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This paper presents a tutorial overview of the 
past, present, and future of microprocessors 
and describes the key elements of their 
structure and operation. It is intended to serve 
as a technical introduction to the rapidly 
expanding field of microprocessor and 
microcomputer technology and to provide an 
overview of what these elements are, what they 
can do, and how they do it. The origin and 
evolution as well as the basic principles of 
operation are discussed. Several different types 
of microprocessor are considered and examples 
of their application in the solution of real-world 
problems are given. 

~~~~~~~~~~~~ 

The microprocessor, an invention of the early 197Os, 
essentially incorporates the computational power of a 
computer in a package that can be held in the palm of one’s 
hand. Microprocessors are currently being used extensively 
in lieu of conventional logic to reduce product cost, add 
more functions, and increase reliability through fewer part 
numbers, reduced hardware, and less complex packaging. 

The microprocessor is viewed differently by different 
people. To an end us& it might be just a black box, to a 
programmer it might be a smaller version of the central 
workings of a computer, or to a control logic designer it 
might be a logic device that continually rewires itself 
according to the instructions sent to it. No matter what the 
point of view or intended end use, the microprocessor must 
contain certain elements in order to perform the required 

tasks. What is commonly referred to loosely as a 
“microprocessor” usually consists of a small group of devices 
that combine to make up the control nucleus of a 
microprocessor-based system. (See Figure 1.) It is this 
nucleus of necessary devices that we are primarily concerned 
with in this paper. 

Basic operation of the various microprocessor system 
elements is covered first, followed by a stepby-step 
description of the execution of instructions in a simplified 
program. A number of more intricate concepts are discussed 
under Advanced concepts, and Theyiture takes a look at 
where microprocessors are going from here. Example 1 is a 
simple cash register control, whereas Example 2 details the 
more sophisticated master/slave microprocessor control of a 
robot. 

In order to shed some light on the original purpose of the 
device and to show how it has since grown to fill other 
needs, details of the origin and evolution of the 
microprocessor are given in Appendix 1. The physical 
packaging aspects of microprocessors and the details of 
operation of the various types of microprocessor memory 
devices are mentioned only briefly in the body of the paper, 
but are covered in some depth in Appendices 2 and 3. A 
bibliography has been included with references to more 
detailed tutorial and technical literature that covers the 
many aspects of microprocessors and how they are created 
and applied. 

asic ~~~~~~~~~~~~~~ operalion 
The primary control device in a microprocessor system is the 
CPU (central processing unit). Here, most of the decision- 
making is performed through the execution of program 
instructions. These instructions are stored in memory and 
the CPU fetches them as needed to perform the required 
task. Most instructions are very basic in hature; they direct 
simple operations such as reading in data from an outside 
source, moving data from one storage register in the CPU to 
another, performing some logic or arithmetic function on 
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the contents of a register, or wniting data out to another part 
of the system. There are also instructions that perform more 
complex functions, but regardless of the complexity of a 
single instruction it cannot accomplish even the simplest 
task entirely by itself. Individual instructions must be 
combined in some logical fashion to create a program to step 
the CPU through a series of basic operations that will, when 
taken as a whole, perform some useful function. Sometimes 
the program instructions are stored in the CPU itself, but 
more often they are stored in a separate memory device. A 
microprocessor needs memory for storing both instructions 
and data. The various types of solid-state memory modules 
used in microprocessor-based systems are described in 
Appendix 2. 

sections as shown in Figure 2. There must be a control 
ROM (read-only memory), a PLA (programmed logic array), 
or a random logic decoder (or some combination of these 
devices) to decode the instructions one at a time and to 
direct the operation of the rest of the CPU chip. There is 
timing and sequence logic that steps each operation through 
in its proper order. There is an ALU (arithmetic logic unit) 
that performs basic arithmetic and logical operations on 
operands that are fed through it. There are normally a 
number of registers of various sizes located on the CPU chip 
itself. There are address pointer registers whose width 
depends on the size of memory the system is designed to 
handle and on whether the memory being addressed is in the 
CPU or external to it. There are data registers for storing and 
transfemng data, and at least one of these registers is 
normally a special-purpose working register called an 
accumulator. The accumulator is involved in most of the 
data-oriented activity on the CPU. (The results of most of 
the ALU operations are sent to the accumulator, and its 
contents are quite often used as one of the operands.) 
Connecting all of these elements is a data path whose width 
is determined by the microprocessor word size. This data 
path, with bidirectional buffers at the boundary of the CPU 
chip, becomes the local system data bus and acts as the 
information path connecting all data-related elements in the 
system. 

The contents of the active address pointer register 
generally follow a separate path to the boundary of the CPU 
chip, where it passes through buffers to become the local 
system address bus. A 16-bit address bus allows addressing of 
65 536 (often referred to as "64K") separate memory 
locations, and a 20-bit address bus allows for over a million. 
In an effort to reduce the number of pins on the CPU 
package, some microprocessors multiplex some portion of 
the address bus and data bus on the same group of pins as 

8 they leave the CPU chip. This saves pins on the CPU, but 
requires that extra hardware be added to create individual 
address and data buses to serve the rest of the system. This is 
of little consequence in larger systems, however, because the 

A typical CPU chip consists of several separate logical 
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local address and data buses must be buffered again before 
being distributed to a large number of memory and 
peripheral chips, and the demultiplexing and buffering can 
both be done by the same devices. (The address bus is 
unidirectional only, out of the CPU, but the data bus is 
bidirectional and must be buffered in both directions.) 

Microprocessors are sized or cIassified according to the 
number of binary digits or bits that they are able to handle 
at one time. An eight-bit microprocessor generally has an 
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eight-bit-wide data interface to the outside world and eight- 
bit internal data paths and registers. When there are 
exceptions to this, it is generally that the internal data path is 
wider in order to increase the functional capability of the 
CPU, or the interface to the rest of the system is narrower to 
reduce cost or the number of package pins. (There is at least 
one microprocessor with a four-bit word size and a one-bit 
interface off the CPU.) In eight-bit microprocessors, d a k  are 
moved around in groups of eight bits, which are referred to 
as “bytes.” A byte is always eight bits, and a “nibble” is half 
a byte or four bits, but a word may be of any size as defined 
by a particular microprocessor. The most common word 
sizes for microprocessors today are four, eight, sixteen, and 
thirty-two bits. 

major elements in a control package or directly with the 
outside world. This is provided by interface elements or 
mechanisms called 1/0 (input/output) ports. These 1/0 ports 
may be located directly on the CPU itself or on separate 
chips, and can handle input or output data in either serial or 
parallel format. Usually separate I/O ports are required for 
input and output data and for serial and parallel format, but 
there are sophisticated devices available today that may be 
programmed to handle many types of I/O, and even to 
handle automatically much of the protocol involved in some 
of the more involved serial communication formats. Parallel 
1/0 ports may be designed for data input or data output 
only, or may handle bidirectional data. Some allow for the 
selection of input or output function on a bit-by-bit basis, 
but most ports are configured in groups of four or eight bits. 
If the 1/0 port is located on a peripheral chip and not on the 
CPU, it is connected to the CPU via address, data, and 
control lines in a manner similar to that used for memory 
modules. 

“Address modes” is a term which describes the different 

A microprocessor needs a means of interfacing with other 

methods a CPU uses to address data stored for future use 
(normally in memory). Some CPUs have a number of 
different registers that may be used as address registers, and 
some of the address modes use these registers in different 
combinations. There are some address modes that do not 
use address registers as such. In “immediate” addressing, the 
data are included as part of the instruction and are therefore 
pointed to by the program counter. In “implied” addressing, 
the location of the data to be used is implied by the 
instruction itself. “Direct” addressing includes the address of 
the data as part of the instruction; “direct short” uses eight 
bits of address (near the bottom or lower addresses of 
memory), and “direct long” uses 16 bits of address to access 
data anywhere in a 64K-byte range. In “register” addressing, 
the data are found in a register in the CPU, and in “register 
indirect” addressing, the instruction refers to a register that 
contains the address of the data in memory. “Indexed” 
addressing makes use of index registers in the CPU, and 

112 there is normally a method of automatically adding an offset 

to the contents of the index register before it goes out on the 
address bus (as for indexing into a data table). The index 
registers may also be caused to increment or decrement 
automatically by a specified amount every time their 
contents are used on the address bus. 

one of the address modes in a microprocessor, since 
instructions are normally pointed to by a special-purpose 
address register on the CPU called a “program counter.” The 
program counter points only at instructions and is 
automatically incremented to the next instruction every time 
it is used. The program counter may also be force-loaded 
with an address, as in the case of program jumps where the 
next instruction to be executed is not the next one stored 
sequentially in memory. The program counter might also be 
referred to as an instruction pointer register. 

Another register not included in the address modes is the 
stack pointer. This is an address register that is normally 
loaded in the IPL (initial program load) routine to point to 
an area in RAM that has been set aside to store return 
addresses and miscellaneous data. This RAM area is referred 
to as a “stack,” and its size determines the number of 
subroutines and interrupts that may be nested or overlapped. 
On a “call to subroutine” instruction, the CPU saves or 
pushes the address of the next instruction onto the stack by 
using the stack pointer as an address pointer and the 
contents of the program counter as the data to be written in 
memory. Next, the program counter is loaded with the 
address of the first instruction in the subroutine being called 
and this causes a jump to that subroutine. (Subroutines are 
used when there is a series of instructions that are to be used 
over and over again in a program, as for a routine to read 
data in from a keyboard every time a key is pressed.) The 
last instruction in a subroutine is “return from subroutine” 
and it merely pops the return address off the top of the stack 
and places it in the program counter. Operation is then 
resumed immediately following the point in the program 
where the subroutine was last called. The stack pointer 
register is automatically incremented and decremented by 
the CPU so that it always points to the last entry or next 
available space. Push and pop instructions are available that 
allow the programmer to store temporary data on the stack 
