Operation

	

Time

	

Percent
(ms)

buffered accumulation is needed, as in most applications, an
additional 1920 bytes of RAM are required over the 1520-
byte scratch area. In this case, data may be gathered and
disseminated simultaneously with the signal processing, but
for a cost of an additional 2 .3 ms .

°

	

Timing
The following tables summarize the execution time required
by the WFTA implementation. Table 3 shows the execution
time breakdown for the standard WFTA, while Table 4
shows the execution time breakdown for the WFTA
preceded by a time-domain windowing function .

The execution times are broken down into transfer
instructions, arithmetic instructions, and control
instructions. Note that the time spent on addition and
multiplication is approximately balanced for the non-
windowing version . The windowing significantly increases
the time spent on multiplication . Also note that little time is
wasted on register-to-register transfers and control
instructions.

°

	

Inverse transform
The utility of the approach would be quite limited if the
heavily optimized forward algorithm could not be used for

JAMES T. RAYEIELD'"ANDr'HARVEY''P:'SICV'ER'NtAN"^ ' °'

173

Operation Time
(ms)

Percent

Transfer from memory 2.5650 20
Transfer reg-reg 0.5988 5
Transfer to memory 2.1890 17

Add/subtract 1 .7648 13
Multiply 3 .9480 30
Shift 1 .3812 10

Test/branch 0.0964 1
Loops 0.4976 4

Total 13 .0408 100

Transfer from memory
Transfer reg-reg
Transfer to memory

Add/subtract
Multiply
Shift

Test/branch
Loops

Total

2 .4690
0.5988
2 .1890

1 .5728
2 .2680
1 .0932

0.0964
0.4964

10 .7836

23
5

20

15
21
10

1
5

100

w l -i Timing summary (with windowing) .



an inverse. In this section we show that the inverse
calculation may be achieved with this routine with very
small additional computation and program storage .

Consider the real DFT transform pair

x(n) *- X(r)

	

0 :5 n, r <- N - 1,

where

X(N - r) = X*(r)

	

0 <- r s

	

(2)

and * implies the complex conjugate .
We define A and B as real sequences such that

X(r) -- A(r) + jB(r)

	

0 <- r :5 N - 1 .

We also define an operator (not a DFT)

N
2

s(n) _- Z S(r) W"N 0 <- n <- N- 1,

	

(4)

where S(r) is a real sequence . If we use Eq . (4) to define a(n)

and b(n) from A(r) and B(r) of Eq. (3), the following may be
derived from the definition of the inverse DFT :

x(n) = N {2Re[a(n)] + 2Im[b(n)] - X(0) - X(N/2))

(1)

(3)

0

	

N 1 .

	

(5)

	

Re[X(r)] =

Suppose we next form the real N-point sequence z(i) :

A(i) + B(i)

	

0 -< i s N - 1,
z(i) =

	

N

	

2

	

(6)
A(N-i)-B(N-i) 2<-i--N-1 .

We then take the forward real transform of z(i) and attempt
to write the resulting data in terms of a and b . By using the

JAMES T. RAYFIELD AND HARVEY F. SILVERMAN

DFT definition, substituting Eq. (5), changing the
independent variable so that all the summations are in the
range [0, (N/2) - 1 ], and using the definition of the complex
conjugate of the operator defined in Eq . (4), we get

Re[Z(r)] = 2Re[a(r)] - A(0) - A(N/2)

0<-r<- 2,

Im[Z(r) = 21m[b(r)]

	

0 s r :s
N

. (7)

Thus, we may combine the results of Eqs . (5) and (7) to obtain

x(n) = N (Re[Z(n)] + Im[Z(n)]I 0 < n <-

x(n) = N (Re[Z(N - n)] - Im[Z(N - n)]}

2-<n--<N-1 . ( 8)

Therefore, the algorithm for the inverse transform using
the optimized code is 1) form z(i) from the (N/2) + 1

frequency components; 2) take the forward transform (apply
the routine) to z(i) ; and 3) apply Eq . (8) to get the time-
domain data x(n). If we neglect the divisions by N, only 480
extra additions need be performed over the forward
transform, 240 to form z(i) and 240 to obtain x(n) .
Available address registers imply that only 24 cycles per
operation need be done, or an additional 1 .152 ms is added
to the time taken for the forward transform .

°

	

Complex transform
The complex transform may be calculated from the real
transform by the most obvious means. If we define a
complex x(n) as

x(n) = g(n) + jh(n), (9)

where g(n) and h(n) are respectively the real and imaginary
parts of the complex data, the complex transform may be
easily constructed from the real transforms ofg(n) and h(n),
i.e ., G(r) and H(r), by

Im[X(r)] =

Re[G(r)] - Im[H(r)]

0<-r<-2-1,

Re[G(N - r)] + Im[H(N - r)]
N <r<-N-1,
2

Im[G(r)],+ Re[H(r)]

0<-r<-2-l

Re[H(N - r)] - Im[G(N - r)]

N <r<--N-1 .

