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licroprocessors
in brief

by Robert C. Stanley

This paper presents a tutorial overview of the
past, present, and future of microprocessors
and describes the key elements of their
structure and operation. It is intended to serve
as a technical introduction to the rapidly
expanding field of microprocessor and
microcomputer technology and to provide an
overview of what these elements are, what they
can do, and how they do it. The origin and
evolution as well as the basic principles of
operation are discussed. Several different types
of microprocessor are considered and examples
of their application in the solution of real-world
problems are given.

introduction
The microprocessor, an invention of the early 1970s,
essentially incorporates the computational power of a
computer in a package that can be held in the palm of one’s
hand. Microprocessors are currently being used extensively
in lieu of conventional logic to reduce product cost, add
more functions, and increase reliability through fewer part
numbers, reduced hardware, and less complex packaging.
The microprocessor is viewed differently by different
people. To an end user it might be just a black box, to a
programmer it might be a smaller version of the central
workings of a computer, or to a control logic designer it
might be a logic device that continually rewires itself
according to the instructions sent to it. No matter what the
point of view or intended end use, the microprocessor must
contain certain elements in order to perform the required
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tasks. What is commonly referred to loosely as a
“microprocessor” usually consists of a small group of devices
that combine to make up the control nucleus of a
microprocessor-based system. (See Figure 1.) It is this
nucleus of necessary devices that we are primarily concerned
with in this paper.

Basic operation of the various microprocessor system
elements is covered first, followed by a step-by-step
description of the execution of instructions in a simplified
program. A number of more intricate concepts are discussed
under Advanced concepts, and The future takes a look at
where microprocessors are going from here. Example 1 is a
simple cash register control, whereas Example 2 details the
more sophisticated master/slave microprocessor control of a
robot.

In order to shed some light on the original purpose of the
device and to show how it has since grown to fill other
needs, details of the origin and evolution of the
microprocessor are given in Appendix 1. The physical
packaging aspects of microprocessors and the details of
operation of the various types of microprocessor memory
devices are mentioned only briefly in the body of the paper,
but are covered in some depth in Appendices 2 and 3. A
bibliography has been included with references to more
detailed tutorial and technical literature that covers the
many aspects of microprocessors and how they are created
and applied.

Basic microprocessor pperation

The primary control device in a microprocessor system is the
CPU (central processing unit). Here, most of the decision-
making is performed through the execution of program
instructions. These instructions are stored in memory and
the CPU fetches them as needed to perform the required
task. Most instructions are very basic in hature; they direct
simple operations such as reading in data from an outside
source, moving data from one storage register in the CPU to
another, performing some logic or arithmetic function on
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the contents of a register, or writing data out to another part
of the system. There are also instructions that perform more
complex functions, but regardless of the complexity of a
single instruction it cannot accomplish even the simplest
task entirely by itself. Individual instructions must be
combined in some logical fashion to create a program to step
the CPU through a series of basic operations that will, when
taken as a whole, perform some useful function. Sometimes
the program instructions are stored in the CPU itself, but
more. often they are stored in a separate memory device. A
microprocessor needs memory for storing both instructions
and data. The various types of solid-state memory modules
used in microprocessor-based systems are described in
Appendix 2.

A typical CPU chip consists of several separate logical
sections as shown in Figure 2. There must be a control
ROM (read-only memory), a PLA (programmed logic array),
or a random logic decoder (or some combination of these
devices) to decode the instructions one at a time and to
direct the operation of the rest of the CPU chip. There is
timing and sequence logic that steps each operation through
in its proper order. There is an ALU (arithmetic logic unit)
that performs basic arithmetic and logical operations on
operands that are fed through it. There are normally a
number of registers of various sizes located on the CPU chip
itself. There are address pointer registers whose width
depends on the size of memory the system is designed to
handle and on whether the memory being addressed is in the
CPU or external to it. There are data registers for storing and
transferring data, and at least one of these registers is
normally a special-purpose working register called an
accumulator. The accumulator is involved in most of the
data-oriented activity on the CPU. (The results of most of
the ALU operations are sent to the accumulator, and its
contents are quite often used as one of the operands.)
Connecting all of these elements is a data path whose width
is determined by the microprocessor word size. This data
path, with bidirectional buffers at the boundary of the CPU
chip, becomes the local system data bus and acts as the
information path connecting all data-related elements in the
system.

The contents of the active address pointer register
generally follow a separate path to the boundary of the CPU
chip, where it passes through buffers to become the local
system address bus. A 16-bit address bus allows addressing of
65 536 (often referred to as “64K”) separate memory
locations, and a 20-bit address bus allows for over a million.
In an effort to reduce the number of pins on the CPU
package, some microprocessors multiplex some portion of
the address bus and data bus on the same group of pins as
they leave the CPU chip. This saves pins on the CPU, but
requires that extra hardware be added to create individual
address and data buses to serve the rest of the system. This is
of little consequence in larger systems, however, because the
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local address and data buses must be buffered again before
being distributed to a large number of memory and
peripheral chips, and the demultiplexing and buffering can
both be done by the same devices. (The address bus is
unidirectional only, out of the CPU, but the data bus is
bidirectional and must be buffered in both directions.)
Microprocessors are sized or classified according to the
number of binary digits or bits that they are able to handle
at one time. An eight-bit microprocessor generally has an
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eight-bit-wide data interface to the outside world and eight-
bit internal data paths and registers. When there are
exceptions to this, it is generally that the internal data path is
wider in order to increase the functional capability of the
CPU, or the interface to the rest of the system is narrower to
reducg cost or the number of package pins. (There is at least
one microprocessor with a four-bit word size and a one-bit
interface off the CPU.) In eight-bit microprocessors, data are
moved around in groups of eight bits, which are referred to
as “bytes.” A byte is always eight bits, and a “nibble” is half
a byte or four bits, but a word may be of any size as defined
by a particular microprocessor. The most common word
sizes for microprocessors today are four, eight, sixteen, and
thirty-two bits.

A microprocessor needs a means of interfacing with other
major elements in a control package or directly with the
outside world. This is provided by interface elements or
mechanisms called I/O (input/output) ports. These I/O ports
may be located directly on the CPU itself or on separate
chips, and can handle input or output data in either serial or
parallel format. Usually separate I/O ports are required for
input and output data and for serial and paralle] format, but
there are sophisticated devices available today that may be
programmed to handle many types of I/O, and even to
handle automatically much of the protocol involved in some
of the more involved serial communication formats. Parallel
I/O ports may be designed for data input or data output
only, or may handle bidirectional data. Some allow for the
selection of input or output function on a bit-by-bit basis,
but most ports are configured in groups of four or eight bits.
If the /O port is located on a peripheral chip and not on the
CPU, it is connected to the CPU via address, data, and
control lines in a manner similar to that used for memory
modules.

