
Novel method
for analysis of
printed circuit

by Jon R. Mandeville

images

To keep pace with the trend towards increased
circuit integration, printed circuit patterns are
becoming denser and more complex. A variety
of automated visual inspection methods to
detect circuit defects during manufacturing have
been proposed. This paper describes a method
which is a synthesis of the referencecomparison
and the generic-property approaches that
exploits their respective strengths and
overcomes their respective weaknesses. It is
based on the observation that the local
geometric and global topological correctness of
a printed circuit can be inferred from the
correctness of simplified, skeletal versions of
the circuit in a test image. These operations can
be realized using simple processing elements
which are well suited for implementation in
hardware.

1. Introduction
Electronic packaging technology is evolving towards
interconnecting more integrated circuits on a single printed
circuit board or substrate. As a result, printed circuit boards
and multilayer ceramics are increasing in size and they
contain more layers. In addition, the printed circuits
themselves are becoming smaller and more complex. For
example. for use in its high end computers like the 3081,

“Copyright 1985 by International Business Machines Corporation.
Copying i n printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Jormul reference and IBM copyright
notice are Included on the first page. The title and abstract. but no
other portions. of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to repuhlrsh any other
portion of this paper must be obtained from the Editor.

IBM J RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

IBM now manufactures printed circuit boards (called TCM
boards) as large as 600 by 700 mm (24 by 28 in.), composed
of up to 20 layers, and with circuit features as small as 0.08 1
mm (3.5 mils) [I]. IBM also routinely manufactures 90-mm
(3.5-in.) multilayer ceramic substrates consisting of up to 33
layers and using 0.12-mm (5-mil) circuit features [2].

complex, substrates become more costly not only to produce
but also to replace in the field. Therefore, it is important that
quality control methods keep pace with the trend towards
larger circuit areas, more complex circuits, and smaller
circuit features. In particular, the printed circuits on each
layer must be carefully inspected before that layer is used to
make up a composite of layers. Although electrical testing
can detect some defect types, only human visual (or
automated optical) inspection can reliably detect many of
the “fatal” defects.

As these packaging technologies become increasingly

Unfortunately, human visual inspection is labor intensive
and therefore costly. In addition, human subjectivity and the
tedium of the work contribute to variations in the quality of
inspection. Interest in automating the visual inspection
process is motivated by the desire to reduce labor costs and
standardize inspection quality.

A variety of approaches for automated optical inspection
of printed circuits have been reported over the last decade;
see the surveys of Chin [3] and Kruger and Thompson [4].
These approaches typically use an analog subsystem for part
handling and image acquisition and a digital subsystem for
image analysis and overall system control. Such systems
usually do not analyze grey scale analog images; instead
most methods are based on the analysis of discrete, binary
irnager generated by sampling analog images on a regular
grid and thresholding the result to a zero or one. Discrete,
binary images (or just images) are n by m matrices whose

JON R. MANDEVILLE

Evpunsion (contruction)
We define expansion explicitly here. Contraction is realized
by first expanding the complement of an image and then
taking the complement of the result. The operation
I-~~.vpunsion sets all zeros in an image to one if they have a
4-neighbor equal to one; 8-expansion sets all zeros in an
image to one if they have an 8-neighbor equal to one. Figure
4 illustrates the result of 8-expanding (8-contracting) the
entities in Fig. 3(a) twice. Note that expansion fills in detail:
if carried far enough, entities merge. Contraction shrinks
en.tities: if carried far enough, entities break up, e.g., entity B,
or disappear altogether, e.g., entity A. Ocr-expansion
alternates 4-expansion with 8-expansion. This results in a
better discrete approximation to circular expansion than
4- or 8-expansion used alone; see Figure 5.

Thinning
In general, thinning reduces an entity to its skeleton, a
simplified version contained in the original entity that

A >
A is missing. B is broken

into three

2 Entities from Fig. 3(a) which have been (a) expanded twice and (b)
i contracted twice.

8 8 8 8 8 8 8 8 8
8 8 7 7 7 7 7 7 7 8 8

8 8 7 6 6 6 6 6 6 6 7 8 8
8 8 7 6 6 5 5 5 5 5 6 6 7 8 8

8 8 7 6 6 5 4 4 4 4 4 5 6 6 7 8 8
8 7 6 6 5 4 4 3 3 3 4 4 5 6 6 7 8
8 7 6 5 4 4 3 2 2 2 3 4 4 5 6 7 8
8 7 6 5 4 3 2 2 1 2 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1 x 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 2 1 2 2 3 4 5 6 7 8
8 7 6 5 4 4 3 2 2 2 3 4 4 5 6 7 8
8 7 6 6 5 4 4 3 3 3 4 4 5 6 6 7 8
8 8 7 6 6 5 4 4 4 4 4 5 6 6 7 8 8

8 8 7 6 6 5 5 5 5 5 6 6 7 8 8
8 8 7 6 6 6 6 6 6 6 7 8 8

8 8 1 7 7 7 7 7 7 8 8
8 8 8 8 8 8 8 8 8

f Discrete. binary Image o f typical prlnted circuit entitie\: (a) typical
entities; (b) their skeletons.

