The effects of
wafer to wafer
defect density
variations on
integrated circuit
defect and fault
distributions

by C. H. Stapper

A method for modeling the variations in defect
levels in circuits produced on modern integrated
circuit manufacturing lines is described in this
paper. The effects on defect and fault
distributions are derived. A deficiency in some
previous yield models is eliminated.

1. Introduction

Yield modelers have to take into account not only the wafer
to wafer variations in defect densities, but also lot to lot, day
to day, week to week, and month to month variations in
defect levels that occur in integrated circuit fabrication.
Models for these effects are described in this paper. All these
models are based on the application of straightforward,
elementary statistics. They are developed from fundamental
random defect theory and adapted to actual data by
deductive analysis.
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2. A binomial model

Consider first one wafer with N random defects in an area S
containing chips of area A4. If the number of defects per chip
is designated by the random variable X, then according to
[1, 2] the probability of finding & defects on a chip is given
by

= v =Ty s = sy )

PX, = k)

The yield is the probability of having zero defects on a chip

so that
Y = P(X, = 0)
= (1 - 4/5)". )

This is known as a binomial yield model.

3. A compound model

The nature of integrated circuit manufacturing lines is such

that very seldom do all wafers have the same number of

defects on them. In fact the number of defects N per wafer

behaves like another random variable with its own

probability distribution P(N = i), where i =0, 1,2, - ...

Note that this distribution does not depend on chip area. It

can be combined with the distribution given in Eq. (1) by 87
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the method of compounding {3-5]. This produces the defect
distribution

P(X, = k)

il i .
= L PN=) g @90 - 8™ )
i=k ; :

It is possible to model P(N = i) by the Poisson distribution

N
PN =i)=2 i!N, ()

where N is the average number of defects per wafer and the
surface area of each wafer is equal to S. When this
distribution is introduced into (3), the summation reduces to
—ANIS; 4337 ank

e "(AN/S)
PX, =k)= _—k'——— (5)
This is another Poisson distribution. The derivation of this
result is shown in detail in Appendix 1.

4. Modeis versus reality

It would have been nice if the distribution described in
Formula (5) had been the correct one for modeling defects in
integrated circuit chips. All integrated circuit yield modeling
could then be done with simple Poisson statistics.
Unfortunately, actual defect distributions show invariably
that the mean number of defects E(X},) is smaller than the
variance V(Xp) of the distribution [6, 7]. For the Poisson
distribution in (5), these two quantities are equal, whereas
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for the binomial model in (1), the variance is smaller than
the mean. The methods for modeling this are the topic of
this paper.

The yield model associated with (5) can be written as

Y=PX,=0)
e—A)V/S‘ ( 6)
The unsuitability of this function as a yield model can also
be illustrated with yield versus area plots. The models in (2)
and (6) give the results shown in the semilogarithmic plot in
Figure 1. Plots based on actual data have been described in
great detail by most authors in this field. The results give
higher yields than those obtained with (2) and (6), as shown
in Fig. 1.

5. Wafer partitioning

The discrepancy between actual data and (1) and (2) is
caused by two effects. First of all the wafer to wafer defect
distribution P(N = i) cannot be correctly represented by the
Poisson distribution in (4). The defect distribution data
suggest that the correct model for P(N = i)} must be wider
than the one given in Formula (4). This can be modeled by
using compound Poisson distributions for P(N = /) in

Eq. (3). A general approach for doing this is given in
Appendix 1. The historical approach, leading to the same
results, is followed in the rest of this paper.

The second reason for the differences between data and
models is defect clustering. Defects often congregate in areas
such as the periphery of wafers. The model in (1) is therefore
no longer valid. To get around this problem, wafers have
been partitioned into regions. In some cases only two regions
were used [8, 9]; others used more [10, 11]. In one IBM
manufacturing plant defects are counted in five
predetermined concentric regions.

In principle the defects in each region can be modeled
with (1), although in practice it has been found more useful
to model the defects per chip of area A with the Poisson
distribution

~AD; &
A R @
where D, is the average defect density of region /. The
rationale for the applicability of this distribution is addressed
in [2] and [12].

