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A hardware  sort-merge  system  which  can  sort 
large  files  rapidly  is  proposed.  It  consists of  an 
initial  sorter  and  a  pipelined  merger.  In  the  initial 
sorter,  record  sorting  is  divided  into two parts: 
key-pointer  sorting  and  record  rearranging.  The 
pipelined  merger  is  composed  of  several 
intelligent  disks  each of  which  has a simple 
processor  and  some  buffers.  The  hardware  sort- 
merge  system  can  sort  files  of  any size by  using 
the  pipelined  merger  repeatedly.  The  key- 
pointer  sorting  circuit  in  the  initial  sorter  requires 
only  unidirectional  connections between 
neighboring  cells,  instead of the  usual 
bidirectional  ones.  The  initial  sorter  can  also 
generate sorted sequences longer  than  its 
capacity so that  the  number of merging  passes 
can  be  reduced. A new  data  management 
scheme  is  proposed to run  all  merging  passes  in 
a  pipelined  fashion. 

1. Introduction 
Sorting is one of the most important  operations in data 
processing systems. Much research has been carried out in 
this regard [ 1 ,  21. However, it still takes  a great deal of time 
to sort large files. For example, major  banks currently  spend 
two  hours or more every night to sort large files (on the 
order of several megabytes) using large computers,  in order 
to process their demand deposit accounts (31. It is estimated 
that within  this  decade files to be sorted will become more 
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than ten times larger, and  then each  sort will take 10-15 
hours [ 3 ] .  Thus it is necessary to develop  a  hardware  sorting 
system which can  sort large files more rapidly. 

In view of advances in VLSI technology,  various  hardware 
sorters have been proposed [4-131. However, most of them 
are for  internal  sorting  only, and  the size of files which can 
be sorted is limited by their  capacity. To sort large files, 
external  sorting is a necessity. 

In this  paper, we propose  a  hardware  sort-merge system, 
the pipelined sort-merger, which consists of an initial sorter 
and a pipelined merger. The initial  sorter is continuously fed 
records to be sorted  from  a  secondary memory device and 
outputs sorted  sequences consecutively to  the pipelined 
merger, which in turn merges them  into a single output 
sequence. In the initial  sorter, we divide record sorting into 
key-pointer  sorting and record rearranging. The sorting 
operation itself is completely  overlapped by the  input/output 
of the records. Furthermore, it can sort different sequences 
in a pipelined way. More specifically, while one sorted 
sequence is being output, a new sequence can be input  (and 
sorted). 

The pipelined merger is composed of several intelligent 
disks. Each disk has some buffers and a  simple processor. All 
merging passes are run in a pipelined fashion and each pass 
is supported by a  separate intelligent disk. 

The idea of pipelined merging was first proposed by Even 
[ 141. who used tapes. Later Todd [9] adapted  it to RAM and 
bubble  memories.  Here we consider disks since  sorting 
involves only relatively simple  operations, and  current disk 
storage systems, such  as the IBM 3380 and its controller, the 
IBM 3880,  provide enough intelligence to perform  sorting 
on them directly, freeing the CPU for other processing. 

However, to build the merger using disks involves some 
difficult problems,  such  as  synchronizing data transmissions 
and avoiding  latency time.  To resolve these, we attach rn + I 
two-bank buffers to each disk (for an rn-way merge) and let 49 
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The pipelined sort-merger 

each bank size be the track size of the disk to avoid  latency 
time. Finally, a new data  management scheme is developed 
to  run all merging passes in  a pipelined fashion. 

It should  also be pointed out  that  our key-pointer  sorting 
circuit is simpler than similar  sorting  circuits  in that we 
require  only  two  unidirectional connections between a cell 
and its neighbors  instead  of  bidirectional  connections. Also 
our initial sorter is, to our knowledge, the first one which can 
generate  sorted  strings which are longer than  the capacity  of 
the sorter so that  the  number of merging passes can be 
decreased. In fact, it can  produce, on  the average, sorted 
sequences of 2 X n records, where n is its capacity. 

When the pipelined merger is composed of k intelligent 
disks and  an m-way merge is performed,  it  can merge mk 
initial  sorted  sequences at a time. Therefore, the pipelined 
sort-merger can sort about 2n X mk records. We also show 
how to sort  a file which contains  more records by using the 
merger repeatedly. 