“Address modes” is a term which describes the different
methods a CPU uses to address data stored for future use
(normally in memory). Some CPUs have a number of
different registers that may be used as address registers, and
some of the address modes use these registers in different
combinations. There are some address modes that do not
use address registers as such. In “immediate” addressing, the
data are included as part of the instruction and are therefore
pointed to by the program counter. In “implied” addressing,
the location of the data to be used is implied by the
instruction itself. “Direct” addressing includes the address of
the data as part of the instruction; “direct short” uses eight
bits of address (near the bottom or lower addresses of
memory), and “direct long” uses 16 bits of address to access
data anywhere in a 64K-byte range. In “register” addressing,
the data are found in a register in the CPU, and in “register
indirect” addressing, the instruction refers to a register that
contains the address of the data in memory. “Indexed”
addressing makes use of index registers in the CPU, and
there is normally a method of automatically adding an offset
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to the contents of the index register before it goes out on the
address bus (as for indexing into a data table). The index
registers may aiso be caused to increment or decrement
automatically by a specified amount every time their
contents are used on the address bus.

Accessing program instructions is not usually considered
one of the address modes in a microprocessor, since
instructions are normally pointed to by a special-purpose
address register on the CPU called a “program counter.” The
program counter points only at instructions and is
automatically incremented to the next instruction every time
it is used. The program counter may also be force-loaded
with an address, as in the case of program jumps where the
next instruction to be executed is not the next one stored
sequentially in memory. The program counter might also be
referred to as an instruction pointer register.

Another register not included in the address modes is the
stack pointer. This is an address register that is normally
loaded in the IPL (initial program load) routine to point to
an area in RAM that has been set aside to store return
addresses and miscellaneous data. This RAM area is referred
to as a “stack,” and its size determines the number of
subroutines and interrupts that may be nested or overlapped.
On a “call to subroutine” instruction, the CPU saves or
pushes the address of the next instruction onto the stack by
using the stack pointer as an address pointer and the
contents of the program counter as the data to be written in
memory. Next, the program counter is loaded with the
address of the first instruction in the subroutine being called
and this causes a jump to that subroutine. (Subroutines are
used when there is a series of instructions that are to be used
over and over again in a program, as for a routine to read
data in from a keyboard every time a Key is pressed.) The
last instruction in a subroutine is “return from subroutine”
and it merely pops the return address off the top of the stack
and places it in the program counter. Operation is then
resumed immediately following the point in the program
where the subroutine was last called. The stack pointer
register is automatically incremented and decremented by
the CPU so that it always points to the last entry or next
available space. Push and pop instructions are available that
allow the programmer to store temporary data on the stack
or to save the contents of registers when a subroutine is
called or an interrupt occurs. (The “push” instruction writes
to the stack and “pop” reads from it.) The stack acts as a
LIFO (last-in first-out) register, so any data must be popped
or retrieved in the reverse order from that in which they
were saved or pushed.

Some microprocessors, referred to as register-based, have a
large number of registers on the CPU, and the instructions
specialize in op;erating efficiently on data in these registers.
Another type, referred to as memory-based, has fewer
registers on the CPU, and the instructions are oriented more
toward operating on data in memory. Still a third variety has
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very few, if any, data registers on the CPU. Instead, there are
pointers to memory where the “register” space actually
resides. This fact is almost transparent to the programmer,
except that there appear to be a number of complete sets of
working registers that are easily accessible.

Tying together all the basic components in a
microprocessor system generally involves a number of SSI
and MSI logic chips. Buffers are required on the data bus to
buffer the CPU from the electrically harsh environment on
the system data bus and to increase the drive capability of
the bus. Address decoders decode the higher-order address
lines and provide chip select signals to activate the proper
memory or 1/0 chips in response to a certain range of
addresses. Multiplexing, or time-sharing, of address
information and data on the same CPU pins requires that
the system provide address latches to hold the address bus
active throughout the entire memory read or write cycle.
The basic system timing in a CPU is often derived from a
crystal, and this usually requires a separate clock oscillator
chip to convert the crystal frequency into clock signals
suitable for the CPU chip. Some CPUs generate their own
bus control signals, but more complex systems often utilize
bus controllers to handle the read and write timing and other
bus-related functions. What is really a fairly simple
microprocessor system can easily result in a printed circuit
card with 20 or more devices on it. What is often referred to
as a “computer on a chip” today is frequently in reality more
of a “CPU on a chip.” There is a constant effort, however, to
reduce the number of chips required to form a working
system. (Refer to “microcontrollers,” discussed in the section
on advanced concepts.)

Instruction sxacution

In order to see just what a CPU does in carrying out its
duties, we explore a short scenario of reading in some
instructions and following the CPU through its paces. We
assume that there is a program already in program memory
to read the data at an I/O port, mask off some of the bits,
and store the results in data memory. We assume also that
this program starts at memory address 0, and that after it has
been reset, this is where the CPU will look for its first
instruction. For our example we assume that our
microprocessor is accumulator-based with isolated I/O and
uses eight data bits and 16 address bits. Figure 3 is a
memory map for this program.

The first instruction in our program is a two-byte INPUT
instruction. The first byte is the op code, or operation code,
that calls for the reading of data from an I/O port. The
second byte of the INPUT instruction is the number of the
port that is to be read. In our example it is port 0. The
second instruction is the AND instruction, which performs
the masking of the bits. This also is a two-byte instruction,
with the first byte being the op code, and the second byte
being the immediate data to be used in the logicai “and”
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0007 HALT
0006 34
0005 12
0004 MOVE
0003 07
0002 AND
0001 00
0000 INPUT

Sample program memory contents.

operation. In our example we wish to mask off, or disregard,
the high-order five bits of the input data, so the immediate
data byte in the instruction is 07 (binary pattern 06000111).
The third instruction is a MOVE instruction that takes our
masked data and moves them out to memory. This
instruction is three bytes long, with the first byte, as always,
being the op code. The second and third bytes contain the
16-bit address of the memory location in which we wish to
store the data. For our example we use memory address
1234. To prevent the CPU from continuing and doing
anything after it has finished our example, we end the
program with a HALT instruction that stops the CPU from
executing any more instructions.

After the CPU has been reset by an external reset, the
program counter contains ail zeros, and its contents travel
through address latches and out on the address bus to access
memory location 0000. (Memory addresses are to be
specified in our example by using four hexadecimal digits.)
The CPU also sends out a memory read command so that
the contents of the selected memory location are placed on
the data bus by the memory module. The CPU reads the
data bus, which now has the op code for the first instruction.
Since this is the first operation after a reset, the CPU knows
it must be reading in an op code so it places the first byte in
the instruction decoder to be decoded. Upon decoding the
instruction, the CPU discovers that it is a two-byte
instruction and it must fetch the second byte. The program
counter was automatically incremented after its contents
were saved in the address latches, so it now contains address
0001. This address goes through the address latches and out
to access memory location 0001 for the second byte. The
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second byte of the first instruction, which is 00 to represent
port 0, goes back to the CPU by way of the data bus. Since
this is an INPUT instruction, the CPU places the second
byte of the instruction in the address latches as the lower haif
of the address of the I/O port. (The upper eight bits of
address are zeros for all I[/O operations.) Address 0000 goes
out on the address bus, but this time the CPU sends out an
I/0 read command because it is reading an input port and
not a memory location. The combination of address 0000
and the I/O read line being active causes input port 0 to
place its contents on the data bus. (We might assume that
the port is wired to some switches that we wish to monitor in
a control application.) The CPU reads the data bus and
places the data in the accumulator. (The accumulator is the
destination for all INPUT instruction data and the source
for all OUTPUT instruction data.) This concludes the
execution of the first instruction, so the CPU prepares to
read in the next op code.

