
A hardware
sort-merge
system

by N. Takagi
C. K. Wong

A hardware sort-merge system which can sort
large files rapidly is proposed. It consists of an
initial sorter and a pipelined merger. In the initial
sorter, record sorting is divided into two parts:
key-pointer sorting and record rearranging. The
pipelined merger is composed of several
intelligent disks each of which has a simple
processor and some buffers. The hardware sort-
merge system can sort files of any size by using
the pipelined merger repeatedly. The key-
pointer sorting circuit in the initial sorter requires
only unidirectional connections between
neighboring cells, instead of the usual
bidirectional ones. The initial sorter can also
generate sorted sequences longer than its
capacity so that the number of merging passes
can be reduced. A new data management
scheme is proposed to run all merging passes in
a pipelined fashion.

1. Introduction
Sorting is one of the most important operations in data
processing systems. Much research has been carried out in
this regard [1 , 21. However, it still takes a great deal of time
to sort large files. For example, major banks currently spend
two hours or more every night to sort large files (on the
order of several megabytes) using large computers, in order
to process their demand deposit accounts (31. It is estimated
that within this decade files to be sorted will become more

'Wopyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republrsh any other
portion of this paper must be obtained from the Editor.

than ten times larger, and then each sort will take 10-15
hours [3] . Thus it is necessary to develop a hardware sorting
system which can sort large files more rapidly.

In view of advances in VLSI technology, various hardware
sorters have been proposed [4-131. However, most of them
are for internal sorting only, and the size of files which can
be sorted is limited by their capacity. To sort large files,
external sorting is a necessity.

In this paper, we propose a hardware sort-merge system,
the pipelined sort-merger, which consists of an initial sorter
and a pipelined merger. The initial sorter is continuously fed
records to be sorted from a secondary memory device and
outputs sorted sequences consecutively to the pipelined
merger, which in turn merges them into a single output
sequence. In the initial sorter, we divide record sorting into
key-pointer sorting and record rearranging. The sorting
operation itself is completely overlapped by the input/output
of the records. Furthermore, it can sort different sequences
in a pipelined way. More specifically, while one sorted
sequence is being output, a new sequence can be input (and
sorted).

The pipelined merger is composed of several intelligent
disks. Each disk has some buffers and a simple processor. All
merging passes are run in a pipelined fashion and each pass
is supported by a separate intelligent disk.

The idea of pipelined merging was first proposed by Even
[141. who used tapes. Later Todd [9] adapted it to RAM and
bubble memories. Here we consider disks since sorting
involves only relatively simple operations, and current disk
storage systems, such as the IBM 3380 and its controller, the
IBM 3880, provide enough intelligence to perform sorting
on them directly, freeing the CPU for other processing.

However, to build the merger using disks involves some
difficult problems, such as synchronizing data transmissions
and avoiding latency time. To resolve these, we attach rn + I
two-bank buffers to each disk (for an rn-way merge) and let 49

IBM J RES DEVELOP VOL. 29 NO. I J A N U A R Y 1985 N . T A K A G I A N D C. K. WONG

The pipelined sort-merger

each bank size be the track size of the disk to avoid latency
time. Finally, a new data management scheme is developed
to run all merging passes in a pipelined fashion.

It should also be pointed out that our key-pointer sorting
circuit is simpler than similar sorting circuits in that we
require only two unidirectional connections between a cell
and its neighbors instead of bidirectional connections. Also
our initial sorter is, to our knowledge, the first one which can
generate sorted strings which are longer than the capacity of
the sorter so that the number of merging passes can be
decreased. In fact, it can produce, on the average, sorted
sequences of 2 X n records, where n is its capacity.

When the pipelined merger is composed of k intelligent
disks and an m-way merge is performed, it can merge mk
initial sorted sequences at a time. Therefore, the pipelined
sort-merger can sort about 2n X mk records. We also show
how to sort a file which contains more records by using the
merger repeatedly.

In the next section, after some preliminary remarks, we
describe the overall structure of the sort-merger. In Section
3 . we discuss the initial sorter in more detail. We also
present the modifications needed to generate sorted
sequences longer than its capacity. In Section 4, we are

50 concerned with the merger.

N TAKAGI AND C . K. WONG

i ' tlr<:ra!lr ~ ~ ~ ~ . ~ ~ ~ ~ r ~
For convenience, we call each package of information a
rword. Each record contains a special field called a key. A
set of records forms afile. Sorting means to rearrange the
original file so that the records are ordered by their key
values. We call a sorted record sequence a run.

Also, let the size of each record and each key be L and i
bytes, respectively. For ease of discussion, we first assume
that L and f are fixed. Later, we consider the general case.
Files to be sorted are stored in secondary memory devices
and are transmitted to the hardware sort-merge system
serially.

Let the number of records in a file be N (N is very large).