6. Compounding partitioned models
Experimental data in [8, 9] have suggested that the average
defect density in each region i varies from region to region
and wafer to wafer. This can again be modeled with the
method of compounding. In this case it takes on the form

M

PUX, = k) = 3 P(D)e™"(AD)"/k!, ®)

=0
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where P(D,) is the probability distribution of average defect
densities D, for M regions. Note that P(D)) is not a function
of chip area since it pertains to the average defect density in
a region,

In practice the distribution given in Eq. (8) not only has to
model the region to region variation but also the wafer to
wafer variations of average defect densities for each region.
At IBM the production of integrated circuits is planned by
quarters. Yield projections for planning purposes are
therefore made to cover a period of three months. The
variations in defect levels during this period therefore have
to be included. This makes the value of M very large, and
for all practical purposes, it can be approximated by infinity.

If (8) becomes an infinite sum, it is again possible to
model the compounder P(D,) by a discrete probability
distribution. A Poisson distribution can be used. It takes on
the form

PaD, = i) = e—%Dl )

where a is a parameter and D an average defect density for
all regions combined.

If (9) is substituted into (8), it results in

PXy=k) =%

~aD k o =~ —Alayi
5(/'1/(1) > (aDe; ) i (10)

; !
=0 '

This is known as the Neyman type-A distribution. It has a
mean and variance given by

E(Xp) = AD, (11a)
V(X,) = AD(1 + aD). (11b)

In this case the variance is larger than the mean. This
distribution has indeed been used successfully by F.
Armstrong and K. Saji to model actual particle, defect, and
fault distributions in semiconductor processes [13].

The yield model associated with (10) has the form

Y = exp [aD(e™™ - 1)]. (12)

This is an interesting function of chip area 4, as is shown in
Figure 2. For very large areas, the yield becomes asymptotic
to a lower bound ¢~°2. This is independent of area 4 and
therefore is constant. It is this property of the Neyman
type-A yield model that restricts its usefulness to small chip
areas. To alleviate this problem other defect density
distributions have to be tried.

7. Transition to a continuous defect density
distribution

The probability distribution of defect densities P(D)) is
associated with M different defect densities D,. Each one
represents the average defect density for the regions indicated
by the index i. The probability associated with each defect
density depends on the area of the corresponding region
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(2, 10, 12]. This probability is given by s,/S, where s, is the
area of the ith partition and the total area S is obtained with
the summation

M
S=73s (13)
=1
The distribution P(D,) in (8) is therefore given by
P(D) =s/S. (14)
Substitution of this result into (8) gives
M —AD, k
o v Sie D)
P(X, = k) = E. T (15)
It is possible mathematically to express this result as
M ®  —AD, k
) AD
PX, =k =Y 3 f ¢ _UD) o Db, (16)
oS k!

where 8(D — D)) is a unit impulse or delta function occurring
at D = D,. Rearrangement of (16) gives

® 4D, kM

A )

PXp = k) = f ¢ WD) 5 %5p - pyap, a7
o k! oS

where it is possible to define a probability distribution of

defect densities function

M
P(D) = 3 350D - D). (18)
i=0 S
This is a string of delta functions occurring at the
appropriate values of D. Combination of (18) and (17) gives

-AD(AD)k

PUX, = k) = fo E—T—-P(D)dD, (19)
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Cumulative distribution function for defect densities.

which is an integral form for compounding a Poisson
distribution [4, 5].

Associated with the probability distribution of defect
densities in Expression (18) is the cumulative distribution
function

D
abD) = f P(D")dD’. (20)
0
Since the integral of the delta function 6(D — D)) is a umt
step function (D — D)), it is possible to express the
cumulative distribution by

D:

), =

i

1A

D
S

oD - D). (21)

T
s

This is a staircase function like the one shown in Figure 3.
The summation is only over those values of i for which
D, =D.

When we let the number M approach infinity, the sum

M
lim Y s, = oo,

M—o =)

since the regional areas are finite. Therefore, the area S
approaches infinity. Nevertheless the sum

remains equal to one regardless of the value of M. We are
therefore left with an infinite series of infinitely small steps
that start at C(0) = 0 and end up at C() = 1. This can best
be presented by a continuous cumulative distribution
function C(D).

