132

Architecture of
a digital signal

ProCESSOor

by G. Ungerboeck
D. Maiwald
H.-P. Kaeser
P. R. Cheviliat
J. P. Beraud

A digital signal processor (DSP) is described
which achieves high processing efficiency by
executing concurrently four functions in every
processor cycle: instruction prefetching from a
dedicated instruction memory and generation of
an effective operand, access to a single-port
data memory and transfer of a data word over a
common data bus, arithmetic/logic-unit (ALU)
operation, and mulitiplication. Instructions have a
single format and contain an operand, index
control bits, and two independent operation
codes called “transfer” code and “compute”
code. The first code specifies the transfer of a
data word over the common data bus, e.g., from
data memory to a local register. The second
determines an operation of the ALU on the
contents of iocal registers. A fast free-running
multiplier operates in parallel with the ALU and
delivers a product in every cycle with a pipeline
delay of two cycles. The architecture allows
transversal-filter operations to be performed
with one multiplication and ALU operation in
every cycle. This is accomplished by a novel
interleaving technique called ZIP-ing. The
efficiency of the processor is demonstrated by
programming examples.

Introduction
Digital signal processors (DSPs) are microprocessors with a

specialized architecture which allows them to process

©Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and absl;act, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

G. UNGERBOECK ET AL.

digitized-waveform signals efficiently. The consistency and
compactness of digital circuitry together with the flexibility
of programmable devices make DSPs ideally suited for
applications in telecommunications, instrumentation,
electromechanical control, and elsewhere. Thus, the
revolution in electronic system design, started more than a
decade ago by the introduction of inexpensive general-
purpose microprocessors, is being extended by DSPs into
domains where analog circuit implementations have
traditionally prevailed [1].

The cost-effective replication of analog signal-processing
functions, however, represents only one aspect of this
development. The capability of DSPs to store and
manipulate signals without loss in precision, and to make
data-dependent decisions, allows the realization of signal-
processing tasks far more complex than would ever have
been possible by analog circuit means.

Advances in VLSI semiconductor technology have made
DSPs feasible. Several vendors are offering single-chip DSPs,
e.g., those described in [2-5]. A more complete list and
comparison of DSPs can be found in [6). Other DSP
architectures have been described in [7-11]. Common to
most DSPs is a pipelined parallel architecture and the use of
a fast on-chip multiplier to gain the high processing speed
and efficiency required for digital signal-processing
applications.

This paper describes the architecture and programming of
a single-chip IBM DSP developed in Zurich, Switzerland,
and La Gaude and Essonnes, France, during the period from
1979 to 1981. The processor was realized in standard bipolar
technology with 2.5-um ground rules on a 25-mm’ chip,
using the macro-stack design technique developed at
Essonnes. With suitable instruction and data memories
provided externally, it achieves a cycle time of 100 ns. The
architecture is similar to that described in [11], but
somewhat simplified to keep complexity below 5000
equivalent NAND gates. A novel feature of this single-data-

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

bus architecture is its ability to perform transversal-filter
operations with one multiplication and addition/subtraction
in every processor cycle, although only one signal or
coefficient value can be transferred pet cycle.

The next sections deal with the design considerations and
details of the architecture. Finally, programming examples
are given to illustrate the operation of the processor.

Design considerations

Digital signal processing requires high levels of arithmetic
throughput. The tasks most commonly performed are the
accumulation of products for filtering and correlation,
execution of fast Fourier transform algorithms, and
searching paths in decision trees or finite-state machine
diagrams. This requires not only high performance in
multiplication and addition/subtraction operations, but also
efficient testing and branching. Achieving these functions at
high speed with limited circuit complexity was a primary
design goal for the DSP described.

A Harvard architecture with separate instruction and data
memories permits overlapping of instruction prefetching
with instruction execution. This form of pipelining is
commonly found in all modern DSPs [2-10]. Consequences
in the case of branch instructions and interrupts are
explained later.

The size of the instruction and data address spaces
depends on the complexity of the application programs
envisaged and the amount of directly accessible data
required. Choosing 64K instruction and 4K data address
spaces avoids the limitations in addressing capability found
in many DSPs. The large address spaces also facilitate
address decoding when several instruction and/or data
memory modules and memory-mapped I/O ports are t0 be
addressed.