The pipelined sort-merger
The pipelined sort-merger consists of the initial sorter and
the pipelined merger. Figure 1 is a schematic of the sort-
merger. The initial sorting pass is supported by the initial
sorter, and each merging pass is supported by a separate
intelligent disk. A file to be sorted is transmitted from a
secondary memory device to the sort-merger, where it is
sorted, and is transmitted back to the secondary memory
device. In the sort-merger, data transmission for several
passes is done in parallel. Furthermore, input/output and
sorting are overlapped, and output starts almost immediately
after the sort-merger is filled. Thus, the total sorting time is
reduced. (See Figure 2.) Note that not only are all the passes
run in an overlapped fashion, but also the initial sorting time
is reduced by using our initial sorter.

It should be pointed out that the sorter proposed in [131
also does a merge-sort, except that the sorter just takes the
place of the CPU and main memory in conventional merge
methods; it does a 2'-way merge in one merging pass. Since
it requires 2' buffers (each at least the track size of a disk to
avoid latency time) to do a 2'-way merge, r is bounded by
the RAM size. Thus the file to be sorted must be transmitted
several times between the sorter and the disks.

:j, %he rnitiai sorter
The initial sorter is a hardware internal sorter which is
continuously fed records to be sorted and outputs sorted
sequences continuously to the merger. If n is the capacity of
the sorter, then each sorted sequence has n records.
(Generation of longer sequences is discussed later.)

they are not moved after each comparison. Instead, we
divide record sorting into key-pointer sorting and record
rearranging. The initial sorter is composed of the key-pointer
sorting circuit. a RAM, and a controller. Key-pointer sorting
is done in the key-pointer sorting circuit, and record
rearranging is done according to the output of the key-
pointer sorting circuit and is overlapped with the output of
records.

In the initial sorter, although whole records are processed,

IBM J . RES. DEVELOP. VOL 29 NO. I JANUARY 1985

Since the key-pointer sorting circuit processes only key-
pointer pairs. it is small and simple. Furthermore, as shown
later. it has a regular linear array structure and is therefore
suitable for VLSI implementation. The RAM can be easily
built. The controller only needs to perform very simple
operations. Thus the whole initial sorter is easily realizable.

components of the initial sorter, then its timing, and finally
the modification needed to generate longer sequences.

In the remainder of this section, we first discuss the

TIIP kq-poinrer sorting circuit
The key-pointer sorting circuit is fed a sequence of n key-
pointer pairs serially and outputs them serially according to
the order of the key values. In the sorting circuit, the sorting
time is completely overlapped with the input/output time. It
has complete parallel operation and processes key-pointer
pairs in a pipelined fashion. Furthermore, it can overlap the
sorting time for two consecutive input sequences.

Its basic algorithm is a pipelined version of the odd-even
transposition sort [I , 151. (The odd-even transposition sort is
a parallel version of the bubble sort [I] .) It is similar to the
up-down sorter of Lee et al. [5], the zero-time sorter of
Miranker et al. [6]. the weave sorter of Mukhopadhyay [7],
and the RESST of Carey et al. [8], whose basic algorithms
are all pipelined versions of the odd-even transposition sort.
In our sorting circuit, unlike the others, all inner connections
are unidirectional. !t should also be pointed out that the
systolic priority queue proposed in [I21 cannot sort different
sequences in a pipelined fashion as we can.

The key-pointer sorting circuit consists of a linear array of
n/2 cells (we assume that n is even), each of which has two
registers and a comparator (Figure 3). Each cell can store
two key-pointer pairs and can exchange them according to
their key values. There are only two unidirectional
connections between a cell and its left and its right neighbor
cell.

Here n key-pointer pairs are serially input to the lower
register of the leftmost cell by n right-shift (input) steps and
serially output from the upper register of the leftmost cell by
n left-shift (output) steps. One right-shift (left-shift) step of
the sorting circuit consists of a right-shift (left-shift) phase
followed by a compare-exchange phase. (The removed pair
at the rightmost cell goes out of the array in a right-shift
step.)

sequence “ 5 , 3. 2 , 9. I , 7” (n = 6) in ascending order.
(Pointers are not shown.) Initially, each register contains +m.

In the right-shift phase of each input step, key-pointer pairs
in lower registers are shifted to the right. In the left-shift
phase of each output step, pairs in upper registers are shifted
to the left. and +m is entered into the upper register of the
rightmost cell. In the compare-exchange phase of any step,
in each cell, two keys are compared, and the pair with the
smaller key value goes to the upper register. At the end of

Figure 4 shows an example of the sorting of the key

IBM J RES DEVELOP. \

Initial sorting
i t Merge 1
I
I

_. ;Merge 2
Serial sort-merge 1

I -Merge 4
I

- :Merge 3 -
I

w Total sorting time m‘
I

Initial

I I

Total sorting-
time

uuu U

Comtruction of the key-pointer sorting circuit

operation, the circuit is filled with +m’s. Note that at the end
of any step, the pair with the smallest key value in the circuit
at that time must be in the upper register of the leftmost cell
and the second smallest must be in either the lower register
of the leftmost cell or the upper register of the second
leftmost cell. In general, the pair with the ith smallest key
value must be in one of the left i cells.

