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The Personal Computer (PC) technology has
seen an enormous growth in the last two years .
Although increasingly viewed as a major
productivity tool, the PC is likely to be limited for
computation-intensive tasks such as
telecommunications and improved human-
factors I/O. At the same time, there has been
another evolving technology-VLSI realization of
general-purpose signal processor (SP) engines
which are capable of boosting the performance
levels of standard PCs by almost two orders of
magnitude. With SPs in PCs, we now see
tremendous opportunities for distributing
computation-intensive tasks away from high-
performance mainframe computers; previously
formidable tasks such as speech coding and
recognition, pattern and scene analysis, spectral
analysis, high bit-rate communication, and the
like are now all computable by utilizing a single
VLSI module embedded in any standard
personal computer. This combination of a
general-purpose CPU and superfast real-time
coprocessor is likely to be key to the future
functions and success of advanced
workstations. A signal processing subsystem
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with real-time data acquisition and control
capabilities has been developed for the IBM PC
at the IBM Thomas J. Watson Research
Laboratory and is the topic of this paper .

Introduction
In the high-performance office operating environment,

personal computers deliver a high degree of functional

capability accessed through an easily understood user

interface. Typically, office productivity tasks require up to

1 .0 MIPS (millions of instructions per second) of

computational power [ 1 ] (not including advanced I/O or

telephony functions) . In the engineering/clinical laboratory

and high-speed communication environments, however,
there is clearly a need for higher-MIPS-rate computers as

well as more powerful I/O handling than that available

through conventional PC architectures .

The traditional solution to these issues was a combination

of a computer (a minicomputer or a PC) as a controller and

an instrument as the front-end processor . As such,

computers and instruments had a well-defined relationship;

they were connected by the standard serial or bus

communication links-the RS-232C or IEEE-488 interface

bus, respectively .

It is important to view this relation between instruments

and computers by examining their interfaces . The traditional

link is the RS-232C [Figure 1(a)], which connects the

computer and the instrument over a distance of 50 to 100

feet (enhanced with a modem, connections can be made

through the switched telephone network) . The IEEE-488

bus, on the other hand, connects as many as 14 individually
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addressable instruments to one host controller port [Figure
1(b)] . With the aid of bus-extenders, the IEEE-488 bus 60-
foot coverage can be extended to the range of the serial RS-
232C link.

The Personal Instrument (PI) is different in that both
computing power and measurement functions share the
same enclosure [Figure 1(c)]. (The PC expansion unit falls
into this category since it is a direct extension of the PC I/O
channel and has the full PC bus bandwidth and control
capabilities.) Such a configuration enables use of the full bus
bandwidth of the PC as well as allowing, for the first time,
real-time control of measurements and processes. The PI,
which links different functions over a microcomputer bus,
can easily handle real-time interaction, but a system based
on the IEEE-488 bus cannot, because the instruments
communicate not with each other but with a system
controller.

The PC as PI is finding a home in the engineering, design
(CAD), and real-time process control environments. A
growing number of users have discovered the tremendous
flexibility of the PC in engineering applications, provided for
the most part by the increasing number of manufacturers
producing plug-in boards, add-on modules, and software
packages for PCs to turn them into a wide variety of
engineering tools. Test and measurement equipment, data
acquisition systems, development systems, and design
workstations built around the PC are all now available .

The growth and acceptance of PIs may be attributed to
three factors:

€

	

Continuing rapid improvement of the price/performance
ratio for PCs.

€

	

Industry-levered acceptance and current use of industry
standard software .

€

	

Availability of high-grade I/O hardware for PC
enhancement .

