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Output data from many types of sensor systems
(radar, radar warning, sonar, electro-optical,
etc.) must be associated with one or more
possible sources based on multiple
observations of the data. This paper presents an
algorithm that associates data with their source
by simultaneous n-dimensional clustering of
multiple data observations. The algorithm first
orders the observations by successive nearest
neighbor, in the n-dimensional Euclidean sense,
from a defined starting point. Clusters are then
isolated using a method derived from statistical
decision theory. The algorithm’s primary feature
is its ability to perform clustering adaptively
without any assumptions about the size,
number, or statistical characteristics of the
clusters. Since the algorithm was developed for
radar warning system processing, a
performance comparison with a well-known
algorithm used in that field is included.

introduction

Clustering algorithms attempt to determine “natural”
groupings of data and were originally developed for use in
biological taxonomy. For example, the birth and death rates
for countries of the world [1] can be processed using
clustering algorithms to determine whether groups of
countries have similar rates. Such clusters may or may not
exist. Clustering techniques in general determine whether
clusters do indeed exist, and they are applicable to any type
of data.
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A more specific problem is the detection and isolation, in
the presence of measurement noise or uncertainty, of
clusters that are known to exist. This problem is encountered
in some signal processing applications. For example, a radar
warning system on board an aircraft must isolate and
identify individual radars by observing a time-interleaved
stream of pulsed emissions from many distinct radar
SOUrCes.

‘For each received pulse, the system measures and digitizes
a set of signal parameter values, such as radio frequency,
bearing angle relative to the aircraft, pulse width, and pulse
amphitude. The resulting sets of parameter values must be
separated in real time into mutually exclusive clusters such
that each cluster represents a unique radar source. These
clusters are then used to locate and identify the radars.

Figure 1 shows what an ensemble of sources might
produce if many received pulses were plotted based on radio
frequency and bearing angle. Note that some of these
clusters overlap in bearing angle and others in radio
frequency. However, they are all distinct if both radio
frequency and bearing angle are considered simultaneously.
Therefore, a multidimensional clustering algorithm is
required to separate them.

The existence of these clusters of parameter values of the
radar pulses is known a priori. Pulse parameter values from
the same source tend to cluster together over the short time
interval within which sorting is performed (generally less
than ten milliseconds). All radar warning systems now in use
and those projected for the future that we know about are
based on this assumption. Therefore, in the remainder of
this paper we assume the existence of these clusters and are
concerned only with the techniques for identifying them.

Radio frequency is measured using various well-known
techniques, such as channelized, superheterodyne, or
acousto-optical receivers. Bearing angle is measured by using
monopulse amplitude comparison or phase interferometry
techniques. The cluster spreading is generally modeled using
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normal or uniform distributions but cannot be restricted to
such idealizations. The spreading is due to measurement
errors in the receiving equipment, to variations in the
transmitters, and to physical environmental effects (e.g.,
reflections). The clusters of parameter values of radar pulses
can in general be characterized as having a constant
unknown mean and constant unknown standard deviation
over the time interval of interest.

The solution to the radar warning problem requires a
clustering technique in which nothing is assumed about the
number and size of clusters to be found. The clusters of
parameter values of radar pulses encountered in reality vary
from those having a large intracluster spreading of data
points and wide separation between clusters to those having
little intracluster spread and small separation. The number
of clusters is always unknown.

Review of existing clustering techniques

Several well-known algorithms were examined to determine
their applicability to the cluster separation problem. The
Forgy-Jancey algorithm [2-4] and the K-means algorithm
[1] do not meet the requirements of the cluster separation
problem because they separate as many clusters as the user
desires, whether or not the clusters are meaningful. For real
time cluster separation, it is not possible to peruse the data
in advance and preset the number of clusters. More
important, the problem demands some measure of face
validity in that it is desirable to limit the number of clusters
isolated to those corresponding to actual signals.

The ISODATA method [5], the minimal spanning tree
algorithm [6], and the Leader algorithm [1] do not meet our
requirements because of the restrictions on the size of
clusters separated.

A new clustering algorithm
The classical clustering techniques do not provide an
algorithm flexible enough to meet the requirements of the
radar warning problem. The attributes required in a
clustering technique for this problem suggested an approach
based on statistical decision theory [7, 8].

Each data point in Fig. | represents an observation made
at a random time, and the set of observations S| is seen by a
human observer to form a collection of clusters 4 through F:

S, =@UBUCUDUEUF).