The same principle applies to the descending sort. We
have only to replace +m with --ccI and interchange “smaller”
and ‘‘larger.’’ In order to distinguish between the ascending
and the descending sort, we only need a single control line.
In the remainder of this section, we consider the ascending
sort only.

of a given sequence in a pipelined fashion, but also can sort
different sequences in a pipelined way; i.e., while one sorted
sequence is being output, a new sequence can be input from
the other end of the circuit. In order to distinguish
sequences, we attach tag 0 to each key-pointer pair input
from the left end and tag I to each pair input from the right
end. The tags are not compared.

The sorting circuit not only processes the key-pointer pairs

51

i 0 L 29 NO. I JANUARY 1985 N. TAKAGl A N D C . K. WONG

Shift

0

Compare-exchange Shift Compare-exchange

Input 5 8 ’TMr output 2
9 + m

10 output 5

12 93-p output9

I An example of key-pointer sorting using key-pointer sorting circuit. The key sequence is “ 5 , 3 , 2, 9, I , 7 .” Only keys are shown.

52

N. TAKAGI AND C K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

Figure 5 shows ascending sorting for four sequences in a
pipelined way. (Pointers are not shown.) Whenever two pairs
with different tags meet at a cell, they are exchanged (no
comparison is performed). When two pairs input from the
right end (1 -tagged) meet at a cell, the smaller one goes to
the lower register. As we can see in the third sequence of the
example, the sorting circuit still works when a sequence
contains equal keys. However, if we require that two pairs
with equal keys be output in the same order as they are
input, i.e.. first in first out, we can attach a counter value to
each key which indicates its input number in a sequence. Of
course. [log, nl extra bits are then needed for each register of
the key-pointer sorting circuit. (Counter values are not
shown in the figure.) After input is completed, +m’s are
input. +m’s input from the left (right) end are tagged with 0
(I). As shown in the last sequence of the example, the
sorting circuit still works in a pipelined way when the length
of the last sequence is smaller than n. The output of the last
sequence starts immediately after the output of the second
from the last sequence is complete. Thus pairs are
continuously output.

several sequences have been sorted (see Step 28 of Fig. 5),
the sorter is filled with +m’s with different tags. However, to
sort the next batch of sequences, no reinitialization is needed
because all 0-tagged (1 -tagged) +m’s must reside in the left

Initially, the sorting circuit must be filled with +m’s. After

(right) part of the sorter, which is sufficient to guarantee that
the later sequences are correctly sorted.

In this paper, we do not discuss the detailed logic design of
the key-pointer sorting circuit. Suffice it to say that it can be
implemented either in a bit-serial or a bit-parallel fashion. Of
course, parallel operation is faster but requires more
hardware. Since in the initial sorter the key-pointer sorting
circuit needs to perform only one step of an operation (shift
and compare-exchange) during each transmission of a record
and since the record transmission time is much longer than
the operation time, serial operation would be enough.

Tlw RAM und [he controller
The RAM has a capacity of (n + 2) X L bytes and can store
n + 2 records. (The need for the extra 2 will become clear
after the timing discussion, which is next.) It has block
addresses from 0 to n + 1. (In the case that L is a power of
2. a block address consists of some most significant bits of
the corresponding byte address.) When a block address is
given by the controller, the RAM outputs the record which
is stored there and concurrently stores a newly input record
there.

The controller controls the RAM by giving it block
addresses. It also controls the key-pointer sorting circuit. The
controller gets a key-pointer pair from the key-pointer
sorting circuit and then gives a block address to the RAM

Shift

0

Comoare-exchange Shift Compare-exchange
Initid contents left over

I5 -&&&& 1.4 m] 0.3 1,8 1.6 o,3 o,4 Sequence I u Sequence II
Input 8 Output 4

4-k wl Input 5
Sequence I

1 O+ I,+ l,+m 0.5 ,+ I,+m
0,s o+ I,+ I , + - O+ I,+mI,+m l6 &&&&I,, Input out

0.3 0,4 1,7

Input 9

5
0.1 0.3 0,5

7 o ' ' l ~ ~ ml Output 1 Input 6
o,2 o,3 o,9 Sequence I Sequence I1

0.7 0.3 0.9 0.7 0.5 1.6

o,4
Sequence I11 Sequence 11 28 -$*LI,9 +ao+ml,+m ~] (l n p u t + m) Output
Input 4 Output 2