Real-time processing is, naturally, the promise of the PI .
However, most PC operating systems are not designed to
coexist with real-time events . The most important aspect of
real-time processing is the real-time response, defined as the
time from the sensing of an external event to the moment
the real-time process begins. With programs loaded into
memory and waiting to respond to an event, real-time
response depends only on interrupt latency within the
operating system and context-switch time, or the time it
takes the operating system to stop one process and begin
another. This process is usually time-consuming due to
heavy save/restore requirements during the switch . However,
operating systems must frequently disable the interrupt
system while internal datd structures are being modified.
Thus, if a real-time device needs processor attention from
such a system a few thousands of times per second, the
system spends nearly all of its time switching to the real-time
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process . For high-data-rate tasks, real-time processes must
thus be run on a stand-alone processor whose architecture
lends itself to efficient interrupt-driven 1/0 handling .

The major bottleneck in utilizing the PC as PI or as event-
driven workstation is its limited computation power and I/O
bus bandwidth . For example, acquiring 20K samples per
second of speech signal using a plug-in data acquisition
board and direct transfer of pulse-coded modulation (PCM)
data to storage media (e.g ., hard file) can easily block the PC
from doing any other task. Moreover, using a standard PC
operating system (DOS, CP/M, etc.) disk access method [2],
it takesfour minutes to fill a 10-megabyte hard file . In
addition, typical data compression to be performed "on the
fly" requires almost two orders of magnitude more
computation power than that available from the PC CPU
engine [3] .

The natural solution to these problems is to augment the
PC CPU with a real-time coprocessor which off loads, from
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the PC, the computation-intensive processing. However,
doubling or tripling the PC CPU power is often not nearly
enough . There is clearly a need for an engine that can
process data (typically using integer arithmetic) in rates of 5
to 20 MIPS and at the same time be able to access a variety
of I/O devices in real time [4] .

In the sections that follow we discuss the motivation and
detailed architectural aspects of a PC-based co-signal-
processing subsystem aimed at providing the PC with the
capabilities mentioned above, namely 10 MIPS of 16-bit
arithmetic and real-time I/O handling .

IBM SP----Architectural overview
A detailed description of the IBM SP is given elsewhere in
this issue [5]; below, we briefly discuss some of its basic
concepts and performance .

The IBM SP is a high-performance digital signal processor
with an architecture optimized for signal processing and
coding/decoding applications [6] . It is a realization of the
SP 12/16 signal processor designed in the IBM Zurich
Research Laboratory [7] . Because a high degree of
parallelism is necessary to obtain the required processing
throughput, separate instruction and data storage have been
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incorporated to permit pipelined instruction fetching and
execution (Figure 2). A fast hardwired multiplier is used in
addition to the standard ALU. With such a parallel
approach, multiplication operations are not the limiting
factor in processor performance. Rather, performance is
limited by the data transfer capabilities of the processor (i.e.,
bus bandwidth to/from storage). For simplicity, a single data
bus structure is utilized to connect processor registers and
accumulators, storage, and I/O devices . In order to
maximize throughput over this bus, data transfers and ALU/
multiplier operations are performed independently of one
another .

The SP instruction format supports two independent
operation codes : The first, transfer code, specifies, in
conjunction with the index enable index select and the
operand, the data transfer over the data bus ; the second,
computation code, defines the ALU operation performed on
the contents of two previously loaded registers. The two
codes are used in a combined fashion for conditional
branching, whereby the computation code establishes the
branch condition [5] .

For the greatest efficiency in multiply/accumulate signal
processing applications, it is imperative that the multiplier be
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able to accept a new operand or operand pair every
instruction cycle . This is achieved by using a parallel
multiplier . For further simplicity, the SP accepts a single
interrupt and employs a memory-mapped I/O scheme . The
PI SP currently operates at 100 ns per cycle, or 10 MIPS .
Because two independent operations and two memory
fetches are executed during one machine cycle (ALU and
multiply, data or I/O access and instruction prefetch), the
effective machine throughput is 20 million operations per
second .

P1

€

	

Application environments
A Personal Instrument (PI), or PC-based co-signal-processor,
can be particularly useful in applications which exhibit some
of the following characteristics :

€

	

Repetitive arithmetic processing .
€

	

Many input data elements .
€

	

Computation-intensive processing.
€

	

Minimal real-time response latency .