The contents of the program counter again go out on the
address bus, this time with address 0002 and a memory read
signal. This causes the op code for the second instruction to
go to the instruction decoder for decoding. The CPU
discovers that this is a two-byte AND instruction and it
sends the program counter contents of 0003 out on the
address bus to fetch the second byte. The data in the second
byte of the AND instruction are to be logically “anded” with
the contents of the accumulator, so they are placed in a
temporary holding register. The contents of the accumulator
are copied into a temporary accumulator and then both
temporary registers are sent through the ALU, where they
are “anded” together. The results of the ALU operation are
returned to the accumulator, which now contains the low-
order three bits of the data that were read in from port 0.
“Anding” a number with O gives a result of 0. “Anding” a
number with 1 leaves the number itself. Thus, our “anding”
the accumulator with immediate data of 07 (00000111 in
binary) has had the effect of masking the high-order five bits
to zeros and leaving the low-order three bits unchanged. This
concludes the execution of the second instruction, so the
CPU prepares to read in the next op code.

The contents of the program counter go through the
address latches and out on the address bus with address 0004
and a memory read signal. This causes the op code for the
third instruction to follow the data bus from memory into
the CPU and then to the instruction decoder for decoding.
The CPU discovers that it is a three-byte MOVE instruction,
and it sends the program counter contents of 0005 out on
the address bus to fetch the second byte. The data in the
second byte of the MOVE instruction are to be part of a
memory address, so they are placed in half of a temporary
address register in the CPU. The program countbr was
automatically incremented after its contents were saved, so it
now contains address 0006. This address goes through the
address latches and out to access memory location 0006 for
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the third byte of the instruction. The third byte of the
MOVE instruction is the rest of the 16-bit memory address,
so it goes to the other half of the temporary address register.
The MOVE instruction is being used to move the contents
of the accumulator out to data memory, so the temporary
address register goes through the address latches to access
memory location 1234. In this case we are moving data out
of the CPU, so the contents of the accumulator are placed
on the data bus and the CPU issues a memory write
command. This causes the data on the data bus to be latched
into the memory location that is being addressed by the
address bus and concludes the execution of the third
instruction.

The HALT instruction is then read in from memory
location 0007 and decoded. The CPU now remains in an
idle state until it is given an external reset or an interrupt.
No matter how long or involved a program may be, it is
always executed one step at a time, as we have just seen
(though for ease of exposition we did leave out a number of
the details). There are microprocessors that can operate on
more than one instruction at a time, and many of the
instructions cause more activity than those we looked at, but
it 1s always done one step at a time,

Programs to control microprocessors may be written in a
number of different ways. The most basic of these is
“machine language,” which comprises the actual binary
zeros and ones that the microprocessor responds to when it
reads them in as instructions. The zeros and ones are fine for
the microprocessor, but it is not comfortable for
programmers to have to write programs using only numbers,
so this is not done very often unless the application is
expected to sell in extremely high volume.

The next level of programming is that of using “assembly
language,” where all of the binary machine instructions have
been assigned names that represent their operation.
Examples of these are AND, INPUT, ADD, JUMP,
SUBTRACT, etc. The programmer writes a program using
the individual instructions by name. (These names are
referred to as mnemonics.) The mnemonics are then entered
into a computer along with a program called an assembler,
and the mnemonics are converted into the binary numbers
that the microprocessor actually operates on. Assembly-
language programs can be very efficient because the
instructions are selected one at a time, but they also take a
long time to write, and the programmer must be familiar
with all the details of how each particular microprocessor
handles each instruction. Assembly language is used today
for most programs that are relatively short and are stored in
ROMs or EPROMs and sold in large volume.

Higher-level languages are available which make it easier
to write programs because the language sounds more like
basic English statements than elemental operation steps in a
computer. After a program has been written in a high-level
language, it is entered into a computer along with a program

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH {985




called a compiler. There are different compilers for each of
the high-level languages (such as BASIC, Pascal, FORTRAN,
etc.), and there are specific versions for each of the target
microprocessors. The compiler lists or compiles the
individual mnemonics required to execute each of the
general program statements, and then its output is run
through an assembler to create the actual machine code or
instructions. High-level languages save time for the
programmer, but quite often make poor use of the
microprocessor time and memory because the compiler does
not always make optimum use of the instructions. Some
programs are written in a high-level language and then time-
sensitive portions are rewritten in assembly language to
optimize the operation of the overall system.

Advanced concapts

There are mahy different types of microprocessors available
today. Some of them do not have all the features mentioned
in the section on basic operation, but others have most or all
of these features plus many more. Sometimes a number of
powerful features are built into the CPU itself, or in some
cases a rather ordinary CPU is applied in a system
incorporating very sophisticated peripheral chips. The
applications run the gamut from, for example, washing
machine control or children’s toys to word processing to
real-time image processing and continuous-path machining.

One feature that might be incorporated in a CPU to

increase its performance is pipelining. An example of this
may be seen in instruction decoding. In our simple example
we saw the instructions going directly from the data bus to
the instruction decoder one byte at a time for decoding.
Some microprocessors have instructions that are over half a
dozen bytes long, and the CPU might have a queue for
storing several bytes of instruction before they go to the
instruction decoder. This saves CPU execution time in two
ways. First, separate bus control logic on the CPU can be
dedicated to keeping the instruction queue full so that the
rest of the CPU may concentrate on executing the
instructions, and not on trying to make optimum use of the
bus. (Simple microprocessors spend most of the time
fetching instructions from memory and in the read/write
data operations on the bus, and not on actual arithmetic and
logical operations that are performed within the CPU.)
Second, the instructions may be pre-decoded to a certain
extent in the queue so that some operations may overlap in
“time if they do not require the same portion of the CPU
logic or depend on the results of a preceding instruction.
Pipelining may be as simple as allowing the execution of one
instruction to overlap the fetching of the next op code or as
advanced as operating on several instructions at the same
time. The objective, of course, is to execute instructions as *
rapidly as possible and to speed up the overall system
operation. There are microprocessors today that do a high-
speed fetch of a number of instructions and place them in an
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instruction cache or temporary storage location on the CPU
chip itself. There they can be accessed more rapidly by the
CPU than if they were left in system memory. This speeds
up the overall system operation considerably.

One of the trends today is toward more and more
complex peripheral chips to handle such things as serial
communication protocols, display screen control, parallel
I/O with handshaking, DMA (direct memory access), floppy
disk controllers, and multifunction timer/counters. These
chips normally have a number of control registers that
dictate how the chip functions in the overall operation of the
system. When electric power is first turned on, these chips
are typically unable to function without first receiving
“operating instructions” from the CPU. The CPU, in its own
IPL (initial program load) routine, encounters a series of
instructions that tell it how to configure the peripheral’
devices in the system. It does this by sending a series of
command words to the control registers in the peripheral
devices themselves. These command words, which must
normally be sent to the peripheral controller chip in a special
sequence, are used to “customize” the operation of the chip
to fit the application. After this initialization, the I/O chips
automatically handle the data in the prescribed manner
every time they are called upon by the CPU or by the
peripheral device they are supporting.