In the next section,  after some preliminary  remarks, we 
describe the overall structure of the sort-merger. In Section 
3 .  we discuss the initial sorter in more detail. We also 
present the modifications needed to generate  sorted 
sequences longer than its capacity. In Section 4, we are 

50 concerned with the merger. 
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i ' tlr<:ra!lr ~ ~ ~ ~ . ~ ~ ~ ~ r ~  
For convenience, we call each package of information a 
rword. Each record contains a special field called a key. A 
set of records  forms afile. Sorting means  to rearrange the 
original file so that  the records are ordered by their key 
values. We call a  sorted record sequence  a run. 

Also, let the size of each record and each key  be L and i 
bytes, respectively. For ease of discussion, we first assume 
that L and f are fixed. Later, we consider the general case. 
Files to be sorted are stored  in  secondary  memory devices 
and  are  transmitted  to  the hardware  sort-merge system 
serially. 

Let the  number of records in a file  be N ( N  is very large). 

The pipelined sort-merger 
The pipelined  sort-merger consists of the initial sorter and 
the pipelined merger. Figure 1 is a  schematic of the sort- 
merger. The initial  sorting pass is supported by the initial 
sorter, and each merging pass is supported by a  separate 
intelligent disk. A file to be sorted is transmitted from  a 
secondary  memory  device to  the sort-merger, where it is 
sorted, and is transmitted back to  the secondary memory 
device. In the sort-merger, data transmission  for several 
passes is done in parallel. Furthermore,  input/output  and 
sorting are overlapped, and  output starts almost immediately 
after  the sort-merger is filled. Thus,  the total  sorting time is 
reduced. (See Figure 2.) Note  that not  only are all the passes 
run in an overlapped  fashion,  but also the initial sorting time 
is reduced by using our initial  sorter. 

It should be pointed out  that  the  sorter proposed in [ 131 
also does a merge-sort, except that  the  sorter  just takes the 
place of the CPU and  main  memory in conventional merge 
methods;  it does a 2'-way merge in one merging pass. Since 
it requires 2' buffers (each at least the track size of a disk to 
avoid  latency time)  to  do a 2'-way merge, r is bounded by 
the  RAM size. Thus  the file to be sorted must be transmitted 
several times between the  sorter  and  the disks. 

:j, %he rnitiai sorter 
The initial sorter is a  hardware  internal  sorter which is 
continuously fed records to be sorted and  outputs sorted 
sequences  continuously to  the merger. If n is the capacity of 
the sorter, then each sorted  sequence  has n records. 
(Generation of longer sequences is discussed later.) 

they are  not moved  after each comparison. Instead, we 
divide record sorting into key-pointer  sorting and record 
rearranging. The initial sorter is composed of  the key-pointer 
sorting  circuit.  a RAM,  and a  controller.  Key-pointer  sorting 
is done in the key-pointer  sorting  circuit, and record 
rearranging is done according to  the  output  of  the key- 
pointer  sorting  circuit and is overlapped with the  output of 
records. 

In the initial  sorter,  although whole records are processed, 
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Since the key-pointer  sorting  circuit processes only key- 
pointer pairs. it  is small and simple. Furthermore, as  shown 
later. it has a regular linear array  structure  and is therefore 
suitable for VLSI implementation.  The RAM can be easily 
built. The controller  only needs to perform very simple 
operations. Thus  the whole initial  sorter is easily realizable. 

components of the initial  sorter, then its timing, and finally 
the modification needed to generate longer sequences. 

In the  remainder of this  section, we first discuss the 

TIIP kq-poinrer  sorting  circuit 
The key-pointer  sorting  circuit is fed a  sequence of n key- 
pointer  pairs serially and  outputs  them serially according to 
the order of the key values. In the sorting  circuit, the sorting 
time is completely  overlapped with the input/output time. It 
has complete parallel operation and processes key-pointer 
pairs in a pipelined fashion. Furthermore, it can  overlap the 
sorting time for two  consecutive input sequences. 

Its basic algorithm is a pipelined version of the odd-even 
transposition  sort [ I ,  151. (The odd-even  transposition  sort is 
a parallel version of the bubble  sort [ I ] . )  It is similar to  the 
up-down  sorter of Lee et al. [5],  the zero-time sorter  of 
Miranker  et al. [6]. the weave sorter of Mukhopadhyay [7], 
and  the RESST of Carey et  al. [8], whose basic algorithms 
are all pipelined versions of the odd-even transposition  sort. 
In our sorting  circuit, unlike the others, all inner  connections 
are unidirectional. !t should also be pointed out  that  the 
systolic priority queue proposed in [ I21 cannot sort different 
sequences in a pipelined fashion as we can. 

