Novel method
for analysis of
printed circuit
images

by Jon R. Mandeville

To keep pace with the trend towards increased
circuit integration, printed circuit patterns are
becoming denser and more compiex. A variety
of automated visual inspection methods to
detect circuit defects during manufacturing have
been proposed. This paper describes a method
which is a synthesis of the reference-comparison
and the generic-property approaches that
exploits their respective strengths and
overcomes their respective weaknesses. It is
based on the observation that the local
geometric and global topological correctness of
a printed circuit can be inferred from the
correctness of simplified, skeletal versions of
the circuit in a test image. These operations can
be realized using simple processing elements
which are well suited for implementation in
hardware.

1. Introduction

Electronic packaging technology is evolving towards
interconnecting more integrated circuits on a single printed
circuit board or substrate. As a result, printed circuit boards
and multilayer ceramics are increasing in size and they
contain more layers. In addition, the printed circuits
themselves are becoming smaller and more complex. For
example, for use in its high end computers like the 3081,

©Copyright 1985 by International Business Machines Corporation.
Copyving in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and 1BM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 29 NO. i JANUARY 1985

IBM now manufactures printed circuit boards (called TCM
boards) as large as 600 by 700 mm (24 by 28 in.), composed
of up to 20 layers, and with circuit features as small as 0.081
mm (3.5 mils) [1]. IBM also routinely manufactures 90-mm
(3.5-in.) multilayer ceramic substrates consisting of up to 33
layers and using 0.12-mm (5-mil) circuit features [2].

As these packaging technologies become increasingly
complex, substrates become more costly not only to produce
but also to replace in the field. Therefore, it is important that
quality control methods keep pace with the trend towards
larger circuit areas, more complex circuits, and smaller
circuit features. In particular, the printed circuits on each
layer must be carefully inspected before that layer is used to
make up a composite of layers. Although electrical testing
can detect some defect types, only human visual (or
automated optical) inspection can reliably detect many of
the “fatal” defects.

Unfortunately, human visual inspection is labor intensive
and therefore costly. In addition, human subjectivity and the
tedium of the work contribute to variations in the quality of
inspection. Interest in automating the visual inspection
process is motivated by the desire to reduce labor costs and
standardize inspection quality.

A variety of approaches for automated optical inspection
of printed circuits have been reported over the last decade;
see the surveys of Chin {3] and Kruger and Thompson [4].
These approaches typically use an analog subsystem for part
handling and image acquisition and a digital subsystem for
image analysis and overall system control. Such systems
usually do not analyze grey scale analog images; instead
most methods are based on the analysis of discrete, binary
images generated by sampling analog images on a regular
grid and thresholding the result to a zero or one. Discrete,
binary images (or just images) are # by m matrices whose 73

JON R. MANDEVILLE

74

00
000000000000000000000000000000
0000100000000000000000000 10000
0001110000000000000000001 11000
001111100000000000000001 111100
OLINTNIEIIIIRIRILLIELLLLIN1D1C
OINITIIIIITELNMIEILLTLIL11110
OLLITIIIIIILIELNL ETlI1111110
001111100000000000000001 111100
00011 10000000000000000001 1 1000

() (b

s Discrete binary image: (a) matrix representation; (b) picture repre-
sentation (black and white square pixels correspond to ones and
zeros, respectively, in the array).

elements (pixels) are zero or one. An image of an idealized
printed circuit trace ending in pads is shown in Figure 1. (In
a printed circuit board, traces are analogous to wires and
pads to terminals.)

Most proposed methods for the analysis of printed circuit
images are variations of either the reference-comparison or
the generic-property approaches. In general, the reference-
comparison approach uses complete knowledge of the circuit
under test, whereas the generic-property approach uses
knowledge of properties common to a circuit family but not
knowledge of the specific circuit under test. There are two
types of reference comparison. The simpler approaches
involve some kind of direct image comparison, e.g., boolean
exclusive OR between pixels in a test image and pixels in an
idealized reference image. Somewhat more sophisticated
approaches involve recognition of circuit features in the test
image (e.g., pads, corners, etc.) followed by comparison
against a reference. The generic-property approach also takes
two forms. One is based on the notion that idealized circuit
features are simple, regular geometric shapes, whereas defects
typically are not. With this approach, one looks for
unexpected irregular features. The second approach is based
on directly verifying design rules, e.g., trace width, feature
spacing, pad location and size, etc. In both forms, defects are
usually detected using strictly local neighborhood processing
throughout the test image.

In Section 2 of this paper we describe a generic method for
the analysis of printed circuit images that is a synthesis of the
reference-comparison and the generic-property approaches.
This method is a powerful and flexible analysis technique
that can be used to detect typical circuit defects. It replaces
both image comparison and design rule checkers, exploiting
their strengths and overcoming their weaknesses. In Section
3 we describe algorithms based on the generic method for
verifying trace width, feature spacing, and pads; we also
present results of detecting simulated defects using these
algorithms. In Section 4 we briefly discuss the

JON R. MANDEVILLE

000000000000000000 00000a000000000000
000000000000000000 0aaaa0a00000bb0000
00000000aba0000000 00a0002a00bb00bb0O0
00000000bxb0000000 0aa00000a00000b000
00000000aba0000000 000aaa000aaa000000
000000000000000000 0000000000002a0000
000000000000000000 000000000000000000
a and b are 8-neighbors of a=b=|.

All a elements are 8-connected.

All b elements are 8-connected.

a and b elements are not
8-connected.

(a) (b)

element x.
b are 4-neighbors of element x.

Neighbors and connectivity: (a) 8- and 4-neighbors of arbitrary
clement x in the matrix: (b) example of 8-connected ones in a binary
array.

implementation of the basic image processing operations in
software and on special purpose digital hardware.