The term direct memory access refers to an operation that
transfers data directly to or from memory without the data
being handled by the microprocessor chip itself. The DMA
controller is an intelligent peripheral chip that must be
initialized by the CPU and told where the data are to be
moved from and where they are to be moved to. Once so
initialized, the DMA controller takes control of the data bus,
the address bus, and the control lines that handle memory
read and write operations. The CPU is temporarily forced off
the bus and must wait until the DMA operation is
completed before it can regain control of the bus. DMA
operations save time when large amounts of data are to be
moved, because the DMA controller can automatically
transfer data at the full bandwidth of the bus and does not
need to keep reading in program instructions to tell it what
to do next.

The microprocessors we have been talking about until
now might be called “conventional” microprocessors. There
is a type of microprocessor that is generally referred to as a
single-chip microprocessor, or microcontroller. The main
feature of these devices is that an attempt has been made to
place the entire system on one chip. (This includes the CPU,
RAM, ROM, clock oscillator, and I/O ports.) A
microcontroller has enough on-chip ROM to hold a control
program of reasonable size (i.e., 1K or 2K bytes). Some
microcontrollers are available in both masked ROM and
UV-erasable EPROM versions (as described in the section
on memory), and some have provisions for additional off-
chip ROM or EPROM to allow for future expansion of an
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application program. Some microcontrollers also provide for
off-chip data RAM in addition to the on-chip registers and
scratchpad RAM. Some of the other features incorporated
into microcontrollers to increase their control capability
include Boolean processing, timers and counters (cascadable
or with optional prescalers), A/D (analog-to-digital)
conversion, PLLs (phase-locked loops), and the ability 1o
handle serial I/O. Microcontroller applications today are
expanding rapidly and will continue to do so in both high-
end and low-end applications. Typical applications of the
newer high-end versions are analog data processing or signal
processing; many of the lower-end versions will be buried
within electrical equipment where the presence of a CPU
will probably not be recognized by the end user.

The coprocessor is another type of processor that has been
developed to enhance the capabilities of a microprocessor
CPU. An example of this is the NDP (numeric data
processor). The NDP cannot operate in a stand-alone
situation as the microprocessor CPU does, but typically is
connected to the same address and data bus as the CPU. The
NDP monitors the instructions as they go to the CPU, and
when an NDP instruction is encountered, the CPU releases
the bus and allows the NDP to take over the bus and execute
the instruction. The CPU may wait while the NDP performs
some floating-point operation, or it may continue on its own
and then at a later time query the NDP for the results of the
operation. The NDP instructions are intermixed with the
CPU instructions, so the programmer need not be overly
concerned that some instructions are being executed by the
CPU and some by the NDP. Coprocessors speed up
processing time because they are dedicated to performing
specific tasks that would take much longer in the more
versatile but slower CPU. They also save time by being able
1o operate in parallel with the main system CPU.

Interrupts are far from new (they have been available on
microprocessors since the 8008), but they do require some
attention to detail in both the hardware and the software
design. The simple approach to interfacing with a peripheral
device would be for the CPU to poll its controller. (Polling is
software that periodically checks to see whether the device
requires service.) The device might be a printer that is ready
for more data to print or a tape reader that has data for the
CPU. This method is all right for applications where time is
not critical and the peripherals can wait for service. (The
printer could theoretically wait all day for more data to print
without causing a system problem.) The reader, on the other
hand, could cause a problem. If the data were not read from
it before more data were received, the new data would be
written over the old data and would thus destroy the old
data. In this case, the reader should be able to interrupt the
CPU in whatever it is doing and request that the data be
read in a timely manner.

Interrupts may come from just one device in a system, or
from a number of devices. In any case, the CPU must know
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where in memory to find the service routine for the
particular device that has caused the interrupt. It is normally
up to the requesting device or an interrupt controlier chip to
place this information on the bus. The CPU saves, on the
stack, the address of the instruction it was about to read in
when the interrupt occurred. It then picks up the interrupt
information from the bus and calls the proper routine to
service the device. The last instruction in the service routine
is “return from interrupt,” which gets the return address
from the stack, and the CPU returns to what it was doing
when the interrupt occurred. Some CPUs have duplicate sets
of registers so that an entire new set of working registers may
be switched to rapidly when an interrupt occurs. If there are
to be many interrupt sources in a system, a priority interrupt
controller chip is used. This device keeps track of the devices
that have requested service and allows interrupts of a higher
priority to interrupt the CPU while it is servicing devices of
lower priority. Some of the newer microprocessors and
microcontrollers have priority interrupt hardware and
microcode built into the CPU itself in order to simplify
system design and eliminate the need for a separate interrupt
controller chip.

Bit-slice microprocessors are a specialized type of
microprocessor used in very high speed applications or
where a specialized instruction set is required. The faster bit-
slice microprocessors employ ECL (emitter-coupled logic)
because this configuration of bipolar transistors can provide
switching speeds in the subnanosecond range. The bit-slice
microprocessor instruction set is determined by the system
designer and is stored in a block of high-speed memory.
(This technique is often referred to as microprogramming.)
With microprogramming it is possible to optimize an
instruction set for any required application, or to emulate
the operation of existing microcomputers. The ALU portion
of the processor is available in “slices™ that are typically four
bits wide. A number of these slices may be combined to
build a processor that operates on larger word sizes (i.e., 12,
16, 20, or 32 bits). The advantages of a bit-slice
microprocessor are the high speeds possible and the
flexibility of being able to design your own customized
instruction set. The disadvantage is the fact that the
hardware and software must be defined in great detail by the
system architect and cannot merely be picked off the shelf
and used as can be done with the conventional
microprocessor that has everything predefined by the
manufacturer. The lower sales volumes of bit-slice
microprocessors also tend to raise the overall cost of these
systems.

Bus arbitration chips are available to help control access
to the bus in multiprocessing operations, and memory
management units allow a microprocessor access to more
physical memory than its number of address lines would
normally allow. The smaller device geometries used in the -
newer microprocessors are allowing them to operate at
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higher and higher speeds, and features such as memory
management are being incorporated into the CPU chip itself.
Separate user and supervisor modes for system control, as
well as support of trap instructions for error detection, have
been available for several years, but the newer devices are
providing much more of this type of support. The user/
supervisor separation has recently been increased to four
levels of protection. The concept of virtual memory, in
which the program is unaware that some memory space is in
main storage and some is in external storage, has been
extended to the concept of a virtual machine. There is better
support for coprocessors in the newer devices, and the
register sets and instructions are becoming better suited to
compiler-generated code. Most of the new processors utilize
memory segmentation, but some still provide for a form of
linear addressing. Many data types are supported, and some
devices go so far as to provide a descriptor architecture in
which the information stored is only one step from being
self-identifying. The end result is that the newer
microprocessors are taking on more and more of the
attributes of the traditional mainframe computer.

The entire microprocessor field has been expanding at
such a rapid rate that it is difficult, if not impossible, to keep
up to date on all aspects of it. One area that has suffered has
been that of terminology. New products have been
introduced at a rate that has prevented the literature from
ever completely catching up; as a result, much of the
terminology in use today is imprecise and inconsistent. One
cannot fall back on the conventional field of electricity and
electronics as it existed and was taught in universities prior
to the 1970s. Today a student’s knowledge can become
obsolete in the same year he graduates. The differences in
documentation also hinder systems designers when they
must work with literature and data sheets from a number of
different manufacturers and combine different technologies
from different vendors into a working and reliable system.
Another problem in the microprocessor field is that its early
development was driven to an extent by hobbyists and
toymakers as well as by industrial designers and
programmers, and some of the effects of their influence can
still be seen today.