The 4K data addressing capability and architectural
simplicity desired for the DSP favored an architecture with a
single data bus over which data are transferred sequentiaily
between a single-port data memory and the arithmetic/logic
elements of the processor. Data memory and data bus are 16
bits wide.

The computing section of the processor is designed
around an ALU and a separate fast multiplier. These two
elements are now standard in most DSPs [6]. The effect of
the limited transfer capability is mitigated by performing
transfers over the data bus, ALU operations, and
multiplications in parallel. Instructions contain one data
address or direct operand, index bits to modify the operand,
and two independent “transfer” and “compute” operation
codes. During the execution cycle of an instruction, the
transfer code, together with the operand and index bits,
determines the transfer of a data word over the data bus,
e.g., from data memory to a local register in the processor.
Simultaneously, the compute code controls the operation of
the ALU on the contents of local registers.

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

LSSD clocks
IN OUT A B C RESET,

N EEREY

12 DA * « B 27
7 7
RIW PAR_CK
» L
/O ports . .
Data . . |Instruction
3 memory . DSP memory
*
CE_RAM .
kv CE_L/O .
7 .
16 DB 1 *IA 16

OUT_FLT | MPY_C | INT_A

STP_CLK INT

DSP with memories and I/O ports.

The multiplier is not controlled except for optional
freezing of the multiplier operation during interrupt mode.
The multiplier operates on the contents of two fixed local
registers in a free-running mode. In its output register, a new
product appears in every cycle and may be involved in an
ALU operation during the following cycle. By introducing
intermediate pipeline registers in the multiplier, the
multiplication rate can be made compatible with the cycle
time of the processor without requiring excessively fast
circuitry. For the DSP described, one such pipeline register
was chosen.

The arrangement described results in a logical pipelining
of data transfers, multiplication, and ALU operations, where
transfers and ALU operations are under control of transfer
and compute codes in successive instructions.

The execution of transversal-filter operations by a single
data-bus processor usually requires two transfer cycles for
each multiplication. This limitation was overcome by the
introduction of two accumulator registers and a
programming technique called ZIP-ing. The technique is
characterized by transferring signal and coefficient values
alternately to the two inputs of the multiplier, and
accumulating products emerging from the multiplier output
alternately in the two accumulator registers; it is further
explained by programming example 2, presented later in the
paper. Other DSPs achieve the same processing efficiency
only by feeding the multiplier concurrently with two data
words from a dual-output-port memory [2, 5]. Since this
requires two data addresses, addressing capability is then
usually very limited.

Arithmetic operations are performed in fixed-point two’s
complement arithmetic. The multiplier forms the product of

G. UNGERBOECK ET AL.

134

Effective operand generation

Instruction pipeline register and decoder

{ (OP)
12
DA ROP| + bz o
(TC) B
12 <
R/IW <— o : (IX) 14
JE_RAM &— 4 <+ Decoder =
CE_I/O 12 12 : (CO)
X RI RJ < am PAR_CK
,H'4
16 12 msb Jf12 msb 16 -
DB <=
16 16
12 msb 4 Isb
RX I_RY
12 Isb .\Q/ AL/
12 4
12 Isb rRIA
x 16 16 16 1 416 iz 12
RIM IA
MPY..C x =0 =0 16 msb
4 4 +1 +] 4
RM 20 msb
12 f M4
20 20 RIAR
16
ALU -
Ao
20 INT
_> INT_A
20 20 N
RA RB

Compute section

Instruction sequencer

Block diagram of the DSP.

two 12-bit values. The ALU and two accumulator registers
are 20 bits wide. By preloading accumulators with
appropriate constants, rounding to 12 or 16 most significant
bits is accomplished when results are stored in the 16-bit
data memory. The arithmetic precision achieved is sufficient
for the applications envisaged.

Architecture
Figure 1 gives a general schematic of the DSP with attached
memories and 1/O ports. The instruction address (IA) and
the instruction bus (IB) are 16 and 27 bits wide, respectively.
The data address (DA) and data bus (DB) are 12 and 16 bits
wide, respectively. The interface line R/W indicates the
direction of transfers over the data bus, and the lines
CE_RAM and CE_]/O enable data memory and 1/O ports.
The DSP is driven by two nonoverlapping clocks B and C
operating at the processor cycle rate. Clock A and the lines

designated IN and OUT LSSD are used only for chip testing.