or to save the contents of registers when a subroutine is 
called or an interrupt occurs. (The “push” instruction writes 
to the stack and “pop” reads from it.) The stack acts as a 
LIFO (last-in first-out) register, so any data must be popped 
or retrieved in the reverse order from that in which they 
were saved or pushed. 

large number-of registers on the CPU, and the instructions 
specialize in oderating efficiently on data in these registers. 
Another type, referred to as memory-based, has fewer 
registers on the CPU, and the instructions are oriented more 
toward operating on data in memory. Still a third variety has 

Accessing program instructions is not usually considered 

Some microprocessors, referred to as register-based, have a 
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very few, if any, data registers on the CPU. Instead, there are 
pointers to memory where the “register” space actually 
resides. This fact is almost transparent to the programmer, 
except that there appear to be a number of complete sets of 
working registers that are easily accessible. 

microprocessor system generally involves a number of SSI 
and MSI logic chips. Buffers are required on the data bus to 
buffer the CPU from the electrically harsh environment on 
the system data bus and to increase the drive capability of 
the bus. Address decoders decode the higher-order address 
lines and provide chip select signals to activate the proper 
memory or 1/0 chips in response to a certain range of 
addresses. Multiplexing, or time-sharing, of address 
information and data on the same CPU pins requires that 
the system provide address latches to hold the address bus 
active throughout the entire memory read or write cycle. 
The basic system timing in a CPU is often derived from a 
crystal, and this usually requires a separate clock oscillator 
chip to convert the crystal frequency into clock signals 
suitable for the CPU chip. Some CPUs generate their own 
bus control signals, but more complex systems often utilize 
bus controllers to handle the read and write timing and other 
bus-related functions. What is really a fairly simple 
microprocessor system can easily result in a printed circuit 
card with 20 or more devices on it. What is often referred to 
as a “computer on a chip” today is frequently in reality more 
of a “CPU on a chip.” There is a constant effort, however, to 
reduce the number of chips required to form a working 
system. (Refer to “microcontrollers,” discussed in the section 
on advanced concepts.) 

Tying together all the basic components in a 

If j3s$ruction c <  ~~~~~~~~~~ 

In order to see just what a CPU does in carrying out its 
duties, we explore a short scenario of reading in some 
instructions and following the CPU through its paces. We 
assume that there is a program already in program memory 
to read the data at an 1/0 port, mask off some of the bits, 
and store the results in data memory. We assume also that 
this program starts at memory address 0, and that after it has 
been reset, this is where the CPU will look for its first 
instruction. For our example we assume that our 
microprocessor is accumulator-based with isolated 1/0 and 
uses eight data bits and 16 address bits. Figure 3 is a 
memory map for this program. 

The first instruction in our program is a two-byte INPUT 
instruction. The first byte is the op code, or operation code, 
that calls for the reading of data from an I/O port. The 
second byte of the INPUT instruction is the number of the 
port that is to be read. In our example it is port 0. The 
second instruction is the A&D instruction, which performs 
the masking of the bits. This also is a two-byte instruction, 
with the first byte being the op code, and the second byte 
being the immediate data to be used in the logical “and“ 

0007 7 1  
0006 34 

0005 12 

0004 MOVE 

0003 07 

0002 AND 
r 

0000 I INPUT 1 

I Sample program memory contents. 

operation. In our example we wish to mask off, or disregard, 
the high-order five bits of the input data, so the immediate 
data byte in the instruction is 07 (binary pattern 000001 1 1 ) .  
The third instruction is a MOVE instruction that takes our 
masked data and moves them out to memory. This 
instruction is three bytes long, with the first byte, as always, 
being the op code. The second and third bytes contain the 
16-bit address of the memory location in which we wish to 
store the data. For our example we use memory address 
1234. To prevent the CPU from continuing and doing 
anything after it has finished our example, we end the 
program with a HALT instruction that stops the CPU from 
executing any more instructions. 

After the CPU has been reset by an external reset, the 
program counter contains all zeros, and its contents travel 
through address latches and out on the address bus to access 
memory location 0000. (Memory addresses are to be 
specified in our example by using four hexadecimal digits.) 
The CPU also sends out a memory read command so that 
the contents of the selected memory location are placed on 
the data bus by the memory module. The CPU reads the 
data bus, which now has the op code for the first instruction. 
Since this is the first operation after a reset, the CPU knows 
it must be reading in an op code so it places the first byte in 
the instruction decoder to be decoded. Upon decoding the 
instruction, the CPU discovers that it is a two-byte 
instruction and it must fetch the second byte. The program 
counter was automatically incremented after its contents 
were saved in the address latches, so it now contains address 
000 1. This address goes through the address latches and out 
to access memory location 000 1 for the second byte. The 113 

IBM J .  RES. DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY 



second byte of the first instruction, which is 00 to represent 
port 0, goes back to the CPU by way of the data bus. Since 
this is an INPUT instruction, the CPU places the second 
byte of the instruction in the address latches as the lower half 
of the address of the 1/0 port. (The upper eight bits of 
address are zeros for all 1/0 operations.) Address oo00 goes 
out on the address bus, but this time the CPU sends out an 
1/0 read command because it is reading an input port and 
not a memory location. The combination of address 0000 
and the 1/0 read line being active causes input port 0 to 
place its contents on the data bus. (We might assume that 
the port is wired to some switches that we wish to monitor in 
a control application.) The CPU reads the data bus and 
places the data in the accumulator. (The accumulator is the 
destination for all INPUT instruction data and the source 
for all OUTPUT instruction data.) This concludes the 
execution of the first instruction, so the CPU prepares to 
read in the next op code. 

The contents of the program counter again go out on the 
address bus, this time with address 0002 and a memory read 
signal. This causes the op code for the second instruction to 
go to the instruction decoder for decoding. The CPU 
discovers that this is a two-byte AND instruction and it 
sends the program counter contents of 0003 out on the 
address bus to fetch the second byte. The data in the second 
byte of the AND instruction are to be logically “anded” with 
the contents of the accumulator, so they are placed in a 
temporary holding register. The contents of the accumulator 
are copied into a temporary accumulator and then both 
temporary registers are sent through the ALU, where they 
are “anded” together. The results of the ALU operation are 
returned to the accumulator, which now contains the low- 
order three bits of the data that were read in from port 0. 
“Anding” a number with 0 gives a result of 0. “Anding” a 
number with 1 leaves the number itself. Thus, our “anding” 
the accumulator with immediate data of 07 (OoooO 1 1 1 in 
binary) has had the effect of masking the high-order five bits 
to zeros and leaving the low-order three bits unchanged. This 
concludes the execution of the second instruction, so the 
CPU prepares to read in the next op code. 

The contents of the program counter go through the 
address latches and out on the address bus with address 0004 
and a memory read signal. This causes the op code for the 
third instruction to follow the data bus from memory into 
the CPU and then to the instruction decoder for decoding. 
The CPU discovers that it is a three-byte MOVE instruction, 
and it sends the program counter contents of 0005 out on 
the address bus to fetch the second byte. The data in the 
second byte of the MOVE instruction are to be part of a 
memory address, so they are placed in half of a temporary 
address register in the CPU. The program countkr was 
automatically incremented after its contents were saved, so it 
now contains address 0006. This address goes through the 

114 address latches and out to access memory location 0006 for 

the third byte of the instruction. The third byte of the 
MOVE instruction is the rest of the 16-bit memory address, 
so it goes to the other half of the temporary address register. 
The MOVE instruction is being used to move the contents 
of the accumulator out to data memory, so the temporary 
address register goes through the address latches to access 
memory location 1234. In this case we are moving data out 
of the CPU, so the contents of the accumulator are placed 
on the data bus and the CPU issues a memory write 
command. This causes the data on the data bus to be latched 
into the memory location that is being addressed by the 
address bus and concludes the execution of the third 
instruction. 

The HALT instruction is then read in from memory 
location 0007 and decoded. The CPU now remains in an 
idle state until it is given an external reset or an interrupt. 
No matter how long or involved a program may be, it is 
always executed one step at a time, as we have just seen 
(though for ease of exposition we did leave out a number of 
the details). There are microprocessors that can operate on 
more than one instruction at a time, and many of the 
instructions cause more activity than those we looked at, but 
it is always done one step at a time. 

Programs to control microprocessors may be written in a 
number of different ways. The most basic of these is 
“machine language,” which comprises the actual binary 
zeros and ones that the microprocessor responds to when it 
reads them in as instructions. The zeros and ones are fine for 
the microprocessor, but it is not comfortable for 
programmers to have to write programs using only numbers, 
so this is not done very often unless the application is 
expected to sell in extremely high volume. 

The next level of programming is that of using “assembly 
language,” where all of the binary machine instructions have 
been assigned names that represent their operation. 
Examples of these are AND, INPUT, ADD, JUMP, 
SUBTRACT, etc. The programmer writes a program using 
the individual instructions by name. (These names are 
referred to as mnemonics.) The mnemonics are then entered 
into a computer along with a program called an assembler, 
and the mnemonics are converted into the binary numbers 
that the microprocessor actually operates on. Assembly- 
language programs can be very efficient because the 
instructions are selected one at a time, but they also take a 
long time to write, and the programmer must be familiar 
with all the details of how each particular microprocessor 
handles each instruction. Assembly language is used today 
for most programs that are relatively short and are stored in 
ROMs or EPROMs and sold in large volume. 

Higher-level languages are available which make it easier 
to write programs because the language sounds more like 
basic English statements than elemental operation steps in a 
computer. After a program has been written in a high-level 
language, it is entered into a computer along with a program 
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called a compiler. There are different compilers for each of 
the high-level languages (such as BASIC, Pascal, FORTRAN, 
etc.), and there are specific versions for each of the target 
microprocessors. The compiler lists or compiles the 
individual mnemonics required to execute each of the 
general program statements, and then its output is run 
through an assembler to create the actual machine code or 
instructions. High-level languages save time for the 
programmer, but quite often make poor use of the 
microprocessor time and memory because the compiler does 
not always make optimum use of the instructions. Some 
programs are written in a high-level language and then time- 
sensitive portions are rewritten in assembly language to 
optimize the operation of the overall system. 