Tae future

Microprocessors have already changed the way most of us
live our daily lives at home, at work, and at play. Just over a
dozen years ago microprocessors did not exist, and today
there are millions of them in operation in such unlikely
places as a child’s toy or the engine of a car or an electric
mixer in the kitchen. To state that they will continue to
change our lives is like pointing out that the sun will come
up tomorrow. What nobody knows today is where this will
take us before the end of the century, because by then it is
very likely that more microprocessors will be used in
applications that do not even exist today than all of the
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microprocessors currently in use. The world is still trying to
adjust to living with computers, and now we have a new
breed that will fit under a thumbnail.

Some of the changes currently taking place are quite
obvious. More pertpheral functions are being added to the
CPUs and more intelligence is being added to the peripheral
devices to the extent that very soon there will be cases where
it will be difficult to distinguish one from the other. Higher-
level language transiators are being incorporated in silicon
and will facilitate human communication with the new
devices, and the devices themselves are being designed to
operate more efficiently with the higher-level programming
languages. Microcontrollers are being improved in function
and in bit-handling ability; this will ease their introduction
into an entirely new field of low-level applications such as
“smart” traffic lights, vending machines, and electrical
appliances which will become a natural part of our everyday
lives. Microcontroliers are also being improved to handle
higher-end applications such as signal processing and
specialized industrial controllers, and are taking on many of
the same features that are being added to the newer CPU
chips.

Many different names are applied in reference to the
technology used today for the silicon chips themselves, but
most are variations of NMOS. (Refer to Appendix 3.) CMOS
is now becoming faster in operating speed and smailer in
size, and is increasing in popularity to the point where some
manufacturers are introducing new parts only in CMOS.
Another recent development is the radiation-hardening of
the parts in order to increase their reliability in
certain harsh environments being encountered in some
applications.

While microprocessor use will be quite visible in some
areas, many of the new applications will not be as noticeable
to the end user. (The motorist will be aware of the processor
in the dashboard of his new car, but he may not know that
there is actually a small CPU in the windshield wiper motor,
fuel injector, voltage regulator, headlights, heater, and in
each of the turn signal and brake lamps.)

The higher-end applications such as data processing and
industrial control (and even some of the personal computers)
will be much more visible to the end user. A number of
thirty-two-bit devices are already available and even larger
word sizes will surely follow. This does not mean, however,
that there will be a mass movement to the larger word sizes.
The first microprocessors were four-bit devices, and although
they did not find their way into a large number of different
applications, they still remain as the largest-selling
microprocessors. Eight-bit microprocessors come in second
as far as volumes shipped, but they do appear in the largest '
number of different applications today. Sixteen-bit
microprocessors are now reaching their maturity and appear
in an ever-increasing number of applications. The thirty-
two-bit devices are being well received, but faster and more
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versatile eight- and sixteen-bit devices will remain as the
backbone of the microprocessor industry for some time to
come (at least until there is a revolutionary breakthrough in
the technology required to interconnect multiple devices).

To state simply where microprocessors are going from
here: They are becoming more powerful and complex in
function, faster in operating speed, and smaller in size; they
will soon be used everywhere.

Example 1: A cash register control

Qur first example is a simple system using a microcontroller
to operate a cash register. The cash register was chosen as an
example because until recently it was a purely mechanical
device, and its function is well understood. The marketplace
today requires that mechanical devices be simplified or
eliminated in order for a product to remain competitively
priced. The use of a touch-pad keypad and LED (light-
emitting diode) display eliminates the mechanically operated
keys and price display of the traditional cash register. A
microcontroller was chosen because the application is a high-
volume one and unit cost is of prime concern. Also, the
application itself is well suited to the capabilities of a
microcontroller. The cash register, which is used by a fast-
food chain, has a special keypad for entering items by name,
and a five-digit display for showing the total price of an
order, the amount tendered, and the change due. (See Figure
4.) As an added feature that would not have been possibie
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with the old-style cash register, a running total of receipts is
kept for transmitting to a host computer at the end of the
day.

The microcontroller chosen for this application has 1K
bytes of onboard masked ROM for storing the application
program and 64 bytes of onboard RAM for data storage. For
prototyping, there is a second version available that has UV-
erasable EPROM in place of the ROM and is compatible pin
for pin with the masked ROM version. There are three 1/0
ports of eight bits each that provide 24 bits of 1/O directly on
the CPU chip. There is an accumulator, an eight-bit timer,

" eight eight-bit working registers and an onboard stack that

stores eight return addresses. No clock oscillator chip is
required, as there are two pins on the CPU that accept a
crystal directly as the timing element. There is also an
interrupt pin which may be used to interrupt the CPU or
which may be programmed to act as a polled input without
actually interrupting the program in progress. Two “test”
pins are available, one of which may be used either as an
input or an output. A single five-volt power supply is
required.

The LEDs for the display are standard seven-segment
displays (so named because of the seven individual segments
that are used to form the number 8). The simple approach
would be to use displays that accept BCD numbers from 0 to
9 and display the corresponding digits. This approach would
require 16 of our 24 1/O lines (four display digits at four bits
each). We have chosen instead to use LED displays that
provide separate inputs for each of the seven segments plus
one for the period (or decimal point). This means that we
need eight data lines going to each display digit; but as well
as displaying numbers, we will be able to form words such as
“Err.,” “CASH,” “DUE,” etc. by selecting proper
combinations of the segments. The LEDs need not be
energized 100 percent of the time to remain visible, so we
multiplex them by connecting all similar inputs on a bus.
(All segment s are tied together, as are all segment 2s, all
periods, etc.) We illuminate the displays by strobing power
to them one at a time, using four more of our 24 I/O lines.
Going from four to five digits of display would add the
possibility of words such as “HELLO” and “Error” to our
vocabulary and would still only require a total of 13 I/O
lines for the display. By multiplexing the display LEDs, we
have saved three 1/0 lines and added a display digit, as well
as reducing the total amount of power consumed by the
display. We have also added a level of difficulty to the
programming. [nstead of writing to the display digits and
leaving the data there until they are to change, we must now
continually change the data and select lines in the proper
sequence in order to keep the display lit. If we muitiplex
more than five display digits and also have to watch for new
inputs from the keypad, the display will start to get dim.

The keypad for the cash register is of the EDS (elastic
diaphragm switch) type and essentially has no moving parts

IBM J. RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985




to wear out. (It is also impervious to dirt and liquid spills.)
There are 25 “keys,” 22 of which are designated by the
names of the products available. This reduces the possibility
for operator error, as the inputs are by item name and the
prices are automatically assigned by the microprocessor. If
the prices change, a table in the program must be updated; if
the items change, a new template may be placed over the
keypad. The keys are arranged electrically in a § X 5 matrix
and are strobed by ten of the I/O lines. We have chosen to
have the depression of any key cause an interrupt so that we
scan the keypad only when necessary.

As the total price for each transaction is displayed, it is
also added to a running total for the day that is being kept in
RAM. If desired, a count can also be kept for any or all of
the various items being sold. (A total of 255 can be
accumulated in one byte, but two bytes allows the daily total
to reach 65 535.) At the close of business (when the phone
rates happen to be cheaper), the cash register may be
connected to a long-distance line through a modem
(modulator/demodulator). The daily records may then be
transmitted to the home office, where they may be used for
bookkeeping and/or inventory control purposes.

