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To keep pace with  the  trend  towards  increased 
circuit  integration,  printed  circuit  patterns  are 
becoming  denser  and  more  complex. A variety 
of  automated  visual  inspection  methods  to 
detect circuit defects during  manufacturing have 
been proposed.  This  paper  describes  a  method 
which  is a synthesis  of  the referencecomparison 
and  the  generic-property  approaches  that 
exploits  their  respective  strengths  and 
overcomes  their  respective  weaknesses. It is 
based on the  observation  that  the  local 
geometric  and  global  topological  correctness of 
a printed  circuit  can be  inferred  from  the 
correctness of simplified,  skeletal  versions of 
the  circuit  in  a  test  image.  These  operations  can 
be realized using  simple  processing  elements 
which are  well  suited  for  implementation  in 
hardware. 

1. Introduction 
Electronic packaging technology is evolving towards 
interconnecting more integrated  circuits on a single printed 
circuit  board or substrate. As a result, printed  circuit  boards 
and multilayer  ceramics are increasing  in size and they 
contain  more layers. In addition,  the printed  circuits 
themselves are becoming  smaller and more  complex. For 
example. for use in its high end  computers like the 3081, 
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IBM now manufactures printed  circuit boards (called TCM 
boards)  as large as 600 by 700 mm  (24 by 28 in.),  composed 
of up  to 20 layers, and with circuit  features as small as 0.08 1 
mm (3.5 mils) [I]. IBM also routinely manufactures  90-mm 
(3.5-in.) multilayer ceramic substrates  consisting  of up  to 33 
layers and using 0.12-mm (5-mil)  circuit  features [2]. 

complex,  substrates  become more costly not  only  to produce 
but also to replace in the field. Therefore,  it is important  that 
quality control  methods keep pace with the  trend towards 
larger circuit  areas, more complex  circuits, and smaller 
circuit features. In particular, the printed  circuits on each 
layer must be carefully inspected before that layer is used to 
make up a  composite of layers. Although electrical testing 
can detect some defect types, only human visual (or 
automated optical)  inspection can reliably detect many of 
the “fatal” defects. 

As these packaging technologies become increasingly 

Unfortunately, human visual inspection is labor  intensive 
and therefore costly. In addition,  human subjectivity and  the 
tedium of the work contribute  to variations  in the quality  of 
inspection.  Interest in automating  the visual inspection 
process is motivated by the desire to reduce labor costs and 
standardize  inspection  quality. 

A variety of approaches for automated optical  inspection 
of printed  circuits have been reported  over the last decade; 
see the surveys of Chin  [3]  and Kruger and  Thompson [4]. 
These approaches typically use an analog  subsystem  for  part 
handling and image acquisition and a digital subsystem for 
image analysis and overall system control.  Such systems 
usually do  not analyze grey scale analog images; instead 
most methods  are based on  the analysis of discrete, binary 
irnager generated by sampling  analog images on a regular 
grid and thresholding the result to a  zero or one. Discrete, 
binary images (or just images) are n by m matrices whose 
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Evpunsion (contruction) 
We define  expansion explicitly here. Contraction is realized 
by first expanding  the  complement of an image and  then 
taking the  complement of the result. The operation 
I-~~.vpunsion sets all zeros in an image to  one if they have a 
4-neighbor  equal to  one; 8-expansion sets all zeros  in an 
image to  one if they have an 8-neighbor  equal to  one. Figure 
4 illustrates the result of 8-expanding  (8-contracting) the 
entities in Fig. 3(a) twice. Note that expansion fills in detail: 
if carried far enough, entities merge. Contraction  shrinks 
en.tities: if carried  far  enough,  entities break up, e.g., entity B, 
or disappear  altogether, e.g., entity A. Ocr-expansion 
alternates 4-expansion with 8-expansion. This results in a 
better  discrete approximation  to circular  expansion than 
4- or 8-expansion used alone; see Figure 5. 

Thinning 
In general, thinning reduces an entity to its skeleton, a 
simplified version contained in the original entity that 

A > 
A is  missing. B is broken 

into three 

2 Entities from Fig. 3(a)  which have been (a) expanded twice and (b)  
i contracted  twice. 

8 8 8 8 8 8 8 8 8  
8 8 7 7 7 7 7 7 7 8 8  

8 8 7 6 6 6 6 6 6 6 7 8 8  
8 8 7 6 6 5 5 5 5 5 6 6 7 8 8  

8 8 7 6 6 5 4 4 4 4 4 5 6 6 7 8 8  
8 7 6 6 5 4 4 3 3 3 4 4 5 6 6 7 8  
8 7 6 5 4 4 3 2 2 2 3 4 4 5 6 7 8  
8 7 6 5 4 3 2 2 1 2 2 3 4 5 6 7 8  
8 7 6 5 4 3 2 1 x 1 2 3 4 5 6 7 8  
8 7 6 5 4 3 2 2 1 2 2 3 4 5 6 7 8  
8 7 6 5 4 4 3 2 2 2 3 4 4 5 6 7 8  
8 7 6 6 5 4 4 3 3 3 4 4 5 6 6 7 8  
8 8 7 6 6 5 4 4 4 4 4 5 6 6 7 8 8  

8 8 7 6 6 5 5 5 5 5 6 6 7 8 8  
8 8 7 6 6 6 6 6 6 6 7 8 8  

8 8 1 7 7 7 7 7 7 8 8  
8 8 8 8 8 8 8 8 8  

f Discrete.  binary Image o f  typical prlnted circuit entitie\: ( a )  typical 
entities; (b)  their  skeletons. 