~~~~~~~~ concepts 
There are many different types of microprocessors available 
today. Some of them do not have all the features mentioned 
in the section on basic operation, but others have most or all 
of these features plus many more. Sometimes a number of 
powerful features are built into the CPU itself, or in some 
cases a rather ordinary CPU is applied in a system 
incorporating very sophisticated peripheral chips. The 
applications run the gamut from, for example, washing 
machine control or children’s toys to word processing to 
real-time image processing and continuous-path machining. 

One feature that might be incorporated in a CPU to 
increase its performance is pipelining. An example of this 
may be seen in instruction decoding. In our simple example 
we saw the instructions going directly from the data bus to 
the instruction decoder one byte at a time for decoding. 
Some microprocessors have instructions that are over half a 
dozen bytes long, and the CPU might have a queue for 
storing several bytes of instruction before they go to the 
instruction decoder. This saves CPU execution time in two 
ways. First, separate bus control logic on the CPU can be 
dedicated to keeping the instruction queue full so that the 
rest of the CPU may concentrate on executing the 
instructions, and not on trying to make optimum use of the 
bus. (Simple microprocessors spend most of the time 
fetching instructions from memory and in the read/write 
data operations on the bus, and not on actual arithmetic and 
logical operations that are performed within the CPU.) 
Second, the instructions may be pre-decoded to a certain 
extent in the queue so that some operations may overlap in 
time if they do not require the same portion of the CPU 
logic or depend on the results of a preceding instruction. 
Pipelining may be as simple as allowing the execution of one 
instruction to overlap the fetching of the next op code or as 
advanced as operating on several instructions at the same 
time. The objective, of course, is to execute instructions as ) 

rapidly as possible and to speed up the overall system 
operation. There are microprocessors today that do a high- 
speed fetch of a number of instructions and place them in an 

instruction cache or temporary storage location on the CPU 
chip itself. There they can be accessed more rapidly by the 
CPU than if they were left in system memory. This speeds 
up the overall system operation considerably. 

One of the trends today is toward more and more 
complex peripheral chips to handle such things as serial 
communication protocols, display screen control, parallel 
1/0 with handshaking, DMA (direct memory access), floppy 
disk controllers, and multifunction timer/counters. These 
chips normally have a number of control registers that 
dictate how the chip functions in the overall operation of the 
system. When electric power is first turned on, these chips 
are typically unable to function without first receiving ‘ 

“operating instructions” from the CPU. The CPU, in its own 
IPL (initial program load) routine, encounters a series of 
instructions that tell it how to configure the peripheral. 
devices in the system. It does this by sending a series of 
command words to the control registers in the peripheral 
devices themselves. These command words, which must 
normally be sent to the peripheral controller chip in a special 
sequence, are used to ”customize” the operation of the chip 
to fit the application. After this initialization, the 1/0 chips 
automatically handle the data in the prescribed manner 
every time they are called upon by the CPU or by the 
peripheral device they are supporting. 

