
by Robert C. Stanley

This paper presents a tutorial overview of the
past, present, and future of microprocessors
and describes the key elements of their
structure and operation. It is intended to serve
as a technical introduction to the rapidly
expanding field of microprocessor and
microcomputer technology and to provide an
overview of what these elements are, what they
can do, and how they do it. The origin and
evolution as well as the basic principles of
operation are discussed. Several different types
of microprocessor are considered and examples
of their application in the solution of real-world
problems are given.

~~~~~~~~~~~~ 

The microprocessor, an invention of the early 197Os, 
essentially incorporates the computational power of a 
computer in a package that can be held in the palm of one’s 
hand. Microprocessors are currently being used extensively 
in lieu of conventional logic to reduce product cost, add 
more functions, and increase reliability through fewer part 
numbers, reduced hardware, and less complex packaging. 

The microprocessor is viewed differently by different 
people. To an end us& it might be just a black box, to a 
programmer it might be a smaller version of the central 
workings of a computer, or to a control logic designer it 
might be a logic device that continually rewires itself 
according to the instructions sent to it. No matter what the 
point of view or intended end use, the microprocessor must 
contain certain elements in order to perform the required 

tasks. What is commonly referred to loosely as a 
“microprocessor” usually consists of a small group of devices 
that combine to make up the control nucleus of a 
microprocessor-based system. (See Figure 1.) It is this 
nucleus of necessary devices that we are primarily concerned 
with in this paper. 

Basic operation of the various microprocessor system 
elements is covered first, followed by a stepby-step 
description of the execution of instructions in a simplified 
program. A number of more intricate concepts are discussed 
under Advanced concepts, and Theyiture takes a look at 
where microprocessors are going from here. Example 1 is a 
simple cash register control, whereas Example 2 details the 
more sophisticated master/slave microprocessor control of a 
robot. 

In order to shed some light on the original purpose of the 
device and to show how it has since grown to fill other 
needs, details of the origin and evolution of the 
microprocessor are given in Appendix 1. The physical 
packaging aspects of microprocessors and the details of 
operation of the various types of microprocessor memory 
devices are mentioned only briefly in the body of the paper, 
but are covered in some depth in Appendices 2 and 3. A 
bibliography has been included with references to more 
detailed tutorial and technical literature that covers the 
many aspects of microprocessors and how they are created 
and applied. 

asic ~~~~~~~~~~~~~~ operalion 
The primary control device in a microprocessor system is the 
CPU (central processing unit). Here, most of the decision- 
making is performed through the execution of program 
instructions. These instructions are stored in memory and 
the CPU fetches them as needed to perform the required 
task. Most instructions are very basic in hature; they direct 
simple operations such as reading in data from an outside 
source, moving data from one storage register in the CPU to 
another, performing some logic or arithmetic function on 

ROBERT C. STANLEY IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 



the contents of a register, or wniting data out to another part 
of the system. There are also instructions that perform more 
complex functions, but regardless of the complexity of a 
single instruction it cannot accomplish even the simplest 
task entirely by itself. Individual instructions must be 
combined in some logical fashion to create a program to step 
the CPU through a series of basic operations that will, when 
taken as a whole, perform some useful function. Sometimes 
the program instructions are stored in the CPU itself, but 
more often they are stored in a separate memory device. A 
microprocessor needs memory for storing both instructions 
and data. The various types of solid-state memory modules 
used in microprocessor-based systems are described in 
Appendix 2. 

sections as shown in Figure 2. There must be a control 
ROM (read-only memory), a PLA (programmed logic array), 
or a random logic decoder (or some combination of these 
devices) to decode the instructions one at a time and to 
direct the operation of the rest of the CPU chip. There is 
timing and sequence logic that steps each operation through 
in its proper order. There is an ALU (arithmetic logic unit) 
that performs basic arithmetic and logical operations on 
operands that are fed through it. There are normally a 
number of registers of various sizes located on the CPU chip 
itself. There are address pointer registers whose width 
depends on the size of memory the system is designed to 
handle and on whether the memory being addressed is in the 
CPU or external to it. There are data registers for storing and 
transfemng data, and at least one of these registers is 
normally a special-purpose working register called an 
accumulator. The accumulator is involved in most of the 
data-oriented activity on the CPU. (The results of most of 
the ALU operations are sent to the accumulator, and its 
contents are quite often used as one of the operands.) 
Connecting all of these elements is a data path whose width 
is determined by the microprocessor word size. This data 
path, with bidirectional buffers at the boundary of the CPU 
chip, becomes the local system data bus and acts as the 
information path connecting all data-related elements in the 
system. 

The contents of the active address pointer register 
generally follow a separate path to the boundary of the CPU 
chip, where it passes through buffers to become the local 
system address bus. A 16-bit address bus allows addressing of 
65 536 (often referred to as "64K") separate memory 
locations, and a 20-bit address bus allows for over a million. 
In an effort to reduce the number of pins on the CPU 
package, some microprocessors multiplex some portion of 
the address bus and data bus on the same group of pins as 

8 they leave the CPU chip. This saves pins on the CPU, but 
requires that extra hardware be added to create individual 
address and data buses to serve the rest of the system. This is 
of little consequence in larger systems, however, because the 

A typical CPU chip consists of several separate logical 

IBM 1. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 

device 
Input 

(keyboard) 

I I  

Temporary 
memory 
(RAM) (ROW 

Permanent 
CPU memory 

Permanent 
memory 
(ROW 

r-l output 
device 
(display) 

-~ ~ 

1 Simplified microprocessor block diagram 

System data bus System address bus 

1 CPU block diagram. 

local address and data buses must be buffered again before 
being distributed to a large number of memory and 
peripheral chips, and the demultiplexing and buffering can 
both be done by the same devices. (The address bus is 
unidirectional only, out of the CPU, but the data bus is 
bidirectional and must be buffered in both directions.) 

Microprocessors are sized or cIassified according to the 
number of binary digits or bits that they are able to handle 
at one time. An eight-bit microprocessor generally has an 

t 

111 

ROBERT C. STANLEY 



eight-bit-wide data interface to the outside world and eight- 
bit internal data paths and registers. When there are 
exceptions to this, it is generally that the internal data path is 
wider in order to increase the functional capability of the 
CPU, or the interface to the rest of the system is narrower to 
reduce cost or the number of package pins. (There is at least 
one microprocessor with a four-bit word size and a one-bit 
interface off the CPU.) In eight-bit microprocessors, d a k  are 
moved around in groups of eight bits, which are referred to 
as “bytes.” A byte is always eight bits, and a “nibble” is half 
a byte or four bits, but a word may be of any size as defined 
by a particular microprocessor. The most common word 
sizes for microprocessors today are four, eight, sixteen, and 
thirty-two bits. 

major elements in a control package or directly with the 
outside world. This is provided by interface elements or 
mechanisms called 1/0 (input/output) ports. These 1/0 ports 
may be located directly on the CPU itself or on separate 
chips, and can handle input or output data in either serial or 
parallel format. Usually separate I/O ports are required for 
input and output data and for serial and parallel format, but 
there are sophisticated devices available today that may be 
programmed to handle many types of I/O, and even to 
handle automatically much of the protocol involved in some 
of the more involved serial communication formats. Parallel 
1/0 ports may be designed for data input or data output 
only, or may handle bidirectional data. Some allow for the 
selection of input or output function on a bit-by-bit basis, 
but most ports are configured in groups of four or eight bits. 
If the 1/0 port is located on a peripheral chip and not on the 
CPU, it is connected to the CPU via address, data, and 
control lines in a manner similar to that used for memory 
modules. 

“Address modes” is a term which describes the different 

A microprocessor needs a means of interfacing with other 

methods a CPU uses to address data stored for future use 
(normally in memory). Some CPUs have a number of 
different registers that may be used as address registers, and 
some of the address modes use these registers in different 
combinations. There are some address modes that do not 
use address registers as such. In “immediate” addressing, the 
data are included as part of the instruction and are therefore 
pointed to by the program counter. In “implied” addressing, 
the location of the data to be used is implied by the 
instruction itself. “Direct” addressing includes the address of 
the data as part of the instruction; “direct short” uses eight 
bits of address (near the bottom or lower addresses of 
memory), and “direct long” uses 16 bits of address to access 
data anywhere in a 64K-byte range. In “register” addressing, 
the data are found in a register in the CPU, and in “register 
indirect” addressing, the instruction refers to a register that 
contains the address of the data in memory. “Indexed” 
addressing makes use of index registers in the CPU, and 

112 there is normally a method of automatically adding an offset 

to the contents of the index register before it goes out on the 
address bus (as for indexing into a data table). The index 
registers may also be caused to increment or decrement 
automatically by a specified amount every time their 
contents are used on the address bus. 

one of the address modes in a microprocessor, since 
instructions are normally pointed to by a special-purpose 
address register on the CPU called a “program counter.” The 
program counter points only at instructions and is 
automatically incremented to the next instruction every time 
it is used. The program counter may also be force-loaded 
with an address, as in the case of program jumps where the 
next instruction to be executed is not the next one stored 
sequentially in memory. The program counter might also be 
referred to as an instruction pointer register. 

Another register not included in the address modes is the 
stack pointer. This is an address register that is normally 
loaded in the IPL (initial program load) routine to point to 
an area in RAM that has been set aside to store return 
addresses and miscellaneous data. This RAM area is referred 
to as a “stack,” and its size determines the number of 
subroutines and interrupts that may be nested or overlapped. 
On a “call to subroutine” instruction, the CPU saves or 
pushes the address of the next instruction onto the stack by 
using the stack pointer as an address pointer and the 
contents of the program counter as the data to be written in 
memory. Next, the program counter is loaded with the 
address of the first instruction in the subroutine being called 
and this causes a jump to that subroutine. (Subroutines are 
used when there is a series of instructions that are to be used 
over and over again in a program, as for a routine to read 
data in from a keyboard every time a key is pressed.) The 
last instruction in a subroutine is “return from subroutine” 
and it merely pops the return address off the top of the stack 
and places it in the program counter. Operation is then 
resumed immediately following the point in the program 
where the subroutine was last called. The stack pointer 
register is automatically incremented and decremented by 
the CPU so that it always points to the last entry or next 
available space. Push and pop instructions are available that 
allow the programmer to store temporary data on the stack 
or to save the contents of registers when a subroutine is 
called or an interrupt occurs. (The “push” instruction writes 
to the stack and “pop” reads from it.) The stack acts as a 
LIFO (last-in first-out) register, so any data must be popped 
or retrieved in the reverse order from that in which they 
were saved or pushed. 

large number-of registers on the CPU, and the instructions 
specialize in oderating efficiently on data in these registers. 
Another type, referred to as memory-based, has fewer 
registers on the CPU, and the instructions are oriented more 
toward operating on data in memory. Still a third variety has 

Accessing program instructions is not usually considered 

Some microprocessors, referred to as register-based, have a 

ROBERT C. STANLEY IBM J. RES. DEVELOP. VOL 29 NO. 2 MARCH 1985 



very few, if any, data registers on the CPU. Instead, there are 
pointers to memory where the “register” space actually 
resides. This fact is almost transparent to the programmer, 
except that there appear to be a number of complete sets of 
working registers that are easily accessible. 

microprocessor system generally involves a number of SSI 
and MSI logic chips. Buffers are required on the data bus to 
buffer the CPU from the electrically harsh environment on 
the system data bus and to increase the drive capability of 
the bus. Address decoders decode the higher-order address 
lines and provide chip select signals to activate the proper 
memory or 1/0 chips in response to a certain range of 
addresses. Multiplexing, or time-sharing, of address 
information and data on the same CPU pins requires that 
the system provide address latches to hold the address bus 
active throughout the entire memory read or write cycle. 
The basic system timing in a CPU is often derived from a 
crystal, and this usually requires a separate clock oscillator 
chip to convert the crystal frequency into clock signals 
suitable for the CPU chip. Some CPUs generate their own 
bus control signals, but more complex systems often utilize 
bus controllers to handle the read and write timing and other 
bus-related functions. What is really a fairly simple 
microprocessor system can easily result in a printed circuit 
card with 20 or more devices on it. What is often referred to 
as a “computer on a chip” today is frequently in reality more 
of a “CPU on a chip.” There is a constant effort, however, to 
reduce the number of chips required to form a working 
system. (Refer to “microcontrollers,” discussed in the section 
on advanced concepts.) 

Tying together all the basic components in a 

If j3s$ruction c <  ~~~~~~~~~~ 

In order to see just what a CPU does in carrying out its 
duties, we explore a short scenario of reading in some 
instructions and following the CPU through its paces. We 
assume that there is a program already in program memory 
to read the data at an 1/0 port, mask off some of the bits, 
and store the results in data memory. We assume also that 
this program starts at memory address 0, and that after it has 
been reset, this is where the CPU will look for its first 
instruction. For our example we assume that our 
microprocessor is accumulator-based with isolated 1/0 and 
uses eight data bits and 16 address bits. Figure 3 is a 
memory map for this program. 

The first instruction in our program is a two-byte INPUT 
instruction. The first byte is the op code, or operation code, 
that calls for the reading of data from an I/O port. The 
second byte of the INPUT instruction is the number of the 
port that is to be read. In our example it is port 0. The 
second instruction is the A&D instruction, which performs 
the masking of the bits. This also is a two-byte instruction, 
with the first byte being the op code, and the second byte 
being the immediate data to be used in the logical “and“ 

0007 7 1  
0006 34 

0005 12 

0004 MOVE 

0003 07 

0002 AND 
r 

0000 I INPUT 1 

I Sample program memory contents. 

operation. In our example we wish to mask off, or disregard, 
the high-order five bits of the input data, so the immediate 
data byte in the instruction is 07 (binary pattern 000001 1 1 ) .  
The third instruction is a MOVE instruction that takes our 
masked data and moves them out to memory. This 
instruction is three bytes long, with the first byte, as always, 
being the op code. The second and third bytes contain the 
16-bit address of the memory location in which we wish to 
store the data. For our example we use memory address 
1234. To prevent the CPU from continuing and doing 
anything after it has finished our example, we end the 
program with a HALT instruction that stops the CPU from 
executing any more instructions. 

After the CPU has been reset by an external reset, the 
program counter contains all zeros, and its contents travel 
through address latches and out on the address bus to access 
memory location 0000. (Memory addresses are to be 
specified in our example by using four hexadecimal digits.) 
The CPU also sends out a memory read command so that 
the contents of the selected memory location are placed on 
the data bus by the memory module. The CPU reads the 
data bus, which now has the op code for the first instruction. 
Since this is the first operation after a reset, the CPU knows 
it must be reading in an op code so it places the first byte in 
the instruction decoder to be decoded. Upon decoding the 
instruction, the CPU discovers that it is a two-byte 
instruction and it must fetch the second byte. The program 
counter was automatically incremented after its contents 
were saved in the address latches, so it now contains address 
000 1. This address goes through the address latches and out 
to access memory location 000 1 for the second byte. The 113 

IBM J .  RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY 



second byte of the first instruction, which is 00 to represent 
port 0, goes back to the CPU by way of the data bus. Since 
this is an INPUT instruction, the CPU places the second 
byte of the instruction in the address latches as the lower half 
of the address of the 1/0 port. (The upper eight bits of 
address are zeros for all 1/0 operations.) Address oo00 goes 
out on the address bus, but this time the CPU sends out an 
1/0 read command because it is reading an input port and 
not a memory location. The combination of address 0000 
and the 1/0 read line being active causes input port 0 to 
place its contents on the data bus. (We might assume that 
the port is wired to some switches that we wish to monitor in 
a control application.) The CPU reads the data bus and 
places the data in the accumulator. (The accumulator is the 
destination for all INPUT instruction data and the source 
for all OUTPUT instruction data.) This concludes the 
execution of the first instruction, so the CPU prepares to 
read in the next op code. 

The contents of the program counter again go out on the 
address bus, this time with address 0002 and a memory read 
signal. This causes the op code for the second instruction to 
go to the instruction decoder for decoding. The CPU 
discovers that this is a two-byte AND instruction and it 
sends the program counter contents of 0003 out on the 
address bus to fetch the second byte. The data in the second 
byte of the AND instruction are to be logically “anded” with 
the contents of the accumulator, so they are placed in a 
temporary holding register. The contents of the accumulator 
are copied into a temporary accumulator and then both 
temporary registers are sent through the ALU, where they 
are “anded” together. The results of the ALU operation are 
returned to the accumulator, which now contains the low- 
order three bits of the data that were read in from port 0. 
“Anding” a number with 0 gives a result of 0. “Anding” a 
number with 1 leaves the number itself. Thus, our “anding” 
the accumulator with immediate data of 07 (OoooO 1 1 1 in 
binary) has had the effect of masking the high-order five bits 
to zeros and leaving the low-order three bits unchanged. This 
concludes the execution of the second instruction, so the 
CPU prepares to read in the next op code. 

The contents of the program counter go through the 
address latches and out on the address bus with address 0004 
and a memory read signal. This causes the op code for the 
third instruction to follow the data bus from memory into 
the CPU and then to the instruction decoder for decoding. 
The CPU discovers that it is a three-byte MOVE instruction, 
and it sends the program counter contents of 0005 out on 
the address bus to fetch the second byte. The data in the 
second byte of the MOVE instruction are to be part of a 
memory address, so they are placed in half of a temporary 
address register in the CPU. The program countkr was 
automatically incremented after its contents were saved, so it 
now contains address 0006. This address goes through the 

114 address latches and out to access memory location 0006 for 

the third byte of the instruction. The third byte of the 
MOVE instruction is the rest of the 16-bit memory address, 
so it goes to the other half of the temporary address register. 
The MOVE instruction is being used to move the contents 
of the accumulator out to data memory, so the temporary 
address register goes through the address latches to access 
memory location 1234. In this case we are moving data out 
of the CPU, so the contents of the accumulator are placed 
on the data bus and the CPU issues a memory write 
command. This causes the data on the data bus to be latched 
into the memory location that is being addressed by the 
address bus and concludes the execution of the third 
instruction. 

The HALT instruction is then read in from memory 
location 0007 and decoded. The CPU now remains in an 
idle state until it is given an external reset or an interrupt. 
No matter how long or involved a program may be, it is 
always executed one step at a time, as we have just seen 
(though for ease of exposition we did leave out a number of 
the details). There are microprocessors that can operate on 
more than one instruction at a time, and many of the 
instructions cause more activity than those we looked at, but 
it is always done one step at a time. 

Programs to control microprocessors may be written in a 
number of different ways. The most basic of these is 
“machine language,” which comprises the actual binary 
zeros and ones that the microprocessor responds to when it 
reads them in as instructions. The zeros and ones are fine for 
the microprocessor, but it is not comfortable for 
programmers to have to write programs using only numbers, 
so this is not done very often unless the application is 
expected to sell in extremely high volume. 

The next level of programming is that of using “assembly 
language,” where all of the binary machine instructions have 
been assigned names that represent their operation. 
Examples of these are AND, INPUT, ADD, JUMP, 
SUBTRACT, etc. The programmer writes a program using 
the individual instructions by name. (These names are 
referred to as mnemonics.) The mnemonics are then entered 
into a computer along with a program called an assembler, 
and the mnemonics are converted into the binary numbers 
that the microprocessor actually operates on. Assembly- 
language programs can be very efficient because the 
instructions are selected one at a time, but they also take a 
long time to write, and the programmer must be familiar 
with all the details of how each particular microprocessor 
handles each instruction. Assembly language is used today 
for most programs that are relatively short and are stored in 
ROMs or EPROMs and sold in large volume. 

Higher-level languages are available which make it easier 
to write programs because the language sounds more like 
basic English statements than elemental operation steps in a 
computer. After a program has been written in a high-level 
language, it is entered into a computer along with a program 

ROBERT C. STANLEY IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH I985 



called a compiler. There are different compilers for each of 
the high-level languages (such as BASIC, Pascal, FORTRAN, 
etc.), and there are specific versions for each of the target 
microprocessors. The compiler lists or compiles the 
individual mnemonics required to execute each of the 
general program statements, and then its output is run 
through an assembler to create the actual machine code or 
instructions. High-level languages save time for the 
programmer, but quite often make poor use of the 
microprocessor time and memory because the compiler does 
not always make optimum use of the instructions. Some 
programs are written in a high-level language and then time- 
sensitive portions are rewritten in assembly language to 
optimize the operation of the overall system. 