1 Discrete  octagon of diameter 2n + I is the set of elements n,  
ff  f l = i ,  2, " . ,  8. 
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For x = l ,  

0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
o x o  
0 0 0  

o x  I 1 X I  
0 0 0  0 0 0  

1 x 1  
0 1 0  0 1 1  

I x I etc. 

x:  0-join I-join 2-join 3-join 4-join 
(a) 

F o r x = l ,  

0 0 0 1 0  0 0 0 1 0  0 1 0 1 0  
0 0 0 1 0  0 0 0 1 0  0 1  1 0 0  
1 l x O O  O l x O O  O x 0 0 0  etc 
0 0 0  1 I 0 0 1 0 0  O l e o 0  
0 0 0 0 0  0 0 1 0 0  0 0 1 0 0  

(b) 
x: all  T-joins 

Forx=s=b=l ,  

0 0 0 0 0 0 0 0  
OOOObbbO 

OOOObbbO 
s s s x l  I b O  

0 0 0 0 0 0 0 0  

X: blob-join; s: skeletal element; b: boundary  element 
(C) 

I (a )  wjoins; (b j  T-join\: ( c j  a blob-join. 

retains the “basic  shape”  of an entity.  Unlike  expansion or 
contraction,  thinning  both  maintains  the connectivity  of an 
entity  and preserves its  holes (none  are removed or added). 
This is an  important distinction that we exploit  in the 
inspection  algorithms. It is useful (though  imprecise) to 
think of thinning  as a transformation  that reduces  elongated 
parts of  entities to their  centerlines and blobs that  are 
approximately square or circular to their  centers. The 4 ,  8-, 
and oct-thinning used in the inspection  algorithms are 
derived  from 4-, 8-, and oct-contraction by imposing 
additional  constraints  on  the removal of elements  at each 
thinning step: ( 1 )  The global connectivity of entities is 
maintained  and holes are preserved; (2) at each  step, 
4-thinning removes only  elements with a  zero  4-neighbor, 
whereas 8-thinning removes all elements with a zero 
8-neighbor;  (3) oct-thinning  alternates 4- and 8-thinning. 
Figure 3(b) depicts the skeletons of  the entities  in Fig. 3(a) 
derived by 8-thinning. 

Element types and joins 
A boundary element is a nonzero  element with a  zero 
8-neighbor; the boundary of an entity is the set of all its 
boundary elements. A skeletal element is a nonzero  element 
that is necessary to  maintain  the connectivity  of  its 76 
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8-neighborhood; i.e., setting the  element  to zero  breaks the 
connectivity between at least two other elements. 

An n-join is a nonzero  element with n nonzero 
8-neighbors;  a join  can be of order 0 to 8. A T-join is a 3- 
join whose 8-neighborhood contains only skeletal elements. 
A blob-join is a skeletal element with an 8-neighbor that is 
not a skeletal element.  Examples are given in Figure 6 .  The 
join  order  and type can be determined by using strictly local 
processing over  8-neighborhoods  in an image;  detection of 
join  order  and type plays a key role in the inspection 
algorithms. 

Generic method for analysis ofprinted circuit images 
Application  of the  above  concepts  to  the analysis of printed 
circuit images led to  the following observation: The local 
geometric and global topological correctness of typical circuit 
features can be inferred  from the correctness  of skeletal 
versions of the circuit  features  in  a test image. This 
observation,  in turn, led to  the following generic method for 
the analysis  of  printed  circuit images. 

Step 1 Transform  and  thin  the test image in such a way that 
defects and good circuit  features induce skeletal 
features that  can be easily and reliably detected and 
classified. 

Step 2 Compile a  detected  feature list that records the 
position and type  of all detected features. 

Step 3 Compare  the detected  feature list with a design 
feature list generated  from  circuit design data. 

Results Features  in the two lists that  cannot be brought into 
correspondence  imply defects. 

The inspection  algorithms described in  this paper  are 
instances  of the generic method. Each algorithm uses a 
different thinning process designed so that a particular defect 
class induces  a  known  corresponding class of skeletal 
features that  can be easily and reliably detected. It turns  out 
that  the presence  of 0-, 1 -, T-, and blob-joins is sufficient to 
infer the existence  of  typical defects (as well as desired circuit 
features,  such as pad-to-trace or trace-to-trace  connections, 
trace  ends, etc.). 

The feature comparison  method is quite flexible and 
powerful for  two reasons. First, it is possible to define 
arbitrary correspondence  criteria between arbitrary  sets  of 
detected and predicted features. In many cases, however, the 
following simple  criterion  probably will  suffice: Detected and 
predicted  features  correspond if they are  the  same type and 
are within  a given distance  of one  another. Features that 
cannot be brought into correspondence  imply the existence 
of defects; the type  of defect can be inferred from  the  type of 
feature.  Second,  it is possible to derive  measures  of global 
circuit  correctness by combining  the results of all isolated 
feature  correspondences, e.g., spatial distortion,  throughout 
the  entire circuit layer. 
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For  some circuit  types and design rules it is not necessary 
to use reference data;  the existence of certain skeletal 
features  unambiguously  implies defects. For example,  if a 
circuit consists only of single width traces that  must  end in 
pads,  I-joins  imply the presence of defects when the 
algorithm for verifying trace width described in  Section 3 is 
used. However, for other classes of  circuits, a comparison 
step is needed to distinguish between true defects and good 
circuit  features that  induce  the  same type of skeletal features. 