The function C(D) leads to the continuous probability
distribution function

(22)
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P(D) = (23)

dc(D)

“dD

This continuous probability distribution function can be
used for compounding in the same way as the string of delta
functions in (19).

A number of distribution functions have been tried for
P(D). Until now a gamma distribution has shown the
greatest potential. It was discovered for use in wafer to wafer
modeling in [14] and confirmed in [8] and [9] for regional
and wafer to wafer modeling.

8. Compounding and chip area
We next investigate the effect of a change in chip area on
compounding. The defect distribution
—4D, /K

e " (AD)
P, = k) = S5 (24)
remains unchanged when compounded with a delta function
in the form

©  —AD, k
PX, = k) = f ¢ D) b Db (25)
()

k!
The integral form of compounding was derived as the limit
of a series of delta functions. Compounding (24) with a
continuous distribution is identical to (19), as seen in the
preceding section.
When we increase the chip area A by a factor #, the defect
distribution is
—nAD, vk
e (nAD
PX, = k)= - ) . (26)
This distribution differs from the one in (24). It also remains
unchanged when compounded with a delta function to give

© 4D k
P(X, = k) = f ¢ (AD) » b _ Byap. Q7
0

k!
The delta function clearly is not a function of the chip area.
Compounding with a continuous probability distribution
P(D) derived in the limit from delta functions therefore gives

®  —nAD Dk
=g = [ £0AD)

It should be noted that the compounding of defect density
distribution in (27) and (28) is not a function of the chip
area.

P(D)dD. (28)

9. Faults and defects

At IBM it has been found useful to distinguish between
defects and faults. A fault is defined as a defect causing a
failure. Not all defects cause chip failures. To do this they
must occur in the areas where they interfere with the
electrical operation of the chip. These are known as the
critical areas [12]. In some cases failures are not detected
until bias conditions are changed or the wave shapes of the
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applied pulses are altered. If these changes and alterations do
not exceed specifications, then the defects are causing faults.
The fraction of defects that causes product failures under
specified test conditions is indicated by 8. This has also been
called the probability of failure.

The number of faults on a chip can never exceed the
number of defects. The probability of finding x faults on a
chip with k defects is a conditional probability designated as
P(X; = x | X, = k), where X is a random variable denoting
the number of faults on a chip. The probability of finding x
faults is given by #”. This implies that there are (k — x)
defects that will not cause faults. The probability of this
happening can be calculated with (1 — 0)"_". The number of
combinations by which & defects can cause x faults is given
by k!/x! (k — x)!. The probability of finding x faults on a
chip that already has k defects is therefore given by

PXp=x| Xp=k) = S07(1 — )", (29)

k!
xlk = x)
This is a binomial distribution and it clearly shows that the
probability of failure is an applicable nomenclature for 6.

The probability of finding x faults on a chip can be caused
by any number of defects k > x. To find the unconditional
probability P(X; = x) therefore requires taking into account
all probabilities P(X}, = k) for k > x. This is done with

P =x) = T PXe=x | Xo = P, = k)

(30)
k=x
Substitution of (24) and (29) into this expression gives
e K e 4D)
P(XF—x)-—Exx!(k_x)!()(l 0) o . @31

Definition of the index / = k — x and rearrangement of this
expression give

294Dy & [(1 ~ 6)4D)’
AD)" 5, [0 = 0AD]'

e
P(Xe = x) = — g
tA !

(32)
The summation on the right is equal to exp [(1 — 6)4D], so
that (32) becomes

—0A00ADX
P(XF=X)=S-¥.

x!

(33)

This is the Poisson distribution with the probability of failure
included as a parameter.

The result in (33) can be compounded with a delta
function to give

—84D X
6AD -
P(X, = x) = f e——;—‘—)a(u ~ D)dD. (34)
0 H

The probability of failure in this case does not affect the
compounding delta function. In the same way, it will not

affect the continuous compounding derivable from (34).
Thus
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e~"(6ADY"

P(X, =x) = fo .

represents the general formula for compounding the fault
distribution.