1 Discrete octagon of diameter 2n + I is the set of elements n,
ff f l = i , 2, " . , 8.

75

IBM J . RES. DEVELOP. VOL. 29 NO. I JANUARY 1985 JON R. MANDEVILLE

For x = l ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o x o
0 0 0

o x I 1 X I
0 0 0 0 0 0

1 x 1
0 1 0 0 1 1

I x I etc.

x: 0-join I-join 2-join 3-join 4-join
(a)

F o r x = l ,

0 0 0 1 0 0 0 0 1 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 l x O O O l x O O O x 0 0 0 etc
0 0 0 1 I 0 0 1 0 0 O l e o 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

(b)
x: all T-joins

Forx=s=b=l ,

0 0 0 0 0 0 0 0
OOOObbbO

OOOObbbO
s s s x l I b O

0 0 0 0 0 0 0 0

X: blob-join; s: skeletal element; b: boundary element
(C)

I (a) wjoins; (b j T-join\: (c j a blob-join.

retains the “basic shape” of an entity. Unlike expansion or
contraction, thinning both maintains the connectivity of an
entity and preserves its holes (none are removed or added).
This is an important distinction that we exploit in the
inspection algorithms. It is useful (though imprecise) to
think of thinning as a transformation that reduces elongated
parts of entities to their centerlines and blobs that are
approximately square or circular to their centers. The 4 , 8-,
and oct-thinning used in the inspection algorithms are
derived from 4-, 8-, and oct-contraction by imposing
additional constraints on the removal of elements at each
thinning step: (1) The global connectivity of entities is
maintained and holes are preserved; (2) at each step,
4-thinning removes only elements with a zero 4-neighbor,
whereas 8-thinning removes all elements with a zero
8-neighbor; (3) oct-thinning alternates 4- and 8-thinning.
Figure 3(b) depicts the skeletons of the entities in Fig. 3(a)
derived by 8-thinning.

Element types and joins
A boundary element is a nonzero element with a zero
8-neighbor; the boundary of an entity is the set of all its
boundary elements. A skeletal element is a nonzero element
that is necessary to maintain the connectivity of its 76

JON R. MANDEVILLE

8-neighborhood; i.e., setting the element to zero breaks the
connectivity between at least two other elements.

An n-join is a nonzero element with n nonzero
8-neighbors; a join can be of order 0 to 8. A T-join is a 3-
join whose 8-neighborhood contains only skeletal elements.
A blob-join is a skeletal element with an 8-neighbor that is
not a skeletal element. Examples are given in Figure 6 . The
join order and type can be determined by using strictly local
processing over 8-neighborhoods in an image; detection of
join order and type plays a key role in the inspection
algorithms.

Generic method for analysis ofprinted circuit images
Application of the above concepts to the analysis of printed
circuit images led to the following observation: The local
geometric and global topological correctness of typical circuit
features can be inferred from the correctness of skeletal
versions of the circuit features in a test image. This
observation, in turn, led to the following generic method for
the analysis of printed circuit images.

Step 1 Transform and thin the test image in such a way that
defects and good circuit features induce skeletal
features that can be easily and reliably detected and
classified.

Step 2 Compile a detected feature list that records the
position and type of all detected features.

Step 3 Compare the detected feature list with a design
feature list generated from circuit design data.

Results Features in the two lists that cannot be brought into
correspondence imply defects.

The inspection algorithms described in this paper are
instances of the generic method. Each algorithm uses a
different thinning process designed so that a particular defect
class induces a known corresponding class of skeletal
features that can be easily and reliably detected. It turns out
that the presence of 0-, 1 -, T-, and blob-joins is sufficient to
infer the existence of typical defects (as well as desired circuit
features, such as pad-to-trace or trace-to-trace connections,
trace ends, etc.).

The feature comparison method is quite flexible and
powerful for two reasons. First, it is possible to define
arbitrary correspondence criteria between arbitrary sets of
detected and predicted features. In many cases, however, the
following simple criterion probably will suffice: Detected and
predicted features correspond if they are the same type and
are within a given distance of one another. Features that
cannot be brought into correspondence imply the existence
of defects; the type of defect can be inferred from the type of
feature. Second, it is possible to derive measures of global
circuit correctness by combining the results of all isolated
feature correspondences, e.g., spatial distortion, throughout
the entire circuit layer.

IBM J. RES. DEVELOP. VOL. 29 NO. I J IANUARY 1985

For some circuit types and design rules it is not necessary
to use reference data; the existence of certain skeletal
features unambiguously implies defects. For example, if a
circuit consists only of single width traces that must end in
pads, I-joins imply the presence of defects when the
algorithm for verifying trace width described in Section 3 is
used. However, for other classes of circuits, a comparison
step is needed to distinguish between true defects and good
circuit features that induce the same type of skeletal features.