0 Advantages over image comparison and design rule 
approaches 
Because our  method  does  not  compare a reference image 
and  the test image pixel by pixel, it  eliminates the need for 
the storage, generation,  registration, and  comparison of a 
reference image with the test image. Instead, a relatively 
small list of predicted  feature  types and locations is 
compared with a list of detected  features in a straightforward 
way. Unlike  direct  image comparison, it is straightforward to 
incorporate context-dependent  tolerances and  attributes for 
features, e.g., pad  location,  type, and size. It is  also easier to 
compensate  for global distortion  in the test image (e.g., scale 
and skew) because the inverse of the distortion function is 
applied to a relatively small set of  feature variables, e.g., 
location,  instead  of the entire reference image. Finally, this 
method is relatively insensitive to local distortion and 
vagaries that  can cause false alarms with direct  image 
comparison.  For example,  irrelevant differences on  the edges 
of traces or displacement  of  traces by a few pixels will not be 
flagged as  errors (unless the  minimum spacing  rule is 
violated). 

This  method is a major  improvement over design rule 
approaches because it can detect missing features and 
extraneous circuitization that looks like good features. In 
addition, unlike  most design rule  approaches, this  method is 
not limited to verifying just  minimum trace  width and 
spacing;  it can also verify pads, maximum trace  width, and 
various  trace  connections, as well as detect isolated blobs, 
holes, etc. The new method is also capable of handling 
complex  circuit  features and circuit vagaries that  can cause 
false alarms with design rule checkers. Finally, it can readily 
accommodate changes in circuit  features and design rules 
that often  require  modification  of  inspection  algorithms  in 
design rule checkers. 

3. Inspection algorithms 
In general, the generic  method can be applied to detecting 
and verifying the  shape  and size of a large class of  feature 
types, including spacings, holes, lines, angles, corners, 
triangles, rectangles, octagons, and composites  of  these basic 
shapes. We make  this concrete  in  this  section by describing 
algorithms for 

0 Verifying minimum trace width and detecting open 
circuits. 

---"- 

Detecting excessive trace  width. 
0 Verifying minimum spacing and detecting short circuits. 

Verifying pad  position,  area,  shape, and trace-to-pad 
connections (including  detection of spurious blobs). 

However, the method is not limited to these  algorithms or 
feature and defect types. We have  developed numerous  other 
algorithms for a variety of other feature and defect types. 

We formally define  each  algorithm and describe in detail 
the associated transformation  and  thinning process. We do 
not discuss  in  detail  generating the design feature list, 
compiling the defect feature list, or comparing  the two lists 
because these operations  are conceptually  straightforward 
and easily implemented. 77 
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Definitions 
I =binary matrix, a discrete approximation  to  test  image 
I‘ =binary matrix, output of contraction step 
I“ =binary matrix, output of thinning step 
W =  nominal  maximum  trace width, an  odd  integer 
w = minimum acceptable trace width, an  odd  integer < W 

Steps 
1: Oct-contract  matrix I Lw/2] times (traces with  width < w 

2: 8-thin  image I‘ LW/2J - 1w/2J times (traces of width 5 W 

3: Detect I- and  blob-joins in thinned  image I ” :  result  is  list 

4: Compare list of I-  and blob-joins in I” with design list 

are broken): result is contracted  image I’ 

are skeletonized): result is binary  matrix I” 

of detected feature types and  locations 

Results 
I-joins in I” not in design list j trace  width violations 
I-and blob-joins in design  list  not  in I“ j missing features 

in I 

correspondence between 1 -joins and width  violations or 
between blob-joins and actual trace-to-pad connections. As 
one might  expect, all features that look something like 
traces, Le., elongated  features whose width is less than  the 
minimum allowable trace  width, can generate I-joins. For 
example, spurious blobs or large cracks in pads  can  generate 
1- or blob-joins. The key point is that defective features that 
“look” like traces with minimum width violations will 
generate  I-joins;  therefore, all such  features can be detected. 

The feature  recognition  step  generates the detected  feature 
list of all the I-joins and blob-joins  in the image. If the 

We also present the results  of  detecting  simulated defects. 
For each simulation we added defects to  the image  shown  in 
Figure 7(a). This reference image  is  a  200 by 256  binary 
image (matrix) of a 2.5 by 3.3-mm (0.1 by 0.128-in.) area of 
an  inner plane  layer of an IBM 308 1 printed  circuit  board. It 
was acquired with a microscope, vidicon, and image 
digitizer; pixel size is  approximately 0.0 I3  mm square (0.5 
mil  square). The traces, small  pads, and large pad are 7 
pixels (0.089 mm),  25 pixels (32  mm),  and 46 pixels (58 
mm) wide, respectively. The skeleton of the reference image, 
obtained by 8-thinning sufficiently to skeletonize the traces, 
is  shown in Figure 7(b). 