Application areas that may be addressed with the PI include
the following :

1 . Telecommunication
€

	

High-speed modems (synchronous, full-duplex, high-
line coverage, etc .).

€

	

Adaptive equalizers.
€

	

Data compression (e .g., digital PBX interface).
€

	

Synthesis, emulation, and analysis of communication
signals.

2 . Signal processing
€

	

Digital filtering .
€

	

Adaptive filtering, adaptive noise canceling .
€

	

Fast Fourier, Hilbert, and other computation-intensive
transforms.

€

	

Spectral analysis.
€

	

Waveform generation for signal analysis .
€

	

Real-time seismic analysis.
3 . Speech processing

€

	

Speech recognition .
€

	

Speech coding (vocoders) .
€

	

Speech compression, speech store-forward .
€

	

Speech synthesis (text to speech) .
4. Laboratory instrumentation
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a. Continuous flow colorimetry .
b . Spectroscopy .
c . Thermal analysis .

5 . Control and industrial applications
€

	

Vibration and structural analysis .
€

	

Digital servo control .
€

	

Robot-arm joint sense and control .
€

	

Process control and data logging .
€

	

Power transient monitoring .
€

	

Machine vision .
€

	

Energy management and control .
6 . Image processing

€

	

Pattern recognition.
€

	

Handwriting and printed character recognition .
€

	

Calculation, reconstruction, and enhancement of
images .

€

	

Image interpolation (zooming, rotation, etc .) .
€

	

Image compression.
€

	

Signature and fingerprint analysis .
€

	

QC inspection, noncontact measurements .
€

	

Thresholding and halftoning of images .
7 . Biomedical clinical/diagnostics applications

€

	

EKG monitoring and analysis .
€

	

Sonography and echo-cardiography.
€

	

EEG data acquisition and analysis .
€

	

Evoked potentials analysis .
€

	

Digital radiography.
€

	

Ultrasound imaging.
€

	

Microwave hyperthermia temperature distribution
measurements.

€

	

Ambulatory blood pressure monitoring .
€

	

EMG data recording and analysis.
€

	

Biofeedback systems.

€

	

Architectural overview
The PI, based on an IBM SP as a co-signal-processor to the,
PC CPU, originated from research aimed at developing
speech signal vector quantizers for the Yorktown Speech
Recognition System [8] . A collaboration with the Processor/
Communications group of the IBM Zurich Research
Laboratory [9] resulted in an early architectural definition of
the PI which evolved during 1983 to its current state .

The PI architecture was designed to upgrade performance
of the IBM PC in terms of computational power and to
provide it with a flexible interface to the "real" world, i.e .,
real-time signals, processes, and events . With the inclusion of
the IBM SP, the PC can be viewed as an instrumentation
controller with the power of a general-purpose array
processor for real-time digital signal processing applications .
Without its I/O features, the PI can be used as a general-
purpose array processor tightly coupled to the PC I/O
channel .

The IBM SP executes each instruction in 100 ns,
providing the PI subsystem user with 10 MIPS of 16-bit

G. SHICHMAN

161

€

	

Spectrum analysis.
€

	

Phase lock loops and averaging.
€

	

Signal capture and transient analysis .
€

	

Arbitrary waveform generation and recording . 4

€

	

Digital scopes and multimeters .
€

	

Automated IC/board testing (ATE) .
€

	

Gas and liquid chromatography (GC, LC) .
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processing-about 100 times the processing power available
from the native PC 8088 microprocessor . In addition to its
sheer computational power, the PI provides an extensive
array of I/O capabilities with minimal SP and no PC
overhead . This is achieved by an interrupt-driven I/O
mechanism and pipelining of the "slow" and asynchronous
"real-world" events from the "fast" SP execution cycles .

