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A method  for  modeling  the  variations  in defect 
levels in  circuits  produced  on  modern  integrated 
circuit  manufacturing  lines is  described  in  this 
paper.  The  effects on defect  and  fault 
distributions are derived. A deficiency  in  some 
previous  yield  models is  eliminated. 

1. Introduction 
Yield modelers  have to  take  into  account  not  only  the wafer 
to wafer variations  in defect densities, but also  lot to lot, 'day 
to day, week to week, and  month  to  month variations in 
defect levels that  occur in  integrated  circuit  fabrication. 
Models  for  these effects are described  in this paper. All these 
models are based on  the application  of  straightforward, 
elementary statistics. They are developed from  fundamental 
random defect theory and  adapted  to actual data by 
deductive analysis. 
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2. A binomial  model 
Consider first one wafer with N random defects in  an  area S 
containing  chips of area A .  If the  number of defects  per chip 
is designated by the  random variable X,, then according to 
[ 1,2] the probability  of  finding k defects on a chip is given 
by 

P(X,  = k )  = N !  ( A / q k ( l  - A/S)N-k .  k!(N - k)!  

The yield is the probability  of  having  zero defects on a chip 
so that 

Y = P(X,  = 0) 

= ( I  - A / g N .  

This is known as a binomial yield model. 

3. A compound  model 
The  nature of  integrated  circuit manufacturing lines is such 
that very seldom do all wafers have the  same  number of 
defects on  them. In fact the  number of  defects N per wafer 
behaves like another  random variable with its own 
probability distribution P(N = i), where i = 0, I ,  2, . . . . 
Note  that  this  distribution  does  not  depend  on  chip area. It 
can be combined with the  distribution given in Eq. (1 )  by 87 
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c Chip area 

the  method of compounding [3-51. This produces the defect 
distribution 

P(XD = k )  
m 

= P ( N =  i) ~ (Alak(] - (3) i! 
t=k k!(i - k)! 

It is possible to model P(N = i) by the Poisson distribution 

where m is the average number of defects per wafer and  the 
surface area of  each wafer is equal  to S. When  this 
distribution is introduced  into (3), the  summation reduces to 

This is another Poisson distribution.  The derivation of this 
result is shown  in  detail  in  Appendix 1. 

4. Models versus  reality 
It would have  been nice if the  distribution described in 
Formula ( 5 )  had been the correct one for  modeling defects in 
integrated  circuit  chips. All integrated  circuit yield modeling 
could then be done with simple Poisson statistics. 
Unfortunately, actual defect distributions show  invariably 
that  the  mean  number of defects E(XD) is smaller than  the 
variance V(XD) of the  distribution [6,7]. For the Poisson 
distribution in ( 5 ) ,  these two  quantities  are  equal, whereas 

for the binomial  model in ( I ) ,  the variance is smaller than 
the  mean.  The  methods for modeling  this are  the topic  of 
this paper. 

The yield model associated with ( 5 )  can be written as 

Y = P(X,  = 0 )  

= e  . “AN/S 
(6) 

The unsuitability  of this  function  as a yield model can also 
be illustrated with yield versus area plots. The models  in (2) 
and (6) give the results shown  in the semilogarithmic  plot  in 
Figure 1. Plots based on  actual  data have been described in 
great detail by most authors  in this field. The results give 
higher yields than those obtained with (2) and (6), as shown 
in Fig. 1 .  

5. Wafer partitioning 
The discrepancy between actual  data  and ( I )  and (2) is 
caused by two effects. First of all the wafer to wafer defect 
distribution P(N = i) cannot be correctly  represented by the 
Poisson distribution in (4). The defect distribution data 
suggest that  the correct  model for P(N = i) must be wider 
than  the  one given in Formula (4). This  can be modeled by 
using compound Poisson distributions for P(N = i) in 
Eq. (3). A general approach for doing  this is given in 
Appendix I .  The historical approach, leading to  the  same 
results, is followed in the rest of  this  paper. 

The second reason for the differences between data  and 
models is defect clustering. Defects often congregate in  areas 
such  as the periphery of wafers. The model  in ( I )  is therefore 
no longer valid. To get around this  problem, wafers have 
been partitioned into regions. In some cases only two regions 
were used [8,9]; others used more [ 10, 1 11. In  one IBM 
manufacturing plant defects are  counted in five 
predetermined concentric regions. 

In principle the defects in  each region can be modeled 
with ( I ) ,  although in  practice  it has been found  more useful 
to model the defects per chip of area A with the Poisson 
distribution 

P(XD = k )  = 
e-AD‘(AD,)k 

k! ’ 

where D, is the average defect density  of region i. The 
rationale  for the applicability of this  distribution is addressed 
in [2] and [ 121. 