Given the set of observations S, our algorithm uses a two-
phase process to isolate the clusters. The first phase reorders
the set S; the second phase isolates the clusters in the
reordered set using a statistical decision criterion.

o Phase One

To reorder set S, in the first phase, we select from S| the
observation that is nearest in Euclidean distance to the
origin. This observation (we call it O,) becomes the first
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member of the reordered set, which we call §,. Observation
O, is then removed from set S,. Next, the observation in S,
that is closest in Euclidean distance to O,, call it O,, is made
the second observation in S,. It is also removed from S,.
This process is continued until all observations are included
in set S, and deleted from set S,. Figure 2 shows graphically
the effect of the reordering done in Phase One.

e Phase Two
In the second phase, the set S, is processed to isolate clusters
A through Fin Fig. 2. Since we do not yet know which
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Figure 3

Adjacent clusters with (a) no noise or parameter variation. (b) con-
siderable noise and parameter variation, and (¢) moderate noise and
parameter variation.

observations belong to each cluster, we define S, as it
appears to the processor:

Sz = (01, 02’ Tt 0,,)9

where # is the total number of observations.

Since we do not know the size of the clusters (i.e., the
number of observations in each cluster), a statistical decision
criterion is used to decide which observations have a high
probability of forming a group. To make this decision, we
first assume that reliable identification of a cluster requires
some minimum number of observations, P. We take four to
be the value of P in our application. For other applications,
the user of the algorithm must determine a reasonable value
for P.

We now form a new temporary set, S;, comprised of the
first 2P observations in the ordered set S,:

S3 = (Op 02; AR ] Ox)a

where x = 2P,

The Euclidean distance separating each successive pair of
observations in the ordered set S, is then determined. That
pair of adjacent observations whose separation is greatest,
say, O,and O, _,, in the set

+1°

S3 = (Op 02’ Tty Oy’ Oy+|’ Sty Ox)

may indicate a cluster separation point. The distance
between O, and O, is called 4,,,,.

LAWRENCE V. O'MALLEY

In order to determine whether we have indeed found a
cluster separation point, we compute the average distance
A,.. between all other adjacent pairs of observations in S;,
omitting the distance 4,

A, = (Do,,oz + Do;.o, +.---+D, ,+

1%

+ DOM_OM + ..

+ D, o)lx = 2).

We then compare the ratio A, /A4,.. to a threshold 7. (The
method for determining 7 is described later.) If the ratio is
greater than 7, we have isolated the cluster of observations
O, through O,, which are removed from set S, and the
temporary set S is discarded. A new set S, is then formed
from the first 2P observations remaining in set S,, and the
process is repeated until the observations in set S, have been
exhausted.

If a cluster separation point had not been found,
observations would be added incrementally to the existing
set S, from S,, and the test for a separation point would be
repeated.

The ratio test is based on the following rationale.
Referring again to Fig. 1, it is evident that the clusters are
casily discernible by the human eye, because the separation
of one cluster from neighboring clusters is in some sense
more significant than the separation of values within a
cluster. Phase One provides us with observations ordered
such that we can consider one pair of observations at a time
and determine whether the distance between them is
significant. The distance between clusters can be thought of
as a “signal” or the primary indicator of cluster separateness.
Consider the case of two adjacent clusters, as in Figure 3(a),
where there is no noise or parameter variation. Now assume
that considerable noise and parameter value variation are
present, as in Figure 3(b). The distance D between clusters is
obscured and could be estimated to be between D, and
D

ave

max*"

In Figure 3(c), we see the same situation except that the
spreading of observations is considerably less. It is easier to
decide that we have two separate clusters in Fig. 3(a) than in
Fig. 3(c), and in Fig. 3(c) than in Fig. 3(b), because in each
case we have less noise. Thus, the problem of separating two
clusters can be treated as a classical detection problem, i.e., a
statistical decision can be used [7, 8]. The ratio 4, /A, is
thus a ratio of “signal” to “noise,” signal being the
maximum intercluster distance and noise the average
intracluster distance.

We use a Neyman-Pearson criterion to determine the
significance threshold 7, because we assume that we do not
know anything about the a priori probabilities of the cluster
distributions. The Neyman-Pearson criterion provides a
means for setting the threshold of the ratio test.

This is done by using the conditional probabilities P;
(probability of false alarm) and P, (probability of detection).
Here P, is the probability of deciding that two clusters are
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separate when they are not (i.e., an error), and P, is the
probability of deciding that two clusters are separate when
they are. The Neyman-Pearson criterion constrains P, to be
less than a selected value and maximizes P, under this
constraint.

The procedure of increasing the set S; by one new
observation restricts the algorithm to one cluster pair
separation at a time, because otherwise intercluster distances
from other cluster pairs would perturb the ratio test on a
given cluster pair.