G. UNGERBOECK ET AL.

The interface line STP_CLK allows stopping of the
processor, e.g., to extend the cycle time during access to
slower memory or I/O ports. Activation of the line
OUT_FLT puts the output drivers of the DSP into high-
impedance state. The other interface lines are explained
later.

The internal structure of the DSP is shown in Figure 2.
Four functional entities can be identified:

Instruction pipeline register and decoder,
Instruction sequencer,

o Effective-operand generation, and

e Compute section.

The abbreviations msb and Isb denote most- and least-
significant bits, respectively. The interface line PAR_CK
indicates the parity of read instructions. The instruction
format is explained in Figure 3. The sizes of the internal

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

working registers and their bit alignment relative to the 20-
bit ALV are shown in Figure 4.

o Instruction sequencing in normal mode

The 16-bit register RIA holds the current instruction address.
ts four lsb are page bits. Activation of the interface line
RESET sets RIA to zero (hexadecimal X'000-0') and forces
the DSP out of interrupt mode. When RESET is released,
instruction execution starts at address zero with page bits set
to zero. A processor cycle starts when a new value is loaded
into RIA. While a new instruction is being fetched, the
previously fetched instruction is being executed.

For sequential instruction sequencing, the 12 msb of RIA
are incremented by one, and the four page bits remain
constant. Unconditional and executed conditional branch
instructions write the 12 msb from the data bus into the 12
msb of RIA. Only unconditional branch instructions also
load new page bits into RIA. The new page bits come from
the instruction decoder when an unconditional direct branch
(TC = BRD) is executed, or from the four Isb of the data bus
when an indirect branch (TC = BRM) is performed. The 16-
bit register RIAB receives the incremented instruction
address and last page bits.

In connection with branch instructions, the two-phase
pipelining of instruction fetching and execution has the effect
that the instruction following a branch instruction is still
fetched and unconditionally executed. In almost all cases,
this instruction can be used to accomplish a useful program
function, e.g., store a result or load a register, before the
branch becomes effective. Interesting deviations from this
rule occur in the sequential programming of more than one
branch instruction (see programming example 4, presented
later in the paper).

o Entering and leaving interrupt mode
The processor has a one-level interrupt capability. An
interrupt is requested by the line INT. Acceptance is
acknowledged by the line INT_A and results in RIA being
set to X'002-0'. Thus, execution of the interrupt program
starts at address two, with page bits set to zero. While the
first instruction of the interrupt program is being fetched, the
previously fetched instruction of the interrupted program is
still being executed. RIAB recetves the address of the
instruction to be fetched next in the interrupted program. Its
contents remain frozen during interrupt mode. Execution of
an unconditional indirect branch instruction using data
address zero (BRM 0) loads the contents of RIAB into RIA.
Interrupt mode is terminated, and instruction fetching and
execution return to the interrupted program. Line INT__Ais
reset and the DSP is ready to accept another interrupt.
Application programs which use the interrupt capability
should begin with an unconditional branch instruction at
address X'000-0' to skip over the interrupt program starting
at address X'002-0'.

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

4 2 6 12 1 1 1 bits
TC |IX CcC OP CC|IM|PY
x] PG |x

1 4 1 1

IX —index control
OP ~ operand
PY — odd parity bit

TC — transfer code
CC - compute code
IM — interrupt mask bit

PG - page bits, for unconditional long direct branch (TC=BRD),
no CC in this case, x =don’t care

«—————— Data bus ————»

msb Isb
RIA, RIAB PG 16 bits
RX, RY 16 bits
ROP, RI, RJ 12 bits
RM, RA, RB 20 bits
-—— ALU —

Internal working registers and alignment.

Interrupt acceptance can be disabled by setting the
interrupt-mask (IM) bit provided in the instruction format.
The IM bit becomes effective after fetching of the next
instruction. It must be set in every instruction in the main
program which may be followed by a branch instruction,
because if an interrupt were accepted after fetching of a
branch instruction, execution of the branch instruction
would disturb the correct instruction-address sequencing.

