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Adaptive 
clustering 
algorithm 

by Lawrence V. O’Malley 

Output  data  from  many  types  of  sensor  systems 
(radar,  radar warning,  sonar,  electro-optical, 
etc.)  must be associated  with  one  or  more 
possible  sources  based  on  multiple 
observations of the  data. This paper  presents  an 
algorithm  that  associates  data  with  their  source 
by  simultaneous  n-dimensional  clustering  of 
multiple data observations.  The  algorithm  first 
orders  the  observations  by  successive  nearest 
neighbor,  in  the  n-dimensional  Euclidean  sense, 
from a  defined  starting point.  Clusters are then 
isolated using a  method  derived  from  statistical 
decision  theory.  The  algorithm’s  primary  feature 
is its  ability  to  perform  clustering  adaptively 
without  any  assumptions  about  the size, 
number,  or  statistical  characteristics  of  the 
clusters.  Since  the  algorithm  was  developed  for 
radar  warning  system  processing,  a 
performance  comparison  with  a  well-known 
algorithm used  in that  field  is  included. 

Introduction 
Clustering algorithms  attempt  to  determine  “natural” 
groupings  of data  and were originally developed  for use in 
biological taxonomy. For example, the birth and  death rates 
for countries of the world [ I ]  can be processed using 
clustering  algorithms to  determine whether groups of 
countries have  similar rates. Such  clusters may or may not 
exist. Clustering  techniques  in general determine whether 
clusters do indeed exist, and they are applicable to  any type 
of data. 
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A more specific problem is the detection and isolation,  in 
the presence of measurement noise or uncertainty,  of 
clusters that  are known to exist. This problem is encountered 
in some signal processing applications. For example,  a radar 
warning system on board an aircraft must isolate and 
identify individual  radars by observing a  time-interleaved 
stream of pulsed emissions  from many distinct radar 
sources. 

For each received pulse, the system measures and digitizes 
a  set  of signal parameter values, such  as radio frequency, 
bearing angle relative to  the aircraft, pulse width, and pulse 
amplitude.  The resulting  sets of parameter values must be 
separated  in real time  into mutually exclusive clusters  such 
that each cluster  represents  a unique  radar source.  These 
clusters are  then used to locate and identify the radars. 

Figure I shows  what an ensemble  of  sources  might 
produce if many received pulses were plotted based on  radio 
frequency and bearing angle. Note  that  some of  these 
clusters  overlap  in  bearing angle and  others in  radio 
frequency.  However,  they are all distinct if both  radio 
frequency and bearing angle are considered  simultaneously. 
Therefore,  a multidimensional clustering  algorithm is 
required to separate them. 

The existence  of  these  clusters  of parameter values of the 
radar pulses  is  known a priori. Pulse parameter values from 
the  same source  tend to cluster  together  over the short time 
interval  within which sorting is  performed (generally less 
than ten milliseconds). All radar warning  systems now in use 
and those  projected  for the future that we know about  are 
based on this assumption. Therefore,  in the  remainder of 
this  paper we assume  the existence  of  these  clusters and  are 
concerned only with the techniques  for  identifying them. 

Radio frequency is measured using various well-known 
techniques,  such as channelized,  superheterodyne, or 
acousto-optical receivers. Bearing angle is measured by using 
monopulse  amplitude  comparison or phase  interferometry 
techniques. The cluster  spreading is generally modeled using 

LAWRENCE V. OMALLEY IBM J.  RES. DEVELOP. VOL. 29 NO. I JANUARY 1985 



normal or uniform distributions but cannot be restricted to 
such  idealizations. The spreading is due  to  measurement 
errors in  the receiving equipment,  to variations  in the 
transmitters, and  to physical environmental effects (e.g., 
reflections). The clusters of parameter values of radar pulses 
can  in general be characterized  as having a constant 
unknown mean and  constant  unknown  standard deviation 
over  the  time  interval  of  interest. 