6. Compounding  partitioned  models 
Experimental data in [8, 91 have suggested that  the average 
defect density  in each region i varies from region to region 
and wafer to wafer. This  can again be modeled with the 
method of compounding. In this case it  takes on  the  form 

M 

P(XD = k )  = P(D,)e-AD’(AD,)k/k!, 
,=O 
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where P(D,) is the probability  distribution of average defect 
densities D, for M regions. Note  that P(D,) is not a  function 
of chip  area since it pertains to  the average defect density  in 
a region. 

model the region to region variation but also the wafer to 
wafer variations  of average defect densities  for  each region. 
At IBM the  production of integrated  circuits is planned by 
quarters. Yield projections for  planning purposes are 
therefore made  to cover  a period of three  months.  The 
variations in defect levels during  this period  therefore have 
to be included. This makes the value of M very large, and 
for all practical purposes,  it can be approximated by infinity. 

If (8) becomes an infinite sum, it is again possible to 
model the  compounder P(D,) by a discrete probability 
distribution. A Poisson distribution can be used. It takes on 
the form 

In practice the distribution given in Eq. (8) not  only  has  to 

where a is a parameter  and D an average defect density  for 
all regions combined. 

If (9) is substituted into (8), it results in 

This is known as  the Neyman type-A distribution. It has  a 
mean and variance given by 

E(XD) = AD, (1  la) 

V(XD) = AD( 1 + U D ) .  ( 1  Ib) 

In this case the variance is larger than  the  mean.  This 
distribution  has  indeed been used successfully by F. 
Armstrong and K. Saji to model actual particle, defect, and 
fault distributions  in  semiconductor processes [ 131. 

The yield model associated with ( I O )  has the  form 

Y = exp [uD(e-A'" - I)]. (12) 

This is an interesting  function of chip area A, as is  shown  in 
Figure 2. For very large areas, the yield becomes  asymptotic 
to a lower bound e"''. This is independent of area A and 
therefore is constant. It is this property of the Neyman 
type-A yield model that restricts its usefulness to small chip 
areas. To alleviate this problem other defect density 
distributions have to be tried. 

7. Transition to a continuous defect density 
distribution 
The probability distribution of defect densities P(D,) is 
associated with M different defect densities D,. Each one 
represents the average defect density  for the regions indicated 
by the index i. The probability associated with each defect 
density depends  on  the area of the corresponding region 

1 1 1 1 1 1 1 1 1 1 1 1 ,  
Chip area 

[ 2 ,  IO, 121. This probability is given by s,/S, where si is the 
area of the  ith partition and  the total area S is obtained with 
the  summation 

A4 

s=  s,. (13) 
I =  I 

The distribution P(D,) in (8) is  therefore given by 

P(D,) = s,/S. 

Substitution of this result into (8) gives 

P(XD = k )  = - 
s, P-""('4Q,)k 

I =  I s k! . 

It is possible mathematically to express this result as 

where b(D - D,) is a  unit  impulse or delta  function occumng 
at D = 0,. Rearrangement of (16) gives 

P(X,  = k )  = lrn '-""ED)* 3 6(D - D,)dD, (17) 
,=o s 

where it is possible to define a  probability  distribution  of 
defect densities function 

M 
S 

P(D) = 6(D - D,). (18) 
,=o s 

This is a  string of delta functions  occumng  at  the 
appropriate values of D. Combination of (1 8) and ( 1  7) gives 

P(X, = k )  = lrn e-AD;D)k P(D)dD, 
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which is an integral form  for compounding a Poisson 
distribution [4, 51. 

Associated with the probability distribution of defect 
densities  in Expression ( 1  8) is the  cumulative distribution 
function 

C(D) = lD P(D')dD'. (20) 

Since the integral of  the delta function 6(D - D,) is a unit 
step  function u(D - D,), it  is possible to express the 
cumulative  distribution by 

D,r D 
S C(D), = u( D - 0,). 

,=I s (21) 

This is a staircase function like the  one shown  in Figure 3. 
The  summation is only over those values of i for which 
D, I. D. 

When we let the  number M approach infinity, the  sum 

M 

lim 1 s, = m, 
M-m ,=I 

since the regional areas  are finite.  Therefore, the  area S 
approaches infinity. Nevertheless the  sum 

SJS = (4 si)/,! si 
M 

(22) 
I= 1 

remains equal to  one regardless of the value of M .  We are 
therefore left with an infinite series of infinitely small  steps 
that start at C(0) = 0 and  end  up  at C(m) = 1. This  can best 
be presented by a continuous  cumulative  distribution 
function C(0). 

distribution  function 
The  function C(D) leads to  the  continuous probability 

P ( 0 )  = - 
dD 

This  continuous probability distribution function can be 
used for compounding in the  same way as the string  of  delta 
functions in ( 1  9). 