P(D)YdD (35)

10. Measuring wafer to wafer defect density
variations

The first application of (35) for modeling the wafer to wafer
variations in defect densities occurred at IBM in 1972 and
was reported in [14]. It was found experimentally that the
number of failing defect monitors on test wafers were not
distributed as either binomial or Poisson distributions. This
could only happen if the defect densities were not the same
from wafer to wafer. However, since this approach seems not
to have been understood in recent papers [15-17], let us
look into that venerable analysis in more detail.

The data in [14] consisted of distributions of the number
of failing defect monitors per wafer. Some of these monitors
had long serpentine lines to determine the defects that
caused open circuit failures or faults. Others consisted of
interdigitated fingers to detect the defects that caused short
circuit faults. These monitors were made with diffusions,
polysilicon and metal patterns. Each pattern was replicated
50 times on each wafer.

If the defect densities for a given defect type are the same
from wafer to wafer, then the number of failing monitors
Xy 18 given by

P(Xppy = k) = (5,?) Yo =) (36)
where y is the yield of the defect monitor and £ =0, I,

2, .. .. The mean and variance of this distribution are given
by

E(X) = 50(1 — y), (37a)
V(Xp) = 50p(1 = ). (37v)

Here the variance is smaller than the mean. In the actual
data the variance was found to be larger than the mean. An
example of this is shown in Figure 4. This suggested a wafer
to wafer variation in the value of y. To model this, (36) was
compounded. Use of a beta function for the compounder
occasionally gave a satisfactory model for these data.
However, the resulting yield formulas, distributions, and
estimators for the parameters were cumbersome. They were
therefore not used as models and not reported in the
literature. For completeness some of the compounded
binomial distributions that were investigated at that time are
given in Appendixes 2 and 3.

A less complex model was obtained by approximating (36)
with the Poisson distribution

—Ay K
_e A (38)

P = K === 91
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A distribution of the number of failing monitors per wafer. The data
are shown in solid lines; a binomial distribution with the same
average is shown in dashed lines. The mismatch between the two
curves is caused by wafer to wafer variation in defect densities.

where A is the average number of failing monitors per wafer.
In this model the mean and variance are both equal to A.

In [8] it is shown that any compounded Poisson
distribution has a variance that is larger than the mean.
Modeling the distribution of the number of failing monitors
per wafer in [14] was therefore reduced to the search for a
compounder that gave the correct distribution, mean, and
variance. Use of the gamma distribution in the
compounding formula

® X,k
P(Xpy = k) = fo z k!* POV)dA (39)

gave a very suitable fit to the data, as was duly reported in
the literature [14].
The gamma distribution can be written as

)\n—l =B

P(X)-‘-W,

(40)
where o and 8 are parameters. The mean and variance of
(40) are given by

EQ) = af, (41a)
V(\) = af’. (41b)
One useful property of this distribution is that

a = EXN/VN. (42)

This is the inverse of the square of the coefficient of
variation, which is normalized with respect to the mean. The
quantity « is therefore a single parameter that describes the
width and the nature of the gamma distribution completely.
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Substitution of (40) into (39) results in the negative
binomial distribution

k
Py, = k) = I'(a + k)8

L C .0 43
k'T(a)(1 + By “3)

It has been practical to use {41a) to define X = E(A\) = a8, so
that 8 = Ne. It is therefore possible to rewrite Formula (43)
as

o + kX Na)
=k)= —0 ~ZRIE 44
P =15 KIT(a)(1 + Na)™** @4

This distribution has the mean number of failing monitors
per wafer

E(Xy) = by (45a)
and the variance
V(Xe) = A1 + Xa). (45b)

In this case the variance is larger than the mean.

It is possible to estimate X and « from the average k and
the standard deviation ¢, of the number of failing monitors
per wafer of the data. This is done by using the formulas

k= E(Xp) (46a)
o = V(Xpn) (46b)

and solving them for A and « to give

=k, (47a)
E2

.
o, — k

(47b)

o =

Techniques such as maximum likelihood estimators can also
be used at this point, but (47a, b) have been found adequate
in practice. For high monitor yields the average number of
failing monitors is related to the defect density by

D = X/500, 4, (48)

where 8, 4, is the critical area for each one of the 50
monitors per wafer. When D and X are proportional, as in
(48), the defect density distribution is also a gamma
distribution. This has a mean and variance

E(D) = E(\/500,A,,,, (49a)
V(D) = V(N/(506,,4,,)°. (49b)
The parameter « for this distribution is given by
a = EXD)/V(D)

= E*O/V(N. (50)

It is therefore the same as the one in (42) and remains
unchanged under this change of variables. The fact that « is
independent of chip area makes it and the associated gamma
distribution very suitable for modeling regional and
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temporal variations in integrated circuit defect densities,
especially when it fits the actual data.