2. Overview of analysis method

o Definitions

The concepts underlying our method are derived from
recent work in discrete geometry on the geometric
description and analysis of discrete, binary images [5-8].
Specifically, the concepts of neighbors, connectivity, and
entity formalize the intuitive notion of what distinct objects
are contained in an image. In addition, the image-to-image
transformations, contraction, expansion, and thinning,
provide a formalism from which to infer the shape, size, and
topology of entities [9-11]. Below we define those concepts
necessary for an intuitive understanding of the method and
the inspection algorithms described later. See the Appendix
for a complete description of the image processing
operations.

Neighbors

An element /(i j) of a binary image is an 8-neighbor of
another element I(m, n) if max [|i — m|, |j — n|] < 1. The
8-neighborhood of an element is a set containing the element
and its 8-neighbors. An image element I(i, j) is a 4-neighbor
of another element I(m, n) if |i — m| + |j — n| < 1. See
Figure 2(a).

Connectivity

Two nonzero elements are connected if there exists an
unbroken sequence of nonzero 8-neighbors between the two
elements. See Figure 2(b).

Entity

An entity is a connected set of ones in an image. Examples
of entities typically found in printed circuits are depicted in
Figure 3(a). An entity may be a single point, a connected
sequence, or a blob of arbitrary shape; it may have holes, be
as large as the entire field of view, etc.

IBM J. RES. DEVELOP. VOL. 29 NO. ! JANUARY 1985

Y

Expansion (contraction)

We define expansion explicitly here. Contraction is realized
by first expanding the complement of an image and then
taking the complement of the result. The operation
4-expansion sets all zeros in an image to one if they have a
4-neighbor equal to one; 8-expansion sets all zeros in an
image to one if they have an 8-neighbor equal to one. Figure
4 illustrates the result of 8-expanding (8-contracting) the
entities in Fig. 3(a) twice. Note that expansion fills in detail:
if carried far enough, entities merge. Contraction shrinks
entities: if carried far enough, entities break up, e.g., entity B,
or disappear altogether, e.g., entity A. Ocr-expansion
alternates 4-expansion with 8-expansion. This results in a
better discrete approximation to circular expansion than

4- or 8-expansion used alone; see Figure 5.

B is broken
into three
e CNitiES.

Thinning A is missing
In general, thinning reduces an entity to its skeleton, a .
simplified version contained in the original entity that

.,___—-J
e v
L
(b)

} Entities from Fig. 3(a) which have been (a) expanded twice and (b)
! contracted twice

I
3
)

\d

(2)
888888888
88777777788
8876666666788
887665555566788
88766544444566788
87665443334456678
87654432223445678
87654322122345678
87654321x12345678
87654322122345678
. 87654432223445678
87665443334456678
88766544444566788
887665555566788
8876666666788
88777777788
(b) 888888888

Discrete. binary image of typical printed circuit entities: (a) typical { Discrete octagon of diameter 2n + 1 is the set of elements < n,
entities; (b) their skeletons. § n=1,2, .-, 8.

S

75

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985 JON R. MANDEVILLE

76

For x=1,
000 000 000 000 000
0x0 Ox1 1x1 1x1 I xt etc.
000 000 000 010 011
x: O-join 1-join 2-join 3-join 4-join
(a)
For x=1, _
00010 00010 01010
00010 00010 01100
11x00 01x00 0x000 etc
00011 00100 01€00
00000 00100 00100
x: all T-joins
(b)
For x=s=b=1,
00000000
0000bbbO
sssx11b0
0000bbbO
00000000

x: blob-join; s: skeletal element; b: boundary element
(©)

(a) n-joins; (b) T-joins; (¢) a blob-join.

retains the “basic shape” of an entity. Unlike expansion or
contraction, thinning both maintains the connectivity of an
entity and preserves its holes (none are removed or added).
This is an important distinction that we exploit in the
inspection algorithms. It is useful (though imprecise) to
think of thinning as a transformation that reduces elongated
parts of entities to their centerlines and blobs that are
approximately square or circular to their centers. The 4-, 8-,
and oct-thinning used in the inspection algorithms are
derived from 4-, 8-, and oct-contraction by imposing
additional constraints on the removal of elements at each
thinning step: (1) The global connectivity of entities is
maintained and holes are preserved; (2) at each step,
4-thinning removes only elements with a zero 4-neighbor,
whereas 8-thinning removes all elements with a zero
8-neighbor; (3) oct-thinning alternates 4- and 8-thinning.
Figure 3(b) depicts the skeletons of the entities in Fig. 3(a)
derived by 8-thinning.

Element types and joins

A boundary element is a nonzero element with a zero
8-neighbor; the boundary of an entity is the set of all its
boundary elements. A skeletal element is a nonzero element
that is necessary to maintain the connectivity of its

JON R. MANDEVILLE

8-neighborhood; i.e., setting the element to zero breaks the
connectivity between at least two other elements.

An n-join is a nonzero element with » nonzero
8-neighbors; a join can be of order 0 to 8. A T-join is a 3-
join whose 8-neighborhood contains only skeletal elements.
A blob-join is a skeletal element with an 8-neighbor that is
not a skeletal element. Examples are given in Figure 6. The
join order and type can be determined by using strictly local
processing over 8-neighborhoods in an image; detection of
join order and type plays a key role in the inspection
algorithms.

& Generic method for analysis of printed circuit images
Application of the above concepts to the analysis of printed
circuit images led to the following observation: The local
geometric and global topological correctness of typical circuit
features can be inferred from the correctness of skeletal
versions of the circuit features in a test image. This
observation, in turn, led to the following generic method for
the analysts of printed circuit images.

Step 1 Transform and thin the test image in such a way that
defects and good circuit features induce skeletal
features that can be easily and reliably detected and
classified.