The PI block diagram is given in Figure 3 . The subsystem
consists of three PC boards and two optional cards for signal
preconditioning and host communication [101 . The system
comprises (1) a signal processor board (SPB-64), (2) a PC

Data bus

Host attachment

Host attachment board
(PCHAB)

PC I/O channel

Instruction bus

DRAM
64Kx 16

s

Clock
generator

SP

Voltage regulators

	

I

Signal processor board
(PCSPB)

IRAM
8K x27

19

host attachment board (PCHAB), and (3) a general-purpose
I/O board (GPIOB). These three boards are connected via a
signal processor bus (SPBUS) on which all data and program
transactions take place (Figure 4) . PC I/O channel
transactions, on the other hand, take place only during PI
IPLing and data memory transfers (e.g., storing SP
processing results, SP cache swapping, etc .) .

The PC and the PI can interrupt each other for attention
calling and direct memory access (DMA) initialization ;
however, all I/O is handled by the GPIOB interrupt
mechanism, which is totally transparent to that of the PC .

IBM J . RES . DEVELOP. VOL . 29 NO. 2 MARCH 1985



The PI data memory can be accessed via the PC DMA
channel, thus significantly increasing the data transfer
throughput between the two processors . In fact, the DMA
mechanism enables the PI to, share large amounts of data
memory with the "slow" PC memory and thus alleviates the
need for a large and expensive on-board SP "fast" memory .

€

	

SP board (SPB-64)
The SPB-64 contains the IBM SP module, finite-state
machine clock generator, SP data memory (64K-word
DRAM), SP instruction memory (8K-word IRAM), and
power regulation circuitry (Figure 5). Since the SP native
data memory addressability is 4K words, a page register
(DPREG) is augmented to the SP data address bus . Thus,
accessing any DRAM page (4K words each) beyond the base
page (e.g ., page 0) involves a single processor cycle overhead
(i .e ., loading DPREG with the appropriate page
information) . This overhead has been proved to be negligible
if careful data address handling is exercised .

€

	

PC host attachment board (PCHAB)
The PC host attachment board (PCHAB) provides, in
essence, a direct interface between the PC I/O channel
(PCBUS) and the SP bus (SPBUS). Since the latter has a
high bandwidth (160 megabits/s) compared with the PC bus
bandwidth of 8 megabits/s, communication is carried out in
a byte-serial fashion in which the SP subsystem is seen by
the PC CPU as 16 contiguous I/O locations . Thus, all
interactive PC/SP commands are I/O read/write operations .

As a resident host, the PC can set the SP mode of
operation (RESET, RUN, STOP, etc .) and at the same time
monitor its status . This control is extremely useful in a
runtime environment where application programs are being
developed and debugged [ 11 ] .

In order to minimize the overhead involved in data
transfers between the two machines, the PCHAB contains
the host attachment circuitry-a set of registers and drivers
(Figure 6) which are loaded sequentially by the PC and
activated simultaneously by a cycle steal sequencer (CSS) .
The CSS accepts commands from the PC and initiates the
appropriate sequence of control signals to stop the SP,
release its buses, and provide direct access to the DRAM,
IRAM, and all its I/O devices . At most, the CSS "steals" five
SP cycles in order to complete an access to a DRAM
location or to an I/O device .

In addition to the normal PC-SP transfers (i .e ., the PC
CPU is transferring data under program control), a PC DMA
channel can be activated by the SP to initiate an SP DRAM
cache swapping . Once a DMA transfer is initiated, the PC
CPU is disabled and data are moved between the PC
memory and the SP DRAM (there are no provisions for PC-
to-IRAM DMA transfers) . The resulting DMA transfer
throughput is 360 kilobytes/s, about twice that of normal PC
program-controlled transfers. Figure 7 depicts the SP DRAM
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- r

as a fast SP cache connected to the PC memory via a
combination of the PC DMA and the SP CSS control
mechanism. A typical "cache update" time in the PI is 8 ms
per 2 kilobytes, at which time the SP is running at an
effective rate of 9 MIPS, a negligible performance
degradation in most applications .