The term direct memory access refers to an operation that 
transfers data directly to or from memory without the data 
being handled by the microprocessor chip itself. The DMA 
controller is an intelligent peripheral chip that must be 
initialized by the CPU and told where the data are to be 
moved from and where they are to be moved to. Once so 
initialized, the DMA controller takes control of the data bus, 
the address bus, and the control lines that handle memory 
read and write operations. The CPU is temporarily forced off 
the bus and must wait until the DMA operation is 
completed before it can regain control of the bus. DMA 
operations save time when large amounts of data are to be 
moved, because the DMA controller can automatically 
transfer data at the full bandwidth of the bus and does not 
need to keep reading in program instructions to tell it what 
to do next. 

The microprocessors we have been talking about until 
now might be called “conventional” microprocessors. There 
is a type of microprocessor that is generally referred to as a 
single-chip microprocessor, or microcontroller. The main 
feature of these devices is that an attempt has been made to 
place the entire system on one chip. (This includes the CPU, 
RAM, ROM, clock oscillator, and 1/0 ports.) A 
microcontroller has enough on-chip ROM to hold a control 
program of reasonable size (i.e., 1K or 2K bytes). Some 
microcontrollers are available in both masked ROM and 
UV-erasable EPROM versions (as described in the section 
on memory), and same have provisions for additional off- 
chip ROM or EPROM to allow for future expansion of an 115 
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application program. Some microcontrollers also provide for 
off-chip data RAM in addition to the on-chip registers and 
scratchpad RAM. Some of the other features incorporated 
into microcontrollers to increase their control capability 
include Boolean processing, timers and counters (cascadable 
or with optional prescalers), A/D (analog-to-digital) 
conversion, PLLs (phase-locked loops), and the ability to 
handle serial I/O. Microcontroller applications today are 
expanding rapidly and will continue to do so in both high- 
end and low-end applications. Typical applications of the 
newer high-end versions are analog data processing or signal 
processing; many of the lower-end versions will be buried 
within electrical equipment where the presence of a CPU 
will probably not be recognized by the end user. 

developed to enhance the capabilities of a microprocessor 
CPU. An example of this is the NDP (numeric data 
processor). The NDP cannot operate in a stand-alone 
situation as the microprocessor CPU does, but typically is 
connected to the same address and data bus as the CPU. The 
NDP monitors the instructions as they go to the CPU, and 
when an NDP instruction is encountered, the CPU releases 
the bus and allows the NDP to take over the bus and execute 
the instruction. The CPU may wait while the NDP performs 
some floating-point operation, or it may continue on its own 
and then at a later time query the NDP for the results of the 
operation. The NDP instructions are intermixed with the 
CPU instructions, so the programmer need not be overly 
concerned that some instructions are being executed by the 
CPU and some by the NDP. Coprocessors speed up 
processing time because they are dedicated to performing 
specific tasks that would take much longer in the more 
versatile but slower CPU. They also save time by being able 
to operate in parallel with the main system CPU. 

Interrupts are far from new (they have been available on 
microprocessors since the 8008), but they do require some 
attention to detail in both the hardware and the software 
design. The simple approach to interfacing with a peripheral 
device would be for the CPU to poll its controller. (Polling is 
software that periodically checks to see whether the device 
requires service.) The device might be a printer that is ready 
for more data to print or a tape reader that has data for the 
CPU. This method is all right for applications where time is 
not critical and the peripherals can wait for service. (The 
printer could theoretically wait all day for more data to print 
without causing a system problem.) The reader, on the other 
hand, could cause a problem. If the data were not read from 
it before more data were received, the new data would be 
written over the old data and would thus destroy the old 
data. In this case, the reader should be able to interrupt the 
CPU in whatevir it is doing and request that the data be 
read in a timely manner. 

The coprocessor is another type of processor that has been 

Interrupts may come from just one device in a system, or 
116 from a number of devices. In any case, the CPU must know 

where in memory to find the service routine for the 
particular device that has caused the interrupt. It is normally 
up to the requesting device or an interrupt controller chip to 
place this information on the bus. The CPU saves, on the 
stack, the address of the instruction it was about to read in 
when the interrupt occurred. It then picks up the interrupt 
information from the bus and calls the proper routine to 
service the device. The last instruction in the service routine 
is “return from interrupt,” which gets the return address 
from the stack, and the CPU returns to what it was doing 
when the interrupt occurred. Some CPUs have duplicate sets 
of registers so that an entire new set of working registers may 
be switched to rapidly when an interrupt occurs. If there are 
to be many intempt sources in a system, a priority interrupt 
controller chip is used. This device keeps track of the devices 
that have requested service and allows interrupts of a higher 
priority to interrupt the CPU while it is servicing devices of 
lower priority. Some of the newer microprocessors and 
microcontrollers have priority interrupt hardware and 
microcode built into the CPU itself in order to simplify 
system design and eliminate the need for a separate interrupt 
controller chip. 

Bit-slice microprocessors are a specialized type of 
microprocessor used in very high speed applications or 
where a specialized instruction set is required, The faster bit- 
slice microprocessors employ ECL (emitter-coupled logic) 
because this configuration of bipolar transistors can provide 
switching speeds in the subnanosecond range. The bit-slice 
microprocessor instruction set is determined by the system 
designer and is stored in a block of high-speed memory. 
(This technique is often referred to as microprogramming.) 
With microprogramming it is possible to optimize an 
instruction set for any required application, or to emulate 
the operation of existing microcomputers. The ALU portion 
of the processor is available in “slices” that are typically four 
bits wide. A number of these slices may be combined to 
build a processor that operates on larger word sizes (i.e., 12, 
16,20, or 32 bits). The advantages of a bit-slice 
microprocessor are the high speeds possible and the 
flexibility of being able to design your own customized 
instruction set. The disadvantage is the fact that the 
hardware and software must be defined in great detail by the 
system architect and cannot merely be picked off the shelf 
and used as can be done with the conventional 
microprocessor that has everything predefined by the 
manufacturer. The lower sales volumes of bit-slice 
microprocessors also tend to raise the overall cost of these 
systems. 

to the bus in multiprocessing operations, and memory 
management units allow a microprocessor access to more 
physical memory than its number of address lines would 
normally allow. The smaller device geometries used in the 
newer microprocessors are allowing them to operate at 

Bus arbitration chips are available to help control access, 
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higher and higher speeds, and features such as memory 
management are being incorporated into the CPU chip itself. 
Separate user and supervisor modes for system control, as 
well as support of trap instructions for error detection, have 
been available for several years, but the newer devices are 
providing much more of this type of support. The user/ 
supervisor separation has recently been increased to four 
levels of protection. The concept of virtual memory, in 
which the program is unaware that some memory space is in 
main storage and some is in external storage, has been 
extended to the concept of a virtual machine. There is better 
support for coprocessors in the newer devices, and the 
register sets and instructions are becoming better suited to 
compiler-generated code. Most of the new processors utilize 
memory segmentation, but some still provide for a form of 
linear addressing. Many data types are supported, and some 
devices go so far as to provide a descriptor architecture in 
which the information stored is only one step from being 
self-identifying. The end result is that the newer 
microprocessors are taking on more and more of the 
attributes of the traditional mainframe computer. 

The entire microprocessor field has been expanding at 
such a rapid rate that it is difficult, if not impossible, to keep 
up to date on all aspects of it. One area that has suffered has 
been that of terminology. New products have been 
introduced at a rate that has prevented the literature from 
ever completely catching up; as a result, much of the 
terminology in use today is imprecise and inconsistent. One 
cannot fall back on the conventional field of electricity and 
electronics as it existed and was taught in universities prior 
to the 1970s. Today a student’s knowledge can become 
obsolete in the same year he graduates. The differences in 
documentation also hinder systems designers when they 
must work with literature and data sheets from a number of 
different manufacturers and combine different technologies 
from different vendors into a working and reliable system. 
Another problem in the microprocessor field is that its early 
development was driven to an extent by hobbyists and 
toymakers as well as by industrial designers and 
programmers, and some of the effects of their influence can 
still be seen today. 