Step 2 Compile a detected feature list that records the
position and type of all detected features.

Step 3 Compare the detected feature list with a design
feature list generated from circuit design data.

Results Features in the two lists that cannot be brought into
correspondence imply defects.

The inspection algorithms described in this paper are
instances of the generic method. Each algorithm uses a
different thinning process designed so that a particular defect
class induces a known corresponding class of skeletal
features that can be easily and reliably detected. It turns out
that the presence of 0-, 1-, T-, and blob-joins is sufficient to
infer the existence of typical defects (as well as desired circuit
features, such as pad-to-trace or trace-to-trace connections,
trace ends, etc.).

The feature comparison method is quite flexible and
powerful for two reasons. First, it is possible to define
arbitrary correspondence criteria between arbitrary sets of
detected and predicted features. In many cases, however, the
following simple criterion probably will suffice: Detected and
predicted features correspond if they are the same type and
are within a given distance of one another. Features that
cannot be brought into correspondence imply the existence
of defects; the type of defect can be inferred from the type of
feature. Second, it is possible to derive measures of global
circuit correctness by combining the results of all isolated
feature correspondences, e.g., spatial distortion, throughout
the entire circuit layer.

IBM J. RES. DEVELOP. VOL. 29 NO. 1| JANUARY 1985

For some circuit types and design rules it is not necessary
to use reference data; the existence of certain skeletal
features unambiguously implies defects. For example, if a
circuit consists only of single width traces that must end in
pads, 1-joins imply the presence of defects when the
algorithm for verifying trace width described in Section 3 is
used. However, for other classes of circuits, a comparison
step is needed to distinguish between true defects and good
circuit features that induce the same type of skeletal features.

e Advantages over image comparison and design rule
approaches

Because our method does not compare a reference image
and the test image pixel by pixel, it eliminates the need for
the storage, generation, registration, and comparison of a
reference image with the test image. Instead, a relatively
small list of predicted feature types and locations is
compared with a list of detected features in a straightforward
way. Unlike direct image comparison, it is straightforward to
incorporate context-dependent tolerances and attributes for
features, e.g., pad location, type, and size. It is also easier to
compensate for global distortion in the test image (e.g., scale
and skew) because the inverse of the distortion function is
applied to a relatively small set of feature variables, e.g.,
location, instead of the entire reference image. Finally, this
method is relatively insensitive to local distortion and
vagaries that can cause false alarms with direct image
comparison. For example, irrelevant differences on the edges
of traces or displacement of traces by a few pixels will not be
flagged as errors (unless the minimum spacing rule is
violated).

This method is a major improvement over design rule
approaches because it can detect missing features and
extraneous circuitization that looks like good features. In
addition, unlike most design rule approaches, this method is
not limited to verifying just minimum trace width and
spacing; it can also verify pads, maximum trace width, and
various trace connections, as well as detect isolated blobs,
holes, etc. The new method is also capable of handling
complex circuit features and circuit vagaries that can cause
false alarms with design rule checkers. Finally, it can readily
accommodate changes in circuit features and design rules
that often require modification of inspection algorithms in
design rule checkers.

3. Inspection algorithms

In general, the generic method can be applied to detecting
and verifying the shape and size of a large class of feature
types, including spacings, holes, lines, angles, corners,
triangles, rectangles, octagons, and composites of these basic
shapes. We make this concrete in this section by describing
algorithms for

e Verifying minimum trace width and detecting open
circuits.

IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY (985

R

-ﬁ r

——e

“___‘D:'—
o

Figure 7

(1) Reference image and (b) its skeleton.

e Detecting excessive trace width.

e Verifying minimum spacing and detecting short circuits.

e Verifying pad position, area, shape, and trace-to-pad
connections (including detection of spurious blobs).

However, the method is not limited to these algorithms or
feature and defect types. We have developed numerous other
algorithms for a variety of other feature and defect types.

We formally define each algorithm and describe in detail
the associated transformation and thinning process. We do
not discuss in detail generating the design feature list,
compiling the defect feature list, or comparing the two lists
because these operations are conceptually straightforward
and easily implemented.

JON R. MANDEVILLE

77

78

Definitions
I =binary matrix, a discrete approximation to test image
I' = binary matrix, output of contraction step
I" = binary matrix, output of thinning step
W = nominal maximum trace width, an odd integer
w = minimum acceptable trace width, an odd integer < W

Steps
I:)Oct-contract matrix I [w/2] times (traces with width < w
are broken): result is contracted image I’

2: 8-thin image I' |W/2] — |w/2) times (traces of width £ W
are skeletonized): result is binary matrix /"

3: Detect 1- and blob-joins in thinned image I”: result is list
of detected feature types and locations

4: Compare list of 1- and blob-joins in /" with design list

Results
1-joins in I” not in design list =5 trace width violations
1-and blob-joins in design list not in /" = missing features
in/

l Algorithm for verifying minimum trace width.

We also present the results of detecting simulated defects.
For each simulation we added defects to the image shown in
Figure 7(a). This reference image is a 200 by 256 binary
image (matrix) of a 2.5 by 3.3-mm (0.1 by 0.128-in.) area of
an inner plane layer of an IBM 3081 printed circuit board. It
was acquired with a microscope, vidicon, and image
digitizer; pixel size is approximately 0.013 mm square (0.5
mil square). The traces, small pads, and large pad are 7
pixels (0.089 mm), 25 pixels (32 mm), and 46 pixels (58
mm) wide, respectively. The skeleton of the reference image,
obtained by 8-thinning sufficiently to skeletonize the traces,
is shown in Figure 7(b).

o Algorithm for verifying minimum trace width

A summary of the four-step algorithm used to verify
minimum trace width is illustrated in Figure 8. This
algorithm can detect all instances of local trace width less
than a programmable minimum; detect missing traces and a
variety of spurious connections among traces, pads, and
isolated blobs; detect holes in traces. The behavior of this
algorithm is illustrated in Figure 9 for the special case
described there. In the contraction step, entities U, V, and W
are contracted just enough to generate breaks in traces where
the trace width is less than the minimum allowed. Note that
entity W in Fig. 9(b) has broken up into the two distinct
entities W’ and X’, whereas U and V contract to the two
entities U’ and V', respectively.