O+mO+mI,+m

***=End of sequence

I Anexampleofkey-pointersortinginapipelinedway.Therearefourkeysequences:"5,3,2,9,1,7";"6,4,8,2,7,3";"4,3,8,4,2,6";"7,1,

according to the pointer. As the record which is stored in the Three operations-output of a record, input of a record,
block indicated by the block address is output, a newly input and one step of the key-pointer sorting Circuit-are
record is stored there. Then the controller inputs a copy of performed concurrently in one period.
the key of the newly input record and the pointer to the key-
pointer sorting circuit. Of course, to get a copy of the key, * Tirning
the controller has to know the byte address where the key is We call the time period to transmit one record simply a
stored. The pointer indicates the block address where the period. As mentioned in the previous subsection, three
newly input record is stored. operations are done in one period. 53

IBM J RES DEVELOP, VOL. 29 NO. I JANUARY 1985 N. TAKAGI AND C. K. WONG

Input
RAM 1 ,: I Delay I output

\ I ' ' 1 - 4 1
\ \ + 2 periods 1

Input I Delay I output

Key-pointer
sorting circuit
Key-pointer
sorting circuit

Sequence 1 P
Input Delay Output

I Delay

11
(2 periods)

' Timing chart. (a) IiO timing of sequence: (b) timing chart o f initial
sorting f o r N=%I record\.

An input record is immediately stored into the RAM. In
the next period, the controller inputs a copy of the key of the
record and the pointer to the key-pointer sorting circuit. The
pointer indicates the block address where the record is
stored. Upon being fed a key-pointer pair, the key-pointer
sorting circuit operates for one step and outputs another key-
pointer pair from the other end. (Recall the example of
Fig. 5.)

another block of the RAM. In the next period, the record
that was pointed to by the pointer which was output from
the key-pointer sorting circuit in the last period is output. As
the record is output, another record is input and stored.
During this period, the key-pointer pair for the record which
was input in the last period is input to the key-pointer
sorting circuit, and simultaneously another pair is output.

Figure 6 shows a timing chart for initial sorting. Output
for a sequence starts with a delay of two periods after its
input is completed. Immediately after input for a sequence is
completed, input for a new sequence can start. Thus, the
RAM must have the capacity to store n + 2 records at any
time. Although in general N is not divisible by n, initial
sorting for N records is always completed in N + n + 2
periods.

Figure 7 shows the flow of initial sorting by an example in
which n = 6 and N = 22. For example, the first input record,
#0(5), is input to the RAM at time 0, and the key-pointer

During this period, another record is input and stored in

54 circuit at time 7. and record #4(I) is output from the RAM and i', respectively.

N TAKAGI A N D C K . W O N C IBM J . RES DEVELOP VOL. 29 NO. I JANUARY 1985

at time 8. The total initial sorting is completed in 22 + 6 + 2
= 30 periods.

Generating longer run.$
Although the initial sorter can handle only n records at a
time, it can generate runs of 2 X n records on the average.
The principle is the same as that of the replacement-selection
sort [I] . Instead of a selection tree, we use the key-pointer
sorting circuit.

In the previous method, we always input a key-pointer
pair for the newly input record from the other end of the
key-pointer sorting circuit. In the current method, we input
a key-pointer pair to the sorting circuit from either end
according to the following condition: If the key value of the
input record is larger than or equal to that of the record to
be output next, we input the key-pointer pair for the input
record from the same end where the current output is
carried out; otherwise we input the pair from the other end.
In the former case, the newly input record is added to the
currently processed sequence. In the latter case, it belongs to
the next sequence.

The timing is as follows. In a certain period, a record is
input and stored in the RAM. In the next period, first the
key-pointer sorting circuit operates for one step and outputs
a key-pointer pair for the record to be output in the next
period. In this step, --co is input from the other end. Then
the key value of the record input in the last period is
compared with that of the record to be output in the next
period. If the key value of the input record is larger than or
equal to that of the record to be output. the key-pointer pair
for the input record is input from the same end. Otherwise,
it is input from the other end. To input the key-pointer pair
from the other end, we have first to remove the previously
input -m. Thus, in this period, the key-pointer sorting
circuit operates for two or three steps.

record sequence as in Fig. 7, using the new method. In the
key-pointer sorting circuit, pairs with the same key value are
sorted according to their attached counter values (which are
not shown in the figure), when their input order must be
preserved. However, in such a case, more than rlog, nl extra
bits are needed for each register of the sorting circuit since
the length of the run is at least n. (On the average, it is 2 X n.
In the best case, it could be the length of the whole input
sequence.) If only p extra bits per register are used, the
length of a run will be bounded above by 2'.