0 Advantages over image comparison and design rule
approaches
Because our method does not compare a reference image
and the test image pixel by pixel, it eliminates the need for
the storage, generation, registration, and comparison of a
reference image with the test image. Instead, a relatively
small list of predicted feature types and locations is
compared with a list of detected features in a straightforward
way. Unlike direct image comparison, it is straightforward to
incorporate context-dependent tolerances and attributes for
features, e.g., pad location, type, and size. It is also easier to
compensate for global distortion in the test image (e.g., scale
and skew) because the inverse of the distortion function is
applied to a relatively small set of feature variables, e.g.,
location, instead of the entire reference image. Finally, this
method is relatively insensitive to local distortion and
vagaries that can cause false alarms with direct image
comparison. For example, irrelevant differences on the edges
of traces or displacement of traces by a few pixels will not be
flagged as errors (unless the minimum spacing rule is
violated).

This method is a major improvement over design rule
approaches because it can detect missing features and
extraneous circuitization that looks like good features. In
addition, unlike most design rule approaches, this method is
not limited to verifying just minimum trace width and
spacing; it can also verify pads, maximum trace width, and
various trace connections, as well as detect isolated blobs,
holes, etc. The new method is also capable of handling
complex circuit features and circuit vagaries that can cause
false alarms with design rule checkers. Finally, it can readily
accommodate changes in circuit features and design rules
that often require modification of inspection algorithms in
design rule checkers.

3. Inspection algorithms
In general, the generic method can be applied to detecting
and verifying the shape and size of a large class of feature
types, including spacings, holes, lines, angles, corners,
triangles, rectangles, octagons, and composites of these basic
shapes. We make this concrete in this section by describing
algorithms for

0 Verifying minimum trace width and detecting open
circuits.

---"-

Detecting excessive trace width.
0 Verifying minimum spacing and detecting short circuits.

Verifying pad position, area, shape, and trace-to-pad
connections (including detection of spurious blobs).

However, the method is not limited to these algorithms or
feature and defect types. We have developed numerous other
algorithms for a variety of other feature and defect types.

We formally define each algorithm and describe in detail
the associated transformation and thinning process. We do
not discuss in detail generating the design feature list,
compiling the defect feature list, or comparing the two lists
because these operations are conceptually straightforward
and easily implemented. 77

JON R. MANDEVILLE IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

Definitions
I =binary matrix, a discrete approximation to test image
I‘ =binary matrix, output of contraction step
I“ =binary matrix, output of thinning step
W = nominal maximum trace width, an odd integer
w = minimum acceptable trace width, an odd integer < W

Steps
1: Oct-contract matrix I Lw/2] times (traces with width < w

2: 8-thin image I‘ LW/2J - 1w/2J times (traces of width 5 W

3: Detect I- and blob-joins in thinned image I ” : result is list

4: Compare list of I- and blob-joins in I” with design list

are broken): result is contracted image I’

are skeletonized): result is binary matrix I”

of detected feature types and locations

Results
I-joins in I” not in design list j trace width violations
I-and blob-joins in design list not in I“ j missing features

in I

correspondence between 1 -joins and width violations or
between blob-joins and actual trace-to-pad connections. As
one might expect, all features that look something like
traces, Le., elongated features whose width is less than the
minimum allowable trace width, can generate I-joins. For
example, spurious blobs or large cracks in pads can generate
1- or blob-joins. The key point is that defective features that
“look” like traces with minimum width violations will
generate I-joins; therefore, all such features can be detected.

The feature recognition step generates the detected feature
list of all the I-joins and blob-joins in the image. If the

We also present the results of detecting simulated defects.
For each simulation we added defects to the image shown in
Figure 7(a). This reference image is a 200 by 256 binary
image (matrix) of a 2.5 by 3.3-mm (0.1 by 0.128-in.) area of
an inner plane layer of an IBM 308 1 printed circuit board. It
was acquired with a microscope, vidicon, and image
digitizer; pixel size is approximately 0.0 I3 mm square (0.5
mil square). The traces, small pads, and large pad are 7
pixels (0.089 mm), 25 pixels (32 mm), and 46 pixels (58
mm) wide, respectively. The skeleton of the reference image,
obtained by 8-thinning sufficiently to skeletonize the traces,
is shown in Figure 7(b).

Algorithm for verifying minimum trace width
A summary of the four-step algorithm used to verify
minimum trace width is illustrated in Figure 8. This
algorithm can detect all instances of local trace width less
than a programmable minimum; detect missing traces and a
variety of spurious connections among traces, pads, and
isolated blobs; detect holes in traces. The behavior of this
algorithm is illustrated in Figure 9 for the special case
described there. In the contraction step, entities U, V, and W
are contracted just enough to generate breaks in traces where
the trace width is less than the minimum allowed. Note that
entity W in Fig. 9(b) has broken up into the two distinct
entities W’ and X’, whereas U and V contract to the two
entities U’ and V’;respectively.

enough to produce their skeletons. This thinning does not
cause the contracted entities to break up or disappear. It
does, however, generate the two important feature types
indicated in Fig. 9(d): (I) I-joins wherever there exist
minimum width violations; (2) blob-joins, the join points
between trace skeletons and contracted pads. This does not
imply, however, that there exists a one-to-one

In the thinning step, the contracted traces are thinned just

Given:
Nominal trace width = 9.
Minimum trace width = 5 .

Defect image:

Defects:
a: Trace width = 5 j nonfatal
b: Trace width = 4 =j fatal.
c: Break fatal.