The key-pointer  sorting  circuit  consists of a  linear  array  of 
n/2 cells (we assume  that n is even), each of which has two 
registers and a comparator (Figure 3). Each cell can store 
two  key-pointer  pairs and can  exchange them according to 
their key values. There  are only  two  unidirectional 
connections between a cell and its left and its right neighbor 
cell. 

Here n key-pointer  pairs are serially input  to  the lower 
register of the leftmost cell  by n right-shift (input) steps and 
serially output from the upper register of the leftmost cell  by 
n left-shift (output) steps. One right-shift (left-shift) step of 
the  sorting  circuit  consists of a right-shift (left-shift) phase 
followed by a  compare-exchange phase. (The removed  pair 
at  the rightmost cell goes out of the array in a right-shift 
step.) 

sequence “ 5 ,  3. 2 ,  9. I ,  7” ( n  = 6) in ascending  order. 
(Pointers are not shown.) Initially, each register contains +m. 

In the right-shift phase of each input step,  key-pointer  pairs 
in lower registers are shifted to  the right. In the left-shift 
phase of each output step,  pairs  in upper registers are shifted 
to  the left. and +m is entered into  the upper register of the 
rightmost cell. In the compare-exchange phase of any step, 
in each cell, two keys are compared,  and the  pair with the 
smaller key value goes to the upper register. At the  end of 

Figure 4 shows an example  of the sorting of the key 
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Comtruction of the key-pointer sorting circuit 

operation,  the circuit is  filled with +m’s. Note  that  at  the  end 
of any step, the pair with the smallest key value in the circuit 
at  that  time must be in the  upper register of the leftmost cell 
and  the second smallest must be in either the lower register 
of the leftmost cell or the  upper register of the second 
leftmost cell. In general, the pair with the ith  smallest key 
value must be in one of the left i cells. 

The  same principle  applies to  the descending  sort. We 
have only to replace +m with --ccI and interchange  “smaller” 
and ‘‘larger.’’  In order  to distinguish between the ascending 
and  the descending sort, we only need a single control line. 
In the  remainder of this  section, we consider the ascending 
sort  only. 

of a given sequence in a pipelined fashion, but also can sort 
different sequences in a  pipelined way; i.e., while one sorted 
sequence is being output, a new sequence can be input from 
the  other  end of the circuit. In order  to distinguish 
sequences, we attach tag 0 to each key-pointer  pair input 
from the left end  and tag I to each pair input  from  the right 
end.  The tags are  not  compared. 

The sorting  circuit not only processes the key-pointer  pairs 
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Input 5 8 ’TMr output 2 
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10 output 5 

12 93-p output9 

I An  example of key-pointer  sorting  using  key-pointer  sorting  circuit.  The  key  sequence is “ 5 ,  3 ,  2,  9, I ,  7 .”  Only  keys  are  shown. 
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Figure 5 shows ascending  sorting for four sequences in a 
pipelined way. (Pointers  are  not shown.)  Whenever  two  pairs 
with different tags meet at  a cell, they are  exchanged (no 
comparison is performed).  When  two  pairs input from the 
right end ( 1 -tagged) meet at a cell, the smaller one goes to 
the lower register. As we can see in the third  sequence of the 
example, the sorting  circuit still works when a  sequence 
contains equal keys. However, if  we require that two  pairs 
with equal keys be output in the  same  order  as they are 
input, i.e.. first  in  first out, we can  attach  a counter value to 
each key which indicates its input  number in a  sequence.  Of 
course. [log, nl extra bits are  then needed for each register of 
the key-pointer  sorting  circuit. (Counter values are  not 
shown in the figure.) After input is completed, +m’s are 
input. +m’s input from the left (right)  end  are tagged with 0 
( I ). As shown in the last sequence of the example, the 
sorting  circuit still works  in  a  pipelined way when the length 
of the last sequence is smaller than n. The  output of the last 
sequence  starts  immediately  after the  output of the second 
from  the last sequence is complete.  Thus pairs are 
continuously output. 

several sequences have been sorted (see Step 28 of Fig. 5), 
the sorter is  filled with +m’s with different tags. However, to 
sort the next batch of sequences, no reinitialization is needed 
because all 0-tagged ( 1 -tagged) +m’s must reside in the left 

Initially, the sorting  circuit must be filled with +m’s. After 

(right) part of the sorter, which is sufficient to guarantee that 
the later  sequences  are  correctly  sorted. 