Ftrrther considerations
Throughout the previous discussions, we assumed that the
records and the keys had fixed size, namely, L and f bytes,
respectively, and that they could always fit in the initial

Figure 8 shows an example of initial sorting for the same

pair for record #0(5) is input to the key-pointer sorting sorter. However, this may not always be true. Suppose that
circuit at time 1 . And the key-pointer pair for the first the size of each block of the RAM and the size of each
output record, #4(I) , is output from the key-pointer sorting register for a key in a cell of the key-pointer circuit are L'

RAM

m s s @ 1 2 3 4 5 6 7

0 #o
(5) I I 1 1 1 1

Key-pointer
sorting circuit
(key-pointer)

0
5-0 "+m

3-1

2-2 " + a

9-3 "+m

1-4 a+m
7-5 "+m

1-4 " 6-6

2-2 " 4-7
3-1 8-4

5-0 -0- 2-2

7-5 " 7"

9-3 " 3-0

4-5 2-2

3-3 a 3-0

(record # (key value))
Inputloutput

Input output

W5)

7 3 4 3 8 4 2 6 1 1 , 9 , 3 .

55

IBM J RES DEVELOP VOL. 29 NO I JANUARY 1985 N TAKAGI AND C . K. WONG

I

RAM

19

20

m

8-2

4-0

Key-pointer
sorting circuit II¶pUt/output
(key-pointer) (record # (key value)) " 4-7

Input output

#15(4) #11(3)

#1n21 #7(4)

56

N. TAKAGI AND C. K. WONG IBM J . RES DEVELOP. VOL. 29 NO. I JANUARY 1985

8-2" + x #17(6)

+ x a 3-3

#14(8)

#19(1)

+ x " 9-7

#21(3)

#18(7)

m

A

@
#O #1 #2 #3 #8 #5 #6 #7
(5) (3) (2) (9) (8) (7) (6) (4)

#O #10 #9
&a

0
l I #O #IO #9 #3 #8 #5 #6 # I I

(5) (7) (2) (9) (8) (7) (6) (3)

@
12

I I #6 #5 #I2 # I O #9 #3 #8
(4) (7) (2) (9) (8) (3) (6) (7)

I +m I + m I + m I
I ' 1 ' ' 1
I + m I + m I + m I

6 ? 1 + # 6 f I

0,3-1 OS-0 0,9-3
0.6-6 0.7-5 1,-m

4 ? 2 + # 7 e I
0,3-1 03-0 0,7-5
0,4-7 0,6-6 0,9-3

3-Iq-r 1 1 7 1 0,4-7 0,6-6 0,9-3
0.4-7 0.6-6 0,9-3 0.5-0 0,7-5 I , - m

8 > 3 + # 8 ~ l

2 < 4 + # 9 e I I

0,5-0 0.7-5 0,9-3
0,6-6 0,8-4 1,2-2

5-0 1-r I] 0,6-6 0,8-4 1,2-2
0.6-6 0,8-4 1,2-2 0.7-5 0,9-3 I , - m

7 ? 5 + # 1 O e I

6-6 7-r 0,7-5 0,8-4 1,2-2
0,7-1 03-4 1.2-2 0,7-1 0,9-3 I , - m

3 < 6 + #II E I1

"7-r m] 0,7-5 0,8-4 1,3-7
0.7-5 0,8-4 1.2-2 0.7-1 0.9-3 1,2-2

IBM J . RES. DEVELOP. VOL. 29 NO, I J

57

N. TAKAGI AND C. K. WONG ANUARY 1985

14

15

16

17

1,7-1 0.9-3 1.4-0

8 2 8 + # 1 4 ~ 1

8-57-r 1-1 0,9-3 1,36 1.2-2
0.9-3 1,3-6 1,2-2 1,4-0 1,3-7 I,-m

- m y v r 0.9-3 1,3-6 1.4-1
0,9-3 1.3-6 1,2-2 1,4-0 1.3-7 1,2-2

14-0 1,4-1 1,2-2
1,3-6 1,3-7 1,-m

58

N. TAKACI AND C. K. WONG IBM J . RES. DEVELOP. VOL. 29 NO I JANUARY 1985

2 < 9 + #16 e I1

"* 6-5

--ma 2-2
6 2 2

#17 € u

Input

#13(3)

#14(8)

#15(4)

#16(2)

#17(6)

#18(7) #3(9)

First, consider the record size. If L is fixed and L I L', L > L' or L is not fixed and max (L) > L', we must use two
there is no problem. Even though L is not fixed, as long as or more blocks of the RAM for sorting each record. In this
max (L) i L', it is still all right. However, if L is fixed and case, the initial sorter will have fewer than n/2 records at a

"m " 3-7 """
-m a 3-6 "" 9-4

"m a 4 - 0

--" -m

+ m "4-1

7 2 2
#18 e U

1 1 3
#19 E UI

1-2 " "m

9 2 3
#20 e u

3 < 4
#21 e I11

3-7 -+u"

time, and in any period, more than n/4 cells of the key- Next, consider the key size. When I is not fixed, we
pointer sorting circuit must be idle. temporarily let all key lengths be max I by attaching 0's. (I f