In the thinning step, the contracted traces are thinned just
enough to produce their skeletons. This thinning does not
cause the contracted entities to break up or disappear. It
does, however, generate the two important feature types
indicated in Fig. 9(d): (1) 1-joins wherever there exist
minimum width violations; (2) blob-joins, the join points
between trace skeletons and contracted pads. This does not
imply, however, that there exists a one-to-one

JON R. MANDEVILLE

correspondence between 1-joins and width violations or
between blob-joins and actual trace-to-pad connections. As
one might expect, all features that look something like
traces, i.e., elongated features whose width is less than the
minimum allowable trace width, can generate 1-joins. For
example, spurious blobs or large cracks in pads can generate
1- or blob-joins. The key point is that defective features that
“look™ like traces with minimum width violations will
generate 1-joins; therefore, all such features can be detected.

The feature recognition step generates the detected feature
list of all the 1-joins and blob-joins in the image. If the

Given:
Nominal trace width=9,

. Minimum trace width=35.
Defect image:

Defects:

a: Trace width=5 = nonfatal.
b: Trace width=4 = fatal.

c: Break fatal.

(a)
Step 1: Contract twice:

«____ . &
."‘—_'

Step 2: Thin three times:

. v
¥ e

©)

Step 3: Detect 1- and blob-joins:
£]
¥ e

[1-joins => faults.
QO: Blob-joins =5 good/bad trace-to-blob connections.

@

-Figure9 . N

[Nustration of algorithm for verifying minimum trace width: (a)
defect image and specifications: (b) result of contracting defect
image twice; (c) result of thinning contracted image three times: (d)
detected 1- and blob-joins.

1IBM). RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

circuit type is such that 1-joins would not be generated for a
good circuit, the comparison step is not needed: 1-joins
imply the existence of minimum width violations. Here we
assume that a trace is never completely missing. If a trace
can be entirely missing, its absence can be inferred by using
a comparison step because blob-joins will be missing in the
detected feature list. Circuit types for which this is true are
those consisting of single width traces, all of which must end
in pads or features that are roughly circular (square) and
whose diameter (width) is somewhat larger than the
maximum allowable trace width. If 1-joins can occur, a
comparison step is necessary.

In the companson step the design feature list is compared
to the detected feature list. Extraneous 1-joins in the
detected feature list imply minimum trace width faults.
Extraneous blob-joins in the detected feature list imply
extraneous features (or excessive trace width). Missing 1- or
blob-joins in the detected feature list imply missing features.

The result of applying the algorithm for verifying
minimum trace width to an image containing simulated
width reductions, open circuits, and holes is shown in Figure
10. The design rules used were as follows: Maximum trace
width is 13 pixels (0.17 mm); minimum trace width is §
pixels (0.063 mm); all traces must end in pads.

o Algorithm for detecting excessive trace width

A summary of the three-step algorithm used to detect
excessive trace width is shown in Figure 11. Assuming that
the maximum allowed trace width is W, this approach is
capable of detecting local areas within a trace that contain a
discrete octagon with diameters =W + 2 (see the Appendix
for more details). For an illustration of this process, see
Figure 12.

In the first step, entities are thinned just enough to
skeletonize all traces with width <W. As shown in Fig. 12(b),
octagon y and area a are completely thinned, whereas
octagon z and area b are not. The presence of area b can be
inferred from the presence of the extraneous blob-joins it
induces in the thinned image. The positions of the
extraneous and valid blob-joins are indicated in Fig. 12(c). In
the comparison step, the detected feature list is compared
with the design feature list. Blob-joins in the design feature
list that are not in the detected feature list imply missing
circuitization in the test image. Blob-joins in the detected
feature list that are not in the design feature list imply
excessive trace width in the test image.

The result of applying the algorithm for detecting
excessive trace width to an image containing simulated trace
bumps and fill-ins is shown in Figure 13. We assumed a
nominal trace width of 8 pixels and a maximum trace width
of 13 pixels.

o Algorithm for verifving minimum spacing
A summary of the four-step algorithm used to verify
minimum spacing is shown in Figure 14. This algorithm can

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

Design rules:
Maximum acceptable line width=13 pixels.
Minimum acceptable line width=35 pixels.

Defects:

Width reductions b, c, e, and k are fatal defects.
Width reductions a,d, f, and g are not fatal defects.
Open circuits i and j and hole m are fatal defects.

(a)

a
d
e
f 8 I m
— e
k

.__J

(b)

A ° =

. vy
! B
| Sl

o«

4

Results:

[J: 1-joins at b, ¢, e, i.j, k, and m imply fatal defects.
Missing blob-join at j implies missing pad-to-trace connection.

(©)

Detection of minimum trace width violations: (a) defect image with
simulated defects: (b) defect image contracted and skeletonized; (c)
detected defects.

detect short circuits and spacings between distinct entities

less than a programmable minimum. The behavior of this

algorithm is illustrated in Figure 15. The first step in

detecting spacing violations is to oct-expand all entities just 79

JON R. MANDEVILLE

80

Definitions
[= binary matrix, a discrete approximation to test image
I" =binary matrix, output of thinning step
W = nominal maximum trace width, an odd integer

Steps
lI:JOct-thin image / |W/2] times (Traces of width < W
are skeletonized): result is binary matrix /"
2: Detect blob-joins in I": result is a list of detected
blob-join locations
3: Compare detected blob-joins with design list

Results
Blob-joins in /" not in design data = excessive
trace width

Algorithm for detecting excessive trace width.