~~~~~~~~ concepts 
There are many different types of microprocessors available
today. Some of them do not have all the features mentioned
in the section on basic operation, but others have most or all
of these features plus many more. Sometimes a number of
powerful features are built into the CPU itself, or in some
cases a rather ordinary CPU is applied in a system
incorporating very sophisticated peripheral chips. The
applications run the gamut from, for example, washing
machine control or children’s toys to word processing to
real-time image processing and continuous-path machining.

One feature that might be incorporated in a CPU to
increase its performance is pipelining. An example of this
may be seen in instruction decoding. In our simple example
we saw the instructions going directly from the data bus to
the instruction decoder one byte at a time for decoding.
Some microprocessors have instructions that are over half a
dozen bytes long, and the CPU might have a queue for
storing several bytes of instruction before they go to the
instruction decoder. This saves CPU execution time in two
ways. First, separate bus control logic on the CPU can be
dedicated to keeping the instruction queue full so that the
rest of the CPU may concentrate on executing the
instructions, and not on trying to make optimum use of the
bus. (Simple microprocessors spend most of the time
fetching instructions from memory and in the read/write
data operations on the bus, and not on actual arithmetic and
logical operations that are performed within the CPU.)
Second, the instructions may be pre-decoded to a certain
extent in the queue so that some operations may overlap in
time if they do not require the same portion of the CPU
logic or depend on the results of a preceding instruction.
Pipelining may be as simple as allowing the execution of one
instruction to overlap the fetching of the next op code or as
advanced as operating on several instructions at the same
time. The objective, of course, is to execute instructions as)

rapidly as possible and to speed up the overall system
operation. There are microprocessors today that do a high-
speed fetch of a number of instructions and place them in an

instruction cache or temporary storage location on the CPU
chip itself. There they can be accessed more rapidly by the
CPU than if they were left in system memory. This speeds
up the overall system operation considerably.

One of the trends today is toward more and more
complex peripheral chips to handle such things as serial
communication protocols, display screen control, parallel
1/0 with handshaking, DMA (direct memory access), floppy
disk controllers, and multifunction timer/counters. These
chips normally have a number of control registers that
dictate how the chip functions in the overall operation of the
system. When electric power is first turned on, these chips
are typically unable to function without first receiving ‘

“operating instructions” from the CPU. The CPU, in its own
IPL (initial program load) routine, encounters a series of
instructions that tell it how to configure the peripheral.
devices in the system. It does this by sending a series of
command words to the control registers in the peripheral
devices themselves. These command words, which must
normally be sent to the peripheral controller chip in a special
sequence, are used to ”customize” the operation of the chip
to fit the application. After this initialization, the 1/0 chips
automatically handle the data in the prescribed manner
every time they are called upon by the CPU or by the
peripheral device they are supporting.

The term direct memory access refers to an operation that
transfers data directly to or from memory without the data
being handled by the microprocessor chip itself. The DMA
controller is an intelligent peripheral chip that must be
initialized by the CPU and told where the data are to be
moved from and where they are to be moved to. Once so
initialized, the DMA controller takes control of the data bus,
the address bus, and the control lines that handle memory
read and write operations. The CPU is temporarily forced off
the bus and must wait until the DMA operation is
completed before it can regain control of the bus. DMA
operations save time when large amounts of data are to be
moved, because the DMA controller can automatically
transfer data at the full bandwidth of the bus and does not
need to keep reading in program instructions to tell it what
to do next.

The microprocessors we have been talking about until
now might be called “conventional” microprocessors. There
is a type of microprocessor that is generally referred to as a
single-chip microprocessor, or microcontroller. The main
feature of these devices is that an attempt has been made to
place the entire system on one chip. (This includes the CPU,
RAM, ROM, clock oscillator, and 1/0 ports.) A
microcontroller has enough on-chip ROM to hold a control
program of reasonable size (i.e., 1K or 2K bytes). Some
microcontrollers are available in both masked ROM and
UV-erasable EPROM versions (as described in the section
on memory), and same have provisions for additional off-
chip ROM or EPROM to allow for future expansion of an 115

1BM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY

application program. Some microcontrollers also provide for
off-chip data RAM in addition to the on-chip registers and
scratchpad RAM. Some of the other features incorporated
into microcontrollers to increase their control capability
include Boolean processing, timers and counters (cascadable
or with optional prescalers), A/D (analog-to-digital)
conversion, PLLs (phase-locked loops), and the ability to
handle serial I/O. Microcontroller applications today are
expanding rapidly and will continue to do so in both high-
end and low-end applications. Typical applications of the
newer high-end versions are analog data processing or signal
processing; many of the lower-end versions will be buried
within electrical equipment where the presence of a CPU
will probably not be recognized by the end user.

developed to enhance the capabilities of a microprocessor
CPU. An example of this is the NDP (numeric data
processor). The NDP cannot operate in a stand-alone
situation as the microprocessor CPU does, but typically is
connected to the same address and data bus as the CPU. The
NDP monitors the instructions as they go to the CPU, and
when an NDP instruction is encountered, the CPU releases
the bus and allows the NDP to take over the bus and execute
the instruction. The CPU may wait while the NDP performs
some floating-point operation, or it may continue on its own
and then at a later time query the NDP for the results of the
operation. The NDP instructions are intermixed with the
CPU instructions, so the programmer need not be overly
concerned that some instructions are being executed by the
CPU and some by the NDP. Coprocessors speed up
processing time because they are dedicated to performing
specific tasks that would take much longer in the more
versatile but slower CPU. They also save time by being able
to operate in parallel with the main system CPU.

Interrupts are far from new (they have been available on
microprocessors since the 8008), but they do require some
attention to detail in both the hardware and the software
design. The simple approach to interfacing with a peripheral
device would be for the CPU to poll its controller. (Polling is
software that periodically checks to see whether the device
requires service.) The device might be a printer that is ready
for more data to print or a tape reader that has data for the
CPU. This method is all right for applications where time is
not critical and the peripherals can wait for service. (The
printer could theoretically wait all day for more data to print
without causing a system problem.) The reader, on the other
hand, could cause a problem. If the data were not read from
it before more data were received, the new data would be
written over the old data and would thus destroy the old
data. In this case, the reader should be able to interrupt the
CPU in whatevir it is doing and request that the data be
read in a timely manner.

The coprocessor is another type of processor that has been

Interrupts may come from just one device in a system, or
116 from a number of devices. In any case, the CPU must know

where in memory to find the service routine for the
particular device that has caused the interrupt. It is normally
up to the requesting device or an interrupt controller chip to
place this information on the bus. The CPU saves, on the
stack, the address of the instruction it was about to read in
when the interrupt occurred. It then picks up the interrupt
information from the bus and calls the proper routine to
service the device. The last instruction in the service routine
is “return from interrupt,” which gets the return address
from the stack, and the CPU returns to what it was doing
when the interrupt occurred. Some CPUs have duplicate sets
of registers so that an entire new set of working registers may
be switched to rapidly when an interrupt occurs. If there are
to be many intempt sources in a system, a priority interrupt
controller chip is used. This device keeps track of the devices
that have requested service and allows interrupts of a higher
priority to interrupt the CPU while it is servicing devices of
lower priority. Some of the newer microprocessors and
microcontrollers have priority interrupt hardware and
microcode built into the CPU itself in order to simplify
system design and eliminate the need for a separate interrupt
controller chip.