Algorithm for verifying minimum trace width 
A summary of the four-step  algorithm used to verify 
minimum  trace width is illustrated  in Figure 8. This 
algorithm can  detect all instances  of local trace width less 
than a programmable  minimum; detect missing traces and a 
variety of spurious  connections  among traces, pads, and 
isolated blobs; detect  holes in traces. The behavior  of this 
algorithm  is  illustrated in Figure 9 for the special case 
described there. In the  contraction step,  entities U, V, and W 
are  contracted  just  enough  to generate  breaks in traces  where 
the  trace width is less than  the  minimum allowed. Note  that 
entity W  in Fig. 9(b) has  broken  up  into  the  two distinct 
entities W’ and  X’, whereas U and V contract  to  the  two 
entities U’ and V’;respectively. 

enough to  produce their  skeletons. This  thinning  does  not 
cause the  contracted entities to break up or disappear. It 
does, however, generate the  two  important feature  types 
indicated  in Fig. 9(d): ( I )  I-joins  wherever there exist 
minimum width  violations; (2) blob-joins, the  join  points 
between trace skeletons and  contracted pads. This  does  not 
imply, however, that  there exists a one-to-one 

In the  thinning step, the  contracted traces are  thinned  just 

Given: 
Nominal  trace  width = 9. 
Minimum  trace  width = 5 .  

Defect  image: 

Defects: 
a:  Trace  width = 5 j nonfatal 
b:  Trace  width = 4 =j fatal. 
c: Break fatal. 

(a) 

Step I: Contract  twice: 

78 
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Step 2: Thin  three  times: 

Step 3: Detect I-  and  blob-joins: 

0: I-joins + faults. 
0: Blob-joins =$ good/bad trace-to-blob connections. 

( 4  

Illustration of algorithm for  verifying  minimum  trace  width: ( a )  
defect  image  and  specifications;  (b)  result o f  contracting  defect 
image  twice; (c) result o f  thinning  contracted  image three time\;  (d) 
detected I -  and  blob-joins. 



circuit  type is such that 1-joins would not be generated  for a 
good  circuit, the  comparison  step is not needed: I-joins 
imply the existence  of minimum width violations. Here we 
assume  that a trace is never completely missing. If a trace 
can be entirely missing, its absence can be inferred by using 
a comparison  step because  blob-joins will be missing in  the 
detected  feature list. Circuit  types  for which this is true  are 
those  consisting  of single width traces, all of which must  end 
in pads or features that  are roughly circular  (square) and 
whose diameter (width) is somewhat larger than  the 
maximum allowable trace  width. If I-joins can occur, a 
comparison  step is necessary. 

to  the detected  feature list. Extraneous  I-joins  in the 
detected  feature list imply minimum trace  width faults. 
Extraneous blob-joins in  the detected  feature list imply 
extraneous features (or excessive trace width). Missing 1- or 
blob-joins in the detected  feature list imply missing features. 

minimum  trace width to an  image  containing simulated 
width reductions, open circuits, and holes is shown in Figure 
10. The design rules used were as follows: Maximum trace 
width is I3 pixels (0.17 mm);  minimum  trace width is 5 
pixels (0.063 mm); all traces must  end in pads. 

Algorithm for detecting excessive trace width 
A summary of the three-step algorithm used to detect 
excessive trace  width is shown  in Figure 11. Assuming that 
the  maximum allowed trace width is W, this approach is 
capable  of  detecting local areas  within a trace that  contain a 
discrete octagon with diameters 2 W + 2 (see the Appendix 
for more details). For  an illustration  of  this process, see 
Figure 12. 

In  the first step, entities  are  thinned  just  enough to 
skeletonize all traces with width 5 W. As shown  in Fig. 12(b), 
octagon y and  area a are completely thinned, whereas 
octagon z and  area b are not. The presence of area b can be 
inferred  from the presence  of the  extraneous blob-joins it 
induces in the  thinned image. The positions  of the 
extraneous  and valid blob-joins are indicated  in Fig.  12(c). In 
the  comparison  step,  the detected  feature list is  compared 
with the design feature list. Blob-joins in the design feature 
list that  are  not in the detected  feature list imply missing 
circuitization in the test image. Blob-joins in the detected 
feature list that  are  not  in  the design feature list imply 
excessive trace  width  in the test image. 

The result of  applying the algorithm  for  detecting 
excessive trace  width to an image containing  simulated  trace 
bumps  and fill-ins is shown in Figure 13. We assumed a 
nominal  trace width  of 8 pixels and a maximum  trace width 
of 13 pixels. 

Algorithm for verifying minimum spacing 
A summary of the four-step  algorithm used to verify 
minimum spacing  is  shown  in Figure 14. This algorithm can 

In the  comparison  step  the design feature list is compared 

The result of  applying the algorithm  for verifying 
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Design rules: 
Maximum acceptable line width = 13 pixels. 
Minimum acceptable line width = 5  pixels. 

m 

-i-K 
Defects: 

Width reductions a,d,  f, and g are not fatal defects 
Width reductions b, c,  e, and k are fatal defects. 