	

(10)
2 -

IBM J . RES. DEVELOP. VOL. 29 NO . 2 MARCH 1985



Thus, two real transforms plus the shuffling of Eq . (10) are
required to do the complex transform . The shuffling is in-
place and 0.24 ms must be added to the cost of a complex
240-point transform . When the calculation time from Table
3 is used, the complex transform takes 21 .8 ms, with I/O
and windowing costs neglected.

It should be noted that there is only a slight increase in
cost in using this technique as compared to writing a
complex WFTA program. In the real program, full
advantage has been taken of the fact that the data are real all
the way through until the final two stages of output
additions . Therefore, the complex program would give no
advantage in any of these code sections . On the other hand,
there is duplication in the last two stages of output additions ;
it may be inferred from Table 1 that 3 .66 ms are wasted
here. Furthermore, this waste could be eliminated if in-line
code were implemented, but this is a very tedious process
which implies the use of extensive program memory and
offers only a little payoff.

4 i°ia vdutaart aotretluicn
An example of a hardware module capable of performing
real-time DFTs is shown in Figure 2. The module includes a
10- or 12 .5-MHz M68000, a small amount of very
inexpensive static RAM, two PROM or EPROM chips, each
of at least 4K x 8, a PAL (or even simpler, upper-address-
line assignment) for PROM and I/O decoding, one or two
TTL chips for interrupt handling, two latches for I/O and a
clock . The 240-point DFT program and all its coefficients
are put into the PROM or EPROM, and, in the double-
buffered implementation, the module takes a stream of real
data, currently from a 12-bit A/D converter . It also outputs
transform data at the input sample rate, which can be up to
18 400 Hz assuming that no overlap is required for the
output transforms .

This module can also be used to add flexibility to a DFT
application . For instance, a number of modules can be used
in parallel to improve throughput, perform larger
transforms, or perform multidimensional transforms . The
improvement in throughput can be easily achieved using
several of these modules as slave processors off a single
master, providing the master is able to tend, in a temporal
fashion, to the care and feeding of the slaves . This same idea
holds for multidimensional transforms, although the need to
reorganize the data becomes an overriding factor .

For larger transforms, say reasonable numbers such as 480
and 960, one can use a standard butterfly technique of the
FFT to combine outputs from 2 or 4, respectively, 240-point
real transforms. It is better to apply the existing code in a
decimation-in-time combination algorithm, in that the input
data to the 240-point transforms are real, and all the
advantages of the program apply. It appears somewhat
simpler to include additional code and memory in each
processor module so that the larger algorithm can be done
locally. As is shown in Table 5, the additional memory

IBM J . RES . DEVELOP. VOL. 29 NO . 2 MARCH 1985

9 ~1;%dw 2 Modular extension data (double-buffered I/O, no
windowing) .

Some data are extrapolated

requirement is almost negligible in view of the common sizes
for memory chips for the module . Our claim is that the gain
in using a direct 504- or 1008-point WFTA and in
reoptimizing the code for these sizes is not worthwhile,
especially when the 240-point code is in hand. As can be
seen in Table 5, a group of eight modules, each with a
minimum of 12K bytes of PROM and RAM could perform
960-point real transforms in under 10 ms with no overlap .
Thus, a sample rate of approximately 100 kHz could be
handled .

Summary
We have shown that the marriage of a conventional 16-bit
microprocessor with a highly optimized WFTA DFT
implementation can provide real-time streamed DFT output
for surprisingly high data rates. In fact, the 240-point
algorithm runs only about a factor of 2 slower than does the
256-point 1-1-Ton the TMS-320 signal processing chip . The
ability of the general-purpose microprocessor to perform
tasks other than signal processing makes the use of this
marriage attractive for many implementations .

We have also indicated the simplicity of the hardware, and
a few ways in which this highly optimized code may be used
for more extensive purposes, such as the calculation of the
inverse 240-point transform, complex transforms, and larger
real transforms. We expect that the relationship in
performance between this general-purpose microprocessor
implementation and that of special-purpose signal processing
VLSI will remain about the same in the future ; technology
appears to be improving throughput at about the same rate .
Therefore, we predict that the current approach will
continue to be a viable one for the immediate future.

A,i i nt9wiedgrn m
This work was principally supported by National Science
Foundation Grant ECS-8113494 .

1 . Model 5820A Cross Channel Spectrum Analyzer, Technical
Information, Wavetek Rockland Inc ., Rockleigh, NJ 07647,
1983 .