A number of distribution functions have been tried  for 
P(D). Until now  a gamma  distribution has shown the 
greatest potential. It was discovered for use in wafer to wafer 
modeling in [ 141 and confirmed  in [8] and [9] for regional 
and wafer to wafer modeling. 

8. Compounding and chip area 
We next investigate the effect of  a  change  in chip  area  on 
compounding.  The defect distribution 

P(XD = k )  = e-AB(AD)k 
k!  (24) 

remains unchanged  when compounded with a  delta function 
in the form 

The integral form of compounding was derived  as the limit 
of  a series of  delta  functions. Compounding (24) with a 
continuous  distribution is identical to (19), as seen in the 
preceding  section. 

distribution is 
When we increase the  chip  area A by a factor n, the defect 

e-"(B(nAD)k P(XD = k )  = 
k! ' 

This  distribution differs from the  one in (24). It also remains 
unchanged  when compounded with a  delta  function to give 

The delta function clearly is not a function of the  chip area. 
Compounding with a continuous probability  distribution 
P(D) derived in  the limit from delta functions therefore gives 

It should be noted  that  the  compounding of defect density 
distribution in (27) and (28) is not a function of the  chip 
area. 

9. Faults and defects 
At IBM it has been found useful to distinguish between 
defects and faults. A  fault is defined as a  defect  causing a 
failure. Not all defects  cause chip failures. To do this  they 
must occur in the  areas where  they  interfere with the 
electrical operation of the chip.  These are known as  the 
critical areas [ 121. In  some cases failures are  not detected 
until bias conditions  are changed or the wave shapes of  the 
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applied pulses are altered. If these  changes and alterations do 
not exceed specifications, then  the defects are causing faults. 
The fraction  of defects that causes product failures under 
specified test conditions is indicated by 8. This has also been 
called the probability  of failure. 

The  number of  faults on a chip  can never exceed the 
number of defects. The probability of finding x faults on a 
chip with k defects is a conditional  probability designated as 
P(X,  = x I X ,  = k) ,  where X ,  is a random variable denoting 
the  number of  faults on a chip. The probability  of  finding x 
faults is given by ex. This implies that  there  are ( k  - x) 
defects that will not cause faults. The probability of this 
happening can be calculated with ( I  - O)k-x. The  number of 
combinations by which k defects can cause x faults  is given 
by k!/x!  (k  - x)! .  The probability  of  finding x faults on a 
chip  that already  has k defects is therefore given by 

P(X, = x I X ,  = k )  = 
k! 

x!(k - X)! 
ex(l - e)k-x 

This is a binomial  distribution  and it clearly shows that  the 
probability  of  failure is an applicable nomenclature for 8. 

The probability  of finding x faults on a chip  can be caused 
by any  number of defects k > x. To find the unconditional 
probability P(X, = x) therefore  requires taking  into  account 
all probabilities P(X, = k )  for k > x.  This is done with 

m 

P(X, = x )  = P(X, = x 1 X ,  = k)P(X, = k) .  (30) 
k=x 

Substitution of (24) and (29) into  this expression gives 

represents the general formula for compounding  the fault 
distribution. 

10. Measuring wafer to wafer defect density 
variations 
The first application  of (35)  for  modeling the wafer to wafer 
variations  in defect densities  occurred at IBM in 1972 and 
was reported  in [ 141. It was found experimentally that  the 
number of failing defect monitors  on test wafers were not 
distributed as  either  binomial or Poisson distributions. This 
could  only happen if the defect  densities were not  the  same 
from wafer to wafer. However,  since this  approach seems not 
to have been understood  in  recent  papers [ 15- 171, let us 
look into  that venerable analysis in more detail. 

The  data in [ 141 consisted  of distributions of the  number 
of failing defect monitors per wafer. Some of these monitors 
had long serpentine lines to  determine  the defects that 
caused open circuit failures or faults. Others consisted of 
interdigitated fingers to detect the defects that caused short 
circuit faults. These monitors were made with diffusions, 
polysilicon and metal  patterns.  Each pattern was replicated 
50 times  on each wafer. 