Given:

Trace area containing octagon with diameter > 11 is fatal.
Diameter of octagons y and z = 11 and 13, respectively
(shown for comparison with defect areas a and b).

. '@ .; .
v

Defects:
Area a contains octagon with diameter=11 = nonfatal.
Area b contains octagon with diameter= 13 == fatal.

(a)

Defect.image:

Step 1: Thin five times:

|
v

Step 2: Detect blob-joins:

| S—
v »

[[I: Blob~joins =p good/bad trace-to-blob connections.
(©)

Hlustration of algorithm for detecting excessive trace width: (a)
defect image and specifications: (b) result of thinning defect image
five times; (c) detected blob-joins.

enough so that entities touch (connect) at all locations where
the spacing between them is less than the minimum allowed.
The result of oct-expanding the defect image twice is shown

JON R. MANDEVILLE

Defects:
b and ¢ are fatal.

a is not fatal.

Enlarged pad at d is not fataj.

| Lr“

Resules:
[: Extraneous blob-joins at b and ¢ imply defects.

(c)

Detection of areas of excessive trace width: (a) defect image with
simulated defects; (b) skeletonized defect image: (c) de-
tected defects.

in Fig. 15(b). Note that the bridge at ¢ enlarges and a new
bridge is formed at b; however, a bridge is not formed at a.
The thinning step then skeletonizes the traces as well as all
bridges with width less than or equal to fifteen. The key
point to observe is that spacing violations like those in Fig.
15(a) generate extraneous T-joins (or blob-joins) in the
expanded and thinned image. The defect features, along with

IBM J. RES, DEVELOP. VOL. 29 NO. 1 JANUARY 1985

" algorithms. These operations can be realized using sequences
Definitions

[= binary matrix, a discrete approximatian to test image of 8-neighborhood operations that map each pixel and its
I' = binary matrix, output of expansion step

I" = binary matrix, output of thinning step 8-neighbors in a binary matrix / to a zero or a one. For

S = amount of thinning, an odd integer : H :
s = minimum acceptable spacing, an odd integer algontbm Qevelmeent ‘o‘r for inspection t?sks where
Steps : execution time is not critical, these operations can be
I: Oct-expand matrix / |s/2] times (spacings between entities implemented on a general purpose computer or any of the
< s are filled): result is expanded image /I’
2: 8-thin image /' /2] + L§/2] times (traces and bridges commercially available image processing systems. However,
of width S are skeletonized): result is binary matrix I” . both these approaches are far too slow to achieve full

3: Detect T- and blob-joins.in I": result is list of feature
types and locations .

I e inspection of typical printed circuit layers in a few minutes
4: Compare list of detected features with design list

! or less (which requires a net throughput rate of several
Results

Features in /" not in design-list = spacing violations in ‘ megapixels per second). For example, implementing the four
Features in design data not in /" =5 missing features in /

Nominal spacing=10.
Algorithm for verifying minimum spacing. Minimum spacing =5.

Defect image:

good features, can be readily detected in the feature .
recognition step.
1 1 -101 Defects:
In the c.ornpa.mson §tep, tl?e detected feat.ure list 9f T-joins o Spacing =5 => nonfatal.
and blob-joins in the image is compared with a design b: Spacing=4 = fatal.
feature list. Detected features not in the design list imply c: Short fatal'(a)

spacing violations or short circuits. Design features not in
the detected features list imply missing circuitization.

The result of applying the algorithm for verifying
minimum spacing on an image containing simulated short
circuits and spacing reductions is shown in Figure 16. We
assumed a design rule for minimum acceptable spacing of 5
pixels.

Step 1: Expand twice:

(b)

o Algorithm for verifying pads

Typically there are a variety of design rules for pads. For Step 2: Thin seven times:

example, the design rules may constrain the size, shape, and ‘

position of pads, as well as limit the number and type of

pad-to-trace connections. The thinning operation used in

trace width verification can be used to partially verify pads. ' “'

In particular, the existence and position of all blob-to-trace ()

connections can be verified. Additional thinning can also be

used to detect cracks, holes, and insufficient pad area. Figure Step 3: Detect T- and blob-joins:

17 illustrates how this can be accomplished: cracks, holes,

and insufhicient pad area induce extraneous 0-, 1-, T-, and

blob-joins. Since extraneous joins do not match the design

list, the defects that induce the joins are detected. An

algorithm for verifying pads is given in Figure 18. 8 —lg'ljgg'_‘jsoifg“';o d/bad trace-to-blob connections.
The result of applying the algorithm for verifying pads on

an image containing artificial cracks, holes, and reduced area

1s shown in Figure 19. We assumed a minimum acceptable

octagonal pad diameter of 15 pixels. _Figurets |

—{

(d)

Hlustration of algorithm for verifying minimum spacing: (a) defect
4. Hardware implementation of basic image image and specifications: (b) result of expanding defect image twice:
(¢) result of thinning expanded image seven times: (d) detected T-
and blob-joins.

processing operations
Contraction, expansion, thinning, and join detection are the
basic image processing operations used in the inspection

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985 JON R. MANDEVILLE

81

82

Defec

pacing reductions ¢ through f are fatal.
pating reductions a and b are not fatal.
hreuits g through m are fatal.