(a)

Step I: Contract twice:

78

JON R. MANDEVILLE IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

Step 2: Thin three times:

Step 3: Detect I- and blob-joins:

0: I-joins + faults.
0: Blob-joins =$ good/bad trace-to-blob connections.

(4

Illustration of algorithm for verifying minimum trace width: (a)
defect image and specifications; (b) result o f contracting defect
image twice; (c) result o f thinning contracted image three time\; (d)
detected I - and blob-joins.

circuit type is such that 1-joins would not be generated for a
good circuit, the comparison step is not needed: I-joins
imply the existence of minimum width violations. Here we
assume that a trace is never completely missing. If a trace
can be entirely missing, its absence can be inferred by using
a comparison step because blob-joins will be missing in the
detected feature list. Circuit types for which this is true are
those consisting of single width traces, all of which must end
in pads or features that are roughly circular (square) and
whose diameter (width) is somewhat larger than the
maximum allowable trace width. If I-joins can occur, a
comparison step is necessary.

to the detected feature list. Extraneous I-joins in the
detected feature list imply minimum trace width faults.
Extraneous blob-joins in the detected feature list imply
extraneous features (or excessive trace width). Missing 1- or
blob-joins in the detected feature list imply missing features.

minimum trace width to an image containing simulated
width reductions, open circuits, and holes is shown in Figure
10. The design rules used were as follows: Maximum trace
width is I3 pixels (0.17 mm); minimum trace width is 5
pixels (0.063 mm); all traces must end in pads.

Algorithm for detecting excessive trace width
A summary of the three-step algorithm used to detect
excessive trace width is shown in Figure 11. Assuming that
the maximum allowed trace width is W, this approach is
capable of detecting local areas within a trace that contain a
discrete octagon with diameters 2 W + 2 (see the Appendix
for more details). For an illustration of this process, see
Figure 12.

In the first step, entities are thinned just enough to
skeletonize all traces with width 5 W. As shown in Fig. 12(b),
octagon y and area a are completely thinned, whereas
octagon z and area b are not. The presence of area b can be
inferred from the presence of the extraneous blob-joins it
induces in the thinned image. The positions of the
extraneous and valid blob-joins are indicated in Fig. 12(c). In
the comparison step, the detected feature list is compared
with the design feature list. Blob-joins in the design feature
list that are not in the detected feature list imply missing
circuitization in the test image. Blob-joins in the detected
feature list that are not in the design feature list imply
excessive trace width in the test image.

The result of applying the algorithm for detecting
excessive trace width to an image containing simulated trace
bumps and fill-ins is shown in Figure 13. We assumed a
nominal trace width of 8 pixels and a maximum trace width
of 13 pixels.

Algorithm for verifying minimum spacing
A summary of the four-step algorithm used to verify
minimum spacing is shown in Figure 14. This algorithm can

In the comparison step the design feature list is compared

The result of applying the algorithm for verifying

IBM J . RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985

Design rules:
Maximum acceptable line width = 13 pixels.
Minimum acceptable line width = 5 pixels.

m

-i-K
Defects:

Width reductions a,d, f, and g are not fatal defects
Width reductions b, c, e, and k are fatal defects.

Open circuits i and j and hole m are fatal defects.
(a)

0: I-joins at b ,c ,e , i , j , k, and rn imply fatal defects.
Results:

Missing blob-join at j implies missing pad-to-trace connection.
(C)

Detection o f minimum trace width violations: (a) defect image with
simulated defects; (b) defect image contracted and skeletonized; (c)
detected defects.

detect short circuits and spacings between distinct entities
less than a programmable minimum. The behavior of this
algorithm is illustrated in Figure 15. The first step in
detecting spacing violations is to oct-expand all entities just 79

JON R. MANDEVILLE

Definitions
I =binary matrix, a discrete approximation to test image
f“ =binary matrix, output of thinning step
W = nominal maximum trace width, an odd integer

1: Oct-thin image I LW/21 times (Traces of width d W

2: Detect blob-joins in I”: result is a list of detected

3: Compare detected blob-joins with design list

Steps

are skeletonized): result is binary matrix I”

blob-join locations

Results
Blob-joins in I“ not in design data 3 excessive

trace width

Given:
Trace area containing octagon with diameter > I I is fatal.
Diameter of octagons y and z = I I and 13, respectively
(shown for comparison with defect areas a and b).

Defect image:

n
Defects:
Area a contains octagon with diameter= 1 I nonfatal.
Area b contains octagon with diameter= 13 fatal.

(a)

Step 1: Thin five times:
y. m z

a b

Step 2: Detect blob-joins:

0: Blob-joins j good/bad trace-to-blob connections
(C)

I Illustration of algorithm for detecting excessive trace width: i a)
defect image and specifications: (b) rcwlt ol thinning detect ilnage
five times; (c) detected blob-joins.

enough so that entities touch (connect) at all locations where
the spacing between them is less than the minimum allowed.
The result of oct-expanding the defect image twice is shown

Defects: ‘ 8 -

b and c are fatal
a is not fatal.
Enlarged pad at d is not fatal.

(a)

a b

b
r”

Results:
0: Extraneous blob-joins at b and c imply defects.