The fuxuus 
Microprocessors have already changed the way most of us 
live our daily lives at home, at work, and at play. Just over a 
dozen years ago microprocessors did not exist, and today 
there are millions of them in operation in such unlikely 
places as a child‘s toy or the engine of a car or an electric 
mixer in the kitchen. To state that they will continue to 
change our lives is like pointing out that the sun will come 
up tomorrow. What nobody knows today is where this will 
take us before the end of the century, because by then it is 
very likely that more microprocessors will be used in 
applications that do not even exist today than all of the 

microprocessors currently in use. The world is still trying to 
adjust to living with computers, and now we have a new 
breed that will fit under a thumbnail. 

Some of the changes currently taking place are quite 
obvious. More peripheral functions are being added to the 
CPUs and more intelligence is being added to the peripheral 
devices to the extent that very soon there will be cases where 
it will be difficult to distinguish one from the other. Higher- 
level language translators are being incorporated in silicon 
and will facilitate human communication with the new 
devices, and the devices themselves are being designed to 
operate more efficiently with the higher-level programming 
languages. Microcontrollers are being improved in function 
and in bit-handling ability; this will ease their introduction 
into an entirely new field of low-level applications such as 
“smart” traffic lights, vending machines, and electrical 
appliances which will become a natural part of our everyday 
lives. Microcontrollers are also being improved to handle 
higher-end applications such as signal processing and 
specialized industrial controllers, and are taking on many of 
the same features that are being added to the newer CPU 
chips. 

Many different names are applied in reference to the 
technology used today for the silicon chips themselves, but 
most are variations of NMOS. (Refer to Appendix 3.) CMOS 
is now becoming faster in operating speed and smaller in 
size, and is increasing in popularity to the point where some 
manufacturers are introducing new parts only in CMOS. 
Another recent development is the radiation-hardening of 
the parts in order to increase their reliability in 
certain harsh environments being encountered in some 
applications. 

While microprocessor use will be quite visible in some 
areas, many of the new applications will not be as noticeable 
to the end user. (The motorist will be aware of the processor 
in the dashboard of his new car, but he may not know that 
there is actually a small CPU in the windshield wiper motor, 
fuel injector, voltage regulator, headlights, heater, and in 
each of the turn signal and brake lamps.) 

The higher-end applications such as data processing and 
industrial control (and even some of the personal computers) 
will be much more visible to the end user. A number of 
thirty-two-bit devices are already available and even larger 
word sizes will surely follow. This does not mean, however, 
that there will be a mass movement to the larger word sizes. 
The first microprocessors were four-bit devices, and although 
they did not find their way into a large number of different 
applications, they still remain as the largest-selling 
microprocessors. Eight-bit microprocessors come in second 
as far as volumes shipped, but they do appear in the largest 
number of different applications today. Sixteen-bit 
microprocessors are now reaching their maturity and appear 
in an ever-increasing number of applications. The thirty- 
two-bit devices are being well received, but faster and more 1‘ 
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versatile eight- and sixteen-bit devices will remain as the 
backbone of the microprocessor industry for some time to 
come (at least until there is a revolutionary breakthrough in 
the technology required to interconnect multiple devices). 

To state simply where microprocessors are going from 
here: They are becoming more powerful and complex in 
function, faster in operating speed, and smaller in size; they 
will soon be used everywhere. 

cash register csnProQ 
Our first example is a simple system using a microcontroller 
to operate a cash register. The cash register was chosen as an 
example because until recently it was a purely mechanical 
device, and its function is well understood. The marketplace 
today requires that mechanical devices be simplified or 
eliminated in order for a product to remain competitively 
priced. The use of a touch-pad keypad and LED (light- 
emitting diode) display eliminates the mechanically operated 
keys and price display of the traditional cash register. A 
microcontroller was chosen because the application is a high- 
volume one and unit cost is of prime concern. Also, the 
application itself is well suited to the capabilities of a 
microcontroller. The cash register, which is used by a fast- 
food chain, has a special keypad for entering items by name, 
and a five-digit display for showing the total price of an 
order, the amount tendered, and the change due. (See Figure 
4.) As an added feature that would not have been possible 
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with the old-style cash register, a running total of receipts is 
kept for transmitting to a host computer at the end of the 
day. 

The microcontroller chosen for this application has 1K 
bytes of onboard masked ROM for storing the application 
program and 64 bytes of onboard RAM for data storage. For 
prototyping, there is a second version available that has UV- 
erasable EPROM in place of the ROM and is compatible pin 
for pin with the masked ROM version. There &e three I/O 
ports of eight bits each that provide 24 bits of 1/0 directly on 
the CPU chip. There is an accumulator, an eight-bit timer, 
eight eight-bit working registers and an onboard stack that 
stores eight return addresses. No clock oscillator chip is 
required, as there are two pins on the CPU that accept a 
crystal directly as the timing element. There is also an 
interrupt pin which may be used to interrupt the CPU or 
which may be programmed to act as a polled input without 
actually interrupting the program in progress. Two “test” 
pins are available, one of which may be used either as an 
input or an output. A single five-volt power supply is 
required. 

The LEDs for the display are standard seven-segment 
displays (so named because of the seven individual segments 
that are used to form the number 8). The simple approach 
would be to use displays that accept BCD numbers from 0 to 
9 and display the corresponding digits. This approach would 
require 16 of our 24 1/0 lines (four display digits at four bits 
each). We have chosen instead to use LED displays that 
provide separate inputs for each of the seven segments plus 
one for the period (or decimal point). This means that we 
need eight data lines going to each display digit; but as well 
as displaying numbers, we will be able to form words such as 
”Err.,” “CASH,” “DUE,” etc. by selecting proper 
combinations of the segments. The LEDs need not be 
energized 100 percent of the time to remain visible, so we 
multiplex them by connecting all similar inputs on a bus. 
(All segment Is are tied together, as are all segment 2s, all 
periods, etc.) We illuminate the displays by strobing power 
to them one at a time, using four more of our 24 1/0 lines. 
Going from four to five digits of display would add the 
possibility of words such as “HELLO” and “Error” to our 
vocabulary and would still only require a total of 13 1/0 
lines for the display. By multiplexing the display LEDs, .we 
have saved three 1/0 lines and added a display digit, as well 
as reducing the total amount of power consumed by the 
display. We have also added a level of difficulty to the 
programming. Instead of writing to the display digits and 
leaving the data there until they are to change, we must now 
continually change the data and select lines in the proper 
sequence in order to keep the display lit. If we multiplex 
more than five display digits and also have to watch for new * 
inputs from the keypad, the display will start to get dim. 

The keypad for the cash register is of the EDS (elastic 
diaphragm switch) type and essentially has no moving parts 
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to wear out. (It is also impervious to dirt and liquid spills.) 
There are 25 "keys," 22 of which are designated by the 
names of the products available. This reduces the possibility 
for operator error, as the inputs are by item name and the 
prices are automatically assigned by the microprocessor. If 
the prices change, a table in the program must be updated; if 
the items change, a new template may be placed over the 
keypad. The keys are arranged electrically in a 5 X 5 matrix 
and are strobed by ten of the I f 0  lines. We have chosen to 
have the depression of any key cause an interrupt so that we 
scan the keypad only when necessary. 

As the total price for each transaction is displayed, it is 
also added to a running total for the day that is being kept in 
RAM. If desired, a count can also be kept for any or all of 
the various items being sold. (A total of 255 can be 
accumulated in one byte, but two bytes allows the daily total 
to reach 65 535.) At the close of business (when the phone 
rates happen to be cheaper), the cash register may be 
connected to a long-distance line through a modem 
(modulator/demodulator). The daily records may then be 
transmitted to the home office, where they may be used for 
bookkeeping and/or inventory control purposes. 