Bit-slice microprocessors are a specialized type of
microprocessor used in very high speed applications or
where a specialized instruction set is required, The faster bit-
slice microprocessors employ ECL (emitter-coupled logic)
because this configuration of bipolar transistors can provide
switching speeds in the subnanosecond range. The bit-slice
microprocessor instruction set is determined by the system
designer and is stored in a block of high-speed memory.
(This technique is often referred to as microprogramming.)
With microprogramming it is possible to optimize an
instruction set for any required application, or to emulate
the operation of existing microcomputers. The ALU portion
of the processor is available in “slices” that are typically four
bits wide. A number of these slices may be combined to
build a processor that operates on larger word sizes (i.e., 12,
16,20, or 32 bits). The advantages of a bit-slice
microprocessor are the high speeds possible and the
flexibility of being able to design your own customized
instruction set. The disadvantage is the fact that the
hardware and software must be defined in great detail by the
system architect and cannot merely be picked off the shelf
and used as can be done with the conventional
microprocessor that has everything predefined by the
manufacturer. The lower sales volumes of bit-slice
microprocessors also tend to raise the overall cost of these
systems.

to the bus in multiprocessing operations, and memory
management units allow a microprocessor access to more
physical memory than its number of address lines would
normally allow. The smaller device geometries used in the
newer microprocessors are allowing them to operate at

Bus arbitration chips are available to help control access,

ROBERT C. STANLEY IBM 1. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

higher and higher speeds, and features such as memory
management are being incorporated into the CPU chip itself.
Separate user and supervisor modes for system control, as
well as support of trap instructions for error detection, have
been available for several years, but the newer devices are
providing much more of this type of support. The user/
supervisor separation has recently been increased to four
levels of protection. The concept of virtual memory, in
which the program is unaware that some memory space is in
main storage and some is in external storage, has been
extended to the concept of a virtual machine. There is better
support for coprocessors in the newer devices, and the
register sets and instructions are becoming better suited to
compiler-generated code. Most of the new processors utilize
memory segmentation, but some still provide for a form of
linear addressing. Many data types are supported, and some
devices go so far as to provide a descriptor architecture in
which the information stored is only one step from being
self-identifying. The end result is that the newer
microprocessors are taking on more and more of the
attributes of the traditional mainframe computer.

The entire microprocessor field has been expanding at
such a rapid rate that it is difficult, if not impossible, to keep
up to date on all aspects of it. One area that has suffered has
been that of terminology. New products have been
introduced at a rate that has prevented the literature from
ever completely catching up; as a result, much of the
terminology in use today is imprecise and inconsistent. One
cannot fall back on the conventional field of electricity and
electronics as it existed and was taught in universities prior
to the 1970s. Today a student’s knowledge can become
obsolete in the same year he graduates. The differences in
documentation also hinder systems designers when they
must work with literature and data sheets from a number of
different manufacturers and combine different technologies
from different vendors into a working and reliable system.
Another problem in the microprocessor field is that its early
development was driven to an extent by hobbyists and
toymakers as well as by industrial designers and
programmers, and some of the effects of their influence can
still be seen today.

The fuxuus
Microprocessors have already changed the way most of us
live our daily lives at home, at work, and at play. Just over a
dozen years ago microprocessors did not exist, and today
there are millions of them in operation in such unlikely
places as a child‘s toy or the engine of a car or an electric
mixer in the kitchen. To state that they will continue to
change our lives is like pointing out that the sun will come
up tomorrow. What nobody knows today is where this will
take us before the end of the century, because by then it is
very likely that more microprocessors will be used in
applications that do not even exist today than all of the

microprocessors currently in use. The world is still trying to
adjust to living with computers, and now we have a new
breed that will fit under a thumbnail.

Some of the changes currently taking place are quite
obvious. More peripheral functions are being added to the
CPUs and more intelligence is being added to the peripheral
devices to the extent that very soon there will be cases where
it will be difficult to distinguish one from the other. Higher-
level language translators are being incorporated in silicon
and will facilitate human communication with the new
devices, and the devices themselves are being designed to
operate more efficiently with the higher-level programming
languages. Microcontrollers are being improved in function
and in bit-handling ability; this will ease their introduction
into an entirely new field of low-level applications such as
“smart” traffic lights, vending machines, and electrical
appliances which will become a natural part of our everyday
lives. Microcontrollers are also being improved to handle
higher-end applications such as signal processing and
specialized industrial controllers, and are taking on many of
the same features that are being added to the newer CPU
chips.

Many different names are applied in reference to the
technology used today for the silicon chips themselves, but
most are variations of NMOS. (Refer to Appendix 3.) CMOS
is now becoming faster in operating speed and smaller in
size, and is increasing in popularity to the point where some
manufacturers are introducing new parts only in CMOS.
Another recent development is the radiation-hardening of
the parts in order to increase their reliability in
certain harsh environments being encountered in some
applications.

While microprocessor use will be quite visible in some
areas, many of the new applications will not be as noticeable
to the end user. (The motorist will be aware of the processor
in the dashboard of his new car, but he may not know that
there is actually a small CPU in the windshield wiper motor,
fuel injector, voltage regulator, headlights, heater, and in
each of the turn signal and brake lamps.)

The higher-end applications such as data processing and
industrial control (and even some of the personal computers)
will be much more visible to the end user. A number of
thirty-two-bit devices are already available and even larger
word sizes will surely follow. This does not mean, however,
that there will be a mass movement to the larger word sizes.
The first microprocessors were four-bit devices, and although
they did not find their way into a large number of different
applications, they still remain as the largest-selling
microprocessors. Eight-bit microprocessors come in second
as far as volumes shipped, but they do appear in the largest
number of different applications today. Sixteen-bit
microprocessors are now reaching their maturity and appear
in an ever-increasing number of applications. The thirty-
two-bit devices are being well received, but faster and more 1‘

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY

. ..

I

I Outputs to display

Microcontroller CPU

Data memory

I I IiO for keyboard scan
I

I

I Cash register block diagram.

versatile eight- and sixteen-bit devices will remain as the
backbone of the microprocessor industry for some time to
come (at least until there is a revolutionary breakthrough in
the technology required to interconnect multiple devices).

To state simply where microprocessors are going from
here: They are becoming more powerful and complex in
function, faster in operating speed, and smaller in size; they
will soon be used everywhere.

cash register csnProQ
Our first example is a simple system using a microcontroller
to operate a cash register. The cash register was chosen as an
example because until recently it was a purely mechanical
device, and its function is well understood. The marketplace
today requires that mechanical devices be simplified or
eliminated in order for a product to remain competitively
priced. The use of a touch-pad keypad and LED (light-
emitting diode) display eliminates the mechanically operated
keys and price display of the traditional cash register. A
microcontroller was chosen because the application is a high-
volume one and unit cost is of prime concern. Also, the
application itself is well suited to the capabilities of a
microcontroller. The cash register, which is used by a fast-
food chain, has a special keypad for entering items by name,
and a five-digit display for showing the total price of an
order, the amount tendered, and the change due. (See Figure
4.) As an added feature that would not have been possible

ROBERT C. STANLEY

with the old-style cash register, a running total of receipts is
kept for transmitting to a host computer at the end of the
day.

The microcontroller chosen for this application has 1K
bytes of onboard masked ROM for storing the application
program and 64 bytes of onboard RAM for data storage. For
prototyping, there is a second version available that has UV-
erasable EPROM in place of the ROM and is compatible pin
for pin with the masked ROM version. There &e three I/O
ports of eight bits each that provide 24 bits of 1/0 directly on
the CPU chip. There is an accumulator, an eight-bit timer,
eight eight-bit working registers and an onboard stack that
stores eight return addresses. No clock oscillator chip is
required, as there are two pins on the CPU that accept a
crystal directly as the timing element. There is also an
interrupt pin which may be used to interrupt the CPU or
which may be programmed to act as a polled input without
actually interrupting the program in progress. Two “test”
pins are available, one of which may be used either as an
input or an output. A single five-volt power supply is
required.

The LEDs for the display are standard seven-segment
displays (so named because of the seven individual segments
that are used to form the number 8). The simple approach
would be to use displays that accept BCD numbers from 0 to
9 and display the corresponding digits. This approach would
require 16 of our 24 1/0 lines (four display digits at four bits
each). We have chosen instead to use LED displays that
provide separate inputs for each of the seven segments plus
one for the period (or decimal point). This means that we
need eight data lines going to each display digit; but as well
as displaying numbers, we will be able to form words such as
”Err.,” “CASH,” “DUE,” etc. by selecting proper
combinations of the segments. The LEDs need not be
energized 100 percent of the time to remain visible, so we
multiplex them by connecting all similar inputs on a bus.
(All segment Is are tied together, as are all segment 2s, all
periods, etc.) We illuminate the displays by strobing power
to them one at a time, using four more of our 24 1/0 lines.
Going from four to five digits of display would add the
possibility of words such as “HELLO” and “Error” to our
vocabulary and would still only require a total of 13 1/0
lines for the display. By multiplexing the display LEDs, .we
have saved three 1/0 lines and added a display digit, as well
as reducing the total amount of power consumed by the
display. We have also added a level of difficulty to the
programming. Instead of writing to the display digits and
leaving the data there until they are to change, we must now
continually change the data and select lines in the proper
sequence in order to keep the display lit. If we multiplex
more than five display digits and also have to watch for new *
inputs from the keypad, the display will start to get dim.

The keypad for the cash register is of the EDS (elastic
diaphragm switch) type and essentially has no moving parts

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985

to wear out. (It is also impervious to dirt and liquid spills.)
There are 25 "keys," 22 of which are designated by the
names of the products available. This reduces the possibility
for operator error, as the inputs are by item name and the
prices are automatically assigned by the microprocessor. If
the prices change, a table in the program must be updated; if
the items change, a new template may be placed over the
keypad. The keys are arranged electrically in a 5 X 5 matrix
and are strobed by ten of the I f 0 lines. We have chosen to
have the depression of any key cause an interrupt so that we
scan the keypad only when necessary.

As the total price for each transaction is displayed, it is
also added to a running total for the day that is being kept in
RAM. If desired, a count can also be kept for any or all of
the various items being sold. (A total of 255 can be
accumulated in one byte, but two bytes allows the daily total
to reach 65 535.) At the close of business (when the phone
rates happen to be cheaper), the cash register may be
connected to a long-distance line through a modem
(modulator/demodulator). The daily records may then be
transmitted to the home office, where they may be used for
bookkeeping and/or inventory control purposes.

Exempie 2. Control of a 7obot
For our second example we look at a more sophisticated
system that uses a number of 16-bit microprocessors to
control an industrial robot. The robot under consideration
has eight axes or degrees of freedom. Each axis is driven by
an electric motor and uses a microprocessor to control the
speed of the motor. A ninth microprocessor acts as an
overall supervisor to send data to the individual axis
controllers, interface with the machine operator, and
communicate with a host computer that oversees the
operation of several robots. Each axis-control microprocessor
is located on a separate printed-circuit card and is referred to
as a slave. The master is located on a larger printedcircuit
card, sends commands to the slaves, and also handles the
miscellaneous robot control functions. Figure 5 shows the
basic components in the system. We look first at a typical
slave card and then at the master.

Each slave card has a 16-bit microprocessor with its
associated logic and memory. (Refer to Figure 6.) Two
EPROM sockets allow for up to 4K bytes of program
memory. Four 1K X 4 RAM modules provide 2K bytes of
scratchpad RAM for storing program variables and a return
address stack. There is an eight-bit DAC (digital-to-analog
converter) to supply an analog (continuously variable)
output used to control the speed of the axis drive motor. A
16-bit ADC (analog-to-digital converter) converts an analog
input signal ranging from - 10 volts to + 10 volts into a 16-
bit digital word representing the position of the robot axis in
its range of travel. The microprocessor program on the slave
card continually reads the axis position from the ADC. If the
axis position does not match the last command position

Optional

computer

I 1
I 1

Operator Master
control control
pendant storage

Cassette

j.; Axis slave

Axis
slave

Axis
slave

Axis
slave

1 Robot simplified block diagram.

I

C
i
0
C

- CPU
Addressldata

k

L J I D l e
a RAM

IK X I6
S
S

Motor
driver

Timer
16-bit

-
1 Slave card block diagram.

from the master, the microprocessor program causes the
DAC to send a voltage to the axis drive motor until the
actual position matches the commanded position.

(the commanded position from the master, the actual
position from the ADC, and the voltage to send out to the
drive motor). It must, however, operate at a high rate of
speed because when the robot axis is moving at high speed,
the ADG-mput changes rapidly and the motor signal must

The slave card does not really have much to keep track of

119

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY

Addresslcontrol

1

Data
bus,

expanslon

Operator
control

Address
bus

expansion

Power q ~ l ” - - j !-m+
drivers output

Master card block diagram.

be tuned to this for smooth operation of the robot. The
portion of the program that handles the motor drive signal is
quite concise and is written in assembly language for
optimum use of execution time. The rest of the program
handles communication with the master, system diagnostics,
etc. and is not as critical for execution time or memory
space. To save programming time, this portion of the slave
program can be written in a higher-level language.

The master card is physically larger than a slave card and
contains a 16-bit microprocessor with its own associated
control logic and memory. Figure 7 is a simplified block
diagram of the master card. The two EPROM sockets on the
master card are larger than those on the slave card and allow
for up to 16K bytes of program memory. Eight 1K X 4
RAM modules provide 4K bytes of scratchpad RAM for
storing data tables and a return address stack. Some
additional control chips are used with the microprocessor on
the master card to allow for a DMA operation with the
RAM on the card and for the use of a numeric processor to
perform high-level math functions. The application table
that determines the various positions of each axis is stored in
RAM on the master card and may be brought in slowly
from a tape cassette or rapidly from another CPU by using
DMA. The numeric data processor is used when the robot is
not just moving from one point to another, as in a pick and
place operation, but must maintain a specific path and
speed, as in a welding operation. A high-level language can
be used to write the program for the master card except for

the routines that handle communications with the slaves.
These routines determine the sequence of events on the
communications bus and are written in assembly language.

The robot can be “taught” to perform an operation by
leading it through the process steps with an operator control
pendant. Each step is recorded in a table that is later
followed by the machine as it performs the operation. This
table is in RAM on the master card, so it may be changed at
any time. The data are lost when power is turned off, so the
information is stored by sending it out serially on a
communication link to a tape drive or a host computer. This
also allows the host computer to build up a table of robot
operation steps and download it to the master card for
execution.