Outliers (measurements having very large errors) can
occur due to a transient failure in a measurement
mechanism or any number of other causes. By their very
definition, they are low probability occurrences and as such
have only temporary effect. If data points caused by this
phenomenon occur midway between clusters, they can cause
clusters not to separate. Techniques exist to preprocess the
data to eliminate outliers, image processing techniques using
FFTs. for example. The decision to deal directly with
outliers or to depend upon their low probability of
occurrence is dependent upon a given application.

All clustering algorithms have in common the question of
scaling or normalization when the coordinate axes consist of
parameters whose numerical values have widely different
magnitudes (e.g., radio frequency in thousands of megahertz
and bearing angle in degrees from 0 to 360). The scaling is
done to prevent the larger axis from dominating the distance
calculation.

The observations are normalized before ordering in Phase
One. For Phase Two, we employ a scaling technique which
normalizes data by the maximum measured values within a
cluster pair. The normalization is restricted to the cluster
pairs defined by the set S,. The scaling is done each time a
new observation is added to the subset. We use this
technique because it prevents measurements from other
clusters from distorting the scaling of a given cluster pair.

Clustering using parameters which can be measured in a
modulo sense (e.g., bearing angle is measured modulo 360)
presents a special case. It is obvious that clusters whose
measurements straddle the 0 to 360 crossover require special
attention to account for the anomalies. Axis shifting or
replication of data by adding 360 are two well-known
techniques for dealing with this situation.

Performance analysis
The algorithm was simulated to determine its performance
relative to the optimal theoretical performance and to that of
an existing algorithm. The existing algorithm is a
comparison tolerance algorithm widely used in sorting radar
warning system pulse data. It is similar to the Leader
algorithm [1].

The algorithms were first tested against a hypothetical set
of two clusters to determine how well each algorithm
separated the clusters. The clusters were modeled as one-
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dimensional normal distributions whose means are separated
by a distance S. The standard deviations of each distribution
were equal. For a trial, four samples were drawn from each
distribution and each algorithm performed a sort of the
samples. If all samples were correctly associated with the
distribution from which they originated, then the trial was
reported as a success. The probability of sorting correctly
was computed for one thousand trials. The distance .S
between the means was varied from one to six standard
deviations, and the trials were repeated. The adaptive
algorithm had its threshold value set using the Neyman-
Pearson criterion.

The comparison tolerance algorithm was run for two
limiting cases. It had a tolerance selected on the basis of the
expected standard deviation of all distributions. This
tolerance was usually set to three times the standard
deviation for the largest distribution expected. If the
distributions to be sorted exactly matched the tolerance, the
performance of the comparison tolerance algorithm was
considered to be at its maximum. If the distributions to be
sorted had a smaller or larger standard deviation than the
tolerance, the performance was considered to be poorer. The
limiting cases for the comparison tolerance algorithm are the
best case (i.e., a tolerance of three standard deviations) and
the worst case (i.€., a tolerance of six standard deviations).
This bounds the performance of the comparison tolerance
algorithm.

The optimal theoretical sorting of the two distributions
could be performed with a classical hypothesis test if the
statistical characteristics of the distributions and their mean
separation were known. This performance is plotted in
Figure 4 as Curve T. Curve A represents the performance of
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the adaptive algorithm. Curves B and C represent the range
of performance of the comparison tolerance algorithm from
best to worst case, respectively. It is clear that the
performance of the adaptive clustering algorithm is better
than that of the comparison tolerance algorithm even in its
optimal case (i.e., Curve B).

The two-dimensional case was also simulated, and the
results are shown in Figure 5. Curves T, A, B, and C
represent the same performance measures as in Fig. 4. The
performance of the adaptive clustering algorithm is much
better than for the one-dimensional case, and the advantage
over the comparison tolerance algorithm is more
pronounced.

Conclusions
A method for n-dimensional clustering of radar warning
system pulse data has been presented. Although examples
can be postulated in which this algorithm fails to order
observations properly or fails to cluster properly, its
performance has been shown to be superior to the most
widely used current technique. The primary advantage of the
algorithm is its ability to adapt to radar source signatures.
Many of today’s systems have signal processing algorithms
which use tolerances. These tolerances are functions of
assumptions about a particular operational environment and
the peculiarities of the system components. Since the
adaptive algorithm is tolerance independent, future signal
processing designs using such an algorithm can be made
more universal.

Further work is needed on the algorithm in the following
areas:

1. Development of a theoretical model to more extensively
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characterize its performance. Particularly important is the
study of larger sample sizes and higher dimensions.

2. Comparison of the algorithm with other clustering

techniques.

3. Simulation of a real world radar pulse clustering problem

to prove feasibility.
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