The solution to  the radar  warning  problem  requires  a 
clustering  technique in which nothing is assumed about  the 
number  and size of clusters to  be found. The clusters of 
parameter values of radar pulses encountered in reality vary 
from those having  a large intracluster  spreading of data 
points and wide separation between clusters to those  having 
little intracluster  spread and small  separation. The  number 
of clusters is always unknown. 

Review of existing clustering  techniques 
Several well-known algorithms were examined to  determine 
their  applicability to  the cluster  separation  problem. The 
Forgy-Jancey algorithm [2-41 and  the  K-means algorithm 
[ 1 1  do not meet the  requirements of the cluster  separation 
problem because they  separate as  many clusters  as the user 
desires, whether or not the  clusters are meaningful. For real 
time cluster  separation, i t  is not possible to peruse the  data 
in advance  and preset the  number of clusters. More 
important,  the problem demands  some measure  of face 
validity in that it is desirable to limit the  number of clusters 
isolated to those corresponding to actual signals. 

The ISODATA method [5], the  minimal  spanning tree 
algorithm [6],  and  the Leader algorithm [ I ]  do  not meet our 
requirements because of the restrictions on  the size of 
clusters  separated. 

A new  clustering  algorithm 
The classical clustering  techniques do not provide an 
algorithm flexible enough  to meet the  requirements of the 
radar  warning  problem. The  attributes required  in  a 
clustering technique for  this  problem suggested an approach 
based on statistical decision theory [7, 81. 

Each data  point in Fig. 1 represents an observation  made 
at a random  time,  and the set of  observations S,  is seen by a 
human observer to form  a collection of clusters A through F: 

S , = ( A U B U C U D U E U F ) .  

Given  the set ofobservations SI, our algorithm uses a two- 
phase process to isolate the clusters. The first phase reorders 
the se t  SI: the second phase isolates the clusters  in the 
reordered set using a statistical decision criterion. 

Pllusc. One 
To reorder set SI in the first phase, we select from SI the 
observation that is nearest in Euclidean  distance to the 
origin. This observation  (we call it 0,) becomes the first 
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member of the reordered set, which we call S,. Observation 
0, is then removed  from set SI. Next, the observation in S, 
that is closest in  Euclidean  distance to 0,, call it O,, is made 
the second  observation  in S,. It is also removed from SI. 
This process is continued until all observations are included 
in set S, and deleted  from set SI. Figure 2 shows graphically 
the effect of the reordering done in  Phase One. 

Phusc Two 
In the second phase, the set S, is processed to isolate clusters 
:I through F i n  Fig. 2 .  Since we do  not yet know which 
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In order  to  determine whether we have  indeed found a 
cluster  separation point, we compute  the average distance 
A,.,, between all other adjacent  pairs  of  observations in S,, 
omitting  the distance A,,,: 

I Adjacent  cluster\  with (a )  n o  n o i s   o r  para mete^ variation. (b)  con- 
siderable n o i w  and  parameter  variation.  and ( c )  moderate n o i x  and 
parameter  variation 
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observations  belong to each  cluster, we define S, as it 
appears  to  the processor: 

s2 = (O,, 0 2 ,  . . ., On), 

where n is the total number of  observations. 
Since we do  not know the size of the clusters (i.e., the 

number of  observations in each  cluster),  a statistical decision 
criterion is used to decide which observations  have  a high 
probability  of  forming  a  group. To make this  decision, we 
first assume  that reliable identification of a  cluster  requires 
some  minimum  number of  observations, P. We take  four  to 
be the value of P in our application. For  other applications, 
the user of the algorithm must  determine a  reasonable value 
for P. 

We now form  a new temporary set, S,, comprised of the 
first 2P observations  in the ordered set S,: 

s, = (O,, 0 2 ,  . . ., Ox), 

where x = 2P. 
The Euclidean  distance  separating each successive pair of 

observations  in the ordered set S, is then  determined.  That 
pair  of adjacent observations whose separation is greatest, 
say, 0, and O,+,, in the set 

s, = (01, 0 2 ,  . . ., o,,,  o,,,, . . ., 0,) 

may indicate  a  cluster  separation  point. The distance 
between 0, and Ow, is called A,=. 