Open circuits i and j and hole m are fatal defects. 
(a) 

0: I-joins at b ,c ,e ,   i , j ,  k, and rn imply fatal defects. 
Results: 

Missing blob-join at j implies missing pad-to-trace connection. 
(C) 

Detection o f  minimum  trace  width  violations: ( a )  defect  image  with 
simulated  defects; (b) defect  image  contracted  and skeletonized; (c) 
detected  defects. 

detect short circuits and spacings between distinct  entities 
less than a programmable  minimum.  The behavior  of this 
algorithm  is  illustrated  in Figure 15. The first step in 
detecting spacing  violations is to oct-expand all entities  just 79 
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Definitions 
I =binary matrix, a discrete approximation  to  test  image 
f“ =binary matrix, output of thinning step 
W =  nominal  maximum  trace width, an  odd  integer 

1: Oct-thin  image I LW/21 times (Traces of  width d W 

2: Detect blob-joins in I”: result is a list of detected 

3: Compare detected blob-joins with  design  list 

Steps 

are skeletonized): result  is  binary  matrix I” 

blob-join  locations 

Results 
Blob-joins in I“ not  in design data 3 excessive 

trace  width 

Given: 
Trace  area containing octagon  with diameter > I I  is fatal. 
Diameter of octagons y and z = I I  and 13, respectively 
(shown  for comparison with defect areas a and b). 

Defect  image: 

n 
Defects: 
Area a contains octagon with diameter= 1 I nonfatal. 
Area b contains octagon with diameter= 13 fatal. 

(a) 

Step 1: Thin  five  times: 
y. m z 

a  b 

Step 2: Detect  blob-joins: 

0: Blob-joins j good/bad trace-to-blob connections 
(C) 

I Illustration of algorithm  for  detecting  excessive  trace  width: i a )  
defect image and  specifications: (b)  rcwlt ol thinning  detect  ilnage 
five times; (c) detected blob-joins. 

enough so that entities touch (connect) at all locations where 
the spacing between them is  less than  the  minimum allowed. 
The result  of oct-expanding the defect image twice  is  shown 

Defects: ‘ 8 -  

b and c are fatal 
a is  not fatal. 
Enlarged  pad  at d is  not fatal. 

(a) 

a  b 

b 
r” 

Results: 
0: Extraneous blob-joins at b and c imply defects. 

I Detection o f  areas of excesive trace  width: (a) defect i m g e  with 
s imulated  defects ;   (b)   skeletoniLed  delect   image:  ( c )  dc-  
tected  defects. 
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in  Fig.  15(b). Note that the bridge at c enlarges and a new 
bridge is formed at b;  however, a bridge  is not formed at a. 
The thinning step then skeletonizes the traces as well as all 
bridges  with  width  less than  or equal to fifteen. The key 
point to observe  is that spacing violations like those in Fig. 
15(a) generate extraneous T-joins (or blob-joins) in the 
expanded and thinned image. The defect features, along with 



Definitions 
I =binary matrix, a discrete approximation to test image 
I' =binary matrix, output of expansion step 
I" =binary matrix, output of thinning step 
S =amount of thinning, an odd integer 
s = minimum acceptable spacing, an odd integer 

Steps 
I:  Oct-expand matrix I Ld2J times (spacings between entities 

< s are filled): result is expanded image I' 
2: 8-thin image I' Ld2J + LS/2j times (traces and bridges 

of width S are skeletonized): result is binary matrix I" 
3: Detect T- and blob-joins in P': result is  list of feature 

types and locations 
4: Compare list of detected features with design list 

Results 

Features in design data not  in I" + missing features in I 
Features in I" not in desigwlist j spacing violations in I 

algorithms.  These operations  can be realized using sequences 
of 8-neighborhood operutions that  map each pixel and its 
8-neighbors in a  binary  matrix I to a  zero or a one. For 
algorithm  development or for inspection  tasks  where 
execution time is not critical,  these operations  can be 
implemented  on a general purpose computer or any of the 
commercially  available image processing systems. However, 
both  these approaches  are far too slow to achieve full 
inspection  of typical printed  circuit layers in  a few minutes 
or less (which  requires  a  net throughput  rate of several 
megapixels per second). For example, implementing  the  four 

good features, can be readily detected in  the feature 
recognition  step. 

and blob-joins in the image is compared with a design 
feature list. Detected  features not  in  the design list imply 
spacing  violations or short circuits. Design features not in 
the detected  features list imply missing circuitization. 

The result of  applying the algorithm for verifying 
minimum spacing on  an image containing simulated short 
circuits and spacing  reductions is shown in Figure 16. We 
assumed  a design rule  for minimum acceptable  spacing of 5 
pixels. 

In the  comparison step, the detected  feature list of  T-joins 

Algorithm for verlfying pads 
Typically there  are a variety of design rules for pads. For 
example, the design rules may constrain  the size, shape, and 
position  of pads, as well as limit the  number  and type  of 
pad-to-trace connections. The  thinning operation used in 
trace width verification can be used to partially verify pads. 
In particular, the existence and position of all blob-to-trace 
connections  can be verified. Additional thinning  can also be 
used to detect cracks, holes, and insufficient pad area. Figure 
17 illustrates how this can be accomplished: cracks, holes, 
and insufficient pad area  induce  extraneous 0-, I - ,  T-,  and 
blob-joins. Since extraneous joins  do  not match the design 
list, the defects that  induce  the  joins  are detected. An 
algorithm for verifying pads is given in Figure 18. 

The result of applying the algorithm  for verifying pads on 
an image containing artificial cracks, holes, and reduced area 
is shown  in Figure 19. We assumed  a minimum acceptable 
octagonal pad diameter of 15 pixels. 

4. Hardware implementation of basic image 
processing operations 
Contraction, expansion,  thinning, and  join detection are  the 
basic image processing operations used in the inspection 
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Given: 
Nominal spacing= 10. 
Minimum spacing = 5 .  

Defect image: 

Defects: 
a: Spacing=5 =+ nonfatal. 
b: Spacing = 4 3 fatal. 
c: Short fatal. 