If the defect  densities  for a given defect type are  the  same 
from wafer to wafer, then  the  number of failing monitors 
X,, is given by 

P(X, = x) = 1 k! 
s"(1 - e) k-x e-AD(AD)k (3 1) where y is the yield of the defect monitor  and k = 0, 1, 

bx x!(k - x)! k! ' 2, . . . . The  mean  and variance  of this  distribution  are given 

Definition  of the index i = k - x and rearrangement  of this by 
expression give E(X,,) = 50(1 - Y ) ,  ( 3 7 4  

P(X, = x) = c P-AD(eAD)x - [ ( l  - O)AD]' 
x! ,=O i !  ' 

The  summation  on  the right is equal to  exp [ ( I  - 8)AD], so 
that (32) becomes 

e-aAD(OAD)x 
x! . P ( X ,  = x) = (33) 

This is the Poisson distribution with the probability of failure 
included as a parameter. 

function to give 
The result in (33)  can be compounded with a delta 

V(X,,) = 50y( 1 - y ) .  (37b) 

Here  the variance is smaller than  the  mean.  In  the  actual 
data  the variance was found  to be larger than  the mean. An 
example  of this is shown  in Figure 4. This suggested a wafer 
to wafer variation  in the value of y .  To model  this, (36) was 
compounded. Use of a beta function for the  compounder 
occasionally gave a satisfactory model  for  these data. 
However, the resulting yield formulas,  distributions, and 
estimators for the  parameters were cumbersome. They were 
therefore not used as models and  not reported in  the 
literature. For comdeteness  some of the  compounded 
binomial distributions  that were investigated at  that  time  are 

(34) given in Appendixes 2 and 3. - .. 

The probability  of failure in  this case does  not affect the 
compounding delta  function. In  the  same way, it will not 
affect the  continuous  compounding derivable from (34). e-% 
Thus k! 

A less complex model was obtained by approximating (36) 
with the Poisson distribution 

P(X,, = k )  = -, (38) 91 
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Failing monitors per wafer 

A distributlon of the  nutnbcr of lailing mont to r \  pcr  wafer. 'The data 
are \ h o w 1  in solid  line\:  a  binomial  di\trlbution  with  the \atnc 
average is \ h o w  i n  dashed  lines. The mismatch  between  the two 
curves is caused by water to wafer  variation In defect  densitles 

where X is the average number of failing monitors per wafer. 
In this  model the mean and variance are  both  equal  to X. 

distribution  has a  variance that is larger than  the mean. 
Modeling the  distribution of the  number of failing monitors 
per wafer in [ 141 was therefore reduced to  the search  for  a 
compounder  that gave the correct  distribution, mean,  and 
variance. Use of  the  gamma  distribution in the 
compounding  formula 

In [8]  it is shown that  any  compounded Poisson 

gave a very suitable fit to  the  data, as was duly reported in 
the literature [ 141. 

The  gamma  distribution  can be written  as 
X--le-A/8 

OX) = ___ 
r(a)B- ' 

where a and p are parameters. The mean and variance of 
(40) are given by 

(40) 

E(X) = 4 ,  (414  

V(X) = a$. ( 4 1 ~  

a = E2( X)/ V( X). (42) 

One useful property of this distribution is that 

This is the inverse of the  square of the coefficient of 
variation, which is normalized with respect to  the  mean.  The 
quantity a is therefore  a single parameter  that describes the 

92 width and  the  nature of the  gamma  distribution completely. 

Substitution of  (40) into (39) results in the negative 
binomial distribution 

It has  been practical to use (41a)  to define = E(X) = ab, so 
that p = x/a. It is therefore possible to rewrite Formula (43) 
as 

This  distribution has the  mean  number of failing monitors 
per wafer 

E(Xm) = x (454 

and  the variance 

V(Xm) = X( 1 + X/a). (45b) 

In this case the variance is larger than  the  mean. 
It is possible to  estimate x and a from  the average E and 

the  standard deviation uk of the  number of failing monitors 
per wafer of the  data.  This is done by using the  formulas 

E = E(Xm), (464 .: = V(Xm), (46b) 

and solving them for X and a to give 
- 
X = E, (474 

E2 
@; - F '  

a = -  (47b) 

Techniques such as  maximum likelihood estimators can also 
be used at  this  point,  but (47a, b) have been found  adequate 
in practice. For high monitor yields the average number of 
failing monitors is related to  the defect density by 

B = X/500,Am, (48) 

where B,A, is the critical area for  each one of the  50 
monitors per wafer. When Ij and x are  proportional,  as  in 
(48), the defect density  distribution is also  a gamma 
distribution.  This has a mean  and variance 

E(D) = E(X)/500,Am, (494  

V(D)  = V(X)/(500,A,)2. (49b) 

The  parameter a for this  distribution is given by 

a = E2(D)/V(D) 

= E2( X)/ V( X). (50) 

It is therefore the  same  as  the  one in  (42) and  remains 
unchanged under this  change  of variables. The fact that a is 
independent of chip  area makes  it and  the associated gamma 
distribution very suitable  for  modeling regional and 
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temporal variations  in  integrated  circuit  defect  densities, 
especially when  it fits the actual data. 