The chip yield for each defect type can be calculated using
Formula (35) with zero faults or & = 0. This results in
Y= PXpy =0)

= f ¢ ’P(DYdD, (51)

where 84 is the critical area of the product chip. Formula
(51) is known as Murphy’s yield model. When the gamma
distribution is used for the wafer to wafer defect distribution
P(D), the integral in (51) evaluates to

Y=(1 + 64D/a)"". (52)

This has been referred to as the negative binomial yield
model.

The derivation of (51) and the method for estimating the
model parameters have been described in this paper with a
great deal of care and in great detail. This has been done
because of the far-reaching significance of this approach.

It is of interest to note here that the model in Eq. (52) is
parsimonious with the number of variables that are required.
Only a single variable « has been introduced to model the
variations in manufacturing defect levels. When individual
defect levels were measured with the methods of [8] in a
pilot line, the values of « were observed to vary from lot to
lot. This appears to have been caused by sample limitations,
since long time averages showed considerable stability. For a
long period of time the value of « = 1 gave a good average
approximation for most defect types in the IBM integrated
circuit factories in Sindelfingen, West Germany, and Essex
Junction, Vermont. As yields improved, however, the
average values of « decreased. Values of « less than 0.5 have
been found appropriate for a number of defect types in
recent years.

11. Practical applications

In the preceding section it was shown how defect monitor
data can be converted to an equivalent product yield for
each defect type. This method was used in a pilot line to
track defect yields during the years 1972 and 1973. The
defect levels in that line became progressively lower during
that period. As a result the yields increased. It was soon
learned that yields projected with the model in (51) were
lower than the actual ones obtained on the manufactured
products.

The reason why (51) projected lower yields than the actual
ones was easily determined. In the approach of the preceding
section we assumed that the defects were distributed on each
wafer like a simple Poisson defect model. This turned out to
be the wrong assumption. Our data showed that the defects
were clustered on each wafer, with more defects near the
edge than near the center. Two methods for handling this
effect evolved independently at IBM in the early 1970s.

iBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

The technique developed at the IBM Laboratory in East
Fishkill, New York, has been described by Paz and Lawson
in [9]. They used wafer maps to locate transistors that failed
because of base collector shorts known as pipes. The map for
each wafer was divided into an inner and an outer region or
zone. The yield within each region was analyzed as a
function of emitter area. This was done by combining
transistor chain data into groups. Groups containing an
equal number of adjacent transistors were randomly selected
on each wafer map. The object was to determine the fraction
of these groups that was defect free. This was the yield
associated with each group size. Such yields were determined
for each region on each wafer using eight different sizes of
groups. Each group size contained a fixed amount of emitter
area. The data consisted therefore of transistor pipe yield as
a function of emitter area for each region on each wafer.

The object of the Paz and Lawson method was to obtain
values for the yield model

Y =Ye ™, (53

where Y is a gross cluster yield and ¢~*” represents the
simple Poisson random defect yield in each region. The area
A in (52) represents the total emitter area in a group, and D
the random defect density. The values of Y, and D were
determined with a linear regression technique using

InY = —AD + InY,. (54)

This was done for each region on each wafer. Results
confirmed that the wafer to wafer defect densities could be
modeled with a gamma distribution. The defect densities in
the outer regions, furthermore, were found to be higher than
those in the inner ones. It was also observed that the

gross cluster yield Y, was lower in the outer regions. It
furthermore appeared that the wafer to wafer distribution of
Y, could be modeled with a beta distribution.

The model of Paz and Lawson is still used today to
analyze defect data in the IBM East Fishkill manufacturing
plant. It has withstood the test of time in an actual
integrated circuit manufacturing environment.