In this  paper, we do  not discuss the detailed logic design of 
the key-pointer  sorting  circuit. Suffice it to say that it can be 
implemented  either in a bit-serial or a bit-parallel fashion. Of 
course, parallel operation is faster but  requires more 
hardware. Since in the initial sorter  the key-pointer  sorting 
circuit needs to perform  only one step  of an operation (shift 
and compare-exchange) during each transmission  of  a record 
and since the record transmission time is much longer than 
the operation time, serial operation would be enough. 

Tlw RAM und [he controller 
The RAM has  a  capacity  of ( n  + 2) X L bytes and  can store 
n + 2 records. (The need for the extra 2 will become  clear 
after  the timing discussion, which is next.) It has block 
addresses from 0 to n + 1. (In  the case that L is a power of 
2. a block address  consists  of some most significant bits of 
the corresponding byte address.)  When  a block address is 
given by the controller, the RAM outputs  the record which 
is stored there  and concurrently  stores  a newly input record 
there. 

The controller controls  the RAM by giving it block 
addresses. It also controls  the key-pointer  sorting  circuit. The 
controller gets a key-pointer  pair  from the key-pointer 
sorting  circuit and  then gives a block address to  the  RAM 
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I Anexampleofkey-pointersortinginapipelinedway.Therearefourkeysequences:"5,3,2,9,1,7";"6,4,8,2,7,3";"4,3,8,4,2,6";"7,1, 

according to  the pointer. As the record which is stored in the  Three operations-output of a  record, input of a  record, 
block indicated by the block address is output, a newly input  and  one step of the key-pointer  sorting Circuit-are 
record is stored  there. Then  the controller inputs a copy of performed  concurrently  in one period. 
the key of the newly input record and  the  pointer to the key- 
pointer  sorting  circuit. Of course, to get a copy of the key, * Tirning 
the controller  has to know the byte address where the key is We call the  time period to transmit  one record simply a 
stored. The pointer  indicates the block address where the period. As mentioned in the previous  subsection,  three 
newly input record is stored. operations  are  done in one period. 53 
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sorting f o r  N=%I record\. 

An input record is immediately  stored into  the  RAM. In 
the next period, the controller inputs a  copy  of the key of the 
record and  the pointer to  the key-pointer  sorting  circuit. The 
pointer indicates the block address where the record is 
stored. Upon being fed a  key-pointer  pair, the key-pointer 
sorting  circuit  operates for one  step  and  outputs  another key- 
pointer  pair  from the  other  end. (Recall the example of 
Fig. 5. )  

another block of the  RAM. In the next  period, the record 
that was pointed to by the pointer which was output from 
the key-pointer  sorting  circuit  in the last period is output. As 
the record is output,  another record is input  and stored. 
During this  period, the key-pointer  pair for the record which 
was input in the last period is input  to  the key-pointer 
sorting  circuit, and simultaneously another pair is output. 

Figure 6 shows  a timing  chart for  initial  sorting. Output 
for  a  sequence starts with a delay of  two  periods  after its 
input is completed.  Immediately  after input for a  sequence is 
completed, input for a new sequence  can start.  Thus,  the 
RAM  must  have the capacity to store n + 2 records  at any 
time. Although in general N is not divisible by n, initial 
sorting  for N records  is always completed  in N + n + 2 
periods. 

Figure 7 shows the flow of  initial  sorting by an example  in 
which n = 6 and N = 22. For example, the first input record, 
#0(5), is input  to  the RAM at  time 0, and  the key-pointer 

During  this period, another record is input  and stored in 

54 circuit at  time 7. and record #4( I )  is output from the  RAM  and i', respectively. 
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at  time 8. The total initial  sorting is completed in 22 + 6 + 2 
= 30 periods. 

Generating longer run.$ 
Although the initial sorter can  handle  only n records at a 
time, it can  generate runs of 2 X n records on the average. 
The principle is the  same as that of the replacement-selection 
sort [ I ] .  Instead of a selection tree, we use the key-pointer 
sorting  circuit. 