The interface line MPY_C determines whether during
interrupt mode the multiplier continues to operate or its
registers RIM and RM remain frozen. In this case, the four
1sb of RA and RB which can only stem from products are
also frozen and made to appear as zeros during interrupt
mode. Most applications do not need the multiplier in
interrupt mode. However, if one wants to use the multiplier
during interrupt mode, interrupt acceptance must be
disabled in the main program during instruction sequences

G. UNGERBOECK ET AL.

136

1 1 3 1 1 bits

7-bit compute code format: M1 | M2 FUN S AB

o

Format of the compute code.

Table 1 Transfer codes.

TC Mnemonic Function

0000 LMX Load (DM(ROP}) into RX

0001 LMY Load (DM(ROP)) into RY

0010 LMI/LMJ Load (DM(ROP)) into RI or RJ *
0011 BRM Branch unconditionally to {DM(ROP))
0100 LDX Load (ROP)-0 into RX

0101 LDY Load (ROP)-0 into RY

Load (ROP)-0 into RI or RJ *
Load (ROP)-0 into RY and RI or RJ*

0110 LDI/LDJ
0111 LDYI/LDYJ

1000 SAM Store 16 msb of RA into DM(ROP)
1001 SXM Store RX into DM(ROP)
1010 SBM Store 16 msb of RB into DM(ROP)
1011 SIAM Store RIAB into DM(ROP)
1100 BRZD Branch if ALUOUT zero to (ROP)
1101 BRAD Branch if ALUOUT non-zero to (ROP)
1110 BRND Branch if ALUOUT negative to (ROP)
111t BRD Branch unconditionally to (ROP)-PG
[— contents of ...
DM(ROP) — data memory location addressed by (ROP)
* _ RI or RJ, depending on second bit of IX
(ROP)-0 — (ROP) with four zero Isb appended
ALUOUT — 16 msb of ALU output

(ROP)-PG — (ROP) with four page bits from instruction
decoder appended

which use the multiplier. For this reason a dedicated IM bit
was provided in the instruction format.

o Generation of the effective operand

Instructions contain a 12-bit operand (OP) and a two-bit
index control field (IX). Under control of IX, OP either
remains unchanged (IX = '0x") or is incremented by the
contents of the 12-bit index register RI(IX = '10") or RJ
(IX = '11"), using a fast adder. The resuiting effective
operand is still generated during the fetch cycle of an
instruction and stored in the 12-bit register ROP. During the
subsequent execution cycle, the contents of ROP either serve
as a data address or are gated to the data bus as.a direct
operand with four zero 1sb appended.

e Data transfers over the data bus

During the execution cycle of an instruction, its decoded
four-bit transfer code (TC) causes one of four types of
transfers over the data bus:

G. UNGERBOECK ET AL.

Table 2 Compute codes.

M1 M2 FUN

000 o001 010 o1l 100 101 110 1l

Y-X X-Y X+Y X|Y X&Y XY RDH
C- X-C X4C X|C X&C X.C CLR
Y-M M-Y M+Y M|Y M&Y MY RDL
ONE C-M M-C M+C M|C M&C MC SLC

—_—_—0 O

—_—0 = O

Z =<
>

Read from data memory (or an input port, or RIAB)
and load RX, RY, R], or RJ.

o Load RX, RY, RI, or RJ by direct operand.

o Branch direct or indirect (load RIA by direct operand or
value from data memory).

Store contents of RX, RA, RB, or RIAB into data
memory (or an output port, or an internal register).

Table 1 summarizes the transfer codes.

e Data memory, 1/0 port, and internal-register addressing
Accesses to data addresses above 31 activate the line
CE_RAM. Accesses to data addresses 1-31 enable the line
CE_I/O. In addition, the value on the data bus is placed in
the register RX or RY by a write operation to data address !
or 2, respectively, and RI or RJ is loaded by the 12 msb of
the data bus by a write operation to data address 4, where
the concurrent IX field determines RI or RJ. Data address 0
represents a special case. The contents of RIAB are placed
on the data bus by a read operation from data address 0.

o Arithmetic/logic unit and multiplier

The ALU and multiplier operate in parallel and
independently of the data transfers occurring during the
same cycle.:

In every machine cycle, the 12 X 12-bit multiplier accepts
the 12 msb from registers RX and RY. The pipeline register
RIM partitions and distributes the circuit delay of the
parallel multiplier logic over two cycles. Thus, a 23-bit
product truncated to 20 msb appears in the 20-bit output
register RM of the multiplier in every processor cycle with a
pipeline delay of two cycles. During the subsequent cycle,
the product may be involved in an ALU operation, as
specified by the compute code.