Example 2: Control of a robot

For our second example we look at a more sophisticated
system that uses a number of 16-bit microprocessors to
control an industrial robot. The robot under consideration
has eight axes or degrees of freedom. Each axis is driven by
an electric motor and uses a microprocessor to control the
speed of the motor. A pinth microprocessor acts as an
overall supervisor to send data to the individual axis
controllers, interface with the machine operator, and
communicate with a host computer that oversees the
operation of several robots. Each axis-control microprocessor
is located on a separate printed-circuit card and is referred to
as a slave. The master is located on a larger printed-circuit
card, sends commands to the slaves, and also handles the
miscellaneous robot control functions. Figure 5 shows the
basic components in the system. We look first at a typical
slave card and then at the master.

Each slave card has a 16-bit microprocessor with its
associated logic and memory. (Refer to Figure 6.) Two
EPROM sockets allow for up to 4K bytes of program
memory. Four 1K X 4 RAM modules provide 2K bytes of
scratchpad RAM for storing program variables and a return
address stack. There is an eight-bit DAC (digital-to-analog
converter) to supply an analog (continuously variable)
output used to control the speed of the axis drive motor. A
16-bit ADC (analog-to-digital converter) converts an analog
input signal ranging from —10 volts to +10 volts into a 16-
bit digital word representing the position of the robot axis in
its range of travel. The microprocessor program on the slave
card continually reads the axis position from the ADC. If the
axis position does not match the last command position
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from the master, the microprocessor program causes the
DAC to send a voltage to the axis drive motor until the
actual position matches the commanded position.

The slave card does not really have much to keep track of
(the commanded position from the master, the actual
position from the ADC, and the voltage to send out to the
drive motor). It must, however, operate at a high rate of
speed because when the robot axis is moving at high speed,
the ADG.input changes rapidly and the motor signal must
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be tuned to this for smooth operation of the robot. The
portion of the program that handles the motor drive signal is
quite concise and is written in assembly language for
optimum use of execution time. The rest of the program
handles communication with the master, system diagnostics,
etc. and is not as critical for execution time or memory
space. To save programming time, this portion of the slave
program can be written in a higher-level language.

The master card is physically larger than a slave card and
contains a 16-bit microprocessor with its own associated
control logic and memory. Figure 7 is a simplified block
diagram of the master card. The two EPROM sockets on the
master card are larger than those on the slave card and allow
for up to 16K bytes of program memory. Eight 1K X 4
RAM modules provide 4K bytes of scratchpad RAM for
storing data tables and a return address stack. Some
additional control chips are used with the microprocessor on
the master card to allow for a DMA operation with the
RAM on the card and for the use of a numeric processor to
perform high-level math functions. The application table
that determines the various positions of each axis is stored in
RAM on the master card and may be brought in slowly
from a tape cassette or rapidly from another CPU by using
DMA. The numeric data processor is used when the robot is
not just moving from one point to another, as in a pick and
place operation, but must maintain a specific path and
speed, as in a welding operation. A high-level language can
be used to write the program for the master card except for
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the routines that handle communications with the slaves.
These routines determine the sequence of events on the
communications bus and are written in assembly language.

The robot can be “taught” to perform an operation by
leading it through the process steps with an operator control
pendant. Each step is recorded in a table that is later
followed by the machine as it performs the operation. This
table is in RAM on the master card, so it may be changed at
any time. The data are lost when power is turned off, so the
information is stored by sending it out serially on a
communication link to a tape drive or a host computer. This
also allows the host computer to build up a table of robot
operation steps and download it to the master card for
execution.

A multi-microprocessor-based control for the robot was
chosen as a cost-saving measure. The functions provided by
the slave cards could have been implemented in
conventional hardware, but the cost would have been greater
because a large portion of the control function was
eliminated from the hardware and performed with software.
The functions provided by the master card could have been
accomplished by a minicomputer. Here again there is a cost
saving, because a minicomputer is stand-alone and general-
purpose and the master card was designed specifically to
control a multi-axis machine so that there is no unused
hardware. Also, the master card is packaged on an 8 X 15-in.
(20.32 x 38.10-cm) printed-circuit card inside the robot
control unit and the minicomputer would be in a
moderately sized box of its own.

Appendix 1: Evolution

The introduction of the transistor changed forever the
physical aspects of computer circuitry. At first there was a
constant effort to build smaller and smaller transistors until
their size was reduced to the point where they became
difficult to handle in manufacturing operations.
Development effort was then directed toward placing as
many transistors as possible on one piece of silicon, called a
die or chip. This allowed circuit designers to create
individual logic chips with ever-increasing levels of
sophistication, and the resulting SSI (small-scale integration),
MSI (medium-scale integration), and LSI (large-scale
integration) random-logic devices were widely used by
system designers in the proliferation of solid-state digital-
controls that were introduced in the late 1960s and early
1970s [1]. The point was then reached where LSI devices
were becoming less general-purpose and more dedicated to
one specific application. At this point the introduction of
new LSI devices began to slow down due to the diminishing
return on investment required to develop and introduce new
devices.

This was the environment in wHich the first
microprocessor, or “CPU on a chip,” was born. The
calculators being built at the time each used several logic
chips containing up to 1000 transistors apiece. Busicom, a
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Japanese manufacturer of calculators, approached Intei in
mid-1969 with a request for 12 LSI chips for a new family of
high-performance programmable printing calculators. Intel
at the time was producing MOS (metal oxide
semiconductor) and bipolar RAMs (random-access
memories) and could place up to 2000 transistors on a single
chip. The Busicom design required 3000 to 5000 transistors
on each chip and packages with 36 to 40 leads each.

The logic to control the printer, scan the keyboard, and
update the display, as well as to perform the actual
calculations, was to be incorporated on separate chips. The
elemental instructions for performing the calculations were
quite complex and were executed more in random logic than
in ROM (read-only memory). In an effort to simplify the
design, it was decided to reduce the complexity of the
elemental instructions and thus make them more general-
purpose. With programs stored in ROM, these simple
instructions could be used repetitively not only to perform
the required calculations but also to perform the logic
functions required for the overall operation of the calculator.

A four-bit-wide data path was chosen because it worked
out well with the BCD (binary coded decimal) coding being
used in calculators at the time and allowed addressing of up
to 16 digit positions for display or printing. The final version
of the calculator control consisted of a four-chip set that
eventually was called the MCS-4. It consisted of a four-bit
CPU chip, a ROM chip for program memory, a RAM chip
for data memory, and a shift register chip for output
expansion. The CPU chip ended up with about 2300
transistors on a 16-pin substrate, becoming the 4004 that
was advertised as a “micro-programmable computer on a
chip” in November of 1971, The term “microprocessor” was
first used for this device in 1972.

The CPU chip contained a four-bit parallel adder, 16
index registers, an accumulator, and a push-down stack for
return addresses. There were 46 instructions which included
conditional branching, jump-to-subroutine, indirect fetching,
and support for both binary and decimal arithmetic. The
4004 had a four-bit parallel bidirectional data bus that
multiplexed address information and data. An eight-step
instruction cycle was used to handle eight-bit instructions,
and a 12-bit instruction address space allowed addressing of
up to 4096 bytes of program memory.