In the previous method, we always input a  key-pointer 
pair for the newly input record from the  other  end of the 
key-pointer  sorting  circuit. In the current method, we input 
a  key-pointer  pair to  the sorting  circuit  from  either end 
according to  the following condition: If the key value of  the 
input record is larger than or equal to  that  of  the record to 
be output next, we input  the key-pointer  pair for  the  input 
record from  the  same  end where the  current  output is 
carried out; otherwise we input  the pair  from  the other  end. 
In the  former case, the newly input record is added to  the 
currently processed sequence. In the latter case, it belongs to 
the next sequence. 

The  timing is as follows. In a  certain  period,  a record is 
input  and stored in the  RAM. In the next period, first the 
key-pointer  sorting  circuit operates for one  step  and  outputs 
a  key-pointer  pair for the record to be output in the next 
period. In this  step, --co is input from the  other  end.  Then 
the key value of the record input in the last period is 
compared with that of the record to be output in the next 
period. If the key value of the  input record is larger than or 
equal to  that of the record to be output.  the key-pointer  pair 
for the  input record is input from the  same  end. Otherwise, 
it is input from the  other  end.  To  input  the key-pointer  pair 
from the  other  end, we have first to remove the previously 
input -m. Thus, in this  period, the key-pointer  sorting 
circuit  operates for two or three steps. 

record sequence  as  in Fig. 7, using the new method.  In  the 
key-pointer  sorting  circuit,  pairs with the  same key value are 
sorted  according to their  attached counter values (which are 
not shown in the figure), when their input  order must be 
preserved. However, in such  a case, more  than rlog, nl  extra 
bits are needed for each register of the sorting  circuit since 
the length  of the run is at least n. (On  the average, it is 2 X n. 
In the best case, it could be the length  of the whole input 
sequence.) If only p extra bits per register are used, the 
length of  a  run will  be bounded above by 2'. 

Ftrrther considerations 
Throughout  the previous discussions, we assumed that  the 
records and  the keys had fixed size, namely, L and f bytes, 
respectively, and  that they  could always fit in the initial 

Figure 8 shows an  example of initial  sorting for the  same 

pair for record #0(5) is input  to  the key-pointer  sorting sorter.  However,  this  may  not always be true.  Suppose that 
circuit at  time 1 .  And the key-pointer  pair for the first the size of each block of the RAM and  the size of each 
output record, #4( I ) ,  is output  from  the key-pointer  sorting register for  a key in a cell of the key-pointer  circuit are L' 
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14 

15 

16 

17 

1,7-1 0.9-3  1.4-0 

8 2 8 + # 1 4 ~ 1  

8-57-r 1-1 0,9-3 1,36 1.2-2 
0.9-3  1,3-6 1,2-2 1,4-0  1,3-7 I,-m 

- m y v r  0.9-3  1,3-6  1.4-1 
0,9-3  1.3-6 1,2-2 1,4-0  1.3-7 1,2-2 

14-0 1,4-1 1,2-2 
1,3-6  1,3-7  1,-m 
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2 < 9 + #16 e I1 

"* 6-5 

--ma 2-2 
6 2 2  

#17 € u 

Input 

#13(3) 

#14(8) 

#15(4) 

#16(2) 

#17(6) 

#18(7)  #3(9) 
*** 

First, consider the record size. If L is fixed and L I L', L > L' or L is not fixed and max (L)  > L',  we must use two 
there is no problem. Even though L is not fixed, as long as or more blocks  of the RAM for  sorting each record. In this 
max (L)  i L', it is still all right. However, if L is fixed and case, the initial sorter will have fewer than n/2 records at a 



"m " 3-7 """ 
-m a 3-6 "" 9-4 

"m a 4 - 0  

--" -m 

+ m  "4-1 

7 2 2  
#18 e U 

1 1 3  
#19 E UI 

1-2 " "m 

9 2 3  
#20 e u 

3 < 4  
#21 e I11 

3-7 -+u" 

time,  and in any period, more  than n/4 cells of the key- Next,  consider the key size. When I is not fixed, we 
pointer  sorting  circuit  must be idle. temporarily let all key lengths be max I by attaching 0's. ( I f  
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I Sorting of records with long keys. 
~~ 

the keys are characters, we attach 0's to  their least significant becomes f' (if f is not divisible by f ' ,  we attach 0's) and sort 
parts. If the keys are  numbers, we attach 0's to  their most key-pointer  pairs by a method such as  the least-significant- 
significant parts.) I f  max f < f', we attach  more 0's to each digit-first radix sort [ I ]  using the key-pointer  sorting  circuit 
key so that its  length  becomes P'. If max f > f', we divide rqf'l times.  Namely, first we sort  pairs  according to  the 
each key into several parts so that  the size of each part values of the least significant parts  of the keys, next 