Exempie 2. Control of a 7obot 
For our second example we look at a more sophisticated 
system that uses a number of 16-bit microprocessors to 
control an industrial robot. The robot under consideration 
has eight axes or degrees of freedom. Each axis is driven by 
an electric motor and uses a microprocessor to control the 
speed of the motor. A ninth microprocessor acts as an 
overall supervisor to send data to the individual axis 
controllers, interface with the machine operator, and 
communicate with a host computer that oversees the 
operation of several robots. Each axis-control microprocessor 
is located on a separate printed-circuit card and is referred to 
as a slave. The master is located on a larger printedcircuit 
card, sends commands to the slaves, and also handles the 
miscellaneous robot control functions. Figure 5 shows the 
basic components in the system. We look first at a typical 
slave card and then at the master. 

Each slave card has a 16-bit microprocessor with its 
associated logic and memory. (Refer to Figure 6.) Two 
EPROM sockets allow for up to 4K bytes of program 
memory. Four 1K X 4 RAM modules provide 2K bytes of 
scratchpad RAM for storing program variables and a return 
address stack. There is an eight-bit DAC (digital-to-analog 
converter) to supply an analog (continuously variable) 
output used to control the speed of the axis drive motor. A 
16-bit ADC (analog-to-digital converter) converts an analog 
input signal ranging from - 10 volts to + 10 volts into a 16- 
bit digital word representing the position of the robot axis in 
its range of travel. The microprocessor program on the slave 
card continually reads the axis position from the ADC. If the 
axis position does not match the last command position 
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from the master, the microprocessor program causes the 
DAC to send a voltage to the axis drive motor until the 
actual position matches the commanded position. 

(the commanded position from the master, the actual 
position from the ADC, and the voltage to send out to the 
drive motor). It must, however, operate at a high rate of 
speed because when the robot axis is moving at high speed, 
the ADG-mput changes rapidly and the motor signal must 

The slave card does not really have much to keep track of 
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be tuned to this for smooth operation of the robot. The 
portion of the program that handles the motor drive signal is 
quite concise and is written in assembly language for 
optimum use of execution time. The rest of the program 
handles communication with the master, system diagnostics, 
etc. and is not as critical for execution time or memory 
space. To save programming time, this portion of the slave 
program can be written in a higher-level language. 

The master card is physically larger than a slave card and 
contains a 16-bit microprocessor with its own associated 
control logic and memory. Figure 7 is a simplified block 
diagram of the master card. The two EPROM sockets on the 
master card are larger than those on the slave card and allow 
for up to 16K bytes of program memory. Eight 1K X 4 
RAM modules provide 4K bytes of scratchpad RAM for 
storing data tables and a return address stack. Some 
additional control chips are used with the microprocessor on 
the master card to allow for a DMA operation with the 
RAM on the card and for the use of a numeric processor to 
perform high-level math functions. The application table 
that determines the various positions of each axis is stored in 
RAM on the master card and may be brought in slowly 
from a tape cassette or rapidly from another CPU by using 
DMA. The numeric data processor is used when the robot is 
not just moving from one point to another, as in a pick and 
place operation, but must maintain a specific path and 
speed, as in a welding operation. A high-level language can 
be used to write the program for the master card except for 

the routines that handle communications with the slaves. 
These routines determine the sequence of events on the 
communications bus and are written in assembly language. 

The robot can be “taught” to perform an operation by 
leading it through the process steps with an operator control 
pendant. Each step is recorded in a table that is later 
followed by the machine as it performs the operation. This 
table is in RAM on the master card, so it may be changed at 
any time. The data are lost when power is turned off, so the 
information is stored by sending it out serially on a 
communication link to a tape drive or a host computer. This 
also allows the host computer to build up a table of robot 
operation steps and download it to the master card for 
execution. 