IBM J. RES DEVELOP. VOL. 29 NO. I JANUARY 1985

59

N. TAKAGI AND C . K. WONG

60

N. TAKAGl AND C . K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

I Sorting of records with long keys.
~~

the keys are characters, we attach 0's to their least significant becomes f' (if f is not divisible by f ' , we attach 0's) and sort
parts. If the keys are numbers, we attach 0's to their most key-pointer pairs by a method such as the least-significant-
significant parts.) I f max f < f', we attach more 0's to each digit-first radix sort [I] using the key-pointer sorting circuit
key so that its length becomes P'. If max f > f', we divide rqf'l times. Namely, first we sort pairs according to the
each key into several parts so that the size of each part values of the least significant parts of the keys, next

8

9

IO

11

12

13

0
#O #1 #Z #8 #4 #5 #6 #7
(324) (323) (424) - (224) (323) - -

@
(324) (323) (424) - - (323) - -
#O #1 #2 #8 #9 #5 #6 #7

0
#O #IO #2 #8 #9 #5 #6 #7
(324) (424) - - (323) - - -

0
(324) - (424) - - - - -
#O #IO #2 #8 #9 #11 #6 #7

@
#12 #10 #2 #8 #9 #I1 #6 #7 - (424) - - - - - -

0
#12 #10 X13 #8 #9 #11 #6 #7 - - - - - - - - . . .

#8

#9

#IO

#I 1 ***

#12

according to the values of the second least significant parts, distinguish pairs with the same key-part value. Of course, the
and SO on, and finally sort them according to the values of method delays the initial sorting time. However, since
the most significant parts. records are transmitted only once, overall sorting is still very

Figure 9 shows an example of a case when f = 31'. In this efficient. This method clearly applies to multi-key sorting.
method, the input order is important, and counter values On the other hand, it is difficult to incorporate the method
must be attached to the parts of the keys in order to of generating longer runs mentioned previously. 61

N. TAKAGI AND C. K. WONG IBM J . RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

I

r;] c;]

I Flow of the ideal pipelined merge (3 , 8/1, 1014, 6/2, 12/13, 14/0, 9/7, 15/5, 11). () indicates waiting queue.

62

4. The pipelined merger
The pipelined merger is fed initial runs consecutively from
the initial sorter, merges them into a single run, and outputs
it serially. The pipelined merger is composed of several
intelligent disks, each of which has a simple processor and
several two-bank buffers.

The basic scheme is a pipelined version of an m-way
merge. The serial rn-way merge operates in several passes,
with each pass generating longer runs by merging every rn
input runs. For simplicity, we assume that the initial sorter

generates runs of length exactly n, as described in Section 3.
Merging of longer initial runs is discussed later. The first pass
is fed N/n runs of n records each and generates N/(m X n)
runs of m X n records. The second pass merges these runs
into runs of m2 X n records. After i passes, the runs have
length rn' x n. After Uog, (N/n)l passes, all N records are in
one run. In this scheme, all merging passes are run in an
overlapped way, rather than serially.

First, we describe the principle through a two-way merge.
Figure 10 shows an example of an ideal pipelined merge for

N. TAKAGI AND C. K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

<16> ,

13.14

4,6,8,10,12

U

15

14

6,8,10,12

8

<18> i

I I

2,3,4,6,8,10,12

<22>

6,8,10,12

10.12

< I 9 2 ,

11.15

13.14
(9 5 I I)

3,4,6,8,10,12

<23> I

8 I O C I I 12 l l , l 3 , l 4 , l5

57

8 initial runs of 2 records (].e., N = 16 and n = 2). [log, 81 = three FIFO queues. TWO of them are for runs which are
3 processors operate in parallel. Each processor manages currently merged, and the other is for a run to be merged 63

IBM J. RES. DEVELOP VOL. 29 NO. I JANUARY 1985 N. TAKAGI AND C. K. WONG

i
I
I
I
I
I
I
I
I
I
!

R

Waiting
queues

I
I
I
I

queues
Processing

I

I

I

next. The maximum length of each FIFO queue of the ith
processor is 2"' X n, and the total length of all three queues
is also 2"' X n.

When an rn-way merge is carried out, (2rn - 1) FIFO
queues are required for each processor. rn of them are for
runs which are currently merged, and the others are for runs
to be merged next. The maximum length of each queue of
the ith processor is rn"' X n, and the total length of all
(2rn - 1) queues is (r n - I) X rn"' X n.

synchronously and all processors are synchronized by their
input cycles. However, when we use disks, it is difficult to
synchronize data transmission. Furthermore, the data access
in the ideal pipelined merge is rather random and not
suitable for disks. We must modify the ideal pipelined merge
to suit the disk-based implementation. In our proposed
pipelined merge scheme, we use the blocking technique
mentioned by Todd [9], i.e., we deal with records in blocks
rather than individually. In order to adopt the blocking
technique, we attach rn + 1 buffers to each disk. rn of them
are for the front blocks of the FIFO queues for runs which
are currently merged, and the other is for input. (See Figure
11.) Note that although there are rn - 1 waiting queues,
since input is done serially, only one buffer is required for
the rear block of the FIFO queue which is currently input.
For parallel processing and data transmission, we divide each
buffer into two banks and use them alternately; i.e., while
one of them is used for data transmission to or from the
disk, the other can be used for processing. To avoid the
latency of the disk, we let the bank size be the track size of
the disk. We also let the block size be the bank size and do