Formula (35) with zero  faults or k = 0. This results in 
The  chip yield for each defect  type can be calculated using 

Y = P(&, = 0 )  

= lrn LBADP(D)dD, 

where OA is the critical area of the  product chip. Formula 
(5 1)  is known as  Murphy's yield model.  When the  gamma 
distribution is  used for the wafer to wafer defect distribution 
P(D) ,  the integral in (5 I )  evaluates to 

Y = ( I  + 8AD/u)". (52) 

This has been referred to as the negative binomial yield 
model. 

The derivation of ( 5  1) and  the  method for  estimating the 
model parameters  have been described  in this paper with a 
great deal of care  and in great detail. This has been done 
because of the far-reaching significance of this  approach. 

It  is of interest to  note here that  the model in Eq. (52) is 
parsimonious with the  number of variables that  are required. 
Only  a single variable N has  been  introduced to model the 
variations  in manufacturing defect levels. When individual 
defect levels were measured with the  methods of [8] in  a 
pilot line, the values of N were observed to vary from lot to 
lot. This appears to have been caused by sample limitations, 
since long time averages showed considerable stability. For a 
long period of time  the value of N = 1 gave a good average 
approximation for  most defect types  in the IBM integrated 
circuit factories in Sindelfingen, West Germany,  and Essex 
Junction, Vermont. As yields improved, however, the 
average values of N decreased. Values of CY less than 0.5 have 
been found appropriate for a number of defect types  in 
recent years. 

11. Practical applications 
In the preceding  section it was shown how defect monitor 
data can be converted to  an equivalent  product yield for 
each defect type. This method was used in a pilot line to 
track defect yields during  the years 1972 and 1973. The 
defect levels in that line  became progressively lower during 
that period. As a result the yields increased. It was soon 
learned that yields projected with the model  in ( 5  1) were 
lower than  the actual ones  obtained  on  the  manufactured 
products. 

The reason why ( 5  1 )  projected lower yields than  the actual 
ones was easily determined. In the approach  of the preceding 
section we assumed that  the defects were distributed on each 
wafer like a  simple Poisson defect model. This  turned  out  to 
be the wrong assumption.  Our  data showed that  the defects 
were clustered on each wafer, with more defects near the 
edge than near the center. Two  methods for  handling  this 
effect evolved independently at IBM in the early 1970s. 

The  technique developed at  the IBM Laboratory  in East 
Fishkill, New York, has been described by Paz and Lawson 
in [9]. They used wafer maps  to locate  transistors that failed 
because of base collector shorts known as pipes. The  map for 
each wafer was divided into  an  inner  and  an  outer region or 
zone. The yield within  each region was analyzed as a 
function  of emitter area. This was done by combining 
transistor chain  data  into groups. Groups  containing  an 
equal number of adjacent  transistors were randomly selected 
on each wafer map.  The object was to  determine  the fraction 
of these groups  that was defect free. This was the yield 
associated with each group size. Such yields were determined 
for each region on each wafer using eight different sizes of 
groups.  Each group size contained a fixed amount of emitter 
area. The  data consisted therefore  of  transistor  pipe yield as 
a  function of emitter  area for each region on each wafer. 

The object  of the Paz and Lawson method was to  obtain 
values for the yield model 

Y = Yoe-AD, (53) 

where Yo is a gross cluster yield and e-AD represents the 
simple Poisson random defect yield in  each region. The  area 
A in (52) represents the total emitter  area in  a  group, and D 
the  random defect density. The values of Yo and D were 
determined with a  linear regression technique using 

In Y = -AD + In Yo. (54) 

This was done for  each region on each wafer. Results 
confirmed that  the wafer to wafer defect  densities  could be 
modeled with a gamma  distribution.  The defect  densities in 
the  outer regions, furthermore, were found  to  be higher than 
those  in the  inner ones. It was also observed that  the 
gross cluster yield Yo was lower in the  outer regions. It 
furthermore  appeared  that  the wafer to wafer distribution  of 
Yo could be modeled with a beta distribution. 

analyze  defect data in the IBM East Fishkill manufacturing 
plant. It has  withstood the test of time in an  actual 
integrated  circuit manufacturing  environment. 