A multi-microprocessor-based control for the robot was
chosen as a cost-saving measure. The functions provided by
the slave cards could have been implemented in
conventional hardware, but the cost would have been greater
because a large portion of the control function was
eliminated from the hardware and performed with software.
The functions provided by the master card could have been
accomplished by a minicomputer. Here again there is a cost
saving, because a minicomputer is stand-alone and general-
purpose and the master card was designed specifically to
control a multi-axis machine so that there is no unused
hardware. Also, the master card is packaged on an 8 X 15-in.
(20.32 X 38.1O-cm) printed-circuit card inside the robot
control unit and the minicomputer would be in a
moderately sized box of its own.

~~~~~~~X 1: ~Y~~~~~~~ 

The introduction of the transistor changed forever the 
physical aspects of computer circuitry. At first there was a 
constant effort to build smaller and smaller transistors until 
their size was reduced to the point where they became 
difficult to handle in manufacturing operations. 
Development effort was then directed toward placing as 
many transistors as possible on one piece of silicon, called a 
die or chip. This allowed circuit designers to create 
individual logic chips with ever-increasing levels of 
sophistication, and the resulting SSI (small-scale integration), 
MSI (medium-scale integration), and LSI (large-scale 
integration) random-logic devices were widely used by 
system designers in the proliferation of solid-state digital 
controls that were introduced in the late 1960s and early 
1970s [I ] .  The point was then reached where LSI devices 
were becoming less general-purpose and more dedicated to 
one specific application. At this point the introduction of 
new LSI devices began to slow down due to the diminishing 
return on investment required to develop and introduce new, 
devices. 

microprocessor, or “CPU on a chip,” was born. The 
calculators being built at the time each used several logic 
chips containing up to lo00 transistors apiece. Busicom, a 

This was the environment in wHich the first 



Japanese manufacturer of calculators, approached Intel in 
mid- 1969 with a request for 12 LSI chips for a new family of 
high-performance programmable printing calculators. Intel 
at the time was producing MOS (metal oxide 
semiconductor) and bipolar RAMS (random-access 
memories) and could place up to 2000 transistors on a single 
chip. The Busicom design required 3000 to 5000 transistors 
on each chip and packages with 36 to 40 leads each. 

The logic to control the printer, scan the keyboard, and 
update the display, as well as to perform the actual 
calculations, was to be incorporated on separate chips. The 
elemental instructions for performing the calculations were 
quite complex and were executed more in random logic than 
in ROM (read-only memory). In an effort to simplify the 
design, it was decided to reduce the complexity of the 
elemental instructions and thus make them more general- 
purpose. With programs stored in ROM, these simple 
instructions could be used repetitively not only to perform 
the required calculations but also to perform the logic 
functions required for the overall operation of the calculator. 

A four-bit-wide data path was chosen because it worked 
out well with the BCD (binary coded decimal) coding being 
used in calculators at the time and allowed addressing of up 
to 16 digit positions for display or printing. The final version 
of the calculator control consisted of a four-chip set that 
eventually was called the MCS-4. It consisted of a four-bit 
CPU chip, a ROM chip for program memory, a RAM chip 
for data memory, and a shift register chip for output 
expansion. The CPU chip ended up with about 2300 
transistors on a 16-pin substrate, becoming the 4004 that 
was advertised as a "micro-programmable computer on a 
chip" in November of 197 1. The term "microprocessor" was 
first used for this device in 1972. 

The CPU chip contained a four-bit parallel adder, 16 
index registers, an accumulator, and a push-down stack for 
return addresses. There were 46 instructions which included 
conditional branching, jump-to-subroutine, indirect fetching, 
and support for both binary and decimal arithmetic. The 
4004 had a four-bit parallel bidirectional data bus that 
multiplexed address information and data. An eight-step 
instruction cycle was used to handle eight-bit instructions, 
and a 12-bit instruction address space allowed addressing of 
up to 4096 bytes of program memory. 

The microprocessor was therefore born out of necessity as 
a natural development in the progression of logic design and 
was initially intended more for the replacement of random 
logic than as an attempt to put a computer on a single chip. 

Late in 1969, Computer Terminals Corporation requested 
that Intel develop LSI chips for the registers of a new 
intelligent terminal. The 4004 instruction set had just been 
defined ahd Intel proposed to CTC that the terminal control 
logic be implemented on one chip as a complete eight-bit 
processor. This design was not used in the CTC terminal, 
but it was implemented in silicon and became the first 

parallel eight-bit microprocessor. The CPU was introduced 
by Intel early in 1972 as the 8008. It had 45 instructions 
oriented toward the terminal requirement of character string 
handling and also provided interrupt capability, a return 
address stack, and six general-purpose registers. 

Late in 1972 Rockwell entered the microprocessor market 
with a four-bit parallel processor called the PPS-4. The CPU 
had 50 instructions and was implemented in a PMOS (p 
channel metal oxide semiconductor) chip on a 42-pin 
substrate. Several other manufacturers introduced 
microprocessors in 1973 and 1974. Among these were Texas 
Instruments' TMS- 1000 family of four-bit PMOS processors, 
RCA's CMOS (complementary metal oxide semiconductor) 
1802, and National Semiconductor's IMP- 16, which was a 
16-bit five-chip bit-slice CPU. 

The first three microprocessors marketed by Intel were 
implemented in PMOS. (There had also been a follow-on 
improvement to the 4004 called the 4040. It had 14 more 
instructions, a deeper stack, and more registers and memory 
addressing ability, as well as interrupt capability, all on a 24- 
pin substrate.) In 1974 Intel released an upgraded version of 
the 8008 and called it the 8080, the first of the second- 
generation microprocessors. The new processor consisted of 
5000 transistors implemented in faster NMOS (n-channel 
metal oxide semiconductor) and had 30 more instructions 
than the 8008. The 8080 utilized a 40-pin package that made 
interfacing to it somewhat easier than with the 18-pin 8008, 
which required an additional 20 TTL (transistor-transistor 
logic) packages for memory and 1/0 interface. The 8080 had 
an eight-bit data bus and a 16-bit address bus, and the 
return-address stack was removed from the CPU and placed 
in RAM to allow virtually unlimited subroutine nesting. 
Decimal and double-precision arithmetic instructions 
missing from the 8008 were added to the instruction set, and 
the hardware provided the ability to handle vectored 
interrupts. (The interrupting device essentially tells the CPU 
where in program memory to find the proper interrupt 
service routine.) 

Following the introduction of the 8080 in 1974, many 
new microprocessors have been introduced each year. (By 
1976 the total was already up to 54.) The 6800 from 
Motorola in 1974 was the first to use a single +5-volt power 
supply, and Intel's 8048 in 1976 was the first eight-bit 
microprocessor to have a CPU, RAM, ROM, and 1/0 all on 
one chip. 

Sixteen-bit microprocessors have been around in one form 
or another since 1974, but the first one to gain wide 
acceptance in the industry was the 8086 that Intel 
introduced in 1978. Texas Instruments' 9980, Intel's 8088, 
and Motorola's 6809 featured higher performance by 
utilizing 16-bit internal data processing, but allowed simpler 
interfacing to the rest of the system by retaining an eight-bit 
external data bus. The trend today is to go to wider data 
paths ( 16-bit microprocessors are in widespread use and 32- 121 



122 

bit microprocessors are being introduced). There is also a 
strong effort to place more of the overall system function on 
the CPU in the form of operating systems in silicon as well 
as auxiliary functions such as timers, interrupt controllers, 
communications controllers, etc., on the chip. Coprocessors 
are being used for high-level mathematical functions, such as 
floating-point operations, as well as intelligent I/O. 

Some of the faster, special-purpose microprocessors have 
been implemented with bipolar transistors, but 
photolithographic and semiconductor processes have 
improved at a rapid rate and most of today's 
microprocessors still utilize NMOS in one form or another. 
There is an increasing trend, however, to utilize CMOS in 
order to improve noise immunity and reduce power 
consumption. 

replacement of random logic, as in the case of the printing 
calculator and the intelligent terminal previously discussed. 
They continue to be widely used in this type of application 
and have also branched into two other main areas. One is 
that of reducing the physical size of actual computers, as is 
evidenced by the rapidly growing personal computer market. 
The other is the introduction of intelligence into areas where 
it was not previously possible or practical. Some of the more 
popular examples of this may be seen in electronic top, 
arcade games, automobiles, household appliances, robotics, 
instrumentation, and the ever-present video games. 

In the ten years since the introduction of the 8080 there 
have been improvements in speed and functionality, and 
instruction sets have been expanded to include more data- 
handling and program-control instructions, but the 
rudiments of the basic 8080 itself can still be seen in the 
majonty of today's prkessors. 

~~~~~~~~ 2: f?! 

The first microprocessors were used mainly for the

A microprocessor system requires some type of memory for
storing program instructions and also for storing constants
and variable data. Instructions are often stored in ROM
(read-only memory) and data are often stored in RAM
(random access memory). The information stored in a ROM
is not volatile; that is, it is retained even when all electric
power to the device is turned OK RAM, on the other hand,
retains its data only while it is connected to a voltage source.
ROM and RAM each come in several different types, which
we now explore.

ROM may have its contents established during the
manufacturing process, in which case it is called "masked"
ROM. The user must specify the desired contents of the
memory to the ROM manufacturer, who creates a
photolithographic mask with the correct bit pattern. The
masking of the data into the ROM is an expensive and time-
consuming process, but the finished parts themselves are
relatively inexpensive. Masked ROM is therefore generally
used in applications involving high-production items where

many identical copies are required and where the program
or data being stored are not likely to change.

only memory). The PROM is more expensive than masked
ROM in large quantities, but it has an advantage in that it
can be programmed by the manufacturer of the finished
product in his plant and does not require that the
information be essentially built into the parts by the
semiconductor manufacturer, as is the case with the masked
ROMs. The actual programming which loads the data or
instructions into the PROMs is done on a device called a
PROM programmer. PROM programmers are now available
to meet a variety of needs. A simple and inexpensive one
might be able to program a specific type of PROM or copy
its contents into another one of the same type, where a more
sophisticated and expensive model might be able to work
with different types of PROMs and perhaps communicate
with a terminal or a computer. Some microprocessor
development systems have PROM programmers built in, so
that after a program has been developed it can be loaded
directly into a memory chip for debugging in the target
system.

"fusible-link" PROM that is personalized by selectively
fusing metal links to change the bit pattern stored in the
device. The memory chip as it is manufactured contains all
zeros or all ones and the links are opened up one at a time
to change the original data in one bit location at a time. This
is a nonreversible process, so if changes must be made to the
data, it generally means starting over again with a new
PROM chip. Fusible-link PROMs do not typically have a
large storage capacity and are used more in logic applications
than for storing programs or data.

The second, and today the most widely used, type of
PROM is the UV-erasable EPROM (erasable programmable
read-only memory). As the name implies, a "UV-erasable"
EPROM may be erased by a prolonged exposure to an
ultraviolet light source. (There is a transparent window on
the top of the package to allow the erasing light to reach the
actual memory chip.) An EPROM may be programmed and
erased many times before it finally fails to accept new data.
The actual programming of the EPROM is done with a
PROM programmer. In large quantities, the individual piece
price of an EPROM is greater than for a masked ROM, but
it does have a number of advantages. Because an EPROM is
erasable, it may be used in prototypes while the final code is
being developed for eventual entry into a masked ROM.
EPROMs may be gang-programmed in quantity and are
therefore suited for applications that require repeat build but
do,not see enough replication to justify the cost of a masked
ROM. Also, in the case of upgrading a product with new
software or expanded capability, an EPROM can be
exchanged and the old one sent back to be reprogrammed
with the new code.

Another type of ROM is the PROM (programmable read-

PROMs themselves come in several varieties. First is the

ROBERT C. STANLEY

A third type of PROM is the EEPROM, which stands for
“electrically erasable programmable read-only memory.”
The EEPROM is similar to the UV-erasable EPROM except
that it may be programmed and erased electrically while in
place in a system and need not be removed for the UV light
and PROM programmer process. An EEPROM is also
referred to as an EAROM (electrically alterable read-only
memory).

RAM memory is used to hold information that is subject
to change during the normal operation of a system. RAM is
available in two basic types known as “static” and
“dynamic.” In both cases, the information in the memory is
lost when power is removed from the module and must be
written back in each time power is applied. The difference
between static and dynamic RAM is in how the data are
actually stored in the memory chip. A static RAM has flip
floptype storage locations for each bit that is to be stored
and these flip-flops retain their information until it is written
over or until power is removed from the device. In a
dynamic RAM, the storage mechanism consists of a single
transistor for each storage location. The information is
stored as zeros or ones by charging or discharging a capacitor
on the base of the storage transistor. Dynamic RAM is less
expensive than static RAM, but the capacitors leak and must
be repeatedly recharged. Circuitry known as “memory
refresh logic” is required to keep recharging the proper
capacitors. This is done automatically, but the logic takes up
space on the circuit board and adds cycles to the process
time of the system.

A newer type of RAM is the NOVRAM (nonvolatile
random access memory). These devices contain an area of
high-speed static RAM that is backed up on the same device
by an identical array of EEPROM. The static RAM is used
for normal read and write operations, and its contents may
be transferred to the EEPROM very quickly if a power
failure occurs. The data may then be retrieved from the
EEPROM when the system is again operational. These
devices provide the benefits of both normal high-speed read
and write operations and nonvolatile storage in the same
package.