A multi-microprocessor-based control for the robot was 
chosen as a cost-saving measure. The functions provided by 
the slave cards could have been implemented in 
conventional hardware, but the cost would have been greater 
because a large portion of the control function was 
eliminated from the hardware and performed with software. 
The functions provided by the master card could have been 
accomplished by a minicomputer. Here again there is a cost 
saving, because a minicomputer is stand-alone and general- 
purpose and the master card was designed specifically to 
control a multi-axis machine so that there is no unused 
hardware. Also, the master card is packaged on an 8 X 15-in. 
(20.32 X 38.1O-cm) printed-circuit card inside the robot 
control unit and the minicomputer would be in a 
moderately sized box of its own. 

~~~~~~~X 1: ~Y~~~~~~~ 

The introduction of the transistor changed forever the 
physical aspects of computer circuitry. At first there was a 
constant effort to build smaller and smaller transistors until 
their size was reduced to the point where they became 
difficult to handle in manufacturing operations. 
Development effort was then directed toward placing as 
many transistors as possible on one piece of silicon, called a 
die or chip. This allowed circuit designers to create 
individual logic chips with ever-increasing levels of 
sophistication, and the resulting SSI (small-scale integration), 
MSI (medium-scale integration), and LSI (large-scale 
integration) random-logic devices were widely used by 
system designers in the proliferation of solid-state digital 
controls that were introduced in the late 1960s and early 
1970s [I ] .  The point was then reached where LSI devices 
were becoming less general-purpose and more dedicated to 
one specific application. At this point the introduction of 
new LSI devices began to slow down due to the diminishing 
return on investment required to develop and introduce new, 
devices. 

microprocessor, or “CPU on a chip,” was born. The 
calculators being built at the time each used several logic 
chips containing up to lo00 transistors apiece. Busicom, a 

This was the environment in wHich the first 



Japanese manufacturer of calculators, approached Intel in 
mid- 1969 with a request for 12 LSI chips for a new family of 
high-performance programmable printing calculators. Intel 
at the time was producing MOS (metal oxide 
semiconductor) and bipolar RAMS (random-access 
memories) and could place up to 2000 transistors on a single 
chip. The Busicom design required 3000 to 5000 transistors 
on each chip and packages with 36 to 40 leads each. 

The logic to control the printer, scan the keyboard, and 
update the display, as well as to perform the actual 
calculations, was to be incorporated on separate chips. The 
elemental instructions for performing the calculations were 
quite complex and were executed more in random logic than 
in ROM (read-only memory). In an effort to simplify the 
design, it was decided to reduce the complexity of the 
elemental instructions and thus make them more general- 
purpose. With programs stored in ROM, these simple 
instructions could be used repetitively not only to perform 
the required calculations but also to perform the logic 
functions required for the overall operation of the calculator. 

A four-bit-wide data path was chosen because it worked 
out well with the BCD (binary coded decimal) coding being 
used in calculators at the time and allowed addressing of up 
to 16 digit positions for display or printing. The final version 
of the calculator control consisted of a four-chip set that 
eventually was called the MCS-4. It consisted of a four-bit 
CPU chip, a ROM chip for program memory, a RAM chip 
for data memory, and a shift register chip for output 
expansion. The CPU chip ended up with about 2300 
transistors on a 16-pin substrate, becoming the 4004 that 
was advertised as a "micro-programmable computer on a 
chip" in November of 197 1. The term "microprocessor" was 
first used for this device in 1972. 

The CPU chip contained a four-bit parallel adder, 16 
index registers, an accumulator, and a push-down stack for 
return addresses. There were 46 instructions which included 
conditional branching, jump-to-subroutine, indirect fetching, 
and support for both binary and decimal arithmetic. The 
4004 had a four-bit parallel bidirectional data bus that 
multiplexed address information and data. An eight-step 
instruction cycle was used to handle eight-bit instructions, 
and a 12-bit instruction address space allowed addressing of 
up to 4096 bytes of program memory. 

The microprocessor was therefore born out of necessity as 
a natural development in the progression of logic design and 
was initially intended more for the replacement of random 
logic than as an attempt to put a computer on a single chip. 

Late in 1969, Computer Terminals Corporation requested 
that Intel develop LSI chips for the registers of a new 
intelligent terminal. The 4004 instruction set had just been 
defined ahd Intel proposed to CTC that the terminal control 
logic be implemented on one chip as a complete eight-bit 
processor. This design was not used in the CTC terminal, 
but it was implemented in silicon and became the first 

parallel eight-bit microprocessor. The CPU was introduced 
by Intel early in 1972 as the 8008. It had 45 instructions 
oriented toward the terminal requirement of character string 
handling and also provided interrupt capability, a return 
address stack, and six general-purpose registers. 

Late in 1972 Rockwell entered the microprocessor market 
with a four-bit parallel processor called the PPS-4. The CPU 
had 50 instructions and was implemented in a PMOS (p 
channel metal oxide semiconductor) chip on a 42-pin 
substrate. Several other manufacturers introduced 
microprocessors in 1973 and 1974. Among these were Texas 
Instruments' TMS- 1000 family of four-bit PMOS processors, 
RCA's CMOS (complementary metal oxide semiconductor) 
1802, and National Semiconductor's IMP- 16, which was a 
16-bit five-chip bit-slice CPU. 

The first three microprocessors marketed by Intel were 
implemented in PMOS. (There had also been a follow-on 
improvement to the 4004 called the 4040. It had 14 more 
instructions, a deeper stack, and more registers and memory 
addressing ability, as well as interrupt capability, all on a 24- 
pin substrate.) In 1974 Intel released an upgraded version of 
the 8008 and called it the 8080, the first of the second- 
generation microprocessors. The new processor consisted of 
5000 transistors implemented in faster NMOS (n-channel 
metal oxide semiconductor) and had 30 more instructions 
than the 8008. The 8080 utilized a 40-pin package that made 
interfacing to it somewhat easier than with the 18-pin 8008, 
which required an additional 20 TTL (transistor-transistor 
logic) packages for memory and 1/0 interface. The 8080 had 
an eight-bit data bus and a 16-bit address bus, and the 
return-address stack was removed from the CPU and placed 
in RAM to allow virtually unlimited subroutine nesting. 
Decimal and double-precision arithmetic instructions 
missing from the 8008 were added to the instruction set, and 
the hardware provided the ability to handle vectored 
interrupts. (The interrupting device essentially tells the CPU 
where in program memory to find the proper interrupt 
service routine.) 

Following the introduction of the 8080 in 1974, many 
new microprocessors have been introduced each year. (By 
1976 the total was already up to 54.) The 6800 from 
Motorola in 1974 was the first to use a single +5-volt power 
supply, and Intel's 8048 in 1976 was the first eight-bit 
microprocessor to have a CPU, RAM, ROM, and 1/0 all on 
one chip. 

Sixteen-bit microprocessors have been around in one form 
or another since 1974, but the first one to gain wide 
acceptance in the industry was the 8086 that Intel 
introduced in 1978. Texas Instruments' 9980, Intel's 8088, 
and Motorola's 6809 featured higher performance by 
utilizing 16-bit internal data processing, but allowed simpler 
interfacing to the rest of the system by retaining an eight-bit 
external data bus. The trend today is to go to wider data 
paths ( 16-bit microprocessors are in widespread use and 32- 121 
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bit microprocessors are being introduced). There is also a 
strong effort to place more of the overall system function on 
the CPU in the form of operating systems in silicon as well 
as auxiliary functions such as timers, interrupt controllers, 
communications controllers, etc., on the chip. Coprocessors 
are being used for high-level mathematical functions, such as 
floating-point operations, as well as intelligent I/O. 

Some of the faster, special-purpose microprocessors have 
been implemented with bipolar transistors, but 
photolithographic and semiconductor processes have 
improved at a rapid rate and most of today's 
microprocessors still utilize NMOS in one form or another. 
There is an increasing trend, however, to utilize CMOS in 
order to improve noise immunity and reduce power 
consumption. 

replacement of random logic, as in the case of the printing 
calculator and the intelligent terminal previously discussed. 
They continue to be widely used in this type of application 
and have also branched into two other main areas. One is 
that of reducing the physical size of actual computers, as is 
evidenced by the rapidly growing personal computer market. 
The other is the introduction of intelligence into areas where 
it was not previously possible or practical. Some of the more 
popular examples of this may be seen in electronic top, 
arcade games, automobiles, household appliances, robotics, 
instrumentation, and the ever-present video games. 

In the ten years since the introduction of the 8080 there 
have been improvements in speed and functionality, and 
instruction sets have been expanded to include more data- 
handling and program-control instructions, but the 
rudiments of the basic 8080 itself can still be seen in the 
majonty of today's prkessors. 

~~~~~~~~ 2: f?! 

The first microprocessors were used mainly for the 

A microprocessor system requires some type of memory for 
storing program instructions and also for storing constants 
and variable data. Instructions are often stored in ROM 
(read-only memory) and data are often stored in RAM 
(random access memory). The information stored in a ROM 
is not volatile; that is, it is retained even when all electric 
power to the device is turned OK RAM, on the other hand, 
retains its data only while it is connected to a voltage source. 
ROM and RAM each come in several different types, which 
we now explore. 

ROM may have its contents established during the 
manufacturing process, in which case it is called "masked" 
ROM. The user must specify the desired contents of the 
memory to the ROM manufacturer, who creates a 
photolithographic mask with the correct bit pattern. The 
masking of the data into the ROM is an expensive and time- 
consuming process, but the finished parts themselves are 
relatively inexpensive. Masked ROM is therefore generally 
used in applications involving high-production items where 

many identical copies are required and where the program 
or data being stored are not likely to change. 

only memory). The PROM is more expensive than masked 
ROM in large quantities, but it has an advantage in that it 
can be programmed by the manufacturer of the finished 
product in his plant and does not require that the 
information be essentially built into the parts by the 
semiconductor manufacturer, as is the case with the masked 
ROMs. The actual programming which loads the data or 
instructions into the PROMs is done on a device called a 
PROM programmer. PROM programmers are now available 
to meet a variety of needs. A simple and inexpensive one 
might be able to program a specific type of PROM or copy 
its contents into another one of the same type, where a more 
sophisticated and expensive model might be able to work 
with different types of PROMs and perhaps communicate 
with a terminal or a computer. Some microprocessor 
development systems have PROM programmers built in, so 
that after a program has been developed it can be loaded 
directly into a memory chip for debugging in the target 
system. 

"fusible-link" PROM that is personalized by selectively 
fusing metal links to change the bit pattern stored in the 
device. The memory chip as it is manufactured contains all 
zeros or all ones and the links are opened up one at a time 
to change the original data in one bit location at a time. This 
is a nonreversible process, so if changes must be made to the 
data, it generally means starting over again with a new 
PROM chip. Fusible-link PROMs do not typically have a 
large storage capacity and are used more in logic applications 
than for storing programs or data. 

The second, and today the most widely used, type of 
PROM is the UV-erasable EPROM (erasable programmable 
read-only memory). As the name implies, a "UV-erasable" 
EPROM may be erased by a prolonged exposure to an 
ultraviolet light source. (There is a transparent window on 
the top of the package to allow the erasing light to reach the 
actual memory chip.) An EPROM may be programmed and 
erased many times before it finally fails to accept new data. 
The actual programming of the EPROM is done with a 
PROM programmer. In large quantities, the individual piece 
price of an EPROM is greater than for a masked ROM, but 
it does have a number of advantages. Because an EPROM is 
erasable, it may be used in prototypes while the final code is 
being developed for eventual entry into a masked ROM. 
EPROMs may be gang-programmed in quantity and are 
therefore suited for applications that require repeat build but 
do,not see enough replication to justify the cost of a masked 
ROM. Also, in the case of upgrading a product with new 
software or expanded capability, an EPROM can be 
exchanged and the old one sent back to be reprogrammed 
with the new code. 