(a)

miply.defects. ..
trancous blob-joins imply defects.
T ©

Detection of minimum spacing violations and short circuits: (a)
defect image with simulated defects: (b) expanded and skeletonized
defect image: (¢) detected defects.

algorithms described in this paper requires about 150
8-neighborhood operations per image frame (for the design
rules used in the simulations). Using a 0.025-mm (1-mil)
square pixel, a 254 by 381-mm (10 by 15-in.) printed circuit
layer contains about six hundred image frames. Assuming

JON R. MANDEVILLE

nal-trace width=9.
- Minimuni ‘pad diameter=25.

Defect image:

Defects:

a: Void. -~

b: Large crack.

c:Reduced. pad area and spurious blob.
2o (@)

Defect image thinned eleven times.
b \)\ c
a : i)

(b)

Detect T- and blob-joins:

[3: T-joins = cracks and voids.
O: Blob-joins => good/bad trace-to-blob connections.

)

Detect 0- and 1-joins:

8: 0O-joins == spurious Blobs:
: 1-joins =5 cracks. -

(d)

Figure 17

Detecting cracks, voids. and insufficient pad area: (a) defect image
and specifications; (b) result of oct-thinning defect image cleven
times; (c) detected T- and blob-joins; (d) detected 0- and 1-joins.

that an image processing system can achieve about five
8-neighborhood operations per second, it would take about
three hundred minutes per layer to do all the required
8-neighborhood operations. Even assuming that an image
processing system can achieve fifty 8-neighborhood
operations per second, such an approach is still too slow by a
factor of thirty. Experience has also taught us that
implementation on a general purpose computer, in a high-
level language like APL, is typically one to two orders of
magnitude slower than that achievable with an image
processing system.

IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985

An inspection system using a large number (hundreds) of
frame-based image processors running in parallel could, in
principle, achieve the necessary throughput rate of several
megapixels per second. Fortunately, there is a better way.
Sternberg [11] has shown how neighborhood operations can
be implemented in hardware by streaming the elements of
an image row by row through a simple processing element
(PE) like the one shown in Figure 20. A sequence of p
neighborhood operations, e.g., p contractions, can be
implemented by pipelining (cascading) p PEs, as also shown
in Fig. 20.

Solid state imaging devices (especially linear arrays) are
ideally suited as input image sources for the pipeline
architecture. Using linear arrays, a circuit layer can be
completely scanned by making multiple passes along one
dimension, each pass offset from the previous one by slightly
less than the width of the array. (Some overlap between
passes is necessary to correctly process the image data on the
borders.) By using this scanning strategy, image data can be
continuously acquired and input, row by row, into the
pipeline. Except for a small overhead in time to fill and
empty the pipeline, the throughput of the pipeline is equal to
the clock rate of the image source. It is well within the state
of the art for linear arrays and this kind of pipeline
architecture to operate at five to ten megapixels per second.

Using multiple, independently configured pipelines, all the
inspection algorithms required for a particular application
can be run in parallel. The throughput is limited only by the
clock rate of the image source and pipeline. For example, the
four algorithms described in this paper could be
implemented with four independent pipelines containing a
total of approximately 150 PEs. Assuming a conservative
clock rate of five megapixels per second, it would take only
thirty seconds to do the bulk of the image processing!

We have vet to discuss the generation of the detected
feature list, a process we call enumeration. Each pipeline
takes image data as input and produces multiple bit streams,
each stream corresponding to the detection of a specific
feature. In enumeration, all ones are converted to coordinate
pairs corresponding to the location of the feature on the
layer. A brute force approach to enumeration is to use an
independent enumeration unit for each bit stream.
Conceptually, the enumeration unit is simply one more stage
at the end of the pipeline.

The list comparison can be performed on a general
purpose computer using standard sorting techniques. It is
important to note that because the scan pattern is known
ahead of time, the feature data are almost entirely presorted.
The data are not entirely presorted because the inherent
uncertainty in the position of features randomizes the order
of features that are within a few rows or columns of one
another. It is also important to note that most of the list
comparing can be done in parallel with the generation of the
feature list. If list comparison is overlapped with the physical

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

Definitions .

I” =binary matrix, result from thinning step in algorithm
for minimum trace width verification

P = binary matrix, result of additional thinning

W = nominal maximum trace width, an odd integer

d = diameter of minimum allowed circular pad area, an
odd integer, dZ W + 2 '

r=d-3)2,d>3

Step
1: Detect 0- and T-joins in /": result is list of detected
features in I”
2: Oct-thin /" by amount r — (W — 1)/2: result is matrix P
3: Detect 0-, 1-, T-, and blob-joins in P: result is list of
detectéd features in /” and in P
4: Compare detected feature list with design list

Results
0-joins not in design list = extraneous metallization;
broken features
1-joins not in design list = cracks; insufficient pad area
T- and blob-joins not in design list = cracks; voids;
possibly hard shorts

Figure 18

| Algorithm for verifying pads.

—=

B,

Defects:
Insufficient pad area at b and f is fatal.
Cracks at e and reduced area at a are not fatal.

(@)

Results:

1-join and missing blob-join at b imply fatal defect.
T-joins and missing blob-join at f imply fatal defect.
1-joins and extraneous blob-join at ¢ imply defect.

(b)

Figure 19

Detection of pad defects: (a) defect image containing simulated
defects; (b) skeletonized defect image and results.

83

JON R. MANDEVILLE

84

r————- -9
Input data stream
k=] 1. Output
La| SRI: (m—3) by 1 SISO L > data
shift register B stream
=N
SR2: (m—3) by 1 SISO
shift register 512by |
[-
Window register gg:(:p
(three 3 by I SIPO shift registers)
(a)
Input 1, Output
data PE PE PE [---umm- "EH» data
stream stream
Stage: 1 2 3 p

Hardware implementation of basic image procession operations: (a)
basic processing element (PE): (b) pipeline of p processing elements.

handling of a layer and the image processing, we estimate
that list comparison does not add significantly to the overall
inspection time.