“Byte-wide memory” is a packaging scheme that is
becoming popular in microprocessor-based systems. This
scheme uses identical package pinouts for the same sizes of
RAM, ROM, and EPROM. This allows EPROM to be used
in the development stage of a project, and when the program
has been finalized and debugged, ROMs may be ordered that
directly replace the EPROMs with no wiring changes
required to the system. Another advantage of having
identical pinouts is that printed-circuit cards may be
fabricated with standard prewired memory sockets that have
been assigned addresses in the memory map. The end user
may then populate the card with the type of memory needed
for the particular system at hand, whether it is RAM, ROM,
or EPROM. In byte-wide memory systems, package pinout

is also considered when different sizes of memory are
utilized. Smaller memory modules may be plugged into
sockets intended for larger-capacity memory. In this case,
care must be used to ensure that the proper pins on the
module interface with the corresponding socket pins because
the socket, which is,able to support a larger memory, has
more pins t h a n p e module.

are generally categorized according to the total number of
data bits that may be stored. (A 4K RAM, for instance, has
4096 individual bit positions.) The number of data lines on a
memory chip is determined by the size of the words that
may be stored, and the number of address lines is
determined by the number of words. Ten address lines allow
addressing of 1024 words and eight data lines allow for an
eight-bit word size. A memory manufacturer may refer to
this as an 8K or 8 192-bit device, but in a microprocessor
system it is more likely to be called a 1K x 8 memory (for
the 1024 words of eight bits each). For larger word sizes, the
address lines of several memory chips may be wired in
parallel. For more words, the data lines and the lower-order
address lines may each be wired in parallel and the higher-
order address lines are used to select or activate the proper
memory chip. System memory may thus be tailored to
almost any application by the proper selection and
interconnection of memory modules.

Memory modules are available in many different sizes and

~~~~~~~~ 3: Pama 
The overall package size of a microprocessor is determined 
not by its computing power or the amount of on-chip logic it 
contains, but rather by the number of lines needed to 
interface the microprocessor itself with the rest of the system 
it is controlling or operating in. A microprocessor CPU 
consists of a small square of silicon, referred to as a die or 
chip, which contains the necessary solid-state logic circuitry. 
This chip is mounted on a substrate that acts as a chip 
carrier and contains the physical interface to the rest of the 
system. A typical microprocessor chip is about 0.2 mm thick 
and 2 or 3 mm square. The chips are fabricated from silicon 
wafers that measure up to several inches in diameter. The 
wafers go through a number of photolithographic and 
chemical process steps before finally being diced into 
individual chips. Each chip or die is then mounted on a 
substrate that is suitable for handling and for final assembly 
onto a card or board. 

Individual microprocessor package sizes vary, but a typical 
one today has 40 pins, measures 1.5 cm wide by 5 cm long, 
and has two parallel rows of 20 pins each. The double row of 
pins is evidenced in the name DIP (dual in-line package) 
that has been given to this particular type of package (also 
referred to as a DIL for “dual in-line”). The individual pins 
are spaced 0.1 in. (0.254 cm) apart and the rows are spaced 
0.6 in. ( 1 S24 cm) apart. The inputs and outputs on the chip 
itself consist of metal pads that are spaced only mils apart 123 

IBM J. R E S  DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY 



around the periphery of the chip. Very fine wires are bonded 
to these pads to connect with metal traces on the substrate. 
These metal traces connect with the pins on the substrate, 
and the number of pins and traces needed is the determining 
factor in the size of the substrate. (In some of the newer, 
more sophisticated designs, especially those with 32-bit 
architectures, the size of the silicon chip is also becoming a 
determining factor.) The substrates may be made of ceramic 
or hard plastic and are hermetically sealed to prevent 
contaminants from contacting the silicon chip or interface 
wiring. The DIP packages are often referred to as modules 
and, to add to the confusion, quite often are loosely referred 
to as chips. 

Some of the newer microprocessors are getting away from 
the DIP packaging in order to save printed-circuit board 
space and have gone to a square substrate that has rows of 
pins fastened to the bottom of the substrate. This type of 
package is called a pin grid array. There are also leadless 
chip carriers. which are square ceramic substrates that have 
no protruding pins. Connections are made to this device by 
contacting metal pads located around the periphery of the 
substrate in a process referred to as “surface-mount 
technology,” or SMT. (Leadless chip carriers are sometimes 
imprecisely referred to as flat-packs.) Another method of 
fastening substrates to printed-circuit boards is via J-shaped 
leads that allow for different thermal coefficients of 
expansion for the substrate and the board. 

SSZ, MSZ, and LSI are terms that relate to the amount of 
logic or number of “equivalent gates” that are present on 
one chip. A chip having fewer than ten equivalent logic gates 
is referred to as SSI. MSI denotes chips with between ten and 
100 gates, and anything over 100 gates is known as LSI. 
VLSI is sometimes used for chips containing over 1000 gates 
in equivalent logic. 

There are many names for the technology used in placing 
digital logic on semiconductor chips, but most are variations 
of bipolar and MOS. Bipolar transistors are typically fast and 
use more power than the field-effect transistors that make up 
the MOS devices. PMOS transistors use holes as majority 
carriers and are thus slower than the more popular NMOS 
transistors that use electrons as the majority carriers. CMOS 
chips utilize both NMOS and PMOS transistors on the same 
silicon substrate with the result being a device that uses very 
little power and has a high immunity to electrical noise. 

~~~~~~~~~~~~~~~~~ 

The author wishes to thank Rex Dixon, Ray Floyd, Ed Galli,
and Will Tracz for their support, encouragement, and
suggestions in the preparation of this paper.

Aa”isrence3 +
1. Marcian E. Hoff, Jr. and Robert N. Noyce, “A History of

Microprocessor Development at Intel,“ IEEE Micro 1,8- I 1 ,
13-21 (February 198 1). Note: This article contains a wealth of
information concerning the environment into which the