€

	

General-purpose I/O board (GPIOB)
The IBM SP is particularly suitable for efficient I/O
handling . Since its I/O devices are memory mapped, there is
no distinction between memory and I/O accesses . However,
the I/O interface is not allowed to degrade the SP
throughput-hence the need for a front-end I/O handler
tightly coupled to the SP data bus . Our solution to the strict
I/O handling requirements is the subsystem on a general-
purpose I/O board (GPIOB), which frees the SP from polling
I/O devices yet permits it a fast context switch time for real-
time I/O response.

The GPIOB functional block diagram is given in Figure 8 .
Control of the different I/O devices on board is
accomplished via a data address bus strobe decoder . This
control mechanism enables individual access to each I/O
device via a single SP store/load operation . Process
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synchronization and real time clock (RTC) generation is
accomplished by a set of six SP-programmable timing
elements packaged in two timer modules [ 12] . With the
RTC timing mechanism, sampling can be done in both time
and frequency domains ; each sampling event can be
scheduled by the SP at will or preprogrammed for repetitive
operation (time-domain sampling is crucial for the
implementation of high-speed modems, whereas frequency-
domain sampling is common in speech processing and
control applications) . Two undedicated timer signals are
available to the user for process synchronization (e .g ., 12-bit
DAC sampling rate generation, single-bit I/O port interrupts,
etc .) ; the remaining four timing signals are hardwired as
sampling rate generator and as timing elements for the
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NAZI

analog to digital converter (ADC) and the 16-bit digital to
analog converter (DAC) subsystem .

The ADC and the 16-bit DAC subsystems are pipelined
through 512-word pipeline FIFOs, whereby the 12-bit DAC
subsystem is buffered by a single pipeline register . The
"deep" pipelining is particularly useful in segmented data
acquisition tasks where signals are being digitized into the
ADC FIFO without any SP intervention . Once a "frame" or
a segment has been acquired, the SP is interrupted once, the
FIFO data are moved to the appropriate area in the SP cache
space, and the required processing of the data segment is
started.

The following is a list of I/O devices supported by the
GPIOB :
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1 . A four-channel, 12-bit ADC buffered by a 512-word-deep
pipeline FIFO (synchronous port) .

2. A four-channel, 12-bit DAC buffered by a single pipeline
register (all four channels are independently controlled
and synchronous) .

3 . Two 16-bit DACs buffered by a 512-word-deep pipeline
FIFO. The two converters are independent, individually
controlled, and synchronous .

4. Eight single-bit input ports (asynchronous) .
5 . Eight single-bit output ports (asynchronous) .
6. Six programmable timers for real time clock generation

and I/O control .
7. A seven-way interrupt controller .

The analog input data acquisition subsystem has the
following characteristics :

€

	

12-bit resolution with 5-ns aperture uncertainty across all
channels .

€

	

100 000 samples per second for single-channel acquisition.
€

	

512-word-deep pipeline FIFO .

The main DAC subsystem has the following characteristics :

€ Two channels, 16-bit resolution .
€ 125 000 conversions per second .
€

	

512-word-deep pipeline FIFO .

The auxiliary DAC subsystem has the following
characteristics :

€

	

Four channels, 12-bit resolution .
€

	

Single-level pipeline buffering (i .e., all channels can be
loaded individually and sampled simultaneously via RTC
control) .

€

	

125 000 conversions per second .
€

	

A Z-axis control signal provided during data conversion to
facilitate X-Y display trace control .

As depicted in the block diagram of Fig. 8, there is
minimal SP overhead involved in any I/O operation . Once
the RTCs are programmed and the interrupt system enabled,
the GPIOB acts as a separate I/O processor tightly linked to
the SP via its interrupt mechanism. A typical interrupt
latency time in the PI is 10 SP cycles, or one microsecond .
For a process sampled at the highest sampling rate (i .e .,
I OOK samples per second), this latency is merely 10%0 of that
sampling interval .