Another way of estimating the same parameters was
developed independently at the IBM laboratory in Essex
Junction. This technique has been described in [8]. It also
depended on wafer map analysis. In this case the wafer maps
that were used showed the location of failing defect
monitors. The maps were again divided into inner and outer
regions, as was done by Paz and Lawson. The difference
between the two methods lay in determining which failures
were gross clusters and which ones were random. In the
Essex Junction approach any group of three or more
adjacent failing monitors was called a cluster. The total
number of clustered monitors were counted to determine a
cluster-limited yield. This was done independently for the
inner and outer regions of each wafer. After completion of
this tally, the clustered failures were discarded from the 93
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sample. This procedure is still referred to as “declustering.”
We therefore call this approach the declustering method.

After the clusters were removed, the remaining failing
monitors were assumed to be randomly distributed
according to simple Poisson statistics in each region. To
determine the wafer to wafer variation, the distribution of
the number of failing monitors in corresponding regions was
obtained. This therefore is the same approach as the one
described in the preceding section. The difference in this case
is that smaller regions were used instead of full wafers.

There was another difference between the method
described in the previous section and the one adopted in [8].
The samples in the latter paper were too small to determine
whether the wafer to wafer variations of defect densities
followed a gamma distribution. To circumvent this, the
mean and the variance of the failing number of monitors in
corresponding regions were calculated. When the mean was
equal to or larger than the variance, simple Poisson statistics
were assumed for the random defect model. When the mean
was smaller than the variance, the negative binomial
statistics in (44) were assumed to be appropriate. The
parameters for these statistics were then determined with
(47a, b) and the yield calculated with (52). Modified versions
of this technique survive today in a number of integrated
circuit manufacturing lines at IBM in Essex Junction.

Yield models with more than two regions have been used
to calculate yields at IBM. At the development laboratory in
East Fishkill, New York, K. Saji uses a model with three
regions per wafer. A yield model used to control the
photolithographic defects in one of the manufacturing lines
in Essex Junction makes use of five regions per wafer.

The number of regions is usually determined by the
nature of the defects. Serious clustering and regional
variations require more regions. The shape of the regions
also depends on the nature of the clusters. Most tools
produce a radial defect density variation. Concentric regions
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are therefore applicable in many cases. Angular regions,
however, also have been used in the past.

12. Large chips and wafer-scale integration
Implicit in the models derived and described in this paper is
the assumption that the chip areas are smaller than the
cluster and the regional areas. This does not mean that these
models cannot be used to calculate yields for larger chips.
This can best be demonstrated with an example.

A chip with area A that is larger than a regional area s,
must contain more than one region or a number of fractions
of regions. The areas or fractional areas of the regions within
the chip area 4 must be used individually to calculate the
corresponding yield. In this calculation the appropriate form
of the wafer to wafer yield formula (51) must be used. The
resulting yields for these regions or fractional regions must
be multiplied to obtain the total random defect yield for the
chip. In the case of full wafers it consists simply of
calculating the yield for each wafer region and multiplying
the yields of all the regions on a wafer.

This is the entire random defect model. It has been in use
in IBM Essex Junction since October 1972. The model was
used by A. N. McLaren to estimate the yields of wafer-scale
integrated circuit products for cost and productivity
calculations. These estimates have aided IBM management
in making the correct business decisions about the economic
viability of such products.

Until now we have only looked at half the data that were
collected with either the method of Paz and Lawson [9] or
the declustering technique of [8]. The missing half is the
gross clustering yield Y,. As it turns out, this has a very
profound effect on the yield of very large chips and full
wafers.

The gross yields Y, in [9] consisted of cluster areas with
extremely high density pipe defects. The data in [9] show an
average yield for Y, of approximately 81% in the inner
regions and about 75% in the outer regions. These are the
gross yields that have to be used in the yield calculations for
smaller chips. The values of Y, remain approximately
constant for chip sizes that are smaller than the cluster areas.
Chips that are the same size as, or larger than, the wafer
regions must be completely free of such clusters. These large
chips will therefore have a lower cluster yield than Y. A
cumulative curve of Y in [9] shows that this yield falls
somewhere between 0 and 50% for the inner regions. No
data are supplied for the outer regions.