ROBERT C. STANLEY

microprocessor was born; it includes history on all early
publicized microprocessors, not just those developed by Intel.
This article has been reprinted by Intel as “AR- 173” (available
from Intel Corporation, 3065 Bowers Ave., Santa Clara, CA
9505 1).

~~~~~~~a~~~ 
This bibliography has been selected as a small sampling from 
the author’s personal library in an attempt to touch upon all 
areas of the broad field of microprocessors. There are 
selections specifically to cover history, and some on technical 
details, but the majority were selected with the tutorial 
theme of this paper in mind. A few references to basic 
computer architecture have been included as a bridge from 
computers to microcomputers to microprocessors, but 
programming references have been eliminated except for 
those directly applicable specifically to microprocessors. The 
bridge from digital discrete logic is covered quite thoroughly 
in the early literature on microprocessors. The listing is far 
From being complete or exhaustive, but it should contain 
material that will be helpful to readers of virtually any 
background. The arrangement is chronological, with the 
titles preceding the names of the authors. The earlier entries 
show how the industry got started in a particular area, and 
the more recent ones describe the latest developments. A 
number of books are included as overviews, along with a 
sampling of manufacturers’ data books for exacting details. 
The main thrust, however, is on articles and papers, as they 
are generally short and to the point in a particular area, and 
one may scan the titles for subjects of particular interest. 

1971-6973 
“Microprogramming Handbook,” 2nd ed., Microdata Corporation, 

644 E. Young St., Santa Ana, CA, November 197 1. 

“MOS Integrated Circuits,” National Semiconductor Corporation, 
2900 Semiconductor Dr., Santa Clara, CA 95051, February 1972. 

“Microprogrammable Arithmetic Processor System-Orientation,’’ 
National Semiconductor Corporation, 2900 Semiconductor Dr., 
Santa Clara, CA 95051, May 1972. 

“MCS-8 Microcomputer Set-8008 Users Manual,” Rev. 4, Intel 
Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, 
November 1973. 

1974 
“IMP-16C Application Manual,“ Publication No. 4200021C, 

National Semiconductor Corporation, 2900 Semiconductor-Dr., 
Sank Clara, CA 95051, January 1974. 

“MCS-4 Microcomputer Set Users Manual,’’ Rev. 5, Intel 
Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, March 
1974. 

“MPS Microprocessor Series Users Handbook,” Manual No. DEC- 
OM,”PHA-A-PA, Digital Equipment Corporation, Maynard, MA 
01754, July 1974. 

“Microprocessor Design Series” (four reprints from EDN magazine, 
Vols. 18 and 19), R. H. Cushman (offered by Design News 
magazine, July 22, 1974). 

“Distributed Function Microprocessor Architecture,” A. J. 
Weissberger, Computer Design 13,77-83 (November 1974). 

IBM J. RES. DEVELOP. VOL 29 NO. 2 MARCH 1985 



“PACE Users Manual,” Order No. IPC-l6P/968X, National 
Semiconductor Corporation, 2900 Semiconductor Dr., Santa 
Clara, CA 9505 1, December 1974. 

I975 
“An Introduction to Microcomputers,” A. Osborne, Adam Osborne 

and Associates, Inc., P. 0. Box 2036, Berkeley, CA 94702, 1975. 
“ALTAIR 8800 Theory of Operation Manual and Schematics,” 

Micro Instrumentation and Telemetry Systems, 2450 Alamo SE, 
Albuquerque, NM 87106, 1975. 

“F8 Circuit Data Book,” Fairchild Semiconductor, Fairchild Camera 
and Instrument Corporation, 464 Ellis St., Mountain View, CA 
94042, 1975. 

“How to Select and Use Microprocessors,” Pro-Log Microprocessor 
Users Guide, Pro-Log Corporation, 24 1 1 Garden Rd., Monterey, 
CA 93940, 1975. 

Corporation, Maynard, MA 01754. 1975. 

New York, 197 I .  

Semiconductor Products Inc., 3501 Ed Bluestein Blvd., Austin, 
TX 78721, 1975. 

TX 78721, 1975. 
Semiconductor Products Inc., 3501 Ed Bluestein Blvd., Austin, 

Corporation Microelectronics, 600 W. John St., Hicksville, NY 
11802, 1975. 

“Series 3000 Reference Manual,” Manual No. 98-2234, Intel 
Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, 1975. 

“The Bugbook 111-Microcomputer Interfacing,” P. R. Rony, D. G. 
Larsen, and J. A. Titus, E & L Instruments Inc., 61 First St., 
Derby, CT 064 18, 1975. 

”TMS 1000 Series MOS/LSI One-Chip Microcomputers,” Texas 
Instruments Inc., P. 0. Box 225012, MS-54, Dallas, TX 75265, 
1975. 

“PC Systems Directory” (fold-out wall chart), R. M. Grossman, EDN 

“Understanding Microprocessors,” D. Queyssac, published by 

“LSI-I I/PDP-I 1/03 Processor Handbook,” Digital Equipment 

“Microprocessors,” L. Altman, Ed., McGraw-Hill Book Co., Inc., 

“M6800 Microprocessor Applications Manual,” Motorola 

‘“6800 Microprocessor Programming Manual,” Motorola 

“Series 1600 Microprocessor System,” General Instrument 

20 (1 975). 

Unwin Brothers Ltd., Old Woking, Surrey (undated); distributed 
by Motorola Semiconductor Products Inc., 3501 Ed Bluestein 
Blvd., Austin, TX 78721. 

“990 Computer Family Systems Handbook,” Manual No. 945250- 

TX 75265, 1975. 
9701, Texas Instruments Inc., P. 0. Box 225012, MS-54, Dallas, 

“8080 Microcomputer Systems User’s Manual,” Order No. 98-153C, 
Intel Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, 
September 1975. 

“An Introduction to Microcomputers-Volume I-Basic Concept?.,” 
A. Osborne, Adam Osborne and Associates, Inc., P. 0. Box 2036, 
Berkeley, CA 94702, 1976. 

Products,” A. Osborne, Adam Osbome and Associates, Inc., P. 0. 
Box 2036, Berkeley, CA 94702, 1976. 

Running Light Without Overbyte; Volume 1 (1976”entire year), 
J. C. Warren, Jr., Ed., People’s Computer Company, P. 0. Box E, 
Menlo Park, CA 94025, 1976. 

“F8 User’s Guide,” Manual No. 67095665, Fairchild Micro Systems, 
Fairchild Camera and Instrument Corporation, 464 Ellis St., 
Mountain View, CA 94042, 1976, 

“An Introduction to Microcomputers-Volume 11-Some Real 

“Dr. Dobbs’ Journal of Computer Calisthenics and Orthodontia- 

“Introduction to Microcomputers and Microprocessors,” A. Barna 
and D. I. Porat, John Wiley & Sons, Inc., New York, 1976. 

“Microcomputer Design,” D. P. Martin, Martin Research, 3336 
Commercial Ave., Northbrook, IL 60062, 1976. 

“Microcomputers/Microprocessors: Hardware, Software, and 
Applications,” J. L. Hilburn and P. N. Julich, Prentice-Hall, Inc., 
Englewood Cliffs, NJ, 1976. 

“Microprocessors and Minicomputers,” B. Soucek, John Wiley & 

“M 10800 High Performance MECL LSI Processor Familv ” 
Sons, Inc., New York, 1976. 

”_” 

Motorola Semiconductor Products Inc., 3501 Ed Bluestein Blvd., 
Austin, TX 78721, 1976. 

,> 

“Scelbi ‘6800’ Software Gourmet Guide and Cook Book,” R. 
Findley, Scelbi Computer Consulting, Inc., 1322 Boston Post 
Road.Rear, Milford, CT 06460, 1976. 

Findley, Scelbi Computer Consulting, Inc., 1322 Boston Post 
Road Rear, Milford, CT 06460, 1976. 

“Software Design for Microprocessoq” J. G. Wester and W. D. 
Simpson, Texas Instruments Learning Center, Texas Instruments 
Inc., P. 0. Box 225012, MS-54, Dallas, TX 75265, 1976. 

“Scelbi ‘8080’ Software Gourmet Guide and Cook Book,” R. 

“The ia7301 Computer in a Book,” D. Guzeman, IASIS, Inc., 8 15 

“8080 Programming for Logic Design,” A. Osbome, Adam Osborne 
and Associates, Inc., P. 0. Box 2036, Berkeley, CA 947Q2, 1976. 

“MCS6500 Microcomputer Family Programming Manual,” 
Publication No. 6500-50A, MOS Technology, Inc., Valley Forge 
Corporate Center, Nomstown, PA 19401, January 1976. 

“Microprocessor-Controlled Video Game Can Be Adjusted to 
Player’s Skill,” S. Davis, Electronic Engineering Times, pp. 25-27 
(April 12, 1976). 

“Microprocessor Basics” (25-part series), Electronic Design 24-27 
(April 26, 1976, through June 7, 1979). 

“16-Bit Processor Performs Like Minicomputer,” A. Lofthus and D. 
Ogden, Electronics 49 (May 27, 1976). 

“When Programming Microprocessors, Use Your Hardware 
Background,” E. Lee, Electronics 49 (July 8, 1976). 

“A Microcomputer Tailored for Multiprocessor Control 
Applications,” G. Adams, T. Morgan, and J. Zarrella, Control 
Engineering 23, 58-60 (September 1976). 

Processors,” R. D. Catterton and G. S. Casilli, EIectronics 49 
(September 16, 1976). 

(November 20, 1976). 

Machine Design 48, 70-76 (November 25, 1976). 

Computer Design 15, 59-65 (December 1976). 

225012, MS-54, Dallas, TX 75265, December 1976. 

.&d. Maude.Ave, Sunny~ale,.Ck94086,. 1976. 

‘“Universal’ Development System Is Aim of Master-Slave 

“EDN pC Design Course,” C. A. Ogdin, EDN 21, 127-316 

“An Introduction to Microcomputer Software,” M. G.  Leonard, 

“Putting a Microcomputer on a Single Chip,” A. A. Raphael, 

“TMS 1000 Series Data Manual,” Texas Instruments Inc., P. 0. Box 

“An Introduction to Microcomputers-Volume &The Beginner’s 
Book,“ A. Osborne, Adam Osborne and Associates, Inc., P. 0. 
Box 2036, Berkeley, CA 94702, 1977. 

Microprgcessors,” Manual No. MPM-203A, RCA Solid State, 
1998 Springdale Rd., Cheny Hill, NJ 07066, 1977. 

“How to Program Microcomputers,” W. Barden, Jr., Howard W. 
Sams & Co., Inc., 4300 W. 62nd St., Indianapolis, IN 46268, 
1977. 

“Evaluation Kit Manual for the RCA CDP1802 COSMAC 

125 



“Introductory Experiments in Digital Electronics and 8080A 
Microcomputer Programming and Interfacing,” D. G. Larsen, 
P. R. Rony, and J. A. Titus, Howard W. Sams & Co., Inc., 4300 
W. 62nd St., Indianapolis, IN 46268, 1977. 

“Microcomputer Handbook,” C. J. Sippl, Petrocelli/Charter, New 

“Microcomputer-Based Design,” J. B. Peatman, McGraw-Hill Book 

“Microprocessor Applications in Business, Science and Industry” (42 

York, 1977. 

Co., Inc., New York, 1977. 

article reprints from a number of magazines), National 
Semiconductor Corporation, 2900 Semiconductor Dr., Santa 
Clara, CA 9505 I ,  1977. 

241 1 Garden Rd., Monterey, CA 93940, undated. 

A. L. Dexter, Analog Devices, Inc., P. 0. Box 796, Norwood, MA 
02062, 1977. 

“Microprocessor Architecture,“ M. Biewer, Pro-Log Corporation, 

“Microprocessor Systems Handbook,” Dr. D. P. Burton and Dr. 

“Microprocessors and Microcomputer Systems,” D. H. Sawin 111, 
Lexington Books, D. C. Heath and Co., Lexington, MA, 1977. 

“Microprocessors in Systems,” R. H. Fish 111, System Insights, P. 0. 
Box I ,  Austin, TX 78767, 1977. 

“Parallel Processing System (PPS) Microcomputers,” Rockwell 
International Microelectronic Devices, P. 0. Box 3669, Anaheim, 
CA 92803, 1977. 

“Practical Microcomputer Programming: The M6800,” W. J .  Weller, 
Northern Technology Books, P. 0. Box 62, Evanston, IL 60204, 
1977. 

”The 8080A Bugbook-Microcomputer Interfacing and 
Programming,” P. R. Rony, D. G. Larsen, and J. A. Titus, 

46268, 1977. 
Howard W. Sams & Co., Inc., 4300 W. 62nd St., Indianapolis, IN 

“TMS9940 Single Chip Microcomputer,” J. D. Bryant and R. 
Longley (for presentation at Electro ’77), Texas Instruments Inc., 
P. 0. Box 225012, MS-54, Dallas, TX 75265, 1977. 

“Z8O-Assembly Language Programming Manual,” Zilog, Inc., I3 15 
Del l  Ave., Campbell, CA 95008, 1977. 

“6800 Programming for Logic Design,” A. Osborne, Adam Osbome 
and Associates, Inc., P. 0. Box 2036, Berkeley, CA 94702, 1977. 

“A Logic State Analyzer for Microprocessor Systems,” J. H. Smith, 
Hewleft-Packard Journal, pp. 2- I I ,  1820 Embarcadero Rd., Palo 
Alto, CA 94303 (January 1977). 

“Firmware for a Microprocessor Analyzer,” T. A. Saponas, Hewlett- 
Packard Journal, pp. 12-15, 1820 Embarcadero Rd., Palo Alto, 
CA 94303 (January 1977). 

“Software for Microprocessors” (seven-part series), Electronic Design 
25 (January 4, 1977 through June 7, 1977). 

“Taking the Mystery out of Micros,’’ P. Roybal, Machine Design 49, 
80-83 (March 24, 1977). 

“Third-Generation Microcomputer Set Packs It All into 3 Chips,” 
D. W. Sohn and A. Volk, Elecfronics 50, 109-1 13 (May 12, 
1977). 

“Analysis of Multiple-Microprocessor System Architectures,” A. J. 
Weissberger, Computer Design 16, 151-163 (June 1977). 

“16-Bit Microcomputer Is Seeking a Big Bite of Low-Cost Controller 
Tasks,” J. D. Bryant, Electronics 50 (June 23, 1977). 

“Unraveling the Mystery in User Microprogramming,” R. 
Frankenberg, Part 1, Mini-Micro Systems 10,28-33 (June 1977); 
Part 2, Mini-Micro Systems IO, 46-50 (July 1977); Part 3, Mini- , Micro Sysfems IO, 54-60 (September 1977). 

“EDN Software Design Course,” C. A. Ogdin, EDN 22,67-200 

“Microprocessor Networks,” W. L. Spetz, Computer, pp. 64-70 (July 
(June 5, 1977). 

126 1977). 

ROBERT C. STANLEY 

“The First of the Third Generation Microcomputers,” L. Goss, Solid 
State Technology, pp. 42-45 (July 1977). 

“Before Buying a Micro, Read the Menu,” M. Biewer, Machine 
Design 49, 68-74 (July 7, 1977). 

“A Microcomputer Course for Professionals,” G. K. Holt, Mini- 
Micro Systems IO, 36-40 (September 1977). 

“Acquiring Microcomputer Skills,” C. A. Ogdin, Mini-Micro 
Systems 10,42-48 (September 1977). 

“Comparisons and Trends in Microprocessor Architecture,” E. E. 
Klingman, Computer Design 16, 83-91 (September 1977). 

“Microelectronics” (reprint of eleven articles from Scientific 
American), W. H. Freeman and Co., 660 Market St., San 
Francisco, CA 94 104, September 1977. 

“Making the Transition to Micros,” C. A. Ogdin, Mini-Micro 
Systems 10,32-37 (October 1977). 

“8x300 Reference Manual,” Signetics Corporation, 81 1 E. Arques 
Ave., P.O. Box 409, Sunnyvale, CA 94086, October 1977. 

“EDN System Design Project,” J. Conway, EDN 22, 133-233 
(November 20, 1977). 

“Microcomputer Overview” (eight chapters), C. A. Ogdin, Mini- 
Micro systems IO, 32-127 (November-December 1977). 

“Is There a Tiger in Your Microcomputer?” Electronic Business 3 
24-27 (December 1977). 

“Wrist Instrument Opens New Dimension in Personal Information,” 
A. F. Marion, E. A. Heinsen, R. Chin, and B. E. Helmso, Hewlett- 
Puckard Journal, pp. 2-10, 1820 Embarcadero Rd., Palo Alto, CA 
94303 (December 1977). 

Electronic Design 25, 84-87 (December 6, 1977). 

Machine Design 49, 161-170 (December 8, 1977). 