The PI is currently used as the front-end processor for the
Yorktown Automatic Speech Recognition System, and as
such needs only a preconditioning unit for microphone
signal interface prior to its acquisition by the GPIOB. Other
signals can be easily handled by device-dependent
preconditioning units and sensors.
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Main SP memory-cache enhancement
In several PI applications, a larger data store is a critical
requirement for sustaining the throughput of the signal
processor. Typical examples are speech and pattern
recognition, where a large statistical (or template) data base
must be resident in the SP data store [ 13] and must be
accessed by the SP during its normal execution cycles .
Unfortunately, running the SP at a 100-ns cycle time
requires the use of fast memory devices having at least 50 ns
access time . Static memories, satisfying this speed
requirement, are not as dense as their dynamic counterparts
due to the excessive heat dissipated by their storage cells . As
a consequence, the packing ratio of static memories does not
allow the incorporation of large amounts of storage on the
SP board (the 64K words currently implemented on the PI
SPB-64 is about the maximum memory size attainable in
today's technology) .

Since SP application programs typically operate on vectors
(or arrays of data), there is no need for the SP to randomly
access data in all the available memory (note that the IBM
SP instruction store is separated from the data store and that
the argument above is not applicable to its implementation) .
Rather, large vectors (arrays) of data residing in a main SP
memory (MSPM) can be accessed by the SP sequentially via
a memory control unit (MCU) which facilitates automatic
prefetching of the next location of data when the SP is
latching the data from the currently accessed location .8The
SP must merely set an initial vector address to be accessed
and set the MCU control register for the required transfer
[141 .
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The MSPM throughput is attributed to the pseudo-static
memory technology used in its static column CHMOS
dynamic memory devices . The unique feature of these
devices is the ability to randomly access each one of its
column bits with an access time comparable to that of a fast
static memory [15 ] .

The PI MSPM is organized as one megaword for full 16-
bit transfers, and two megabytes for single-byte transfers
(Figure 9) . It provides two modes of operation : random and
sequential . In the random mode, the SP page register
(DPREG) is set to the higher page (i .e ., page 15) and any SP
access to memory is routed to the MSPM . There, an 8-bit
programmable page register allows selection of 256 4K-word
pages for a total of one megaword . The access time in this
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mode is three SP cycles, where two wait states are
transparently inserted into a memory access SP instruction .
In the sequential mode, on the other hand, a programmable
20-bit counter is used to sequentially access the memory via
an SP memory-mapped I/O address . The prefetch
mechanism allows the MSPM to "keep up" with the SP
cycle time and no performance degradation is experienced
[161 .

Last, in contrast to static memories, dynamic memories
require a refresh cycle approximately every 15 microseconds;
thus, a three-cycle, wait condition is occasionally experienced
in both access modes if a refresh cycle coincides with an SP
transfer request . Due to the refresh, the PI throughput is
expected to degrade by no more than 2% even during
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continuous MSPM accesses . During SP cache accesses,
however, the PI throughput is independent of the refresh
cycles, which are executed concurrently in the MSPM .

€

	

Software and programming considerations
The parallel nature of the IBM SP requires special attention
to efficient programming and to throughput maximization
via pipeline utilization . For this purpose we developed two
programming environments for the SP : compiletime and
runtime. In compiletime, the IBM SP program and data
assemblers (PC-based) are supported along with a host
(System/370)-based simulator [17] . In the runtime
environment we identify two modes of operation : stand-
alone and host-supported . In the former, SP programs and
data are assembled by the PC-resident SP assemblers ; in the
latter, program and data preparation is done on the host
mainframe.

The runtime environment enables the user to manipulate
the running condition of the SP and employs the PC screen
and keyboard as the primary "operator's panel" of the signal
proqssor. Operating within the runtime environment, SP
programs or data can be written and altered in the
instruction or data memories, respectively . SP instruction
and data-memory contents can be displayed on the PC
screen and changed via an online assembler/disassembler
without affecting normal SP operation (i .e., the SP can run
while instructions and/or data are read/written to its
memory using the cycle-steal mechanism) .