Another way of estimating  the  same  parameters was 
developed  independently at  the IBM laboratory  in Essex 
Junction.  This  technique has been described in [8]. It also 
depended  on wafer map analysis. In this case the wafer maps 
that were used showed the location of failing defect 
monitors.  The  maps were again  divided into  inner  and  outer 
regions, as was done by Paz and Lawson. The difference 
between the  two  methods lay in  determining which failures 
were gross clusters and which ones were random.  In  the 
Essex Junction  approach  any  group of three or more 
adjacent failing monitors was called  a  cluster. The total 
number of  clustered monitors were counted  to  determine a 
cluster-limited yield. This was done  independently for the 
inner  and  outer regions of  each wafer. After completion of 
this tally, the clustered failures were discarded from  the 

The model of Paz and Lawson is still used today  to 
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100 - are therefore applicable in many  cases.  Angular  regions, 
however,  also  have  been  used in the past. 

12. Large chips and wafer-scak l ~ ~ e ~ r ~ ~ ~ ~ ~  - c 
3 Implicit  in the models  derived and described  in this paper is 

L 0 the assumption that the chip areas are smaller than the 

i Ha,f wafer models cannot be  used to calculate  yields  for  larger  chips. 
z This can best  be demonstrated with an example. 

0 
x clusters 

2 50- 0 Quarter wafer cluster and the regional  areas. This does not mean that these - 
J 

., 

8 7 %!e, A chip with area A that is larger than a regional area s, 
I 
I 

I I t 1 1 1 1 1 1  , , 3 ,  , , , I  I I I , , , , , , I  

must contain more than one region or a number of fractions 

the chip area A must  be  used individually to calculate the 
I of regions. The areas or fractional areas of the regions  within 

Clrcuit  areas  (logarlthmic qcale) corresponding yield.  In this calculation the appropriate form 

Cluhter  yield  as a function o f  integrated  circuit  areas. 

sample. This procedure is  still  referred to as “declustering.” 
We therefore call this approach the declustering method. 

After the clusters  were  removed, the remaining failing 
monitors were  assumed to be randomly distributed 
according to simple Poisson  statistics  in  each  region. To 
determine the wafer to wafer variation, the distribution of 
the number of  failing monitors in corresponding regions was 
obtained. This therefore is the same approach as the one 
described  in the preceding  section. The difference in this case 
is that smaller  regions  were used instead of  full  wafers. 

There was another difference  between the method 
described in the previous section and the one adopted in [8]. 
The samples  in the latter paper were too small to determine 
whether the wafer to wafer variations of defect  densities 
followed a gamma distribution. To circumvent this, the 
mean and the variance of the failing number of monitors in 
corresponding regions  were  calculated.  When the mean was 
equal to or larger than the variance, simple Poisson  statistics 
were  assumed for the random defect  model.  When the mean 
was smaller than the variance, the negative binomial 
statistics in (44) were  assumed to be appropriate. The 
parameters for  these  statistics  were then determined with 
(47a, b)  and  the yield calculated  with  (52).  Modified  versions 
of this technique survive  today in a number of integrated 
circuit manufacturing lines at IBM in Essex Junction. 

Yield models with  more than two  regions  have  been  used 
to calculate yields at IBM.  At the development laboratory in 
East  Fishkill,  New  York, K. Saji uses a model  with three 
regions  per  wafer. A yield model used to control the 
photolithographic defects in one of the manufacturing lines 
in Essex Junction makes use of  five regions  per  wafer. 

The number of regions  is  usually determined by the 
nature of the defects. Serious clustering and regional 
variations require more regions. The shape of the regions 
also depends on the nature of the clusters.  Most tools 
produce a radial  defect density variation. Concentric regions 94 
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of the wafer to wafer  yield formula (5 1) must be  used. The 
resulting  yields  for  these  regions or fractional regions  must 
be multiplied to obtain the total random defect  yield  for the 
chip. In the case  of  full  wafers  it  consists  simply  of 
calculating the yield  for  each  wafer  region and multiplying 
the yields  of  all the regions on a wafer. 

This is the entire random defect  model. It has  been  in use 
in IBM  Essex Junction since October 1972. The model was 
used by  A.  N. McLaren to estimate the yields  of  wafer-scale 
integrated circuit products for cost and productivity 
calculations. These estimates have  aided IBM management 
in making the correct business  decisions about the economic 
viability of such products. 

Until now  we  have only  looked at half the data that were 
collected  with either the method of Paz and Lawson [9] or 
the declustering technique of [8]. The missing  half  is the 
gross clustering yield Yo. As it turns out, this has a very 
profound effect on the yield  of  very  large chips and full 
wafers. 