We then  compare  the  ratio A,,,/A,,, to a  threshold T. (The 
method for determining T i s  described later.) If the ratio is 
greater than T, we have  isolated the cluster  of  observations 
0, through O,,, which are removed  from set S2, and  the 
temporary set S, is  discarded. A new set S, is then  formed 
from the first 2P observations remaining in set S,, and  the 
process is  repeated until  the observations in set S, have been 
exhausted. 

If a cluster separation  point  had  not been found, 
observations would be added incrementally to  the existing 
set S, from S,, and  the test  for  a  separation point would be 
repeated. 

Referring again to Fig. 1, it is evident that  the clusters are 
easily discernible by the  human eye, because the  separation 
of one cluster from neighboring  clusters is in  some sense 
more significant than  the  separation of  values  within  a 
cluster.  Phase One provides  us with observations  ordered 
such that we can consider one pair of observations at a time 
and  determine whether the distance between them is 
significant. The distance between clusters can be thought of 
as  a “signal” or the primary indicator of cluster  separateness. 
Consider the case of  two adjacent clusters, as  in Figure 3(a), 
where there is no noise or parameter variation. Now assume 
that considerable noise and  parameter value  variation are 
present, as in Figure 3(b). The distance D between clusters is 
obscured and  could be estimated  to be between Dmi, and 

The  ratio test is based on the following rationale. 

’ma,. 

In Figure 3(c), we see the  same  situation except that  the 
spreading  of  observations is considerably less.  It  is easier to 
decide that we have two  separate  clusters in Fig. 3(a) than  in 
Fig. 3(c), and in Fig. 3(c) than in Fig. 3(b), because in each 
case we have less noise. Thus,  the problem  of  separating two 
clusters  can be treated  as  a classical detection  problem, i.e., a 
statistical  decision can be used [7, 81. The  ratio A,,,/A,, is 
thus a ratio of “signal” to “noise,” signal being the 
maximum intercluster distance  and noise the average 
intracluster  distance. 

We use a Neyman-Pearson  criterion to determine  the 
significance threshold T, because we assume  that we do not 
know anything  about  the a priori probabilities  of the cluster 
distributions. The Neyman-Pearson  criterion provides a 
means for  setting the threshold  of the  ratio test. 

This is done by using the  conditional probabilities P, 
(probability  of false alarm)  and Pd (probability of detection). 
Here Pr is the probability  of  deciding that  two clusters are 
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separate when they are  not (i.e., an  error),  and P,, is the 
probability of deciding that two  clusters are separate when 
they are. The Neyman-Pearson  criterion constrains Pf to be 
less than a selected value and maximizes P,, under this 
constraint. 

The procedure of increasing the set S, by one new 
observation restricts the algorithm to  one cluster  pair 
separation at a time, because otherwise  intercluster  distances 
from other cluster  pairs would perturb  the  ratio test on a 
given cluster pair. 

occur  due  to a  transient failure in a measurement 
mechanism or  any  number of other causes. By their very 
definition, they are low probability  occurrences and  as such 
have only temporary effect.  If data  paints caused by this 
phenomenon  occur midway between clusters, they can cause 
clusters  not to separate. Techniques exist to preprocess the 
data  to eliminate  outliers,  image processing techniques using 
FITS. for example. The decision to deal directly with 
outliers or  to depend  upon their low probability of 
occurrence is dependent upon  a given application. 

All clustering  algorithms  have in common  the question  of 
scaling or normalization when the  coordinate axes consist of 
parameters whose numerical values have widely different 
magnitudes ( e g ,  radio  frequency in thousands of  megahertz 
and bearing angle in degrees from 0 to 360). The scaling is 
done  to prevent the larger axis  from dominating  the distance 
calculation. 