The data in [8] are somewhat more specific. They show a
cluster-limited yield of 97.3% for inner regions and 73.8%
for the outer regions. The cluster-limited yield for the
combined regions was given as 87.2%. All of these yields are
pertinent for chips that are smaller than the cluster areas.

There is a distribution depicted in [8] for the number of
monitors lost per wafer due to clustering. This distribution
shows that only 30% of the wafers are without clusters. The
cluster-limited yield for full wafers is therefore 30%. The
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cluster yield consequently ranges between 87.2% for small
chips and 30% for full wafers in these data. This includes
open and short circuits among patterns in diffusions,
polysilicon and metal only. It does not include the yield of
oxide pinholes, diffusion leakage, or contact holes.

These cluster-limited yields have usually been described
under the name “gross yield” by this author and sometimes
as “area yield” by others. A discussion of the types of defects
and manufacturing errors included in these yields is given in
[12]. According to the same paper, these defects and errors
cause parts of wafers or entire wafers to have no functioning
chips. This implies that the chip size is smaller than the
affected areas. For very large chips and full wafers this
assumption no longer applies and other models have to be
developed.

A yield versus area plot for cluster yields is shown in
Figure 5. The two end points are those measured in [8]. The
flat portion on the left indicates the constant Y, range for
small chips. The extent of the flatness depends entirely on
the area of the smallest clusters that are considered. The
curvature of the yield plot for larger chips depends on the
size distribution of the clusters. If there are a large number of
small clusters, the roll-off will be sharp. For a distribution
with more large clusters, the yield curve will fall off slowly.
These conditions are shown with dashed lines in Fig. 5. This
tells us that the distribution of cluster sizes has to be taken
into account in the yield projections of large chips and full
wafers. It is this effect that modulates the random defect
yields, not the rejection of Formula (51) as was done in
[16, 17].

A yield versus area plot in Figure 6 indicates the range of
yields that can be expected in the case of full wafers. The
upper curve is the one that occurs in a manufacturing
facility that succeeds in constantly making some defect-free
wafers. The bottom curve is for a manufacturer who never
makes a defect-free wafer. Manufacturing operations that do
not produce 100% yield wafers in their current products all
fall into this category.

Proponents of wafer-scale integration appear to advocate
the use of simple Poisson statistics for calculating wafer
yields, as was done, for instance, by Peltzer at Trilogy [18].
He mistakenly refers to Stapper as the source of that model.
It is, however, the model proposed by single-wafer analysts
and theoreticians, as for example in [11, 16, 17]. Their
model clearly predicts too high a yield for factories that
currently cannot manufacture defect-free wafers.

The cause of the zero yields in the lower curve in Fig. 6
can be determined experimentally. In data examined by this
author it appears in the form of high defect levels in
localized areas on wafers. These are the same areas that were
modeled with the gross yields Y, by Paz and Lawson and in
the declustering model. We must therefore conclude that in
such a manufacturing environment the cluster yield curve in
Fig. 5 goes to zero for circuit areas smaller than wafer size.
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Figure 6

Yield as a function of integrated circuit area or circuit complexity.
The yield axis is logarithmic.

It has been suggested [16] that the yield in the zone
between the upper and lower curves of Fig. 6 can be
modeled with simple Poisson statistics. The data from Paz
and Lawson clearly show that this assertion is wrong.

In the method of Paz and Lawson [9)], the introduction of
the cluster yield Y, made it possible to model the remaining
random defects with simple Poisson statistics. It was
nevertheless an artifact, sincé the clusters did contain high
density random defects. These, therefore, should have been
included in a random defect model that does not follow
Poisson statistics. An early model of this type has already
been described in [19].

The fact that simple Poisson statistics is not applicable to
wafer-scale integration has another important consequence.
For a given yield, the Poisson model has a relatively low
average number of faults. For the same yield, a negative
binomial model has a much larger average number of faults.
This is in agreement with actual data in [6, 7]. It is this effect
that has a pronounced effect on the requirement of
redundant circuits when redundancy is used to boost the
yield.