(a) 

Step 1: ExDand twice: 

Step 2: Thin seven times: 

(C) 

Step 3: Dctect T-  and blob-joins: 

0: T-joins faults. 
0: Blob-joins j good/bad trace-to-blob connections. 

(d) 
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reductions c  through fare fatal. 
reduetions  a  and b are  not  fatal. 

its g through m are Fatal. 
(a) 

algorithms  described in this paper  requires about 150 
8-neighborhood operations per image frame  (for  the design 
rules used in the simulations).  Using  a  0.025-mm (I-mil) 
square pixel, a 254 by 38 I-mm ( I O  by 15-in.) printed  circuit 
layer contains  about six hundred image frames.  Assuming 

Mj&i%ut!i apcl diameter- 25. 
Defect image: 

a: 'toid. 
b: Large crack. 
c: Redwed pad area  and  spurious blob. 

(8) 

Defect image  thinned eleven times. 

Detect T-  and blob-joins: 

0: T-joins 3 cracks and voids. 
0: Blob-joins j goodlbad trace-to-blob connections. 

lc ) 

Detect 0- and  I-joins: 

I Detecting  crack\.  voids.  and in\utficient pad  area: ( a )  detect image 
and specificatlons: (b )  rewlt o f  oct-thinning defect image eleven 
times: (c )  detected T- and blob-,ioins: ( d )  detected 0- and i-join\. 

that  an image processing system can achieve about five 
8-neighborhood operations per  second,  it would take  about 
three  hundred  minutes per layer to  do all the required 
8-neighborhood  operations. Even assuming  that  an image 
processing system can achieve fifty 8-neighborhood 
operations per  second,  such an  approach is still too slow by a 
factor of thirty.  Experience  has  also taught us that 
implementation  on a general purpose computer, in  a high- 
level language like APL, is typically one  to two  orders  of 
magnitude slower than  that achievable with an image 
processing system. 
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An inspection system using a large number  (hundreds) of 
frame-based image processors running in parallel could,  in 
principle, achieve the necessary throughput rate of several 
megapixels per second.  Fortunately, there is a better way. 
Sternberg [ I  I ]  has  shown how neighborhood operations can 
be implemented in  hardware by streaming the  elements of 
an image row by row through a simple processing element 
(PE) like the  one shown  in Figure 20. A sequence o f p  
neighborhood  operations, e.g., p contractions, can be 
implemented by pipelining (cascading) p PES, as also shown 
in Fig. 20. 

Solid state  imaging devices (especially linear  arrays) are 
ideally suited as  input image sources  for the pipeline 
architecture.  Using linear arrays, a circuit layer can be 
completely  scanned by making  multiple passes along one 
dimension, each pass offset from the previous one by slightly 
less than  the width of the array.  (Some  overlap between 
passes is necessary to correctly process the image data  on  the 
borders.) By using this  scanning strategy, image data  can be 
continuously  acquired and  input, row by row, into  the 
pipeline. Except for a small  overhead  in time  to fill and 
empty  the pipeline, the  throughput of the pipeline is equal to 
the clock rate of the image  source. It is well within the state 
of the  art for  linear  arrays and  this kind  of  pipeline 
architecture  to  operate  at five to ten megapixels per  second. 

Using  multiple,  independently configured pipelines, all the 
inspection  algorithms  required for a particular  application 
can be run in parallel. The  throughput is limited  only by the 
clock rate of the image  source and pipeline. For example, the 
four algorithms  described  in this  paper could be 
implemented with four  independent pipelines containing a 
total of approximately 150 PES. Assuming a conservative 
clock rate of five megapixels per  second,  it  would take  only 
thirty seconds to  do  the bulk  of the image processing! 

We have yet to discuss the generation of the detected 
feature list, a process we call enumeration. Each  pipeline 
takes image data as input  and produces  multiple  bit  streams, 
each stream corresponding to  the detection  of a specific 
feature. In  enumeration, all ones  are converted to  coordinate 
pairs  corresponding to  the location  of the feature on  the 
layer. A brute force approach  to  enumeration is to use an 
independent  enumeration  unit for  each  bit  stream. 
Conceptually, the  enumeration  unit is simply one  more stage 
at  the  end of the pipeline. 

The list comparison  can be performed on a general 
purpose computer using standard sorting  techniques. It is 
important  to  note  that because the scan pattern is known 
ahead of time,  the feature data  are  almost entirely  presorted. 
The  data  are  not entirely  presorted because the  inherent 
uncertainty  in  the position  of  features randomizes  the  order 
of  features that  are within a few rows or columns of one 
another. It is also important  to  note  that most  of the list 
comparing  can be done  in parallel with the generation  of the 
feature list. If list comparison is overlapped with the physical 

Definirions 
I" = binary matrix, result  from  thinning step in algorithm 

P =binary matrix, result of additional  thinning 
for  minimum  trace  width  verification 

d =diameter of minimum  allowed circular pad area, an 
W = nominal  maximum  trace width, an  odd  integer 

r = (d  - 3)/2, d > 3 
odd integer, d 2 W + 2 

Step 
I: Detect 0- and  T-joins in I": result  is  list of detected 

2: Oct-thin f" by amount r - (W - 1)/2: result  is  matrix P 
3: Detect 0-, I-, T-, and blob-joins in P :  result is list of 

4: Compare detected feature  list  with  design  list 

features in I" 

detected features in I" and  in P 

Results 
0-joins not  in  design  list j extraneous  metallization; 

I-joins not  in design list =$ cracks; insufficient  pad area 
T- and blob-joins not  in design list + cracks; voids; 

broken  features 

possibly  hard shorts 

I Algorithm  for  vcrifying  pads 

" 

Defects: 
Insufficient  pad area at b and f is fatal. 
Cracks at e and  reduced  area  at a are  not  fatal 

Results: 
I-join and  missing  blob-join  at b imply  fatal defect. 
T-joins  and  missing  blob-join  at f imply  fatal defect. 
I-joins and extraneous blob-join  at e imply defect. 