The observations are normalized before ordering  in  Phase 

Outliers (measurements having very large errors)  can 

One. For Phase Two, we employ  a scaling technique which 
normalizes data by the  maximum measured values within  a 
cluster pair. The normalization is restricted to  the cluster 
pairs defined by the set S,. The scaling is done each time a 
new observation is added  to  the subset. We  use this 
technique because it  prevents measurements from other 
clusters from distorting the scaling of  a given cluster pair. 

Clustering using parameters which can be measured  in  a 
modulo sense (e.g., bearing angle is measured modulo 360) 
presents  a special case. It is obvious  that clusters whose 
measurements  straddle  the 0 to 360 crossover require special 
attention  to  account for the anomalies. Axis shifting or 
replication of data by adding 360 are two well-known 
techniques  for  dealing with this  situation. 

Performance  analysis 
The algorithm was simulated to  determine its performance 
relative to the  optimal  theoretical  performance and  to  that  of 
an existing algorithm. The existing  algorithm is a 
comparison  tolerance  algorithm widely used in  sorting  radar 
warning system pulse data. It  is similar to  the Leader 
algorithm [ I ] .  

of two  clusters to  determine how well each algorithm 
separated the clusters. The clusters were modeled as one- 

The algorithms were first tested against a  hypothetical set 

I 2 3 4 6 

Separation of the nicnns ( (7  unit\)  

1 One-dimensional perfortnance 

dimensional normal  distributions whose means  are separated 
by a  distance S. The  standard deviations  of  each  distribution 
were equal. For a  trial, four samples were drawn from  each 
distribution and each algorithm  performed  a  sort of the 
samples. If all samples were correctly associated with the 
distribution  from which they originated, then  the trial was 
reported as a success. The probability  of  sorting correctly 
was computed for one  thousand trials. The distance S 
between the  means was varied from  one  to six standard 
deviations, and  the trials were repeated. The adaptive 
algorithm had its  threshold value set using the Neyman- 
Pearson criterion. 

The  comparison tolerance  algorithm was run for  two 
limiting cases. It had  a  tolerance selected on  the basis of the 
expected standard deviation  of all distributions. This 
tolerance was usually set to  three  times  the  standard 
deviation  for the largest distribution expected. If the 
distributions  to be sorted exactly matched the tolerance, the 
performance of the  comparison tolerance  algorithm was 
considered to be at its maximum. If the  distributions  to be 
sorted  had  a  smaller or larger standard deviation than  the 
tolerance, the performance was considered to be poorer. The 
limiting cases for the  comparison tolerance  algorithm are  the 
best case (i.e.,  a  tolerance of three  standard deviations) and 
the worst case (Le., a  tolerance  of six standard deviations). 
This  bounds  the performance of the  comparison tolerance 
algorithm. 

The  optimal theoretical  sorting of the two distributions 
could be performed with a classical hypothesis test if the 
statistical characteristics  of the  distributions  and their mean 
separation were known.  This performance is plotted  in 
Figure 4 as  Curve T. Curve  A  represents the performance  of 
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I Two-dimensional  performance 

the adaptive  algorithm.  Curves  B and C  represent the range 
of performance of the  comparison tolerance  algorithm from 
best to worst case, respectively. It is clear that  the 
performance of the adaptive  clustering  algorithm is better 
than  that of the  comparison tolerance  algorithm even in  its 
optimal case (i.e., Curve B). 

The two-dimensional case was also simulated, and  the 
results are shown  in Figure 5. Curves T, A, B, and C 
represent the  same performance  measures  as in Fig. 4. The 
performance  of the adaptive  clustering  algorithm is much 
better than  for  the one-dimensional case, and  the advantage 
over the  comparison tolerance  algorithm is more 
pronounced. 