During the execution phase of an instruction, the seven-
bit compute code (CC) connects registers to the inputs of the
20-bit ALU, selects the ALU function, and controls whether
the result is to be stored in the 20-bit accumulator register
RA or RB. Thus, compared to the 16-bit width of data bus
and memory, products from the multiplier output register
RM can be accumulated with four more isb. Besides
providing higher precision, this also permits more flexibility
for scaling. For input to the ALU, the contents of 16-bit

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

B e S e det A I A TR TR RIS YIRI Y

registers RX and RY are extended by four zero Isb. The
format of the compute code is shown in Figure 5.

The functions of M1, M2, and FUN are summarized in
Table 2. Bit S, if set, causes the ALU output to be stored in
RA or RB, depending on the value of the accumulator
control bit AB. In Table 2, e.g., mnemonic X+Y indicates
that the sum of the contents of RX and RY appears at the
ALU output. The symbol | denotes the logic OR, & the logic
AND, and . the logic EX-OR function. The letter C stands
for A or B, depending on the value of bit AB. Besides six
arithmetic and logic functions, the ALU can flush the
contents of the registers RX, RY, and RM to the ALU
output and produce 20-bit constants frequently needed:

CLR .. X'00000' ONE.. X'00100'
RDH .. X'00080' RDL .. X'00008'

Constants RDH and RDL (“round high,” “round low”) are
usually employed to initialize the accumulators such that
sums of products are rounded to 12 or 16 msb when the 16
msb of RA or RB are stored in data memory. The special
code SLC (C = A or B) left-shifts the contents of RA or RB
by two bits. For conditional branching, the compute code
establishes the ALU output to be tested. Hence, the function
of conditional branching is accomplished during a single
processor cycle.

Frogramining

Two assembler notations have been developed, one reflecting
directly the architecture and instruction format described in
the preceding section, and another matching more closely
the assembler notation of conventional microprocessors
without parallel operation codes. For the programming
examples presented in this section, the first notation is used
where assembler instructions take the form

[cc[.SA|SB]] [* comment]

[label] tc oper{+1/J]

e.g.,

#LABlI LMX VAL+27+] X+ASA * example.

Here, fc and cc are mnemonics taken from Tables 1 and 2,
and oper is a mixed expression of symbolic and constant
values. Indexation by RI or RJ is indicated by appending +I
or +J; SA or SB denotes that the ALU output is to be stored
in RA or RB. If the compute code is omitted from an
assembler instruction, a default code without SA or SB is
generated.

A program development system has been created which
comprises assembler, simulator, and the necessary hardware
and software tools for interactive loading and testing of DSP
application programs under the control of an IBM PC or
Series 1 computer.

[BM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

o Programming example 1
Move V1 to Ul, and compute U2 = VI+V2and U3 =

Vi-V2:
LMX VI * Load V1 into RX
LMY V2 * Load V2 into RY

SXM Ul X+4Y.,SA *Store RX into Ul, X+Y into RA
SAM U2 X-Y,SB *Store RA into U2, X-Y into RB
SBM U3 * Store RB into U3

o Programming example 2

This example demonstrates the ZIP technique in its simplest
form. Two consecutive output samples 7,_, and 7, of a
transversal filter with real-valued signals S, S,_,, S, _5, - -
and coefficients Cy, C,, - - -, Cy_, are computed:

T, =8, +C+ S, 2* C+ 8, 5xCt - Spn* Cyois
Tn=Sn* C0+Sn~—l * Cl +Sn—2 * C2+ Sn—N+l * CN—!‘

If values S,, Cy, S, Ci» S,5» Gy, - - - are loaded alternately

into RX and RY, products belonging to, T,_, and 7T, appear

alternately at the multiplier output and can be accumulated

in RB and RA. Thus, asymptotically for large filter length N,
one product is obtained and accumulated in every processor
cycle.