(b) 

I Detection of pad  defects: ( a )  defect  image  containing  simulated 
defect\: (b) skeletonized  defect  Image  and  results. 
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Input data  Slream 

J : I  l m  I 
I I I, -, I 

b 512 by I 
L------I - lookup 
Window  register 

(three 3 by, I SIP0 rhift  registers) 
table 

handling  of a layer and  the image processing, we estimate 
that list comparison  does  not  add significantly to  the overall 
inspection time. 

5. Concluding remarks 
This  paper has  described a new method for the analysis  of 
printed  circuit images. As the algorithms  presented  here 
demonstrate,  the new method is a reliable and flexible way 
of  detecting a variety of common defect types in discrete, 
binary images  of  printed  circuit features. However, the 
method is by no  means limited to these  particular  algorithms 
or defect types. The  method  can be applied to detecting and 
verifying the  shape  and size of a wide class of  feature types, 
including  lines, angles, comers, triangles, rectangles, 
octagons, and composites  of  these basic shapes. However, 
there  does  not exist a “magic formula” for  generating an 
inspection  algorithm as a function of  feature  type;  this still 
requires  ingenuity. For example, we have  developed 
algorithms  for verifying the existence and  diameter of holes, 
checking  clearance between holes and  other features, 
handling  traces and pads  of different sizes, verifying that a 
local feature  is connected  to  other arbitrarily distant features, 
etc. 

In addition  to its flexibility, this  method is well suited  for 
high-speed implementation using pipelines of  simple 
processing elements. The speed of processing is roughly 
proportional  to  the  number of independent pipelines used 
and  the  number of PES per pipe. Independent pipelines can 
be configured to process different image areas  in parallel, to 
implement different algorithms in parallel on  the  same 

84 image area, or any  combination of the two. 
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Finally, we note  that a reliable, flexible, efficient, and cost- 
effective system is more  than  just a set of  inspection 
algorithms-no matter how elegant the algorithms  may be. 
On  the research side, each  inspection  problem  has to be 
thoroughly  analyzed and  experiments  conducted  to 
determine  the limits and capabilities  of this  method.  On  the 
engineering side, reliability, throughput,  and cost 
considerations will dictate  the specifics of a given 
implementation. 

Appendix 
The image processing operations used in the inspection 
algorithms can be realized by boolean operations between 
images and &neighborhood operations. An 8-neighborhood 
operation is a binary image to image transformation that 
maps  in parallel all 8-neighborhoods of the  input image to a 
one or a zero. It is often useful to define the  mapping in 
terms of a set of templates. A single template is a three by 
three  array with a specific configuration of zeros, ones, and 
don’t cares. An 8-neighborhood  operation is realized by 
comparing  the 8-neighborhoods of an image with a template 
set: the result is one if the 8-neighborhood  matches at least 
one of the templates in the set; otherwise the result is zero. 

a Discrete distance 
In an  analog image, we measure  trace  width, spacing, pad 
diameter, etc., using the usual euclidean  metric. However, in 
a discrete, binary image, we must use a discrete 
approximation  to  the euclidean  metric. In the inspection 
algorithms we infer  distance using oct-expansion and 
contraction.  The  combination of expansion and  contraction 
used implicitly defines a discrete  distance  measure. The 
shape of  an entity  generated  from an isolated element by n 
expansion  steps can be thought of as a discrete distance map 
of order n. For example, if a discrete  octagon of arbitrarily 
large diameter is centered at  an  element I(i, j ) ,  then  the 
distance between I(i ,  j )  and  any  other  element I ( k  I) is equal 
to  the value of the  element in the discrete Octagon Overlaying 
the  element I(k,  /). Other types of distance maps we could 
employ  include  diamonds, rectangles, squares, ovals, and 
sixteen-sided figures. The inspection  algorithms  can be 
modified to  employ  any  combination of  expansion Or 

contraction best suited to a particular  application. 

Expansion (contraction) 
The  operations of 4- and 8-expansion (contraction)  can be 
realized using a single step of template matching. 4- and 
8-expansion are realized by setting an  element  to  one if it 
has a 4- or 8-neighbor  equal to  one, respectively. 4- and 
8-contraction are realized by setting an  element  to zero 
if it has a 4- or 8-neighbor  equal to zero, respectively. 
Oct-expansion or contraction is realized by alternating 
4- and 8-expansion or contraction, respectively. 

Thinning 
We  use a thinning  that preserves the homotopy tree of an 
image. This means, among  other things, that  the existence 
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and connectivity  of all entities and of all the holes is 
preserved [ 121; 4-, 8-, and  oct-thinning can be realized using 
8-neighborhood operations with the template set shown  in 
Figure 21. However, unlike contraction, entities cannot be 
thinned uniformly  from all directions with a single 
8-neighborhood  operation because entities with a width of 
two elements would be completely removed. This problem 
can be overcome using the following four-step  algorithm 
for 8-thinning. 