“Microprocessor-Based Video Games,” K. Li and A. Goldberger, 

“Stripping the Mystery from Microcomputers,” L. Teschler, 

1318 
“A Guide to PL/M Programming for Microcomputer Applications,” 

D. D. McCraken, Addison-Wesley Publishing Co., Reading, MA, 
1978. 

“A Microprocessor Course,’’ M. E. Fohl, Petrocelli Books, Inc., New 

“Memory Design: Microcomputers to Mainframes,” L. Altman, 

“Microcomputer 3870/F8 Data Book,” Publication No. 79602, 

York/Princeton, 1978. 

McGraw-Hill Book Co., Inc., New York, 1978. 

Mostek Corporation, 1215 W. Crosby Rd., Carrollton, TX 75006, 
1978. 

“Practical Microcomputer Programming: The 280,” W. J. Weller, 
Northern Technology Books, P.O. Box 62, Evanston, IL 60204, 
1978. 

“Series 8000 Microprocessor Family Handbook,” National 

Clara, CA 9505 1, 1978. 
Semiconductor Corporation, 2900 Semiconductor Dr., Santa 

“The Bugbook VI-Introductory Experiments in Digital Electronics, 
8080A Microcomputer Programming and 8080A Microcomputer 
Interfacing,” D. G. M e n ,  P. R. Rony, and J. A. Titus, E‘& L 
Instruments Inc., 61 First St., Derby, CT 06418, 1978. 

”The Complete Motorola Microcomputer Data Library,” Motorola 
Semiconductor Products Inc., 3501 Ed Bluestein Blvd., Austin, 
TX 78721, 1978. 

M3870UM (AD), Motorola Semiconductor Products Inc., 3501 
Ed Bluestein Blvd., Austin, TX 78721, 1978. 

“The 2-80 Microcomputer Handbook,“ W. Barden, Jr., Howard w .  
Sams & Co., Inc., 4300 W. 62nd St., Indianapolis, IN 46268, 
1978. 

“Understanding Digital Computers,” F. M. Mims 111, Catalog NO. 
62-2027, Radio Shack (div. of Tandy Corporation), Fort Worth, 
TX 76102, 1978. 

“The Motorola MC3870 User’s Manual,” Manual No. 

IBM I .  RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 



“280 Instruction Handbook,” N. Wadsworth, SCELBI Publications, 
Scelbi Computer Consulting Inc., P.O. Box 133, PP STN, Milford, 
CT 06460, 1978. 

“280 Programming for Logic Design,” A. Osborne, J. Kane, R. 
Rector, and S. Jacobson, Adam Osborne and Associates, Inc., 
P.O. Box 2036, Berkeley, CA 94702, 1978. 

”8080/8085 S o h a r e  Design with 190 Software Solutions,” C. A. 
Titus, Howard W. Sams & Co., Inc., 4300 W. 62nd St., 
Indianapolis, IN 46268, 1978. 

”9900 Family Systems Design and Data Book,” W. D. Simpson, G. 
Luecke, D. L. Cannon, Ph.D., and D. H. Clemens, Texas 
Instruments Learning Center, Texas Instruments Inc., P.O. Box 
225012, MS-54, Dallas, TX 75265, 1978. 

“Handling Multilevel Subroutines and Interrupts in 
Microcomputers,” J. F. Vittera, Computer Design 17, 109-1 15 
(January 1978). 

Interfacing,” F. Grothman and J. Washburn, Digital Design 8, 
27-36 (February 1978). 

“Microcomputer Basics” (six-part series), Electronic Design 26, 27 
(February 1, 1978, through January 18, 1979). 

“Microprocessors Extend Scope of Automated Manufacturing,” N. 
Sohrabji, EDN 23, 101-106 (March 5, 1978). 

“Bit-Slice Microprogramming Saves Software Compatibility,” S. Y. 
Lau, EDN 23,42-46 (March 5, 1978). 

“ICs Staff Goes Several Rounds with Microcomputers,” J. Hall, J. 
Hickey, and R. Kuhfeld, Instruments & Control Systems 51,49- 
54 (April 1978). 

“ICs Staff Goes Several Rounds with Microcomputers-Part 11,” J. 
Hall, R. Memtt, B. Reynolds, and L. Zerone, Instruments & 
Control Systems 51, 73-80 (May 1978). 

“Designing a pC Test Unit,” W. W. Moyer, Digital Design 8, 112- 
120 (May 1978). 

“Unified Buses Make the Peripheral IC/pC Connection,” Dr. M. 
Smolin, D. Graves, K. Winter, and M. Schwartz, Digital Design 8, 
34-44 (May 1978). 

“The Intel 8086 Microprocessor: A 16-Bit Evolution of the 8080,” 
S. P. Mom, W. B. Pohlman, and B. W. Ravenel, Computer, pp. 
18-27 (June 1978). 

“Triple-Bus Architecture,” J. Johnson, C. Kinnie, and M. Maen, 
Electronic Design 26 (July 19, 1978). 

“R6500 Microcomputer System Hardware Manual,’’ Document No. 
29650 N32, Rockwell International Microelectronic Devices, P.O. 
Box 3669, Anaheim, CA 92803, August 1978. 

“Complex Systems Are Simple to Design with the MC68000 16-Bit 

“Using Microprogramming to Standardize Minicomputer 

pP,” I. LeMair and R. Nobis, Electronic Design 26, 100-107 
(September I ,  1978). 

8086,” 6. Alexy and H. Kop, Electronic Design 26,60-66 
(September 27, 1978). 

“Structured Programming Formulates pP Program Logic,” Dr. L. A. 
Leventhal, Digital Design 8, 30-40 (October 1978). 

“EDN Software Systems Design Course,” J. Hemenway, EDN 23, 
251-312 (November 20, 1978). 

”Cars and Computers Come Together,” C. E. Wise, Machine Design 
50,24-30 (November 23, 1978). 

“Second-Generation Microcontrollers Take On Dedicated-Function 
Tasks,” J. Beaston and B. Schillhammer, Electronics 51, 127-132 
(November 23, 1978). 

Computer Design 17, 77-83 (December 1978). 

Systems 11, 58-66 (December 1978). 

“Get Minicomputer Features at Ten Times the 8080 Speed with the 

“Integrating Peripherals into Processing Systems,” R. J. Eufinger, 

“The Microprocessor Popularity Race,” C. A. Ogdin, Mini-Micro 

1979 
“Basic Microprocessors and the 6809,” R. Bishop, Hayden Book 

“Microprocessor Software” (design-discipline reprint of 13 articles 
Co., Inc., Rochelle Park, NJ, 1979. 

from Machine Design), Penton/PC, Penton Plaza, Cleveland, OH 
44 1 14, 1979. 

Evans, Reston Publishing Co., Inc., Reston, VA, 1979. 

Micro Systems It, 74-79 (January 1979). 

Systems,” K. J. Thurber, Computer Design 18, 89-97 (January 
1979). 

“Are Single-Chip Microcomputers the Universal Logic of the 
1980s?” R. H. Cushman, EDN 24, 83-89 (January 5, 1979). 

“As You Get to Know the 8086, Use Your 8-Bit Expertise,“ J. 
Hemenway and E. T’eja, EDN 24,81-87 (January 20, 1979). 

“Parallel Processor Architectures-Part 2: Special Purpose Systems,“ 
K. J. Thurber, Computer Design 18, 103-1 14 (February 1979). 

“Comparison of Selected Amy Processor Architectures,” S. P. 
Hufnagel, Computer Design 18, 151-158 (March 1979). 

”New Options from Big Chips,” J. Bayliss and J. McKevitt, IEEE 
Spectrum 16, 28-34 (March 1979). 

“Troubleshooting Microprocessors with a Logic Analyzer System,” 
R. Lorentzen, Computer Design 18, 160-164 (March 1979). 

“Single-Chip N-MOS Microcomputer Processes Signals in Real 
Time,” M. E. Hoff and M. Townsend, Electronics 52, 105-1 10 
(March I, 1979). 

“CPU Brings 16-Bit Performance to 8-Bit Systems,” J. Bartlett and 
R. Retter, Electronic Design 27, 76-80 (March 15, 1979). 

“Coming: New Generations of Microcomputers,” L. Teschler, 
Machine Design 51, 108-1 14 (March 22, 1979). 

“A Microcomputer Industrial Control Interface Using 1/0 Modules,” 
Manual No. MP716, Texas Instruments Inc., P.O. Box 225012, 
MS-54, Dallas, TX 75265, April 1979. 

Controller,” R. F. Binder, Computer Design 18, 83-91 (April 
1979). 

“Microprogramming Techniques with Sample Programs,” S. J. 

”Comparing Microprocessor Architectures,” K. Rothmuller, Mini- 

“Parallel Processor Architectures-Part 1: General Purpose 

”Designing a Microprocessor Driven Multipurpose Peripheral 

”Designing the LSI- 1 1/23,” G. Dulaney, Mini-Micro Sysiems 12, 

“Processor Architecture Anticipates Future Performance 
55-60 (April 1979). 

Requirements,“ R. E. Birney, Computer Design 18, 71-79 (April 
1979). 

“Software: Micros vs. Minis,” K. Schroeder, Digital Design 9, 20-26 
(April 1979). 

“pP Selection-Some Do’s and Don’ts,” P. Snigier, Part 1, Digital 
Design 9,28-32 (April 1979); Part 2, Digital Design 9, 28-34 
(May 1979). 

W. Bottari, Control Engineering 26, 69-72 (May 1979). 

International Microelectronic Devices, P.O. Box 3669, Anaheim, 
CA 92803, May 1979. 

“Setting Up a Microprocessor Development Lab,” B. Schweber, 
Digital Design 9,4249 (May 1979). 

“Standard Modules Offer Flexible Microprocessor System Design,” 
A. D. Hirschman, G. Ali, and R. Swan, Computer Design 18, 
181-189 (May 1979). 

‘Comparing Architectures of Three 16-Bit Migroprocessors,” H. A. 
Davis, Computer Design 18, 91-100 (July 1979). 

“How to Select the Optimum Microprocessor for Consumer and 
Industrial Controls,” R. T. Barck, Control Engineering 26, 106- 
I10  (July 1979). 

“How to Design Single Chip Microcomputers into Control Systems,” 

“Micro Power Microelectronic Devices Data Catalog,” Rockwell 

IBM J .  RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY 

127 



“Microprocessor User’s Guide,” Pro-Log Corporation, 241 1 Garden 
Rd., Monterey, CA 93940, July 1979. 

“A Preview of the Motorola 68000,” A. I. Halsema, BYTE 4, 170- 
174 (August 1979). 

“MC68000 Design Module User’s Guide,” Manual No. 
MEX68KDM (DZ), Motorola Semiconductor Products Inc., 3501 
Ed Bluestein Blvd., Austin, TX 78721, August 1979. 

“Wizards of Silicon Valley,” G. Bylinsky and 2. Lane, OMNI 
(August 1979). 

“Zilog 28000 Family Technical Overview,” Zilog, Inc., 13 15 Dell 
Ave., Campbell, CA 95008, August 1979. 

“16-Bit Microprocessors,” S. Davis, EDN 24, 70-85 (August 5, 
1979). 

“MC6809 Course Notes,” Motorola Technical Training, Motorola 
Semiconductor Products Inc., 3501 Ed Bluestein Blvd., Austin, 
TX 78721, September 1979. 

“Single-Chip 6801 Offers Versatility,” J. J. Farrell 111, Part 1, Digital 
Design 9,62-71 (September 1979); Part 2, Digital Design 9,42- 
52 (October 1979). 

“70-Series Microprocessor Users Manual,” Manual No. pFG-000001, 
National Semiconductor Corporation, 2900 Semiconductor Dr., 
Santa Clara, CA 9505 1, September 1979. 

“Microprocessor Lab Teaches Operation and Troubleshooting,” B. 
Bronson and M. Slater, Hewleft-Packard Joumai, pp. 3-8, 1820 
Embarcadero Rd., Palo Alto, CA 94303 (October 1979). 

“The 8086 Family User’s Manual,” Manual No. 9800722-03, Intel 
Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, October 
1979. 

“EDN Advanced Software Systems Design Course,” J. Hemenway 
and E. Teja, EDN 24,293-336 (October 20, 1979). 

“Learn to Apply the Power of the 28002 by Studying a Small 16-Bit 
Computer,” R. Korody and P. Alfke, Electronic Design 27, 90-96 
(October 25, 1979). 

“The Intel 8086,” S. Ciarcia, BYTE 4, 14-24 (November 1979). 
“Use a Systematic Procedure to Evaluate New pPs,” J. Hemenway, 

EDN24, 185-193 (November 20, 1979). 

798 
“Crash Course in Microcomputers,” L. E. Frenzel, Jr., Howard W. 

Sams & Co., Inc., 4300 W. 62nd St., Indianapolis, IN 46268, 
1980. 

“MC68000 Cassette Training Tape,” Motorola Technical Training, 
Motorola Semiconductor Products Inc., 3501 Ed Bluestein Blvd., 
Austin, TX 78721, undated. 

“MC68000 Course Notes,” Motorola Technical Training, Motorola 
Semiconductor Products Inc., 3501 Ed Bluestein Blvd., Austin, 
TX 78721, January 1980. 

“MC68000 16-Bit Microprocessor User’s Manual,” Manual No. 
MC68OOOUM (AD2), Motorola Semiconductor Products Inc., 
3501 Ed Bluestein Blvd., Austin, TX 78721, 1980. 

“Microelectronics Product Guide,” General Instrument Corporation 
Microelectronics, 600 W. John St., Hicksville, NY 11802, 1980. 

“Microprocessor Basics” (designdiscipline reprint of 1 1 articles from 
Machine Design), PentonPC, Penton Plaza, Cleveland, OH 
4 4 1  14, 1980. 

Semiconductor Corporation, 2900 Semiconductor Dr., Santa 
Clara, CA 95051, 1980. 

“The 8086 Book-Includes the 8088,” R. Rector and G. Alexy, 
OSBORNE/McGraw-Hill, 630 Bancroft Way, Berkeley, CA 
94710, 1980. 

“The 8086 Primer-An Introduction to Its Architecture, System 
Design, and Programming,” S. P. Morse, Hayden Book CO., InC., 
Rochelle Park, NJ, 1980. 

“The NSl6000 Family of 16-Bit Microprocessors,” National 

ROBERT C. STANLEY 

“Primer on Microprocessor Development Systems,“ G. Nadler, 

“Realtime Analyzer Aids Hardware/Software Integration,” 
Electronic Products 23, 54-57 (January 1980). 

R. Francis and R. Teitzel, Computer Design 19, 140-1 50 (January 
1980). 

“Logic-State Analyzers Seek Out pP-System Faults,” G. Brock, EDN 
25, 137-140 (January 5, 1980). 

“The Promise of Analog pPs: Low-Cost Digital Signal Handling,” R. 
H. Cushman, EDN 25, 127-132 (January 5, 1980). 

“Forum on Testing Microprocessors,” A. Mendelsohn, Electronic 
Products 23,35-40 (February 1980). 

“Microprocessor Troubleshooting Techniques,” D. Wiseman, 
Electronics Test 3 ,4248  (February 1980). 

“Communications in Distributed Systems-Part 1: Interfacing 
Techniques,” M. G.  Gable, Computer Design 19, 30-34 (February 
1980); “Part 2: Common Bus and Shared Resource Access 
Schemes,” Computer Design 19, 14-27 (March 1980); “Part 3: 
Communication Protocols and System Design Considerations,” 
Computer Design 19, 14-22 (April 1980). 

“To Get to Know Analog pPs, Simulafe Simple Examples,” R. H. 
Cushman, EDN 25, 137-146 (February 5, 1980). 

“The MC68000-A 32-Bit pP Masquerading as a 16-Bit Device,” R. 
Grappel and J. Hemenway, EDN 25, 127-134 (February 20, 
1980). 

“Meeting EPROM Requirements of Advanced Microprocessors,” T. 
Coffman, Computer Design 19, 212-220 (March 1980). 

“Designer’s Guide to: Testing and Troubleshooting pP-Based 
Products,” M. J. Weisberg, EDN 25, 175-2 14 (four parts) (March 
20, 1980). 

“Bit-Slice Design Approaches,” H. Brineen, Computer Design 19, 

“Fiber Optics Successfully Links Microcomputers,“ S. Evans and J. 

“Memory-Management Units Help 16-Bit pPs to Handle Large 

184-191 (April 1980). 

Herman, Digital Design 10, 36-37 (April 1980). 

Memory Systems,” J.  Hu, H. Yonezawa, and B. Pueto, Elecrronic 
Design 28, 128-135 (April 26, 1980). 

Electronic Design 28, 57-62 (May 24, 1980). 

Development Lab,” W. Twaddell, EDN 25, 65-74 (June 20, 
1980). 

“Pick a Computer Language That Fits the Job,” M. Schindler, 
Electronic Design 28, 62-78 (July 19, 1980). 

“Indexed Mapping Extends Microprocessor Addressing Range,” I. 
LeMair, Computer Design 19, 1 1 1- 1 I8 (August 1980). 

“Word Processing System Design for High Throughput,” P. D. 
Cherry, Computer Design 19,95-99 (August 1980). 

”pP-Based Product Design Starts with pP Selection,” M. Mihalik and 
H. Johnson, Electronic Design 28, 1 19- I25 (September 1, 1980). 

“Compare the Newest 16-Bit pPs to Evaluate Their Potential,” R. 