The gross  yields Yo in [9]  consisted of cluster areas with 
extremely high density  pipe  defects. The data in  [9]  show an 
average yield for Yo of approximately 8 1 % in the inner 
regions and about 75% in the outer regions.  These are the 
gross  yields that have to be used  in the yield calculations for 
smaller  chips. The values of Yo remain approximately 
constant for chip sizes that are smaller than the cluster  areas. 
Chips that are the same size as, or larger than, the wafer 
regions must be  completely  free  of such clusters.  These  large 
chips will therefore have a lower cluster yield than Yo. A 
cumulative curve of Yo in [9] shows that this yield falls 
somewhere  between 0 and 50% for the inner regions. No 
data are supplied  for the outer regions. 

cluster-limited yield  of 97.3% for inner regions and 73.8% 
for the outer regions. The cluster-limited yield for the 
combined regions was  given as 87.2%. All of these  yields are 
pertinent for chips that are smaller than the cluster areas. 

There is a distribution depicted in [8] for the number of 
monitors lost per wafer due to clustering. This distribution 
shows that only 30% of the wafers are without clusters. The 
cluster-limited yield for  full  wafers  is therefore 30%.  The 

The data in  [8] are somewhat  more  specific.  They  show a 
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cluster yield consequently ranges between 87.2%  for  small 
chips  and 30% for full wafers in  these data.  This includes 
open and short  circuits among  patterns in diffusions, 
polysilicon and metal only. It does  not include the yield of 
oxide  pinholes, diffusion leakage, or contact holes. 

These  cluster-limited yields have usually been described 
under  the  name “gross yield” by this author  and sometimes 
as “area yield” by others. A discussion of the types  of defects 
and  manufacturing  errors included  in  these yields is given in 
[ 121. According to  the  same paper,  these defects and  errors 
cause  parts of wafers or entire wafers to have no functioning 
chips. This implies that  the  chip size is smaller than  the 
affected areas. For very large chips  and full wafers this 
assumption no longer applies and  other models  have to be 
developed. 

A yield versus area plot for cluster yields is shown  in 
Figure 5. The two end  points  are those  measured in [8]. The 
flat portion on the left indicates the  constant Yo range for 
small  chips. The  extent of the flatness depends entirely on 
the  area of the smallest clusters that  are considered. The 
curvature of the yield plot for larger chips  depends  on  the 
size distribution  of the clusters. If there  are a large number of 
small clusters, the roll-off  will be sharp. For a distribution 
with more large clusters, the yield curve will  fall off slowly. 
These conditions  are shown with dashed  lines  in Fig. 5. This 
tells us that  the distribution  of  cluster sizes has to  be taken 
into  account in the yield projections  of large chips  and full 
wafers. It is this effect that modulates the  random defect 
yields, not  the rejection  of Formula (5 1) as was done  in 
[16, 171. 

yields that  can be expected  in the case of full wafers. The 
upper curve is the  one  that  occurs  in a manufacturing 
facility that succeeds  in  constantly  making some defect-free 
wafers. The  bottom curve is for a manufacturer  who never 
makes a defect-free wafer. Manufacturing  operations  that do 
not  produce 100% yield wafers in  their  current  products all 
fall into this category. 

Proponents of wafer-scale integration appear  to advocate 
the use of  simple Poisson statistics  for  calculating wafer 
yields, as was done, for  instance, by Peltzer at Trilogy [ 181. 
He mistakenly refers to Stapper as  the source  of that model. 
It  is, however, the model  proposed by single-wafer analysts 
and theoreticians, as for  example  in [ 1 I ,  16, 171. Their 
model clearly predicts too high a yield for  factories that 
currently cannot  manufacture defect-free wafers. 

The cause  of the zero yields in  the lower curve in Fig. 6 
can be determined experimentally. In data  examined by this 
author it appears  in the form  of high defect levels in 
localized areas on wafers. These are  the  same  areas  that were 
modeled with the gross yields Yo by Paz and Lawson and in 
the declustering  model. We must therefore conclude  that  in 
such a manufacturing  environment  the cluster yield curve in 
Fig. 5 goes to zero  for  circuit areas smaller than wafer size. 

A yield versus area plot in Figure 6 indicates the range of 
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Yield as a function of integrated  circuit  area  or  circuit  complexity. 
The yield axi\ is logarithmic. 

It has  been suggested [ 161 that  the yield in  the  zone 
between the  upper  and lower curves of Fig. 6 can  be 
modeled with simple Poisson statistics. The  data  from Paz 
and Lawson clearly show that  this assertion is wrong. 

In the  method of  Paz and Lawson [9], the  introduction of 
the cluster yield Yo made it possible to model the  remaining 
random defects with  simple Poisson statistics. It was 
nevertheless an artifact,  since the clusters did  contain high 
density random defects. These,  therefore, should have  been 
included in a random defect model  that  does  not follow 
Poisson statistics. An early model of this  type  has already 
been  described in [ 191. 