8-Thinning algorithm based on template matching 

Step I Remove all points in image I with 8-neighborhoods 
that match top template set. 
Result: image B (I thinned from the  top). 

that match right template  set. 
Result: image C (I thinned from top  and right). 

that match bottom template set. 
Result: image D (I thinned from top, right, and 
bottom). 

Step 4 Remove all points in image D with 8-neighborhoods 
that match left template  set. 
Result: image 18-thinned. 

Step 2 Remove all points in image B with 8-neighborhoods 

Step 3 Remove all points in  image C with 8-neighborhoods 

The  4-thinning algorithm is derived  from  8-thinning by 
imposing an  additional  constraint  that suppresses the 
removal of elements with a  zero  8-neighbor  but not a  zero 
4-neighbor. This  constraint is realized by  first deriving an 
image I’ from the  input image I by setting an  element of I’ 
to  one if and only if the corresponding element in I has  a 
zero  8-neighbor but  not a zero 4-neighbor. Then image I‘ is 
ORed  element by element with the result of each step in the 
8-thinning algorithm prior  to  the next step. 

If only the basic templates are used, the  thinned result will 
often contain  spurious skeletal segments  induced by 
relatively small  features protruding from the  boundary of an 
entity (e.g., artifacts  of the sampling process). The trimming 
templates are used primarily to “clean”  the noise from the 
skeleton by suppressing the growth of spurious skeletal 
segments. The  trimming templates can also be used by 
themselves to trim all I-joins  from  entities  without thinning 
the entities. 

Fwttrre detection 
Detection of n-joins and T-joins is achieved by using one set 
of  templates  applied once in parallel over an image. In effect, 
a set of  templates used to detect n-joins counts  the  number 
of ones in an  8-neighborhood: the result is one if the  count is 
n; zero otherwise. A template  for  detecting  T-joins can be 
constructed by appropriately combining a  template set for 
3-joins with the  template set illustrated in Fig. 2 I for 
extracting skeletal points with a  zero  4-neighbor. Blob-joins 
cannot be detected using one set of templates  applied  once 
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For a =  I ;  x  arb.: 

Top Right Bottom Left 

l a 0  1 l a 0  I Oal I Oal 
x 0 0  I x l x  I x l x  I oox  

x l x  I x 0 0  I oox  ] x l x  

o o x  I x 0 0  I x l x  I x l x  
Oal I l a 0  I l a 0  f Oal 
x l x  1 x l x  I x00 I oox  

xox  I x l x  I x l x  I x l x  

X l X ]   x l x  ] xox I x l x  
l a 1  I l a 0  I l a 1  I Oal 

Basic templates 

000 1 x 0 0  I x l x  I oox  

x l x  I x00  I 000 I oox 
OaO I l a 0  I OaO I Oal 

ltimming templates 

F o r a = l ; a t l e a s t o n e x a n d y = l :  

For a =  I :  x arb.: 

xxx  I l o x  I x01 I xxx 
Oax I Oax I x a o  I x a o  
l o x   x x x  I xxx I x01 

000 I 000 I o x o  I 000 
010 I X I 0  010 I O I X  
o x o  I 000 I 000 I 000 

Templates for extracting skeletal points 

in parallel over an image. However, they can be detected 
using the following algorithm. 

AIgorithm,for detecting blob-joins 

Step I Extract skeletal points with a  zero 4-neighbor: result is 

Step 2 8-thin I: result is A. 
Step 3 Remove A from I :  result is B = I A - A. 
Step 4 8-expand B: result is C. 
Step 5 Blob-joins in I = S A C. 

S. 

(A  and - are  the boolean operations  “and”  and  “not,” 
respectively.) 

Detecting discrete octagons 
The algorithms  for  detecting excessive trace width and 
verifying that all traces end in  discrete  octagons  of a 
minimum size are based on  the following property  of  oct- 
contraction: 85 
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Given that the original entity is oct-contracted n times, 
all remaining  elements ofthe contracted entitv must be 
the center o f a  discrete octagon in the original entity with 
a diameter r 2 n  -+ I. 

As a consequence,  oct-thinning  tends to  have  the  following 
property: 

Given that the original entity is oct-thinned n times, a 
nonskeletal point with a  skeletal  8-neighbor in the 
thinned entity is the center o f a  discrete octagon in the 
original entity with a diameter r 2 n  + 1. 

There  do exist cases for  which  this is not true;  however,  these 
cases seem to  be characterized  by  join  types  that can be 
easily detected.  The  algorithms  for  detecting excessive trace 
width and verifying  pad area exploit  this  property of oct- 
thinning.  Note,  however,  that  these  algorithms detect 
discrete  octagons  with a diameter r 2 n  + 3”not 2n + 1 -by 
thinning n times  and  detecting  blob-joins.  This  is  because a 
discrete  octagon  of  diameter 2n + 1 (and some areas 
between  octagons of diameter 2n + 1 and 2n + 3) will be 
completely  skeletonized  with n oct-thins;  hence  these  areas 
cannot be detected by  oct-thinning n times  and  detecting 
blob-joins. However,  it  is true that  all areas that contain 
octagons  with a diameter r 2 n  + 3 can be detected this way. 
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