The following instruction sequence demonstrates this for a
filter of length N = 19. Index register RI is set and signal
values are stored such that S+I =S, S+1+I =S, |, S+2+I[
= etc. Coefficients are provided in the form of direct

n—23
operands:
LMX S+I *Load S+1 into RX
LDY C0 *] oad CO into RY (direct operand)
LMX S+1+4I RDH,SA *Set round constant into RA
LDY Ci RDH,SB *Set round constant into RB

LMX S+2+1 M+A,SA *Accumulate S+I X C0in RA
LDY C2 M+B,SB *Accumulate S+1+IX C0 in RB
LMX S+3+1 M+ASA *Accumulate S+1+IXCl in RA
LDY C3 M+B,SB *Accumulate S+2+1XCl in RB

LDY Ct7 M+B,SB * Accumulate S+16+IxCl15 in RB
LMX S+18+1 M+A,SA *Accumulate S+16+1xC16 in RA
LDY Ci18 M+B,SB * Accumulate S+17+IxC16 in RB
LMX S+19+] M+A,SA *Accumulate S+17+IxC17 in RA
—_ —— M+B,SB *Accumulate S+18+IxC17 in RB
—_ — M+A,SA *Accumulate S+18+Ix C18 in RA
SAM T+I M+B,SB *Store RA into T+I

SBM T+1+1 *Store RB into T+!1+1

Two transfer cycles indicated by the symbols —— ——

remain available for use by the next task. Coefficients could

also be read from data memory by replacing LDY Ci with

LMY Ci. Cyclic addressing schemes devised either in

hardware or in software can be employed to avoid shifting of 137

G. UNGERBOECK ET AL.

138

Second-order recursive-filter section.

signal values in data memory. Only eight instructions must
be added to the above code to realize a particular software
scheme which then performs the entire filter function at 1.23
cycles per multiplication.

e Programming example 3

The function of a second-order recursive-filter section
depicted in Figure 6 is performed. Input sample x, and
internal signals f,_, and f,_, are used to compute output
sample y, and new values for fiyand f, 5

LMY FN_2

LDX B2

LDX A2 RDH,SA *Set round constant into RA
LMX FN_1 RDH,SB *Set round constant into RB

LDY Bl M+A,SA *RA « B2xFN-2
1LDY Al M+BSB *RB « A2XFN-2
SXM FN_2 *FN—2 « FN—1 (shift)

IMX XN M+ASA *RA < B2XFN—2+B1xFN-1

X+A,SA *RA « XN+B2XFN—-2+BIXFN—-1

SAM YN M+BSB *YN« RA (output)

X+B,SB *RB« XN+A2XFN-2+A1XFN—1
*FN—1 « RB (new)

SBM FN_.1

Two transfer cycles remain available for use by the next task
which may, e.g., perform another filter section. Thus,
asymptotically each filter section requires ten processor
cycles. Assuming a cycle time of 100 ns, 125 filter sections
can be executed at an 8-kHz sampling rate.

o Programming example 4

This example illustrates the technique of an “instruction
table.” The variable CODE is translated from straight binary

G. UNGERBOECK ET AL.

to Gray code. For CODE = 2 (12 msb), instructions are
fetched and executed in the sequence (1), (2), (3), (4%

LMI CODE *oad CODE into RL.

—_— —— * The 12 msb of CODE may

BRD #TAB+I * contain values 0-15. (1)
BRD #CON 2)

#TAB LDX B'000000000000' * Gray code table
LDX B'000000000001"
LDX B'000000000011" (3)

LDX B'000000001110°
LDX B'000000001010'
LDX B'000000001011"
LDX B'000000001001"
LDX B'000000001000'

*

#CON SXM CODE *Store CODE (4)

e Programming example 5

This example illustrates the use of conditional branch
instructions. The maximum value among VAL(1), VAL(2),
..., VAL(N) and the corresponding index are determined:

LDYI N * 1 0ad N into RY and RI
BRD #1.2 * Branch to instruction #L2
LMX VAL+I *] oad VAL(N) into RX

#L1 BRND #L3 X—A *Branch to #L3 if RX <RA

#12 LDYI -1+l Y,SB *Update RY/RI, save old RY/RI
SBM RJ X,SA *Store RB into RJ, RX into RA

#L3 BRAD #LlI Y *Branch to #L1 while RY >0
LMX VAL+l *] oad next value

The maximum value is now in RA and the corresponding
index in RJ.