5. Concluding remarks

This paper has described a new method for the analysis of
printed circuit images. As the algorithms presented here
demonstrate, the new method is a reliable and flexible way
of detecting a variety of common defect types in discrete,
binary images of printed circuit features. However, the
method is by no means limited to these particular algorithms
or defect types. The method can be applied to detecting and
verifying the shape and size of a wide class of feature types,
including lines, angles, corners, triangles, rectangles,
octagons, and composites of these basic shapes. However,
there does not exist a “magic formula” for generating an
inspection algorithm as a function of feature type; this still
requires ingenuity. For example, we have developed
algorithms for verifying the existence and diameter of holes,
checking clearance between holes and other features,
handling traces and pads of different sizes, verifying that a
local feature is connected to other arbitrarily distant features,
etc.

In addition to its flexibility, this method is well suited for
high-speed implementation using pipelines of simple
processing elements. The speed of processing is roughly
proportional to the number of independent pipelines used
and the number of PEs per pipe. Independent pipelines can
be configured to process different image areas in parallel, to
implement different algorithms in parallel on the same
image area, or any combination of the two.

JON R. MANDEVILLE

Finally, we note that a reliable, flexible, efficient, and cost-
effective system is more than just a set of inspection
algorithms—no matter how elegant the algorithms may be.
On the research side, each inspection problem has to be
thoroughly analyzed and experiments conducted to
determine the limits and capabilities of this method. On the
engineering side, reliability, throughput, and cost
considerations will dictate the specifics of a given
implementation.

Appendix

The image processing operations used in the inspection
algorithms can be realized by boolean operations between
images and 8-neighborhood operations. An 8-neighborhood
operation is a binary image to image transformation that
maps in parallel all 8-neighborhoods of the input image to a
one or a zero. It is often useful to define the mapping in
terms of a set of templates. A single template is a three by
three array with a specific configuration of zeros, ones, and
don’t cares. An 8-neighborhood operation is realized by
comparing the 8-neighborhoods of an image with a template
set: the result is one if the 8-neighborhood matches at least
one of the templates in the set; otherwise the result is zero.

o Discrete distance

In an analog image, we measure trace width, spacing, pad
diameter, etc., using the usual euclidean metric. However, in
a discrete, binary image, we must use a discrete
approximation to the euclidean metric. In the inspection
algorithms we infer distance using oct-expansion and
contraction. The combination of expansion and contraction
used implicitly defines a discrete distance measure. The
shape of an entity generated from an isolated element by n
expansion steps can be thought of as a discrete distance map
of order n. For example, if a discrete octagon of arbitrarily
large diameter is centered at an element I(;, j), then the
distance between (i, j) and any other element I(k, /) is equal
to the value of the element in the discrete octagon overlaying
the element I(k, /). Other types of distance maps we could
employ include diamonds, rectangles, squares, ovals, and
sixteen-sided figures. The inspection algorithms can be
modified to employ any combination of expansion or
contraction best suited to a particular application.

e Expansion (contraction)

The operations of 4- and 8-expansion (contraction) can be
realized using a single step of template matching. 4- and
8-expansion are realized by setting an element to one if it
has a 4- or 8-neighbor equal to one, respectively. 4- and
8-contraction are realized by setting an element to zero

if it has a 4- or 8-neighbor equal to zero, respectively.
Oct-expansion or contraction is realized by alternating

4- and 8-expansion or contraction, respectively.

e Thinning
We use a thinning that preserves the homotopy tree of an
image. This means, among other things, that the existence

IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985

and connectivity of all entities and of all the holes is

o . . Fora=1; x arb.
preserved [12]; 4-, 8-, and oct-thinning can be realized using

Top Right Bottom Left

8-neighborhood operations with the template set shown in x00 I xIx | xIx ‘| 00x
Figure 21. However, unlike contraction, entities cannot be ,1(?2 ,1(88 88,1(2?,1(
thinned uniformly from all directions with a single 00x | x00 | xix ! xix
8-neighborhood operation because entities with a width of 2‘;‘)‘()1(*]‘2 ,1(88 88;
two elements would be completely removed. This problem

can be overcome using the following four-step algorithm)1(2’1()l(elxé)l('cll)l(();ell)l(

for 8-thinning x1x | xIx | xOx | xIx
Basic templates
8-Thinning algorithm based on template matching 000 ! 100 | oot | 000

0a0 | 0al 0a0 | 0a0
100 | 000 | 000 | 001

Step 1 Remove all points in image / with §-neighborhoods 000 1 x00 | xix | 00x
that match top template set. 0a0 | 1a0 | 0a0 | Oal
Result: image B (/ thinned from the top). xIx | x00 | 000 | 00

Step 2 Remove all points in image B with 8-neighborhoods
that match right template set.

Result: image C (I thinned from top and right).

Trimming templates
For a=1; at least one x and y=1:

XXX | yOx yyy | xOy
0a0 | yax 0a0 | xay

Step 3 Remove all points in image C with 8-neighborhoods yyy | yox | xxx | xOy
that match bottom template set. Fora=1: x arb.:
Result: image D (/ thinned from top, right, and Sxx 10x | x01 : XXX
bottom). O o e 11
Step 4 Remove all points in image D with 8-neighborhoods 000 | 000 { 0x0 ! 000
that match left template set. 8)1(8 8(1)8 I 8(1)8 { 8(1)3

Result: image / 8-thinned. i
Templates for extracting skeletal points

The 4-thinning algorithm is derived from 8-thinning by
imposing an additional constraint that suppresses the
removal of elements with a zero 8-neighbor but not a zero
4-neighbor. This constraint is realized by first deriving an
image I’ from the input image I by setting an element of /’
to one if and only if the corresponding element in / has a
zero 8-neighbor but not a zero 4-neighbor. Then image 7’ is
ORed element by element with the result of each step in the
8-thinning algorithm prior to the next step.