I Detection o f areas of excesive trace width: (a) defect i m g e with
s imulated defects ; (b) skeletoniLed delect image: (c) dc-
tected defects.

80

JON R. MANDEVILLE IBM 1. RES. DEVELOP, VOL. 29 NO. I JANUARY 1985

in Fig. 15(b). Note that the bridge at c enlarges and a new
bridge is formed at b; however, a bridge is not formed at a.
The thinning step then skeletonizes the traces as well as all
bridges with width less than or equal to fifteen. The key
point to observe is that spacing violations like those in Fig.
15(a) generate extraneous T-joins (or blob-joins) in the
expanded and thinned image. The defect features, along with

Definitions
I =binary matrix, a discrete approximation to test image
I' =binary matrix, output of expansion step
I" =binary matrix, output of thinning step
S =amount of thinning, an odd integer
s = minimum acceptable spacing, an odd integer

Steps
I: Oct-expand matrix I Ld2J times (spacings between entities

< s are filled): result is expanded image I'
2: 8-thin image I' Ld2J + LS/2j times (traces and bridges

of width S are skeletonized): result is binary matrix I"
3: Detect T- and blob-joins in P': result is list of feature

types and locations
4: Compare list of detected features with design list

Results

Features in design data not in I" + missing features in I
Features in I" not in desigwlist j spacing violations in I

algorithms. These operations can be realized using sequences
of 8-neighborhood operutions that map each pixel and its
8-neighbors in a binary matrix I to a zero or a one. For
algorithm development or for inspection tasks where
execution time is not critical, these operations can be
implemented on a general purpose computer or any of the
commercially available image processing systems. However,
both these approaches are far too slow to achieve full
inspection of typical printed circuit layers in a few minutes
or less (which requires a net throughput rate of several
megapixels per second). For example, implementing the four

good features, can be readily detected in the feature
recognition step.

and blob-joins in the image is compared with a design
feature list. Detected features not in the design list imply
spacing violations or short circuits. Design features not in
the detected features list imply missing circuitization.

The result of applying the algorithm for verifying
minimum spacing on an image containing simulated short
circuits and spacing reductions is shown in Figure 16. We
assumed a design rule for minimum acceptable spacing of 5
pixels.

In the comparison step, the detected feature list of T-joins

Algorithm for verlfying pads
Typically there are a variety of design rules for pads. For
example, the design rules may constrain the size, shape, and
position of pads, as well as limit the number and type of
pad-to-trace connections. The thinning operation used in
trace width verification can be used to partially verify pads.
In particular, the existence and position of all blob-to-trace
connections can be verified. Additional thinning can also be
used to detect cracks, holes, and insufficient pad area. Figure
17 illustrates how this can be accomplished: cracks, holes,
and insufficient pad area induce extraneous 0-, I - , T-, and
blob-joins. Since extraneous joins do not match the design
list, the defects that induce the joins are detected. An
algorithm for verifying pads is given in Figure 18.

The result of applying the algorithm for verifying pads on
an image containing artificial cracks, holes, and reduced area
is shown in Figure 19. We assumed a minimum acceptable
octagonal pad diameter of 15 pixels.

4. Hardware implementation of basic image
processing operations
Contraction, expansion, thinning, and join detection are the
basic image processing operations used in the inspection

IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

Given:
Nominal spacing= 10.
Minimum spacing = 5 .

Defect image:

Defects:
a: Spacing=5 =+ nonfatal.
b: Spacing = 4 3 fatal.
c: Short fatal.

(a)

Step 1: ExDand twice:

Step 2: Thin seven times:

(C)

Step 3: Dctect T- and blob-joins:

0: T-joins faults.
0: Blob-joins j good/bad trace-to-blob connections.

(d)

JON R. MANDEVILLE

reductions c through fare fatal.
reduetions a and b are not fatal.

its g through m are Fatal.
(a)

algorithms described in this paper requires about 150
8-neighborhood operations per image frame (for the design
rules used in the simulations). Using a 0.025-mm (I-mil)
square pixel, a 254 by 38 I-mm (I O by 15-in.) printed circuit
layer contains about six hundred image frames. Assuming

Mj&i%ut!i apcl diameter- 25.
Defect image:

a: 'toid.
b: Large crack.
c: Redwed pad area and spurious blob.

(8)

Defect image thinned eleven times.

Detect T- and blob-joins:

0: T-joins 3 cracks and voids.
0: Blob-joins j goodlbad trace-to-blob connections.

lc)

Detect 0- and I-joins:

I Detecting crack\. voids. and in\utficient pad area: (a) detect image
and specificatlons: (b) rewlt o f oct-thinning defect image eleven
times: (c) detected T- and blob-,ioins: (d) detected 0- and i-join\.

that an image processing system can achieve about five
8-neighborhood operations per second, it would take about
three hundred minutes per layer to do all the required
8-neighborhood operations. Even assuming that an image
processing system can achieve fifty 8-neighborhood
operations per second, such an approach is still too slow by a
factor of thirty. Experience has also taught us that
implementation on a general purpose computer, in a high-
level language like APL, is typically one to two orders of
magnitude slower than that achievable with an image
processing system.

IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

An inspection system using a large number (hundreds) of
frame-based image processors running in parallel could, in
principle, achieve the necessary throughput rate of several
megapixels per second. Fortunately, there is a better way.
Sternberg [I I] has shown how neighborhood operations can
be implemented in hardware by streaming the elements of
an image row by row through a simple processing element
(PE) like the one shown in Figure 20. A sequence o f p
neighborhood operations, e.g., p contractions, can be
implemented by pipelining (cascading) p PES, as also shown
in Fig. 20.

Solid state imaging devices (especially linear arrays) are
ideally suited as input image sources for the pipeline
architecture. Using linear arrays, a circuit layer can be
completely scanned by making multiple passes along one
dimension, each pass offset from the previous one by slightly
less than the width of the array. (Some overlap between
passes is necessary to correctly process the image data on the
borders.) By using this scanning strategy, image data can be
continuously acquired and input, row by row, into the
pipeline. Except for a small overhead in time to fill and
empty the pipeline, the throughput of the pipeline is equal to
the clock rate of the image source. It is well within the state
of the art for linear arrays and this kind of pipeline
architecture to operate at five to ten megapixels per second.

Using multiple, independently configured pipelines, all the
inspection algorithms required for a particular application
can be run in parallel. The throughput is limited only by the
clock rate of the image source and pipeline. For example, the
four algorithms described in this paper could be
implemented with four independent pipelines containing a
total of approximately 150 PES. Assuming a conservative
clock rate of five megapixels per second, it would take only
thirty seconds to do the bulk of the image processing!

We have yet to discuss the generation of the detected
feature list, a process we call enumeration. Each pipeline
takes image data as input and produces multiple bit streams,
each stream corresponding to the detection of a specific
feature. In enumeration, all ones are converted to coordinate
pairs corresponding to the location of the feature on the
layer. A brute force approach to enumeration is to use an
independent enumeration unit for each bit stream.
Conceptually, the enumeration unit is simply one more stage
at the end of the pipeline.

The list comparison can be performed on a general
purpose computer using standard sorting techniques. It is
important to note that because the scan pattern is known
ahead of time, the feature data are almost entirely presorted.
The data are not entirely presorted because the inherent
uncertainty in the position of features randomizes the order
of features that are within a few rows or columns of one
another. It is also important to note that most of the list
comparing can be done in parallel with the generation of the
feature list. If list comparison is overlapped with the physical

Definirions
I" = binary matrix, result from thinning step in algorithm

P =binary matrix, result of additional thinning
for minimum trace width verification

d =diameter of minimum allowed circular pad area, an
W = nominal maximum trace width, an odd integer

r = (d - 3)/2, d > 3
odd integer, d 2 W + 2

Step
I: Detect 0- and T-joins in I": result is list of detected

2: Oct-thin f" by amount r - (W - 1)/2: result is matrix P
3: Detect 0-, I-, T-, and blob-joins in P : result is list of

4: Compare detected feature list with design list

features in I"

detected features in I" and in P

Results
0-joins not in design list j extraneous metallization;

I-joins not in design list =$ cracks; insufficient pad area
T- and blob-joins not in design list + cracks; voids;

broken features

possibly hard shorts

I Algorithm for vcrifying pads

"

Defects:
Insufficient pad area at b and f is fatal.
Cracks at e and reduced area at a are not fatal

Results:
I-join and missing blob-join at b imply fatal defect.
T-joins and missing blob-join at f imply fatal defect.
I-joins and extraneous blob-join at e imply defect.

(b)

I Detection of pad defects: (a) defect image containing simulated
defect\: (b) skeletonized defect Image and results.

83

JON R. MANDEVILLE IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

Input data Slream

J : I l m I
I I I, -, I

b 512 by I
L------I - lookup
Window register

(three 3 by, I SIP0 rhift registers)
table

handling of a layer and the image processing, we estimate
that list comparison does not add significantly to the overall
inspection time.

5. Concluding remarks
This paper has described a new method for the analysis of
printed circuit images. As the algorithms presented here
demonstrate, the new method is a reliable and flexible way
of detecting a variety of common defect types in discrete,
binary images of printed circuit features. However, the
method is by no means limited to these particular algorithms
or defect types. The method can be applied to detecting and
verifying the shape and size of a wide class of feature types,
including lines, angles, comers, triangles, rectangles,
octagons, and composites of these basic shapes. However,
there does not exist a “magic formula” for generating an
inspection algorithm as a function of feature type; this still
requires ingenuity. For example, we have developed
algorithms for verifying the existence and diameter of holes,
checking clearance between holes and other features,
handling traces and pads of different sizes, verifying that a
local feature is connected to other arbitrarily distant features,
etc.

In addition to its flexibility, this method is well suited for
high-speed implementation using pipelines of simple
processing elements. The speed of processing is roughly
proportional to the number of independent pipelines used
and the number of PES per pipe. Independent pipelines can
be configured to process different image areas in parallel, to
implement different algorithms in parallel on the same

84 image area, or any combination of the two.

JON R. MANDEVILLE

Finally, we note that a reliable, flexible, efficient, and cost-
effective system is more than just a set of inspection
algorithms-no matter how elegant the algorithms may be.
On the research side, each inspection problem has to be
thoroughly analyzed and experiments conducted to
determine the limits and capabilities of this method. On the
engineering side, reliability, throughput, and cost
considerations will dictate the specifics of a given
implementation.