The microprocessor was therefore born out of necessity as
a natural development in the progression of logic design and
was initially intended more for the replacement of random
logic than as an attempt to put a computer on a single chip.

Late in 1969, Computer Terminals Corporation requested
that Iiitel develop LSI chips for the registers of a new
intelligent terminal. The 4004 instruction set had just been
defined ahd Intel proposed to CTC that the terminal control
logic be implemented on one chip as a complete eight-bit
processor. This design was not used in the CTC terminal,
but it was implemented in silicon and became the first
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parallel eight-bit microprocessor. The CPU was introduced
by Intel early in 1972 as the 8008. It had 45 instructions
oriented toward the terminal requirement of character string
handling and also provided interrupt capability, a return
address stack, and six general-purpose registers.

Late in 1972 Rockwell entered the microprocessor market
with a four-bit parallel processor called the PPS-4. The CPU
had 50 instructions and was implemented in a PMOS (p-
channel metal oxide semiconductor) chip on a 42-pin
substrate. Several other manufacturers introduced
microprocessors in 1973 and 1974. Among these were Texas
Instruments’ TMS-1000 family of four-bit PMOS processors,
RCA’s CMOS (complementary metal oxide semiconductor)
1802, and National Semiconductor’s IMP-16, which was a
16-bit five-chip bit-slice CPU.

The first three microprocessors marketed by Intel were
implemented in PMOS. (There had also been a follow-on
improvement to the 4004 called the 4040. It had 14 more
instructions, a deeper stack, and more registers and memory
addressing ability, as well as interrupt capability, all on a 24-
pin substrate.) In 1974 Intel released an upgraded version of
the 8008 and called it the 8080, the first of the second-
generation microprocessors. The new processor consisted of
5000 transistors implemented in faster NMOS (n-channel
metal oxide semiconductor) and had 30 more instructions
than the 8008. The 8080 utilized a 40-pin package that made
interfacing to it somewhat easier than with the 18-pin 8008,
which required an additional 20 TTL (transistor-transistor
logic) packages for memory and I[/O interface. The 8080 had
an eight-bit data bus and a 16-bit address bus, and the
return-address stack was removed from the CPU and placed
in RAM to allow virtually unlimited subroutine nesting.
Decimal and double-precision arithmetic instructions
missing from the 8008 were added to the instruction set, and
the hardware provided the ability to handle vectored
interrupts. (The interrupting device essentially tells the CPU
where in program memory to find the proper interrupt
service routine.)

Following the introduction of the 8080 in 1974, many
new microprocessors have been introduced each vear. (By
1976 the total was already up to 54.) The 6800 from
Motorola in 1974 was the first to use a single +5-volt power
supply, and Intel’s 8048 in 1976 was the first eight-bit
microprocessor to have a CPU, RAM, ROM, and I/O all on
one chip.

Sixteen-bit microprocessors have been around in one form
or another since 1974, but the first one to gain wide
acceptance in the mndustry was the 8086 that Intel
introduced in 1978. Texas Instruments’ 9980, Intel’s 8088,
and Motorola’s 6809 featured higher performance by
utilizing 16-bit internal data processing, but allowed simpler
interfacing to the rest of the system by retaining an eight-bit
external data bus. The trend today is to go to wider data
paths (16-bit microprocessors are in widespread use and 32- 121
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bit microprocessors are being introduced). There is also a
strong effort to place more of the overall system function on
the CPU in the form of operating systems in silicon as well
as auxiliary functions such as timers, interrupt controllers,
communications controllers, etc., on the chip. Coprocessors
are being used for high-level mathematical functions, such as
floating-point operations, as well as inteltigent I/O.

Some of the faster, special-purpose microprocessors have
been implemented with bipolar transistors, but
photolithographic and semiconductor processes have
improved at a rapid rate and most of today’s
microprocessors still utilize NMOS in one form or another.
There is an increasing trend, however, to utilize CMOS in
order to improve noise immunity and reduce power
consumption.

The first microprocessors were used mainly for the
replacement of random logic, as in the case of the printing
calculator and the intelligent terminal previously discussed.
They continue to be widely used in this type of application
and have also branched into two other main areas. One is
that of reducing the physical size of actual computers, as is
evidenced by the rapidly growing personal computer market.
The other is the introduction of intelligence into areas where
it was not previously possible or practical. Some of the more
popular examples of this may be seen in electronic toys,
arcade games, automobiles, household appliances, robotics,
instrumentation, and the ever-present video games.

In the ten years since the introduction of the 8080 there
have been improvements in speed and functionality, and
instruction sets have been expanded to include more data-
handling and program-control instructions, but the
rudiments of the basic 8080 itself can still be seen in the
majority of today’s Drocessors.

Appendin 2: Memory

A microprocessor system requires some type of memory for
storing program instructions and also for storing constants
and variable data. Instructions are often stored in ROM
(read-only memory) and data are often stored in RAM
(random access memory). The information stored in a ROM
is not volatile; that is, it is retained even when all electric
power to the device is turned off. RAM, on the other hand,
retains its data only while it is connected to a voltage source.
ROM and RAM each come in several different types, which
we now explore.

ROM may have its contents established during the
manufacturing process, in which case it is called “masked”
ROM. The user must specify the desired contents of the
memory to the ROM manufacturer, who creates a
photolithographic mask with the correct bit pattern. The
masking of the data into the ROM is an expensive and time-
consuming process, but the finished parts themselves are
relatively inexpensive. Masked ROM is therefore generally
used in applications involving high-production items where
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many identical copies are required and where the program
or data being stored are not likely to change.

Another type of ROM is the PROM (programmable read-
only memory). The PROM is more expensive than masked
ROM in large quantities, but it has an advantage in that it
can be programmed by the manufacturer of the finished
product in his plant and does not require that the
information be essentially built into the parts by the
semiconductor manufacturer, as is the case with the masked
ROMs. The actual programming which loads the data or
instructions into the PROM:s is donie on a device called a
PROM programmer. PROM programmers are now available
to meet a variety of needs. A simple and inexpensive one
might be able to program a specific type of PROM or copy
its contents into another one of the same type, where a more
sophisticated and expensive model might be able to work
with different types of PROMs and perhaps communicate
with a terminal or a computer. Some microprocessor
development systems have PROM programmers built in, so
that after a program has been developed it can be loaded
directly into a memory chip for debugging in the target
system.

PROMs themselves come in several varieties. First is the
“fusible-link” PROM that is personalized by selectively
fusing metal links to change the bit pattern stored in the
device. The memory chip as it is manufactured contains all
zeros or all ones and the links are opened up one at a time
to change the original data in one bit location at a time. This
is a nonreversible process, so if changes must be made to the
data, it generally means starting over again with a new
PROM chip. Fusible-link PROMs do not typically have a
large storage capacity and are used more in logic applications
than for storing programs or data.