If only the basic templates are used, the thinned result will in parallel over an image. However, they can be detected
often contain spurious skeletal segments induced by using the following algorithm.
relatively small features protruding from the boundary of an
entity (e.g., artifacts of the sampling process). The trimming Algorithm for detecting blob-joins
templates are used primarily to “clean” the noise from the

Templates for thinning. trimming. and extracting skeletal points.

skeleton by suppressing the growth of spurious skeletal Step 1 Extract skeletal points with a zero 4-neighbor: result is
segments. The trimming templates can also be used by S.
themselves to trim all 1-joins from entities without thinning Step 2 8-thin I result is A.
the entities. Step 3 Remove A4 from I: resultis B=1 A~ A.
Step 4 8-expand B: result is C.
e Feature detection Step 5 Blob-joinsin I =S A C.

Detection of n-joins and T-joins is achieved by using one set
of templates applied once in parallel over an image. In effect, (A and ~ are the boolean operations “and” and “not,”

a set of templates used to detect n-joins counts the number respectively.)

of ones in an 8-neighborhood: the result is one if the count is

n; zero otherwise. A template for detecting T-joins can be e Detecting discrete octagons

constructed by appropriately combining a template set for The algorithms for detecting excessive trace width and

3-joins with the template set illustrated in Fig. 21 for verifying that all traces end in discrete octagons of a

extracting skeletal points with a zero 4-neighbor. Blob-joins minimum size are based on the following property of oct-

cannot be detected using one set of templates applied once contraction; 85

IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985 JON R. MANDEVILLE

Given that the original entity is oct-contracted n times,
all remaining elements of the contracted entity must be
the center of a discrete octagon in the original entity with
a diameter z2n + 1.

As a consequence, oct-thinning tends to have the following
property:

Given that the original entity is oct-thinned n times, a
nonskeletal point with a skeletal 8-neighbor in the
thinned entity is the center of a discrete octagon in the
original entity with a diameter =2n + 1.

There do exist cases for which this is not true; however, these
cases seem to be characterized by join types that can be
easily detected. The algorithms for detecting excessive trace
width and verifying pad area exploit this property of oct-
thinning. Note, however, that these algorithms detect
discrete octagons with a diameter =2n + 3—not 2n + | —by
thinning » times and detecting blob-joins. This is because a
discrete octagon of diameter 2n + 1 (and some areas
between octagons of diameter 2n + 1| and 2n + 3) will be
completely skeletonized with # oct-thins; hence these areas
cannot be detected by oct-thinning 7 times and detecting
blob-joins. However, it is true that all areas that contain
octagons with a diameter =2n + 3 can be detected this way.

References

1. Donald P. Seraphim, “A New Set of Printed-Circuit
Technologies for the IBM 3081 Processor Unit,” IBM J. Res.
Develop. 26, 37-44 (January 1982).

2. A.J. Blodgett and D. R. Barbour, “Thermal Conduction
Module: A High-Performance Multilayer Ceramic Package,”
IBM J. Res. Develop. 26, 30-36 (January 1982).

3. R. Chin, “Automated Visual Inspection: A Survey,” IEEE
Trans. Pattern Analysis & Machine Intelligence PAMI-4, 559-
562 (November 1982).

4. R. Kruger and W. Thompson, “A Technical and Economic
Assessment of Computer Vision for Industrial Inspection and
Robotic Assembly,” Proc. IEEE 69, 1526-1529 (December
1981).

5. T. Pavlidis, Structural Pattern Recognition, Springer-Verlag New
York, Inc., 1977, Chs. 3, 9.

6. A. Rosenfeld and J. Pfaltz, “Distance Functions on Digital
Pictures,” Pattern Recognition 1, 33-61 (1968).

7. A. Rosenfeld, Picture Languages, Academic Press, Inc., New
York, 1979.

8. 1. Serra, Image Analysis and Mathematical Morphology,
Academic Press, Inc., New York, 1982, Chs. 1-8.

9. E. Abbott, M. Hegyi, R. Kelley, D. McCubbrey, and C.
Morningstar, “Computer Algorithms for Visually Inspecting
Thick Fitm Circuits,” Proceedings of RI/SME Conference on
Applied Machine Vision, Memphis, TN, February 1983.

10. M. Ejiri, T. Uno, M. Mese, and S. Ikeda, “A Process for
Detecting Defects in Complicated Patterns,” Computer Graph. &
Image Process. 2, 326-339 (1973).

11. S. Sternberg, “Biomedical Image Processing,” IEEE Computer
16, 22-28 (January 1983).

12. J. Serra, op. cit., pp. 187-206.

JON R. MANDEVILLE

Received June 20, 1984; revised August 27, 1984

Jon R. Mandeville [BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Mandeville is a research
staff member in the industrial machine vision project of the
Manufacturing Research Center. He joined 1BM in 1982 after
receiving the Ph.D. in electrical engineering from Stanford
University, Palo Alto, California. His academic study at Stanford
focused on optical and digital signal and imaging processing. He
received a B.S. in electrical engineering from the University of
Washington in 1974 and an M.S. in electrical engineering from
Stanford University in 1978. While still a graduate student at
Stanford, he worked as an academic associate for the IBM San Jose
Research Laboratory in the experimental systems group. His work
there focused on digital filtering techniques for enhancing the quality
of black and white documents reproduced from scan data generated
from devices such as flying spot scanners and linear solid state
imaging arrays. This work formed the basis for his Ph.D. thesis. His
current work is the application of optical and digital techniques for
automating visual inspection tasks in the manufacturing
environment.

IBM J. RES. DEVELOP. VOL. 29 NO.] JANUARY 1985