Conclusions 
A method for  n-dimensional  clustering of radar  warning 
system pulse data  has been presented.  Although  examples 
can be postulated  in which this  algorithm fails to  order 
observations  properly or fails to cluster  properly, its 
performance  has been shown to be superior to  the most 
widely used current  technique.  The primary  advantage  of the 
algorithm is its ability to  adapt  to  radar source signatures. 
Many of today’s  systems  have signal processing algorithms 
which use tolerances. These  tolerances are  functions of 
assumptions  about a  particular  operational environment  and 
the peculiarities of the system components. Since the 
adaptive  algorithm is tolerance independent,  future signal 
processing designs using such an algorithm can be made 
more universal. 

Further work is needed on  the algorithm in  the following 
areas: 

1 .  Development  of  a  theoretical  model to  more extensively 
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characterize  its  performance.  Particularly important is the 
study of larger sample sizes and higher dimensions. 

2. Comparison of the algorithm with other clustering 
techniques. 

3. Simulation of  a real world radar pulse clustering  problem 
to prove feasibility. 

Acknowledgments 
This work had its genesis in  a  question proposed to me 
by R. F.  Osbahr. R. E. Poupard provided enthusiasm, 
encouragement,  and technical  assistance in exploring all the 
subtleties of the algorithm. J.  Jephson suggested the 
technique for incremental application  of the algorithm. R. E. 
Blahut, W. Vanderkulk, and T. Cochrane provided 
assistance in many discussions. T. Hooks performed much 
of the simulation  programming. 

References 
1 .  J. A. Hartigan, Clustering Algorithms, John Wiley & Sons, Inc.. 

2. R. C. Jancey,  “Multidimensional  Group Analysis,” Aust. J. Bot. 

3. E. W. Forgy, “Cluster Analysis of Multivariate Data: Efficiency  vs 
Interpretability  of Classifications,” Biomefrics  Ahst. 21, No. 3, 
768-769 (September 1965). 

4. B. Black, M. Arozullah,  and W. Ladew, “Modeling of Shadows in 
Radar  Clutter,” Defense Technical Information Center Technical 
Report N o .  ADA  089702, Defense Logistics Agency, Cameron 
Station, Alexandria, VA 22314,  July 1980. 

5 .  G. H. Ball and  D.  J. Hall, “ISODATA, A Novel Method of Data 
Analysis and  Pattern Classification,” Technical  Report,  Stanford 
Research Institute  (now  SRI  International),  Menlo  Park,  CA, 
May 1965. 

Describing Gestalt  Clusters,” IEEE Trans Computers C-20, 68- 
86  (January 1971). 

Co., Inc., New York, 1962. 

Part I ,  John Wiley & Sons, Inc., New York, 1968. 

Received September 8, 1983; revised July 2 7, I984 

New York, 1975. 

14, NO. I ,  127-130 (April 1966). 

6. C. T.  Zahn,  “Graph  Theoretical  Methods for Detecting and 

7. M. I .  Skolnik, Introduction to Radar  Systems, McGraw-Hill Book 

8. H.  L. Van Trees, Deteciion, Estimation, and Modulation Theorv, 

Lawrence V. O’Malley IBM Federal Systems Division, Route 
I7C. Owego. New York 13823. Mr.  OMalley is an advisory engineer 
in the Electronic Defense Systems Engineering Department.  He is 
presently involved in the systems analysis  and design of various 
defense programs. He  joined IBM in 1968 at the Owego laboratory 
and has worked on  many  electronic warfare programs,  including  the 
S-3A Antisubmarine  Warfare  System,  the  AN/APR-38 Wild Weasel 
Radar Defense Suppression System, and  the Passive Identification 
and  Detection Set for  the U.S. Navy Tomahawk  Cruise Missile. Mr. 
O’Malley is presently involved in the  development  of signal 
processing architectures  and  algorithms.  He received a B.S. in 
mathematics in 1968 from the University of Scranton,  Pennsylvania, 
and  an M.S. in computer systems in 1975 from the  State University 
of New York  at  Binghamton.  Mr.  OMalley is a  member of the 
Association of Old Crows  and  the  Institute of Electrical and 
Electronics Engineers. 