The PI assembler language and programming "style" are
best exemplified in the following description of a typical PI
application . The assembly language mnemonic of the IBM
SP is described elsewhere in this issue [5] ; here we use it to
demonstrate the unique features of the SP for computation-
intensive kernels .

Nearest-neighbor computation kernel-An SF
programming example
Suppose we want to compute the nearest neighbor (NN) to a
test vector x from a set of NP prototypes in N-dimensional
feature space-a common problem in pattern recognition,
dynamic programming, and speech analysis . We are asked to
use the Euclidean metric requiring at least one
multiplication per space dimension . The problem can be
formulated as follows :

(1) Initialize minimum distance .
(2) NN = 0 .
(3) Do j = I to NP by 2 .

If:
N

	

N
+I 2

(Xi-V') <E(Xi -y i ),
i=1i- I

Then NN 4-j;

Otherwise NN *--j + 1 ;
End .
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The inequality above can be expressed as
N

	

N

	

N
X2 - 2

	

x,y +

	

( y,) 2
=1

	

i-I

	

=1

N

	

N

	

N

<

	

x; - 2 E xiy;+l + E (y +1 )z
=1

	

=1

	

i=1

The first terms in both sides of the inequality above are
canceled out and the last terms are independent of x, hence
can be computed prior to the kernel invocation . We are left
with the following relation:
N

	

N
j >

	

j+1
- A j+1

~xy iJ - A < ~x;y i
i=1

	

i=1

(A' are the sum-of-squares of prototype j.)
Note that the summations above are simple sum-of-

product operations, for which the IBM SP is optimized . As a
result, a computation-intensive kernel was translated into a
pipelineable (transfer-intensive) kernel that can be efficiently
executed on the SP .

The SP assembly language implementation of the NN
computational problem is given below as a callable SP
routine . The SP assembly notation defines five distinct fields :
the label, transfer code, destination/operand, ALU opcode,
and comment fields . The multiplier pipeline is two
instructions deep, so the multiplier result can be used two
cycles after the last operand is loaded into RX or RY
registers . From that point on, the SP can provide a product
each cycle . In this example, FVEC is the test vector in N-
dimensional space, PROT(k, i) is the ith component of the
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Main SP
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(MSPM)

8088
PC CPU
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memory
control
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I
DMA controller

SP DRAM
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PC 1/0 channel

Disk
controllerPC main

memory
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Host attachment
CSS control

SPDABUS

Disk
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Labeling by the Nearest Neighbor. Distance calculation is done as follows:

Compute : SUM(FVEC(I)*PROT(K,I))-0.5*SUM(PROT(K,I)**2 FOR 1=0, .,N-I
AND K=0, . .,NP -1

Note that the second sum, SMSQR(j), is precomputed prior to the routine invocation .

G. SHICHMAN

Example program for the nearest neighbor computation kernel .

kth sample from a set of NP prototypes (each prototype is
an N-dimensional vector) .

Notice in the kernel shown in Figure 10 that the SP
pipeline is full and the only limiting factors in the ekecution
speed are memory accesses; all other arithmetic operations
are performed in parallel with the data fetches . The total
number of SP cycles needed for "labeling" by the above

~~

	

~~

	

ctit=K . ,?tit>;a + .lai'CxY. . ~

	

r

	

e

kernel is NP * (2 * N + 11) . Without the pipeline
optimization (i .e ., reducing the problem to a multiply/
accumulate-type operation), the same kernel would require
NP * (6 * N + 11) SP cycles and for N > 10 we would likely
see computation times three times slower than that
demonstrated above. Note that the SP pipeline could not be
utilized in its entirety since the elements of the summation

IBM J . RES . DEVELOP. VOL. 29 NO . 2 MARCH 1985

Input :

Output :

FVEC (0, . . .N-1), N, SMSQR(NP), PROT(NP*N)