Appendix
The image processing operations used in the inspection
algorithms can be realized by boolean operations between
images and &neighborhood operations. An 8-neighborhood
operation is a binary image to image transformation that
maps in parallel all 8-neighborhoods of the input image to a
one or a zero. It is often useful to define the mapping in
terms of a set of templates. A single template is a three by
three array with a specific configuration of zeros, ones, and
don’t cares. An 8-neighborhood operation is realized by
comparing the 8-neighborhoods of an image with a template
set: the result is one if the 8-neighborhood matches at least
one of the templates in the set; otherwise the result is zero.

a Discrete distance
In an analog image, we measure trace width, spacing, pad
diameter, etc., using the usual euclidean metric. However, in
a discrete, binary image, we must use a discrete
approximation to the euclidean metric. In the inspection
algorithms we infer distance using oct-expansion and
contraction. The combination of expansion and contraction
used implicitly defines a discrete distance measure. The
shape of an entity generated from an isolated element by n
expansion steps can be thought of as a discrete distance map
of order n. For example, if a discrete octagon of arbitrarily
large diameter is centered at an element I(i, j) , then the
distance between I(i , j) and any other element I (k I) is equal
to the value of the element in the discrete Octagon Overlaying
the element I(k, /). Other types of distance maps we could
employ include diamonds, rectangles, squares, ovals, and
sixteen-sided figures. The inspection algorithms can be
modified to employ any combination of expansion Or

contraction best suited to a particular application.

Expansion (contraction)
The operations of 4- and 8-expansion (contraction) can be
realized using a single step of template matching. 4- and
8-expansion are realized by setting an element to one if it
has a 4- or 8-neighbor equal to one, respectively. 4- and
8-contraction are realized by setting an element to zero
if it has a 4- or 8-neighbor equal to zero, respectively.
Oct-expansion or contraction is realized by alternating
4- and 8-expansion or contraction, respectively.

Thinning
We use a thinning that preserves the homotopy tree of an
image. This means, among other things, that the existence

IBM I. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

and connectivity of all entities and of all the holes is
preserved [121; 4-, 8-, and oct-thinning can be realized using
8-neighborhood operations with the template set shown in
Figure 21. However, unlike contraction, entities cannot be
thinned uniformly from all directions with a single
8-neighborhood operation because entities with a width of
two elements would be completely removed. This problem
can be overcome using the following four-step algorithm
for 8-thinning.

8-Thinning algorithm based on template matching

Step I Remove all points in image I with 8-neighborhoods
that match top template set.
Result: image B (I thinned from the top).

that match right template set.
Result: image C (I thinned from top and right).

that match bottom template set.
Result: image D (I thinned from top, right, and
bottom).

Step 4 Remove all points in image D with 8-neighborhoods
that match left template set.
Result: image 18-thinned.

Step 2 Remove all points in image B with 8-neighborhoods

Step 3 Remove all points in image C with 8-neighborhoods

The 4-thinning algorithm is derived from 8-thinning by
imposing an additional constraint that suppresses the
removal of elements with a zero 8-neighbor but not a zero
4-neighbor. This constraint is realized by first deriving an
image I’ from the input image I by setting an element of I’
to one if and only if the corresponding element in I has a
zero 8-neighbor but not a zero 4-neighbor. Then image I‘ is
ORed element by element with the result of each step in the
8-thinning algorithm prior to the next step.

If only the basic templates are used, the thinned result will
often contain spurious skeletal segments induced by
relatively small features protruding from the boundary of an
entity (e.g., artifacts of the sampling process). The trimming
templates are used primarily to “clean” the noise from the
skeleton by suppressing the growth of spurious skeletal
segments. The trimming templates can also be used by
themselves to trim all I-joins from entities without thinning
the entities.

Fwttrre detection
Detection of n-joins and T-joins is achieved by using one set
of templates applied once in parallel over an image. In effect,
a set of templates used to detect n-joins counts the number
of ones in an 8-neighborhood: the result is one if the count is
n; zero otherwise. A template for detecting T-joins can be
constructed by appropriately combining a template set for
3-joins with the template set illustrated in Fig. 2 I for
extracting skeletal points with a zero 4-neighbor. Blob-joins
cannot be detected using one set of templates applied once

IBM J. RES. DEVELOP. VOL. 29 NO. I J IANUARY 1985

For a = I ; x arb.:

Top Right Bottom Left

l a 0 1 l a 0 I Oal I Oal
x 0 0 I x l x I x l x I oox

x l x I x 0 0 I oox] x l x

o o x I x 0 0 I x l x I x l x
Oal I l a 0 I l a 0 f Oal
x l x 1 x l x I x00 I oox

xox I x l x I x l x I x l x

X l X] x l x] xox I x l x
l a 1 I l a 0 I l a 1 I Oal

Basic templates

000 1 x 0 0 I x l x I oox

x l x I x00 I 000 I oox
OaO I l a 0 I OaO I Oal

ltimming templates

F o r a = l ; a t l e a s t o n e x a n d y = l :

For a = I : x arb.:

xxx I l o x I x01 I xxx
Oax I Oax I x a o I x a o
l o x x x x I xxx I x01

000 I 000 I o x o I 000
010 I X I 0 010 I O I X
o x o I 000 I 000 I 000

Templates for extracting skeletal points

in parallel over an image. However, they can be detected
using the following algorithm.