Another type of ROM is the PROM (programmable read- 

PROMs themselves come in several varieties. First is the 
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A third type of PROM is the EEPROM, which stands for 
“electrically erasable programmable read-only memory.” 
The EEPROM is similar to the UV-erasable EPROM except 
that it may be programmed and erased electrically while in 
place in a system and need not be removed for the UV light 
and PROM programmer process. An EEPROM is also 
referred to as an EAROM (electrically alterable read-only 
memory). 

RAM memory is used to hold information that is subject 
to change during the normal operation of a system. RAM is 
available in two basic types known as “static” and 
“dynamic.” In both cases, the information in the memory is 
lost when power is removed from the module and must be 
written back in each time power is applied. The difference 
between static and dynamic RAM is in how the data are 
actually stored in the memory chip. A static RAM has flip 
floptype storage locations for each bit that is to be stored 
and these flip-flops retain their information until it is written 
over or until power is removed from the device. In a 
dynamic RAM, the storage mechanism consists of a single 
transistor for each storage location. The information is 
stored as zeros or ones by charging or discharging a capacitor 
on the base of the storage transistor. Dynamic RAM is less 
expensive than static RAM, but the capacitors leak and must 
be repeatedly recharged. Circuitry known as “memory 
refresh logic” is required to keep recharging the proper 
capacitors. This is done automatically, but the logic takes up 
space on the circuit board and adds cycles to the process 
time of the system. 

A newer type of RAM is the NOVRAM (nonvolatile 
random access memory). These devices contain an area of 
high-speed static RAM that is backed up on the same device 
by an identical array of EEPROM. The static RAM is used 
for normal read and write operations, and its contents may 
be transferred to the EEPROM very quickly if a power 
failure occurs. The data may then be retrieved from the 
EEPROM when the system is again operational. These 
devices provide the benefits of both normal high-speed read 
and write operations and nonvolatile storage in the same 
package. 

“Byte-wide memory” is a packaging scheme that is 
becoming popular in microprocessor-based systems. This 
scheme uses identical package pinouts for the same sizes of 
RAM, ROM, and EPROM. This allows EPROM to be used 
in the development stage of a project, and when the program 
has been finalized and debugged, ROMs may be ordered that 
directly replace the EPROMs with no wiring changes 
required to the system. Another advantage of having 
identical pinouts is that printed-circuit cards may be 
fabricated with standard prewired memory sockets that have 
been assigned addresses in the memory map. The end user 
may then populate the card with the type of memory needed 
for the particular system at hand, whether it is RAM, ROM, 
or EPROM. In byte-wide memory systems, package pinout 

is also considered when different sizes of memory are 
utilized. Smaller memory modules may be plugged into 
sockets intended for larger-capacity memory. In this case, 
care must be used to ensure that the proper pins on the 
module interface with the corresponding socket pins because 
the socket, which is,able to support a larger memory, has 
more pins t h a n p e  module. 

are generally categorized according to the total number of 
data bits that may be stored. (A 4K RAM, for instance, has 
4096 individual bit positions.) The number of data lines on a 
memory chip is determined by the size of the words that 
may be stored, and the number of address lines is 
determined by the number of words. Ten address lines allow 
addressing of 1024 words and eight data lines allow for an 
eight-bit word size. A memory manufacturer may refer to 
this as an 8K or 8 192-bit device, but in a microprocessor 
system it is more likely to be called a 1K x 8 memory (for 
the 1024 words of eight bits each). For larger word sizes, the 
address lines of several memory chips may be wired in 
parallel. For more words, the data lines and the lower-order 
address lines may each be wired in parallel and the higher- 
order address lines are used to select or activate the proper 
memory chip. System memory may thus be tailored to 
almost any application by the proper selection and 
interconnection of memory modules. 

Memory modules are available in many different sizes and 

~~~~~~~~ 3: Pama 
The overall package size of a microprocessor is determined 
not by its computing power or the amount of on-chip logic it 
contains, but rather by the number of lines needed to 
interface the microprocessor itself with the rest of the system 
it is controlling or operating in. A microprocessor CPU 
consists of a small square of silicon, referred to as a die or 
chip, which contains the necessary solid-state logic circuitry. 
This chip is mounted on a substrate that acts as a chip 
carrier and contains the physical interface to the rest of the 
system. A typical microprocessor chip is about 0.2 mm thick 
and 2 or 3 mm square. The chips are fabricated from silicon 
wafers that measure up to several inches in diameter. The 
wafers go through a number of photolithographic and 
chemical process steps before finally being diced into 
individual chips. Each chip or die is then mounted on a 
substrate that is suitable for handling and for final assembly 
onto a card or board. 

Individual microprocessor package sizes vary, but a typical 
one today has 40 pins, measures 1.5 cm wide by 5 cm long, 
and has two parallel rows of 20 pins each. The double row of 
pins is evidenced in the name DIP (dual in-line package) 
that has been given to this particular type of package (also 
referred to as a DIL for “dual in-line”). The individual pins 
are spaced 0.1 in. (0.254 cm) apart and the rows are spaced 
0.6 in. ( 1 S24 cm) apart. The inputs and outputs on the chip 
itself consist of metal pads that are spaced only mils apart 123 

IBM J. R E S  DEVELOP. VOL. 29 NO. 2 MARCH 1985 ROBERT C. STANLEY 



around the periphery of the chip. Very fine wires are bonded 
to these pads to connect with metal traces on the substrate. 
These metal traces connect with the pins on the substrate, 
and the number of pins and traces needed is the determining 
factor in the size of the substrate. (In some of the newer, 
more sophisticated designs, especially those with 32-bit 
architectures, the size of the silicon chip is also becoming a 
determining factor.) The substrates may be made of ceramic 
or hard plastic and are hermetically sealed to prevent 
contaminants from contacting the silicon chip or interface 
wiring. The DIP packages are often referred to as modules 
and, to add to the confusion, quite often are loosely referred 
to as chips. 

Some of the newer microprocessors are getting away from 
the DIP packaging in order to save printed-circuit board 
space and have gone to a square substrate that has rows of 
pins fastened to the bottom of the substrate. This type of 
package is called a pin grid array. There are also leadless 
chip carriers. which are square ceramic substrates that have 
no protruding pins. Connections are made to this device by 
contacting metal pads located around the periphery of the 
substrate in a process referred to as “surface-mount 
technology,” or SMT. (Leadless chip carriers are sometimes 
imprecisely referred to as flat-packs.) Another method of 
fastening substrates to printed-circuit boards is via J-shaped 
leads that allow for different thermal coefficients of 
expansion for the substrate and the board. 

SSZ, MSZ, and LSI are terms that relate to the amount of 
logic or number of “equivalent gates” that are present on 
one chip. A chip having fewer than ten equivalent logic gates 
is referred to as SSI. MSI denotes chips with between ten and 
100 gates, and anything over 100 gates is known as LSI. 
VLSI is sometimes used for chips containing over 1000 gates 
in equivalent logic. 

There are many names for the technology used in placing 
digital logic on semiconductor chips, but most are variations 
of bipolar and MOS. Bipolar transistors are typically fast and 
use more power than the field-effect transistors that make up 
the MOS devices. PMOS transistors use holes as majority 
carriers and are thus slower than the more popular NMOS 
transistors that use electrons as the majority carriers. CMOS 
chips utilize both NMOS and PMOS transistors on the same 
silicon substrate with the result being a device that uses very 
little power and has a high immunity to electrical noise. 

~~~~~~~~~~~~~~~~~ 
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