Conclusion

The architecture of a single-chip digital signal processor has
been described; the DSP can operate efficiently with a single
data-bus structure. In many €ases, it achieves typical
processing tasks with just the number of cycles needed to
read data from the single-port data memory and store
results. The novel ZIP technique allows transversal-filter
operations to be performed asymptotically with one
multiplication in every cycle. All major components of the
processor are then in concurrentiuse. The architecture was
purposely kept very simple to allow a particular high-speed
implementation with state-of-the-art technology available
when the processor was designed.

IBM J. RES. DEVELOP., VOL. 29 NO. 2 MARCH 1985

Referances

1. J. G. Posa, “Signal Processors Spur Changes,” Electronics 53,
100-101 (February 14, 1980).

2. T. Nishitani, R. Maruta, Y. Kawakami, and H. Goto, “A Single-
Chip Digital Signal Processor for Telecommunications
Applications,” IEEE J. Solid-State Circuits SC-16, 372-376
(1981); (describes the NEC 7720).

3. E. R. Caudel and R. K. Hester, “A Chip Set for Audio
Frequency Digital Signal Processing,” Proceedings, IEEE
International Conference on Acoustics, Speech, and Signal
Processing (IEEE Catalog No. CH1746-7/82), 1982, pp. 1065~
1068 (describes the TI TMS32010).

4. S. S. Magar, E. R. Caudel, and A. W. Leigh, “A Microcomputer
with Digital Signal Processing Capability,” IEEE International
Solid-State Circuits Conference, Digest of Technical Papers 25,
32-33 and 284-285 (1982); (describes the TI TMS32010).

5. M. Kikuchi, T. Inaba, Y. Kubono, H. Hambe, and T. Tkesawa,
«A 23 K Gate CMOS DSP with 100 ns Multiplication,” JEEE
International Solid-State Circuits Conference, Digest of
Technical Papers 26, 128-129 (1983); {describes the Fujitsu
MB8764).

6. R. E. Owen, “VLSI Architectures for Digital Signal Processing,
VLSI Design 5, 20-28 (1984).

7. W. E. Nicholson, R. W. Blasco, and K. R. Reddy, “The S2811
Signal Processing Peripheral,” Proceedings of WESCON 25/3,
1-12 (1978); (describes the AMI S2811).

8. M. Townsend, M. E. Hoff, Jr., and R. E. Holm, “An NMOS
Microprocessor for Analog Signal Processing,” IEEE J. Solid-
State Circuits SC-15, 33-38 (1980Y; (describes the Intel 2920).

9. J. R. Boddie, G. T. Daryanani, 1. L Eldumiati, R. N. Gadenz,
J. S. Thompson, and S. M. Walters, “Digital Signal Processor:
Architecture and Performance,” Bell Syst. Tech. J. 60, 1449-
1462 (1981); (describes the Bell DSP).

10. Fred Mintzer and Abraham Peled, “A Microprocessor for Signal
Processing, the RSP,” IBM J. Res. Develop. 26, 413-423 (1982);
(describes the IBM RSP).

11. G. Ungerboeck, D. Maiwald, H. P. Kaeser, and P. R. Chevillat,
“The SP16 Signal Processor,” Proceedings, IEEE International
Conference on Acoustics, Speech, and Signal Processing (JEEE
Catalog No. CH1945-5/84), 1984, pp. 16.2.1-16.2.4.

Received December 30, 1983; revised October 5, 1984

»

Jean Paul Beraud IBM France, B.P. 58, 91 102 Corbeil-
Essonnes, Cedex, France. Mr. Beraud is currently a logic-design
engineer at the Essonnes laboratory. He joined IBM in La Gaude,
France, in 1966 and worked with modem and digital audio groups in
the Advanced Technology Department. Since 1979 he has worked in
the field of signal processing. In 1982, he joined the Component
Development Laboratory in Essonnes to work on chip design. He
received his Engineer Diploma from the Conservatoire National des
Arts et Métiers de Nice, France, in 1971. Mr. Beraud received an
IBM Outstanding Innovation Award in 1982 for the development of
a real-time signal-processor chip.