LABEL (0 . . . . NP-1) IN RB

Destroys : RB, TEMPI

*
#LABEL SXM SAVERX Y,SB * SAVE RX

SBM SAVERY * SAVE RY
SAM SAVERA * SAVE RA
LDYI 0+I *RY=RI
LDYJ O+J Y,SB *RY=RJ,RB=RI
SBM SAVERI Y,SB * SAVE RI, RB = RJ
SBM SAVERJ * SAVE RJ

*
LDX -1024 * RX = -0.5 = INITIAL MINIMUM DIST
LDI 0 *RI =0
LDYJ 0 * RY = RJ = 0 (loop counter)

*
#DISTCAL SXM TEMPI CL,SA * TEMPI = INITIAL MINIMUM DIST

LMX FVEC * RX = FVEC(0)
#LABLOP LMY PROT+I RDL,SA * RY = PROT(I,0), ROUND RA

LMX FVEC+I * RX = FVEC(l)
LMY PROT+I+I * RY = PROT(I,I)
LMX FVEC+2 M+A,SA * RX=FVEC(2), RA=RA+PROT(I,0)*FVEC(0)
LMY PROT+2+I * RY = PROT(I,2)
LMX FVEC+3 M+A,SA * RX=FVEC(3), RA=RA+PROT(I,1)*FVEC(1)
LMY PROT+3+I * RY = PROT(I,3)
LMX FVEC + 4 M+A,SA * RX=FVEC(4), RA=RA+PROT(I,2)*FVEC(2)
LMY PROT+4+I * RY = PROT(I,4)
LMX FVEC+5 M+A,SA * RX=FVEC(5), RA=RA+PROT(I,3)*FVEC(3)
LMY PROT+5 +I * RY = PROT(1,5)

* .
LMX FVEC+N-l M+A,SA * RX = FVEC(N-1), RA = RA+PROT(I,N-3)

* *FVEC(N-3)
PROT+N-lLMY * RY = PROT (I,N-I)

SXM DUMMY M+A,SA * RA = RA + PROT(I,N-2)*FVEC(N-2)
LDI N+I *RI=RI+N
SXM DUMMY M+A,SA * RA = RA + PROT(I,N-I)*FVEC(N-I)
LMX SMSQR+J * RX = SMSQR(J)
LMX TEMPI A-X,SA * RX = DISMIN, RA = RA - SMSQR(J)
BRND #NOREP A-X * IF DISMIN < RA DO NOT LABEL
SXM DUMMY * NOP

#REP LDYJ O+J * RY=RJ= INDEX OF CURRENT PROTOTYPE
SAM TEMPI Y,SB * DISMIN = RA, RB = PROTOTYPE INDEX

#NOREP LDYJ I+J * RY = RJ + I (INCREMENT LOOP COUNTER)
LMX NP * RX = K = # OF PROTOTYPES
BRAD #LABLOP X-Y * IF Y =/ 0 GO TO LABLOP
LMX FVEC CL,SA * RX = FVEC(O), RA = 0

*
#LBLEXIT LMI SAVERI * RESTORE RI

LMX SAVERA * RESTORE RA
LMX SAVERX X,SA * RESTORE RX
LMY SAVERY * RESTORE RY
BRM RETURN * RETURN TO CALLING PROGRAM
LMJ SAVERJ * RESTORE RJ, RB contains the index

* * of the NN to FVEC



terms in (3) must first be computed and then "stored" in the
SP arithmetic registers in order to obtain the product.

The NN programming example, as well as those given
elsewhere in this issue [5], demonstrates the performance

capabilities of the IBM SP . Unfortunately, there exists no

"high-level" optimizing compiler that can generate
"compact" and efficient parallel code for the IBM SP .
Therefore, the user must "manually" optimize time-critical

kernels for the minimum number of SP cycles when the
application so demands.

Concluding remarks
The Personal Instrument (PI) system presented in this paper

constitutes the first effort at integrating proven Personal
Computer and Signal Processing technologies into one

cohesive system. The PI uniqueness lies in the way its

components are interfaced so as to maximize the throughput

of the PC CPU and its SP coprocessor without
compromising any limited PC bus bandwidth .
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