The fact that  simple Poisson statistics is not applicable to 
wafer-scale integration has  another  important consequence. 
For a given yield, the Poisson model has a relatively low 
average number of faults. For  the  same yield, a negative 
binomial model has a much larger average number of faults. 
This is in agreement with actual  data in [6,7].  It is this effect 
that  has a pronounced effect on  the  requirement of 
redundant circuits  when redundancy is used to boost the 
yield. 

Defect clusters  within the  chip  or wafer area increase the 
need for redundant circuits  even more. Advocates  of Poisson 
statistics and simple Poisson yield models, to  the  contrary, 
predict the necessity for fewer redundant circuits. 
Miscalculations  of this  type  can lead to serious product 
problems. Manufacturers of wafer-scale products  who plan 
their  redundancy  requirements with Poisson models may be 
in  for a nasty surprise. 95 
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A redundancy model that incorporates negative binomial 
statistics  has  been  described  in [6]. This model  has been used 
at IBM to  optimize  the productivity of high density memory 
chips since 1975. Yield projections  for  256K-bit dynamic 
random access memory  chips currently  in production  at 
IBM were made with this  same model. 

13. Conclusions 
It has been shown in  this paper that wafer to wafer variations 
in  defect levels can be modeled with techniques developed at 
IBM in the early 1970s. This eliminates the deficiencies that 
occur in  a number of recently published yield models 
[ 16, 171. 

On  the basis of published data, it is also apparent  that 
defect  clusters  have an  important influence on  the yield of 
very large chips  and wafer-scale integration. It appears  that 
yield models  for  such products have to  include cluster sizes 
and cluster size distributions. 

Appendix 1 
In Section 3 it was shown that  the  number of defects X ,  per 
chip  are distributed  as 

f l x D  = k ,  
m 

= 1 P ( N =  i) - i! 
k!(i - k)!  (A/S)k(l  - A/S)"k. ( A I )  

i= k 

Let P(N = i )  be given by the  compound  distribution 

Substituting this  in ( A I )  and interchanging the  sum  and 
integration signs gives 

The  sum within the brackets is the  same  one  as in  Section 3. 
When  an index; = i - k is substituted, this  sum becomes 

c e?( SD) '+' ( k  + j ) !  
( k  + j ) !  k!j! (A/S)k(I - A/S)' 

- e?(AD)' [SD(I - A/S)]' - c 
k! ,=o j !  

- e-AD(AD)k 
k! ' 

- 

When this  result is introduced  into (A3), that distribution 
becomes 96 
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P ( X ,  = k )  = k! 

Similarly, if P(N = i )  is given by the  compounded 
distribution 

then substitution into ( A I )  results in 

The preceding results are very general and show that 
compounded Poisson distributions  can be used for the 
compounder in ( A I )  and result in  a compound distribution 
of the  same type  for the defect distribution. Wafer to wafer 
variations  in defect levels can therefore be modeled with 
compound Poisson statistics. 

Appendix 2 
The  binomial  distribution (36) in the  more general form 

P(X = k )  = (;) J F k (  1 - y ) k  

can be compounded with a  distribution P( v )  to give 

For this  distribution the  mean  and variance are given by 

E ( W  = NI1 - E(y)l ,  

VW = N E ( . ! J ) [ ~  - E(y)l + ( N 2  - N V Y ) .  ( A I  1 )  

Consider  a compounder equal to a  beta  distribution: 

for which 

E(Y) = P / ( P  + 4 ,  (A 13) 

V Y )  = PV/(P + 4 2 ( P  + lJ + 1). (A 14) 

When (A 12) is introduced  into (A9), it results in 

This has the mean and variance given by 

E(x) = N v l h  + v), (A 16) 

V(X) = N p ( N  + g + u) / (p  + u)'(p + Y + I ) .  (A 17) 

The  parameters of the distribution (A15) can be estimated 
from the  mean  and  standard deviation uk of the  data with 
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v = kc. 

p = ( N  - k)C, 

where 

( N  - k)K- u: 

( N  - k)k + Nu: 
c= 

Appendix 
The binomial distribution (36) can also be written  as 

where A ,  is the critical area and D a defect density. The 
factor ( 1  - E - ~ ~ ~ ) ~  can be expanded with the  binomial 
expansion so that 

This  can be compounded with a defect density  distribution 
P( D) to give 

P(X = k )  

When P(D)  is a gamma distribution with parameters a and 
p, as in (40), then 

P ( X  = k )  

It can be useful to  substitute p = D/LY into (A24). 
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