Pierre R. Chevillat 1BM Research Division, Saumerstrasse 4,
8803 Ruschlikon, Switzerland. Dr. Chevillat has been with the IBM
Zurich Research laboratory since 1976. He has contributed to
various projects in data transmission and signal processing,
specifically the conception and prototyping of high-speed data
modems for leased telephone lines and the development of IBM’s
advanced signal processors. He holds several patents in the areas of
data communication and signal-processor architecture, and has
received an IBM Outstanding Contribution Award for his work in
data transmission. Dr. Chevillat received the Dipl. El-Ing. ETH
degree from the Swiss Federal Institute of Technology, Zurich,
Switzerland, in 1972, and the M.S.E.E. and Ph.D. degrees from the
Ilinois Institute of Technology in 1973 and 1976, respectively. At
the Illinois Institute of Technology he was a National Science
Foundation research assistant and the recipient of a Hasler
Foundation Fellowship. In 1970, he was a member of the

[BM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

development staff at ITT Creed Ltd., England. Dr. Chevillat is a
member of the Institute of Electrical and Electronics Engineers and
Sigma Xi.

Hans-Peter Kaeser Deceased. Mr. Kaeser was a Research staff
member at the IBM Zurich Research laboratory in Rischlikon,
Switzerland. He received the B.S. degree in electrical engineering
from the Engineering College in Biel, Switzerland, in 1964, and
joined IBM in 1966, after two years with Brown Boveri. He worked
on projects dealing with speech processing, in-house communication,
and data transmission. He joined Riischlikon’s signal-processing
group in 1978. Mr. Kaeser designed and implemented prototypes of
three generations of signal processors and participated in the
realization of high-speed data modems using these processors. He
received a First-Level Invention Achievement Award, a Research
Division Award, and an IBM Outstanding Contribution Award for
his work on signal processors. Mr. Kaeser died in June 1984.

Dietrich Maiwald IBM Research Division, Saumerstrasse 4, 8803
Riischlikon, Switzerland. Dr. Maiwald is a Research staff member in
the signal-processing group at the Zurich laboratory. In 1966, he
received the Dr.-Ing. degree in communications engineering from
the Technical University in Stuttgart, Germany. From 1963 to 1967
he was employed as a scientific assistant at the Institute for
Communications Engineering in Stuttgart. In 1967, he joined the
[BM Zurich Research laboratory, where his research work has
included digital processing of speech signals for bandwidth reduction
and transmission. In 1970, he was assigned temporarily to the
technical planning staff of the Research Division in Yorktown
Heights, New York. Since 1971 he has contributed to various
research projects in the areas of digital switching, data transmission,
and magnetic recording. Since 1979 he has participated in the design
and benchmarking of digital signal processors and established the
program development systems for these processors. He is currently
applying programmable signal processors to realize advanced signal-
processing concepts in high-speed voiceband data modems. Dr.
Maiwald has received two Research Division Awards, a First-Level
Invention Achievement Award, and an IBM Outstanding
Contribution Award for his work in signal-processor architecture. He
is a member of the Institute of Electrical and Electronics Engineers
and the German Society for Communications Engineering (NTG).

Goitiried Ungerboeck [BM Research Division, Saumerstrasse 4,
8803 Ruschlikon, Switzerland. Dr. Ungerboeck is an IBM Fellow at
the IBM Zurich Research laboratory in Riischlikon, Switzerland. He
received the Dipl. Ing. degree in telecommunications from the
Technical University in Vienna, Austria, in 1964, and the Ph.D.
degree from the Swiss Federal Institute of Technology in Zurich,
Switzerland, in 1970. He first worked with the Wiener
Schwachstromwerke in Vienna, and later with IBM Austria as a
systems engineer. In 1967, he joined the IBM Zurich Research
laboratory. He made original contributions to the theory of data
transmission and the architecture of signal-processors. His invention
of trellis-coded modulation is gaining wide application in digital
transmission systems. As manager of the signal-processing group in
Riischlikon since 1978, he has pursued exploratory projects in
architecting and prototyping IBM signal processors, developing
advanced modems, and designing a new channel technique for
digital magnetic recording. In 1973 he was on sabbatical leave at the
IBM laboratory in La Gaude, France. Dr. Ungerboeck has received
two IBM OQutstanding Innovation Awards and two Invention
Achievement Awards. For five years he served as an Associate Editor
of the IEEE Transactions on Communications. He was recently
elected a Fellow of the Institute of Electrical and Electronics
Engineers.

G. UNGERBOECK ET AL.

139