The second, and today the most widely used, type of
PROM is the UV-erasable EPROM (erasable programmable
read-only memory). As the name implies, a “UV-erasable”
EPROM may be erased by a prolonged exposure to an
ultraviolet light source. (There is a transparent window on
the top of the package to allow the erasing light to reach the
actual memory chip.) An EPROM may be programmed and
erased many times before it finally fails to accept new data.
The actual programming of the EPROM is done with a
PROM programmer. In large quantities, the individual piece
price of an EPROM is greater than for a masked ROM, but
it does have a number of advantages. Because an EPROM is
erasable, it may be used in prototypes while the final code is
being developed for eventual entry into a masked ROM.
EPROMSs may be gang-programmed in quantity and are
therefore suited for applications that require repeat build but
do not see enough replication to justify the cost of a masked
ROM. Also, in the case of upgrading a product with new
software or expanded capability, an EPROM can be
exchanged and the old one sent back to be reprogrammed
with the new code.
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A third type of PROM is the EEPROM, which stands for
“electrically erasable programmable read-only memory.”
The EEPROM is similar to the UV-erasable EPROM except
that it may be programmed and erased electrically while in
place in a system and need not be removed for the UV light
and PROM programmer process. An EEPROM is aiso
referred to as an EAROM (electrically alterable read-only
memory).

RAM memory is used to hold information that is subject
to change during the normal operation of a system. RAM is
available in two basic types known as “static” and
“dynamic.” In both cases, the information in the memory is
lost when power is removed from the module and must be
written back in each time power is applied. The difference
between static and dynamic RAM is in how the data are
actually stored in the memory chip. A static RAM has flip-
flop-type storage locations for each bit that is to be stored
and these flip-flops retain their information until it is written
over or until power is removed from the device. In a
dynamic RAM, the storage mechanism consists of a single
transistor for each storage location. The information is
stored as zeros or ones by charging or discharging a capacitor
on the base of the storage transistor. Dynamic RAM is less
expensive than static RAM, but the capacitors leak and must
be repeatedly recharged. Circuitry known as “memory
refresh logic” is required to keep recharging the proper
capacitors. This is done automaticaily, but the logic takes up
space on the circuit board and adds cycles to the process
time of the system.

A newer type of RAM is the NOVRAM (nonvolatile
random access memory). These devices contain an area of
high-speed static RAM that is backed up on the same device
by an identical array of EEPROM. The static RAM is used
for normal read and write operations, and its contents may
be transferred to the EEPROM very quickly if a power
failure occurs. The data may then be retrieved from the
EEPROM when the system is again operational. These
devices provide the benefits of both normal high-speed read
and write operations and nonvolatile storage in the same
package.

“Byte-wide memory” is a packaging scheme that is
becoming popular in microprocessor-based systems. This
scheme uses identical package pinouts for the same sizes of
RAM, ROM, and EPROM. This allows EPROM to be used
in the development stage of a project, and when the program
has been finalized and debugged, ROMs may be ordered that
directly replace the EPROMs with no wiring changes
required to the system. Another advantage of having
identical pinouts is that printed-circuit cards may be
fabricated with standard prewired memory sockets that have
been assigned addresses in the memory map. The end user
may then populate the card with the type of memory needed
for the particular system at hand, whether it is RAM, ROM,
or EPROM. In byte-wide memory systems, package pinout
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is also considered when different sizes of memory are
utilized. Smaller memory modules may be plugged into
sockets intended for larger-capacity memory. In this case,
care must be used to ensure that the proper pins on the
module interface with the corresponding socket pins because
the socket, which is able to support a larger memory, has
more pins than /thé module.

Memory modules are available in many different sizes and
are generally categorized according to the total number of
data bits that may be stored. (A 4K RAM, for instance, has
4096 individual bit positions.) The number of data lines on a
memory chip is determined by the size of the words that
may be stored, and the number of address lines is
determined by the number of words. Ten address lines allow
addressing of 1024 words and eight data lines allow for an
eight-bit word size. A memory manufacturer may refer to
this as an 8K or 8192-bit device, but in a microprocessor
system it is more likely to be called a 1K x 8 memory (for
the 1024 words of eight bits each). For larger word sizes, the
address lines of several memory chips may be wired in
parallel. For more words, the data lines and the lower-order
address lines may each be wired in parallel and the higher-
order address lines are used to select or activate the proper
memory chip. System memory may thus be tailored to
almost any application by the proper selection and
interconnection of memory modules.

Appendix 3: Packaging

The overall package size of a microprocessor is determined
not by its computing power or the amount of on-chip logic it
contains, but rather by the number of lines needed to
interface the microprocessor itself with the rest of the system
it is controlling or operating in. A microprocessor CPU
consists of a small square of silicon, referred to as a die or
chip, which contains the necessary solid-state logic circuitry.
This chip is mounted on a substrate that acts as a chip
carrier and contains the physical interface to the rest of the
system. A typical microprocessor chip is about 0.2 mm thick
and 2 or 3 mm square. The chips are fabricated from silicon
wafers that measure up to several inches in diameter. The
wafers go through a number of photolithographic and
chemical process steps before finally being diced into
individual chips. Each chip or die is then mounted on a .
substrate that is suitable for handling and for final assembly
onto a card or board.

Individual microprocessor package sizes vary, but a typical
one today has 40 pins, measures 1.5 cm wide by 5 cm long,
and has two parallel rows of 20 pins each. The double row of
pins is evidenced in the name DIP (dual in-line package)
that has been given to this particular type of package (also
referred to as a DIL for “dual in-line”™). The individual pins
are spaced 0.1 in. (0.254 c¢m) apart and the rows are spaced
0.6 in. (1.524 c¢m) apart. The inputs and outputs on the chip
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around the periphery of the chip. Very fine wires are bonded
to these pads to connect with metal traces on the substrate.
These metal traces connect with the pins on the substrate,
and the number of pins and traces needed is the determining
factor in the size of the substrate. (In some of the newer,
more sophisticated designs, especially those with 32-bit
architectures, the size of the silicon chip is also becoming a
determining factor.) The substrates may be made of ceramic
or hard plastic and are hermetically sealed to prevent
contaminants from contacting the silicon chip or interface
wiring. The DIP packages are often referred to as modules
and, to add to the confusion, quite often are loosely referred
to as chips.

Some of the newer microprocessors are getting away from
the DIP packaging in order to save printed-circuit board
space and have gone to a square substrate that has rows of
pins fastened to the bottom of the substrate. This type of
package is called a pin grid array. There are also leadless
chip carriers, which are square ceramic substrates that have
no protruding pins. Connections are made to this device by
contacting metal pads located around the periphery of the
substrate in a process referred to as “surface-mount
technology,” or SMT. (Leadless chip carriers are sometimes
imprecisely referred to as flat-packs.) Another method of
fastening substrates to printed-circuit boards is via J-shaped
leads that allow for different thermal coefficients of
expansion for the substrate and the board.

SSI, MSI, and LSI are terms that relate to the amount of
logic or number of “equivalent gates” that are present on
one chip. A chip having fewer than ten equivalent logic gates
is referred to as SSI. MSI denotes chips with between ten and
100 gates, and anything over 100 gates is known as LSI.
VLSI is sometimes used for chips containing over 1000 gates
in equivalent logic.

There are many names for the technology used in placing
digital logic on semiconductor chips, but most are variations
of bipolar and MOS. Bipolar transistors are typically fast and
use more power than the field-effect transistors that make up
the MOS devices. PMOS transistors use holes as majority
carriers and are thus slower than the more popular NMOS
transistors that use electrons as the majority carriers. CMOS
chips utilize both NMOS and PMOS transistors on the same
silicon substrate with the result being a device that uses very
little power and has a high immunity to electrical noise.
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