In the ideal pipelined merge, all data transmission is done

64 data transmission to and from disks in blocks. The blocking

delays the transmission of records between processors, since
the processor has to wait for a block of data before merging
starts. Consequently, it slightly slows down the merging.

them run asynchronously, so that a processor may have to
wait for a neighbor processor to complete its operation.
However, when the operations of the processors are faster
than the data transmission, i.e., they are not the bottleneck,
then the performance is comparable to that of the
synchronous case.

Figure 12 shows an example of the flow during merging at
a certain intelligent disk of the pipelined merger. There each
4 input runs of 8 records are merged. Each block contains
two records. As shown in stages (16) and (17), the first few
blocks of the last run of rn runs to be merged can sometimes
be directly transmitted from the input buffer to one of the
work buffers instead of via the disk. This is due to the
availability of the appropriate work buffer at that moment.

To summarize, the pipelined merger is composed of
several intelligent disks, each of which has a simple processor
and m + 1 two-bank buffers. The processor is only required
to do an rn-way merge and to manage the buffers and the
disks. The bank size of buffers should be the track size of the
disk (which is 4.8 X IO4 bytes for the IBM 3380 disk). rn
buffers are for the front blocks of the FIFO queues for the
runs currently merged, and the other is for the rear block of
the queue for the run currently input. Other parts of the
queues are maintained in the disks by linking tracks with
pointers.

It is also difficult to synchronize the processors. We just let

8 Other considerations
If the pipelined merger is composed of k intelligent disks, it
can merge r n k initial runs at a time. Of course, it can merge
fewer than r n k initial runs. In such a case, the final run is
directly output from the Hog, Rlth intelligent disk, where R
is the number of initial runs.

Since the processor may operate asynchronously, the
pipelined merger can merge initial runs of variable lengths,
such as those generated by the method in Section 3. It can
also handle records of variable size. In both cases, however,
each processor may have a longer waiting time.

The best rn for maximum performance depends on the
ratio of the speed of the processors and the memories. Of
course, a large rn makes it possible to merge more initial
runs at a time but more buffers are needed for each disk.

In order to reduce merging time, one may employ disks
which have separate read and write heads and can
concurrently read and write from/to different tracks. In this
case, the data transmission speed is twice as fast.

8 Merging more runs
Although the pipelined merger can merge no more than mk
initial runs at a time, we can merge more than r n k initial
runs using the merger repeatedly. We can merge R (>mk)

N TAKAGI AND C . K. WONG IBM I. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

c7>

d

<5>

& 15824 14

<6>

<9>

runs using the merger rlog,,+ R1 times. In this case, we can
overlap the beginning part of a certain pass with the end part
of the previous pass.

Therefore, we can sort any large file using the pipelined
sort-merger, i.e., using the initial sorter once and the
pipelined merger several times. Of course, the size of the file
which can be sorted using the pipelined sort-merger is
bounded by the capacity of the intelligent disks. However, it
is very large.

5. Conclusion
We have proposed a hardware sort-merge system which can
sort large files rapidly. Since the initial sorting pass and the
merging passes of the sort-merger are run in an overlapped
way rather than serially, the total sorting time is dramatically
reduced.

Our hardware sort-merge system consists of the initial
sorter and the pipelined merger, both of which can be easily
implemented by today's technology. We can sort any large 65

N. TAKAGI AND C. K. WONG IBM J . RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

23 30
6 IO141524252829
2 4 5 8 111 161

J

<13>

<16>

66

N. TAKAGI AND C . K . WONG IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

the bank used next

<17>

29
5 8 111622.23

*** . 9 13ll9202126

<12>

. .
m

o m
m D -El

file using the initial sorter once and the pipelined merger
repeatedly. Note also that the RAM of the initial sorter and
the intelligent disks of the pipelined merger can be efficiently
used for other purposes when they are not doing sort-merge.
For example, the RAM can be used as a buffer or a part of
the main memory and the disks can be used as work disks.
Conversely, the pipelined sort-merger can be easily realized
by attaching a few facilities to a conventional computer
system.

References
1 . D. E. Knuth, The Arl ofcomputer Programming, Vol. 3: Sorting

and Searching. Addison-Wesley Publishing Co., Reading, MA,
1973.

2.

3.

4.

5.

6.

7.