2 . H . F. Silverman and N . R . Dixon, "A Parametrically Controlled
Spectrum Analysis System for Speech," IEEE Trans. Acoust .,
Speech, & Signal Proc . ASSP-22, 362-381 (October 1974) .

JAMES T. RAYFIELD AND HARVEY F. SILVERMAN

v

175

Algorithm Time
(ms)

Program
PROM

Data
PROM

RAM

240-point real 13 .04 1338 1716 3440
240-point complex 26 .32 1388 1716 5360
480-point real 34 .72 1500 3258 5360
960-point real 77 .16 1700 7098 9200



3 . B . A. Dautrich, L . R . Rabiner, and T . B . Martin, "On the Effects
of Varying Filter Bank Parameters on Isolated Word
Recognition," IEEE Trans. Acoust ., Speech, & Signal Proc .
ASSP-31, 793-807 (August 1983) .

4 . P. E . Dudgeon and R . M . Mersereau, Multi-Dimensional Digital
Signal Processing, Prentice-Hall, Inc ., Englewood Cliffs, NJ,
1984.

5 . C . H . Knapp and G . C. Carter, "The Generalized Correlation
Method for Estimation of Time Delay," IEEE Trans. Acoust.,
Speech, & Signal Proc . ASSP-24, 320-327 (August 1976).

6 . A . V . Oppenheim, Ed ., Applications of Digital Signal
Processing, Englewood Cliffs, NJ, 1978, Ch . 7 .

7 . P . A . W . Lewis, and P . C . Yue, "Statistical Analysis of Program
Reference Patterns in a Paging Environment," Digest of Papers,
IEEE International Computer Society Conference (5th), New
York, 1971, pp . 133-134 .

8 . Nicolet Oscilloscope Division, Nicolet 2090 Digital Oscilloscope
Instruction Manual, Nicolet Instrument Corporation, North
Vale, NJ 07647 .

9. TMS32010 User's Guide, Texas Instruments Corporation,
Dallas, TX, 1983 .

10. L . R . Morris, oral presentation at the Brown/ASSP Workshop
on Fast Algorithms, Brown University, Providence, RI, October
1983 .

11 . L . R . Morris, "A Comparative' Study of Time-Efficient FFT and
WFTA Programs for General Purpose Computers," IEEE
Trans. Acoust ., Speech, & Signal Proc . ASSP-26, 141-150 (April
1978).

12 . R . M . Gibson and D . P . McCabe, "Fourier Transform
Algorithm Implementations on a General Purpose
Microprocessor," Proceedings, IEEE International Conference
on Acoustics, Speech, and Signal Processing, Atlanta, GA, pp .
670-672.

13 . H . F. Silverman, "An Introduction to Programming the
Winograd Fourier Transform Algorithm (WFTA)," IEEE Trans.
Acoust., Speech, & Signal Proc . ASSP-25, 152-165 (April 1977) .

14 . H . F. Silverman, "A Method for Programming the Complex,
General-N Winograd Fourier Transform Algorithm,"
Proceedings, IEEE International Conference on Acoustics,
Speech, and Signal Processing, Hartford, CT, pp. 369-372 .

15 . R . C . Agarwal, IBM Research Division, Yorktown Heights, NY,
private communication .

Received July 5, 1984 ; revised October], 1984

JAMES T . RAYFIELD AND HARVEY F . SILVERMAN

sr Laboratory for Engineering Man/Machine
Systems (LEMS), Division of Engineering, Brown University,
Providence, Rhode Island 02912. Mr. Rayfield is a graduate student
in the Division of Engineering at Brown University . His research
interests include parallel processing, distributed systems, and signal
processing . He worked at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, in the summer of 1983 in the
area of image processing support software . Mr. Rayfield currently
has an IBM graduate fellowship . He received his Sc.B . degree from
Brown University in 1983 .

F =wad3 rr~as~u Laboratory for Engineering Man/Machine
Systems (LEMS), Division of Engineering, Brown University,
Providence, Rhode Island 02912 . Dr. Silverman has been a Professor
of Engineering at Brown University since 1980. His research
interests include speech recognition, digital signal processing, and
computer architecture. Prior to 1980, he was a research staff member
at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, working in the areas of speech recognition, computer
performance analysis, and image processing . Dr. Silverman received
his B .S . and B.S.E.E . degrees from Trinity College in 1965 and 1966,
respectively, and his Sc.M. and Ph .D. degrees from Brown
University in 1968 and 1971, respectively .

IBM J. RES . DEVELOP . VOL. 29 NO. 2 MARCH 1985


	page 1
	ibmrd2902_0062.pdf
	page 1

	ibmrd2902_0063.pdf
	page 1

	ibmrd2902_0064.pdf
	page 1

	ibmrd2902_0065.pdf
	page 1

	ibmrd2902_0066.pdf
	page 1

	ibmrd2902_0067.pdf
	page 1