Grappel and J. Hemenway, EDN 25, 197-201 (September 5, 
1980). 

15 1 (September 5, 1980). 

News 36,81-89 (November 17, 1980). 

“Microcontroller Doubles as Boolean Processor,” B. Koehler, 

“pP-Controlled ‘House of the Future’ Serves as a Product- 

“Microcomputer Development Systems,” A. Santoni, EDN 25, 141- 

”Development of Microprocessor Software,” M. Rooney, Design 

1981 
“An Introduction to ASM86,” Order No. 121689-001, Intel 

“iAPX 432 General Data Processor Architecture Reference 
Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, 198 I. 

Manual,” P. Tyner, Manual No. 171860-001, Intel Corporation, 
3065 Bowers Ave., Santa Clara, CA 9505 I ,  198 1. 

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 



“Microprocessors Data Manual,” Manual No. DL-120, Motorola 
Semiconductor Products Inc., 3501 Ed Bluestein Blvd., Austin, 
TX 78721, 1981. 

Semiconductor Corporation, 2900 Semiconductor Dr., Santa 
Clara, CA 9505 I ,  198 1. 

198 I), Pro-Log Corporation, 24 I 1 Garden Rd., Monterey, CA 
93940, 1981. 

“TMS9900 16-Bit Microprocessor Family,” Manual No. CL-483A, 
Texas Instruments Inc., P.O. Box 225012, MS-54, Dallas, TX 
75265, 1981. 

“Requirements for High-Performance Microcomputers,” J. Gorin 
and L. Stem, Mini-Micro Systems 14, 127-136 (March 1981). 

“Multitasking Executive Speeds 16-Bit Micros,” J. M. Irwin, 
ElectronicDesign 29, 131-135 (March 5, 1981). 

“Optimizing Microprocessor Input/Output Techniques,” L. E. 
Costlow, Computer Design 20, 151-160 (April 1981). 

“A Tale of Four pPs: Benchmarks Quantify Performance,” R, D. 
Grappel and J. E. Hemenway, EDN 26, 179-265 (April I ,  198 I). 

“Built-In Test Capabilities Could Cure pP-Based System Ills,” D. 
Jones, EDN 26, 105-109 (April 15, 1981). 

“Distributed Intelligence vs. Centralized Logic,’’ P. L. Alker, Mini- 
Micro Systems 14, 103-1 15 (May 1981). 

“iAPX 186 Microprocessor Architecture Overview,” J. Klovstad and 
S. Kopel, Intel Corporation, 3065 Bowers Ave., Santa Clara, CA 
95051, May 1981. 

”The Impact of 16-Bit Microprocessors on Software Development 
Tools,” M. J. Elmore, D. Miller, and J. Schwabe, Computer 
Design 20, 11 1-1 15 (June 1981). 

“Understand Emulator Use to Increase Prototyping Skills,” M. 
Mihalik and B. Francis, EDN 26, 121-128 (June 10, 1981). 

“Forum on 8 and 16-Bit Microprocessors,” A. Mendelsohn, 
Electronic Products 24, 47-53 (June 15, 1981). 

“Microprocessor Applications Reference Book,” Zilog, Inc., I3 15 
Dell Ave., Campbell, CA 95008, July 1981. 

“Memory-Management Chip Masters Large Data Bases,” D. L. 
Collins and C. M. Collins, Electronic Design 29, 1 15- 12 1 (August 
20, 1981). 

”SDLC Interface Mates M6800 Peripheral to 8086,” S. Yakobovitch, 
Computer Design 20, 169-180 (September 1981). 

“Silicon Operating System Standardizes Software,” C. McMinn, R. 
Markowitz, J. Wharton, and W. Grundmann, Electronics 54, 
135- 139 (September 8, 198 1). 

Patstone, EDN 26, 169-203 (September 16, 1981). 

77-175 (November 26, 1981). 

“NSCIOO Microprocessor Family Handbook,” National 

“STD Methods for Modularity,” R. Born (presented at Electro 

“ 16-Bit-pP Benchmarks-An Update with Explanations,” W. 

“Microprocessor Data Manual,’’ D. Bursky, Electronic Design 29, 

“CMOS-LSI Microprocessors-Memories-Peripherals,” RCA 
4911 

Solid State, 1998 Springdale Rd., C h e w  Hill, NJ 07066, 1982. 
“COPS Microcontrollers Databook,” National Semiconductor 

Corporation, 2900 Semiconductor Dr., Santa Clara, CA 9505 1, 
1982. 

“Peripherals Technical Overview,” Zilog, Inc., 1315 Dell Ave., 

“Texas Instruments Semiconductor Products Master Selection 
Campbell, CA 95008, 1982. 

Guide,” Manual No. SCG682, Texas Instruments Inc., P.O. BOX 
225012, MS-54, Dallas, TX 75265, 1982. 

“8086/8088 16-Bit Microprocessor Primer,” C. L. Morgan and M. 
Waite, BYTE/McGraw-Hill, 70 Main St., Peterborough, NH 
03458, 1982. 

@ 

IBM J .  RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 

“As pP/pC Chips Mature, Support Chips Proliferate,” R. H. 

“Introduction to the iAPX 286,” Order No. 210308-001, Intel 
Cushman, EDN 27, 155-202 (January 6, 1982). 

Corporation, 3065 Bowers Ave., Santa Clara, CA 95051, February 
1982. 

“16-Bit-pP Peripheral ICs Provide Datacomm Support,” D. R. 

”Memory Protection Moves onto 16-Bit Microprocessor Chip,” P. 
Snyder, EDN27, 181-190 (February 17, 1982). 

Heller, R. Childs, and J. Slager, Electronics 55, 133-137 (February 
24, 1982). 

210317-001, Intel Corporation, 3065 Bowers Ave., Santa Clara, 
CA 9505 1,  April 1982. 

“Software in Silicon: More Than a Program in ROM,” A. Verhalen, 
Electronic Design 30, SS33-SS36 (May 13, 1982). 

“16-Bit r P  Crams Peripheral Support on Chip,” J. Klovstad, G.  M. 
Gatlin, and T. Zingale, Electronic Design 30, 19 1-196 (June 10, 
1982). 

development), 1BM Journal ofResearch and Development 26 
(July 1982). 

(October 14, 1982). 

Childs, and J. Crawford, Electronic Products 25, 55-62 (October 
25, 1982). 

“Multi-User Systems from Advanced Processor Chips,” R. M. Schell, 
Computer Design 21, 149-158 (November 1982). 

“Multiprocessing Improves Robotic Accuracy and Control,” P. 
Gupta, Computer Design 21, 169-176 (November 1982). 

“Fundamentals of Microprocessors,” E. Lee, Telephone Engineer & 
Management magazine (November 1, 1982). 

“Microprocessor Peripherals U P P  User’s Manual,” Order No. 

“Microprocessors” (special issue on microprocessor systems 

“Technology Profile,” D. Bursky, Electronic Design 30, 83-94 

“Integrating Memory Management into the CPU,” G. Alexy, B. 

“A Programmer’s View of the Intel 432 System,” E. I .  Organick, 
McGraw-Hill Book Co., Inc., New York, 1983. 

“Bipolar Microprocessor Logic and Interface Data Book,” Advanced 
Micro Devices, Inc., 901 Thompson PI., P.O. Box 453, Sunnyvale, 
CA 94086, 1983. 

“iAPX 286 Hardware Reference Manual,“ Order No. 210760-001, 
Intel Corporation, 3065 Bowers Ave., Santa Clara, CA 95051, 
1983. 

“iAPX 286 Operating Systems Writer’s Guide,” Order No. 121960- 
001, Intel Corporation, 3065 Bowers Ave., Santa Clara, CA 
95051, 1983. 

001, Intel Corporation, 3065 Bowers Ave., Santa Clara, CA 
9505 I ,  1983. 

“iAPX 86/88, 186/188 User’s Manual,“ Order No. 210911-001, Intel 
Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, 1983. 

“Introduction to the 80186 Microprocessor,” K. Shoemaker, Order 
No. 210973-001, Intel Corporation, 3065 Bowers Ave., Santa 
Clara, CA 95051, 1983. 

Intel Corporation, 3065 Bowers Ave., Santa Clara, CA 95051, 
1983. 

“MOS Microprocessors and Peripherals Data Book,” Advanced 
Micro Devices, Inc., 901 Thompson PI., P.O. Box 453, Sunnyvale,’ 
CA 94086, 1983. 

”MOS Microprocessor Data Manual 1983,” Signetics Corporation, 
81 I E. Arques Ave., P.O. Box 409, Sunnyvale, CA 94086, 1983. 

“NCR/32-000.32-Bit Microprogrammable Microprocessor,” NCR 
Microelectronics Division, Colorado Springs, CO, 1983. 129 

“iAPX 286 Programmer’s Reference Manual,” Order No. 210498- 

”Microprocessor and Peripheral Handbook,” Order No. 210844-001, 

t 

ROBERT C. STANLEY 



“NS 16000 Databook,” National Semiconductor Corporation, 2900 
Semiconductor Dr., Santa Clara, CA 9505 1, 1983. 

“TMS32010 User’s Guide-l6/32-Bit Digital Signal Processor,” 
Texas Instruments Inc., P.O. Box 225012, MS-54, Dallas, TX 
75265, 1983. 

and H. D. Toong, IEEE MICRO, PP. 9-50 (February 1983). 

Corporation, 12 15 W. Crosby Rd., Carrollton, TX 75006, March 
1983. 

“An Architectural Comparison of 32-Bit Microprocessors,” A. Gupta 

“Mostek 1983 Computer Products Data Book,“ Mostek 

“Designing with Microprocessors: The Modular Approach,” M. 
Biewer, Telephone Engineer & Management 81, 67-69 (March 1, 
1983). 

“Computerizing the Car,” W. Brown, SKY magazine, pp. 24-33 
(October 1983). 

“Microprocessors: Speed Up, Price Down, and CMOS Everywhere,” 
S. Bassett, Computer Design 22, 177-187 (October 1983). 

“Advanced Features Squeeze onto Processor Chip,” J. Slager, 
Computer Design 22, 189-193 (October 1983). 

“The M68000 Educational Computer Board,” R. W. Floyd, BYTE 
8, 324-336 (October 1983). 

28, 193-202 (October 13, 1983). 

EDN 28, 11 1-256 (November 10, 1983). 

Processor Game,” M. Gallagher, Electronic Products 26, 1 15- 12 1 
(November 17, 1983). 

“Bipolar Arithmetic Chip Speeds 68000’s Math Throughput,” V. J. 
Coli, C. Hastings, S. Rajpal, and R. W. Blasco, EDN28, 179-193 
(November 24, 1983). 

“Examine Architectures When Evaluating NPs,” K. Christian, EDN 

“EDN’s Tenth Annual p P / K  Chip Directory,” R. H. Cushman, 

“Educational Board Computer Teaches Engineers the Micro- 

“Distributed Control Modules Databook,” Manual No. 230973-001, 
Intel Corporation, 3065 Bowers Ave., Santa Clara, CA 9505 1, 
1984. 

“Guide to Using the Distributed Control Modules,” Manual NO. 
146312-001, Intel Corporation, 3065 Bowers Ave., Santa Clara, 
CA 95051, 1984. 

“How to Use Surface Mount Technology,” J.  Mullen, Manual No. 
SSYZOO1, Texas Instruments Inc., P.O. Box 225012, MS-54, 
Dallas, TX 75265, 1984. 

Manual No. MC68020UM (ADI), Prentice-Hall, Inc., Englewood 
Cliffs, NJ, 1984. 

“Microcontroller Handbook,” Order No. 210918-002, Intel 
Corporation, 3065 Bowers Ave., Santa Clara, CA 95051, 1984. 

“Microsystem Components Handbook” (two-volume set), Order NO. 
230843-001, Intel Corporation, 3065 Bowers Ave., Santa Clara, 
CA 9505 1, 1984. 

“Series 32000 Instruction Set Reference Manual,” Publication No. 
420010099-003B, National Semiconductor Corporation, 2900 
Semiconductor Dr., Santa Clara, CA 9505 1, 1984. 

‘‘Software Handbook,” Order No. 230786-001, Intel Corporation, 
3065 Bowers Ave., Santa Clara, CA 9505 1, 1984. 

“8088 Family on the STD Bus,” System Designer’s Guide, Manual 
No. Ziatechniques 5, Ziatech Corporation, 3433 Roberto Ct., San 
Luis Obispo, CA 93401 (undated). 

Semiconductor Corporation, 2900 Semiconductor Dr., Santa 
Clara, CA 95051, February 1984. 

Corporation, 241 1 Garden Rd., Monterey, CA 93940, February 
1984. 

“MC68020 32-Bit Microprocessor User’s Manual,” Motorola 

“Introduction to the NS16000 Architecture,” National 

“STD Bus Technical Manual and Product Catalog,” Pro-Log 

ROBERT C. STANLEY 

“8x300 Family Capability Manual,” Signetics Corporation, 81 1 E. 
Arques Ave., P.O. Box 409, Sunnyvale, CA 94086, March 1984. 

“Abundant Board-Level pCs Pack Increased Processing Power,” D. 
Powers, EDN 29,213-220 (April 19, 1984). 

“Versatile Serial Protocol for a Microcomputer-Peripheral Interface,” 
D. C. Stanley (presented at Mini/Micro Northeast, May 1984), 
RCA Solid State, Rte. 202, Somerville, NJ 08876. 

“VLSI-Based LAN-Controller Chip Eases pP-to-Network Interface,” 
R. H. Cushman, EDN 29,207-220 (May 3, 1984). 

“Synchronous 32-Bit Backplane Buses Open Up Distributed-System 
Design,” B. Nicholson, EDN 29,75-86 (June 14, 1984). 

“Thirty-Two Bit Micros Power Workstations,” N. Mokhoff, 
Computer Design 23,97-I 12 (June 15, 1984). 

“Serial Backplane Suits Multiprocessor Architectures,” M. Webb, 
Computer Design 23, 85-96 (July 1984). 

“32-Bit Extension to the 68000 Family Addresses 4G Bytes, Runs at 
3 MIPS,” W. Twaddell, EDN 29, 75-77 (July 12, 1984). 

“32-Bit Processors Pack Mainframe Muscle,” J. Javetski, Electronic 
Products 27,49-55 (July 16, 1984). 

“Semiconductor Memories: Density and Diversity,” T. Williams, 
ComputerDesign 23, 105-1 16 (August 1984). 

“Circuit Density and Speed Boost Tomorrow’s Hardware,” J. Bond, 
Computer Design 23,210-225 (September 1984). 

“Hardware/Software Problems Yield to Today’s Logic Analyzers,” 
K. Lowe and M. Van Hook, EDN 29,203-208 (September 6, 
1984). 

“Memory-Management Varieties Suit Different Application Areas,” 
D. Phillips, EDN 29, 135-143 (September 6, 1984). 

Received June 18, 1984; revised October IO, 1984 

IBM J .  RES. DEVELOP. VOL. 29 NO, 2 MARCH 1985 



Weber? e. S\h@ky IBM System Products Division, P.O. Box 
1328, Boca Raton. Florida 33432. Mr. Stanley is an advisory 
engineer in the process automation group at Boca Raton. He joined 
IBM in 1959 at Poughkeepsie, New York, where he held various 
assignments in test equipment and numerical control. In 1965, he 
was transferred to the East Fishkill, New York, plant, where he 
designed controls for automated assembly machines, process tools, 
and test equipment. He was the lead engineer for the controls on a 
computer-controlled sensor-based process line and the systems 
engineer for a fully automatic computer-controlled alignment 
system. In 1977 he joined corporate components procurement 
engineering in Poughkeepsie and was active in the corporate 
qualification of the IBM 6800 and IBM 8086 families of 
microprocessors and peripherals. In 1978, Mr. Stanley became a 
member of the IBM Mid-Hudson Education Microprocessor 
Education Advisory Committee and a member of the Electrical 
Technology Advisory Committee for Dutchess Community College. 
Since moving to Boca Raton in 1980, he has beenactive in 
designing microprocessor-based control systems for robotics and 
machine control. Mr. Stanley has been very active in engineering 
education and has given over 100 seminars on microprocessors and 
taught over 80 logic design and microprocessor system design 
courses ranging from digital logic, numerical control, and basic 
microprocessors to detailed design engineering on seven different 
microprocessors. He has been a guest instructor and lecturer at many 
IBM plants and laboratories as well as at high schools and colleges. 
He has received a number of awards for his work in machine control 
design and teaching and in 1980 was honored by the IEEE for 
outstanding educational services and superior technical contributions 
in the field of microprocessor engineering education. In 1984, Mr. 
Stanley received an IBM Outstanding Innovation Award for the 
system architecture of an electric drive robot. 

IBM J.  RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY 