H. Lorin, Sorting and Sort Systems, Addison-Wesley Publishing
Co., Reading, MA, 1975.
E. E. Lindstrom and J. S. Vitter, “Analysis of Bucketsort for
Bubble Memory Secondary Storage,” Technical Report 2220-
6458, IBM Scientific Center, Palo Alto, CA, October 1982.
T. C. Chen, V. Y. Lum, and C. Tung, “The Rebound Sorter: An
Efficient Sort Engine for Large Files,” Proceedings ofthe 4th
International Conference on Very Large Data Bases, September

D. T. Lee, H. Chang, and C. K. Wong, “An On-Chip Compare/
Steer Bubble Sorter,” IEEE Trans. Computers C-30, No. 6,
396-405 (June 1981).
G. Miranker, L. Tang, and C. K. Wong, “A ‘Zero-Time’ VLSI
Sorter,” IBM J. Res. Develop. 27, No. 2, 140-148 (March 1983).
A. Mukhopadhyay, “WEAVESORT-A New Sorting Algorithm
for VLSI,” Technical Report TR-53-81, Computer Science
Department, University of Central Florida, Orlando, 198 I .

1978, pp. 312-318.

8. M. J. Carey, P. M. Hansen, and C. D. Thompson, “RESST: A
VLSI Implementation of a Record-Sorting Stack,” Technical
Report UCB/CSD 82/102. Computer Science Division (EECS),
University of California, Berkeley. April 1982.

Multiple Processors,” IBM J . Res. Develop. 22, No. 5, 509-5 I7
(September 1978).

IO. Y. Tanaka, Y. Nozaka. and A. Masuyama, “Pipelined Searching
and Sorting Modules as Components of a Data Flow Database
Computer.” Proceedings of lFlP ’80. October 1980, pp. 427-
432.

Enumeration Sorting Scheme for VLSI,” IEEE Trans.
Computers C-31, No. 12. 1192-1201 (December 1982).

12. L. J. Guibas and F. M. Liang, “Systolic Stacks, Queues, and
Counters,” Proceedings of the 1982 Conference on Advanced
Research in VLSI, Massachusetts Institute of Technology,
Cambridge, 1982, pp. 155-164.

13. Y. Dohi. “Sorter Using PSC Linear Array,” Proceedings ofthe
1983 International Symposium on VLSI Technology, Systems,
and Applications. Taipei, Taiwan, 1983, pp. 255-259.

4.202-204 (April 1974).

Machine,” Technical Report 72-03, Computer Science
Department, University of Iowa, Iowa City, 1972.

9. S . Todd, “Algorithm and Hardware for a Merge Sort Using

I I . H. Yasuura, N. Takagi, and S. Yajima, “The Parallel

14. S. Even. “Parallelism in Tape-Sorting,’’ Commun. ACM 17, No.

15. A. Mukhopadhyay and T. Ichikawa, “An n-step Parallel Sorting

Received October 5, 1983; revised June 18, 1984

Naofumi Takagi Kyoto University. Kyoto. Japan. Mr. Takagi
received the B.E. and M.E. degrees in information science from
Kyoto University, Kyoto, Japan, in 1981 and 1983. respectively. He
is a graduate student at Kyoto University and is working for his
Ph.D. degree. During the summer of 1983. he visited the IBM
Thomas J. Watson Research Center, Yorktown Heights. New York.
and performed the work reported in this paper. His current interests
include VLSI algorithm design and analysis, logic design,
computational complexity, and computer architecture. Mr. Takagi is
now doing research on VLSI algorithms for arithmetic operations.

Chak-Kuen Wong IBM Research Division. P. 0. Box 218.
Yorktonn Heights. New York 10598. Dr. Wong joined IBM in 1969
as a member of the Computer Sciences Department at the Thomas
J. Watson Research Center. His current interests include VLSI
design algorithms, abstract and concrete computational complexity
theory, optimization problems related to data allocation. magnetic
bubble memory structures, the theory of fuzzy sets, and satellite
switchingjtime domain multiple-access systems. Dr. Wong received a
B.A. in mathematics from the University of Hong Kong in 1965 and
an M.A. and a Ph.D. in mathematics from Columbia University,
New York, in 1966 and 1970, respectively. For the academic year
1972 to 1973, he was a Visiting Associate Professor of Computer
Science in the Department of Computer Science at the University of
Illinois, Urbana. For the academic year 1978 to 1979, he was a
Visiting Professor of Computer Science in the Department of
Electrical Engineering and Computer Science at Columbia
University, New York. Dr. Wong received an IBM Outstanding
Invention Award in 1971 for a new family of sorting methods, as
well as three IBM Invention Achievement Awards. He holds three
U.S. patents and one pending. He is the author of the book
Algorithmic Studies in Mass Storage Svstems. published in 1983 by
Computer Science Press. Dr. Wong is a member of the Association
for Computing Machinery and a senior member of the Institute of
Electrical and Electronics Engineers. He is also an editor of the
IEEE Transactions on Computers, an Advisory Editor of the
international journal Fuzzy Sets and Systems, and a Foreign Editor
of the Chinese journal Fuzzy Mathematics.

IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985 N. T

67

‘AKAGI AND C. K. WONG