AIgorithm,for detecting blob-joins

Step I Extract skeletal points with a zero 4-neighbor: result is

Step 2 8-thin I: result is A.
Step 3 Remove A from I : result is B = I A - A.
Step 4 8-expand B: result is C.
Step 5 Blob-joins in I = S A C.

S.

(A and - are the boolean operations “and” and “not,”
respectively.)

Detecting discrete octagons
The algorithms for detecting excessive trace width and
verifying that all traces end in discrete octagons of a
minimum size are based on the following property of oct-
contraction: 85

JON R. MANDEVILLE

Given that the original entity is oct-contracted n times,
all remaining elements ofthe contracted entitv must be
the center o f a discrete octagon in the original entity with
a diameter r 2 n -+ I.

As a consequence, oct-thinning tends to have the following
property:

Given that the original entity is oct-thinned n times, a
nonskeletal point with a skeletal 8-neighbor in the
thinned entity is the center o f a discrete octagon in the
original entity with a diameter r 2 n + 1.

There do exist cases for which this is not true; however, these
cases seem to be characterized by join types that can be
easily detected. The algorithms for detecting excessive trace
width and verifying pad area exploit this property of oct-
thinning. Note, however, that these algorithms detect
discrete octagons with a diameter r 2 n + 3”not 2n + 1 -by
thinning n times and detecting blob-joins. This is because a
discrete octagon of diameter 2n + 1 (and some areas
between octagons of diameter 2n + 1 and 2n + 3) will be
completely skeletonized with n oct-thins; hence these areas
cannot be detected by oct-thinning n times and detecting
blob-joins. However, it is true that all areas that contain
octagons with a diameter r 2 n + 3 can be detected this way.

References
1.

2.

3.

4.

5 .

6.

7.

8.

9.

IO.

11.

12.

Donald P. Seraphim, “A New Set of Printed-Circuit
Technologies for the IBM 308 I Processor Unit,” IBM J. Res.
Develop. 26,37-44 (January 1982).
A. J. Blodgett and D. R. Barbour, “Thermal Conduction
Module: A High-Performance Multilayer Ceramic Package,”
IBM J. Res. Develop. 26,30-36 (January 1982).
R. Chin, “Automated Visual Inspection: A Survey,” IEEE
Trans. Pattern Analysis & Machine Intelligence PAMI-4, 559-
562 (November 1982).
R. Kruger and W. Thompson, “A Technical and Economic
Assessment of Computer Vision for Industrial Inspection and
Robotic Assembly,” Proc. IEEE 69, 1526-1 529 (December
1981).
T. Pavlidis, Structural Pattern Recognition, Springer-Verlag New
York, Inc., 1977, Chs. 3, 9.
A. Rosenfeld and J. Pfaltz, “Distance Functions on Digital
Pictures,” Pattern Recognition 1, 33-6 I (1968).
A. Rosenfeld, Picture Languages, Academic Press, Inc., New
York, 1979.
J. Serra, Image Analysis and Mathematical Morphology,
Academic Press, Inc., New York, 1982, Chs. 1-8.
E. Abbott, M. Hegyi, R. Kelley, D. McCubbrey, and C.
Morningstar, “Computer Algorithms for Visually Inspecting
Thick Film Circuits,” Proceedings of RIISME Conference on
Applied Machine Vision, Memphis, TN, February 1983.
M. Ejiri, T. Uno, M. Mese, and S. Ikeda, “A Process for
Detecting Defects in Complicated Patterns,” Computer Graph. &
Image Process. 2, 326-339 (1973).
S. Sternberg, “Biomedical Image Processing,” IEEE Computer
16,22-28 (January 1983).
J. Serra, op. cit., pp. 187-206.

86

JON R. MANDEVILLE

Received June 20, 1984; revised August 27, 1984

Jon R. Mandeville IBM Research Division, P.O. Box 218,
Yorkfown Heights, New York 10598. Dr. Mandeville is a research
staff member in the industrial machine vision project of the
Manufacturing Research Center. He joined IBM in 1982 after
receiving the Ph.D. in electrical engineering from Stanford
University, Palo Alto, California. His academic study at Stanford
focused on optical and digital signal and imaging processing. He
received a B.S. in electrical engineering from the University of
Washington in 1974 and an M.S. in electrical engineering from
Stanford University in 1978. While still a graduate student at
Stanford, he worked as an academic associate for the IBM San Jose
Research Laboratory in the experimental systems group. His work
there focused on digital filtering techniques for enhancing the quality
of black and white documents reproduced from scan data generated
from devices such as flying spot scanners and linear solid state
imaging arrays. This work formed the basis for his Ph.D. thesis. His
current work is the application of optical and digital techniques for
automating visual inspection tasks in the manufacturing
environment.

IBM J . RES. DEVELOP. VOL. 29 NO, I 1 ANUARY 1985