Defect clusters within the chip or wafer area increase the
need for redundant circuits even more. Advocates of Poisson
statistics and simple Poisson yield models, to the contrary,
predict the necessity for fewer redundant circuits.
Miscalculations of this type can lead to serious product
problems. Manufacturers of wafer-scale products who plan
their redundancy requirements with Poisson models may be
in for a nasty surprise.
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A redundancy model that incorporates negative binomial
statistics has been described in [6]. This model has been used
at IBM to optimize the productivity of high density memory
chips since 1975. Yield projections for 256K-bit dynamic
random access memory chips currently in production at
IBM were made with this same model.

13. Conclusions

It has been shown in this paper that wafer to wafer variations
in defect levels can be modeled with techniques developed at
IBM in the early 1970s. This eliminates the deficiencies that
occur in a number of recently published yield models

(16, 17).

On the basis of published data, it is also apparent that
defect clusters have an important influence on the yield of
very large chips and wafer-scale integration. It appears that
yield -models for such products have to include cluster sizes
and cluster size distributions.

Appendix 1
In Section 3 it was shown that the number of defects X, per
chip are distributed as

PXp = k)

= PN =1) = (S) (1 — 418)™,

ik kWi — k) (Al)

Let P(N = i) be given by the compound distribution
*® -SD i
PN =i) = f elﬂ P(D)dD. (A2)
0 .

Substituting this in (A1) and interchanging the sum and
integration signs gives

Tz e spy @
P(X""k)'l: [Zk K- k)

x (4781 - a/S)"'*]P(D)dD. (A3)

The sum within the brackets is the same one as in Section 3.
When an index j = i — & is substituted, this sum becomes

w —SD

5 € (SDY (k + j)!
o K+ K
_ e”(4D)* E [SD(1 — 4/S)Y
k5 !

A9 - 4/sy

_e —SD(AD)k £SP=AD)

k!

_ (4 D)k

k! (A4)

When this result is introduced into (A3), that distribution
becomes
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b -ADADk
P(XD=1<)=_£ 5%

Similarly, if P(N = i) is given by the compounded
distribution

P(D)dD.

® —sp; i
SD
PN=i)=3 P30
=0 :

then substitution into (A1) results in

o

~AD, P
PX, =k =3 p U
=0

k!

The preceding results are very general and show that
compounded Poisson distributions can be used for the
compounder in (A1) and result in a compound distribution
of the same type for the defect distribution. Wafer to wafer
variations in defect levels can therefore be modeled with
compound Poisson statistics.

Appendix 2
The binomial distribution (36) in the more general form

PX = k) = (1,‘(’) Y= (A8)

can be compounded with a distribution P(y) to give

(A9)

PX = k) = (’Z) fo YR = ) Py

For this distribution the mean and variance are given by
EXy = N1 — E(y)], (A10)
V(X) = NEO)IL = E(»)] + (N* = N)V().

Consider a compounder equal to a beta distribution:

(Al1)

e +v) .

-
rere? 7Y

Ay) =

for which
E(y) = u/(p + v),
V(y) = mof(p + 0 (n + » + 1),

When (A12) is introduced into (A9), it results in

N) T + W + KT + N = k)
k LTI + v+ N)

This has the mean and variance given by
E(X) = Nvf(u + »),
V(X) = Nuv(N + p + o)/ + ) + v + 1.

P(X=k)=<

(A16)
(ALT7)

The parameters of the distribution (A15) can be estimated
from the mean k and standard deviation o, of the data with
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v=kC, (A18)
where
TNT 2
- W PR oy (A20)
(N — k)k + No},
Appendix
The binomial distribution (36) can also be written as
NY —wv-kup —A_D\k
P(X=k)=ke (1 —e )", (A21)

where A_ is the critical area and D a defect density. The
factor (1 — ¢™*®)* can be expanded with the binomial
expansion so that

r'e
e (e o)
=0

This can be compounded with a defect density distribution
P(D) to give

(A22)

P(X = k)
. -
=<’Z> T (-1 <") f e ML P DVGD. (A23)
i=0 ! 0

When P(D) is a gamma distribution with parameters o and
8, as in (40), then

() 2w

It can be useful to substitute 8 = D/« into (A24).

PX=k)

(f) [L+N+i-kpl™ (A24)
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