8 

9 

IO 

11 

12 

13 

0 
#O #1 #Z #8 #4 #5 #6 #7 
(324)  (323)  (424) - (224)  (323) - - 

@ 
(324) (323) (424) - - (323) - - 
#O #1 #2 #8 #9 #5 #6 #7 

0 
#O #IO #2 #8 #9 #5 #6 #7 
(324)  (424) - - (323) - - - 

0 
(324) - (424) - - - - - 
#O #IO #2 #8 #9 #11 #6 #7 

@ 
#12  #10  #2 #8 #9 #I1 #6 #7 - (424) - - - - - - 

0 
#12 #10 X13 #8 #9 #11 #6 #7 - - - - - - - - . . . 

#8 

#9 

#IO 

#I 1 *** 

#12 

according to  the values of the second least significant parts, distinguish  pairs with the  same key-part value. Of course, the 
and SO on,  and finally sort them according to  the values of method delays the initial  sorting  time.  However,  since 
the most significant parts. records are  transmitted only  once, overall sorting is still very 

Figure 9 shows an example of a case when f = 31'. In this efficient. This  method clearly applies to multi-key sorting. 
method,  the  input  order is important,  and  counter values On  the  other  hand, it is difficult to incorporate the  method 
must be attached to  the parts of the keys in order  to of generating longer runs  mentioned previously. 61 
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62 

4. The pipelined merger 
The pipelined  merger is fed initial runs consecutively  from 
the initial  sorter, merges them  into a single run,  and  outputs 
it serially. The pipelined  merger  is composed of several 
intelligent disks,  each  of which has  a  simple processor and 
several two-bank buffers. 

The basic scheme is a  pipelined version of an m-way 
merge. The serial rn-way merge operates  in several passes, 
with each pass generating  longer runs by merging every rn 
input runs. For simplicity, we assume  that  the initial sorter 

generates runs of  length exactly n, as described in  Section 3. 
Merging of longer initial runs is discussed later. The first pass 
is fed N/n runs of n records  each and generates N/(m X n) 
runs of m X n records. The second pass merges these runs 
into  runs of m2 X n records. After i passes, the  runs have 
length rn' x n. After Uog, (N/n)l passes, all N records are  in 
one  run. In this  scheme, all merging passes are  run in an 
overlapped way, rather  than serially. 

First, we describe the principle  through  a two-way merge. 
Figure 10 shows an example of an ideal pipelined merge for 

N. TAKAGI AND C. K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985 



<16> , 

13.14 

4,6,8,10,12 

U 

15 

14 

6,8,10,12 

8 

<18> i 

I I  

2,3,4,6,8,10,12 
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8 initial runs of 2 records (].e., N = 16 and n = 2). [log, 81 = three FIFO queues. TWO of them are for runs which are 
3 processors operate in parallel.  Each  processor manages currently merged, and the other is for a run to be merged 63 
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next. The  maximum length  of  each FIFO  queue of the ith 
processor is 2"' X n, and  the total length of all three  queues 
is also 2"' X n. 

When an rn-way merge is carried out, (2rn - 1) FIFO 
queues  are required for each processor. rn of them  are for 
runs which are currently merged, and  the  others  are for runs 
to be merged next. The  maximum length of  each queue of 
the ith processor is rn"' X n, and  the total  length  of all 
(2rn - 1 )  queues is ( r n  - I )  X rn"' X n. 

synchronously and all processors are synchronized by their 
input cycles. However, when we use disks, it is difficult to 
synchronize data transmission. Furthermore,  the  data access 
in the ideal pipelined merge is rather  random  and  not 
suitable  for disks. We  must modify the ideal pipelined merge 
to suit the disk-based implementation. In our proposed 
pipelined merge scheme, we use the blocking technique 
mentioned by Todd [9], i.e., we deal with records  in blocks 
rather  than individually. In order  to  adopt  the blocking 
technique, we attach rn + 1 buffers to each  disk. rn of them 
are for the front  blocks  of the  FIFO  queues for runs which 
are currently merged, and  the  other is for input. (See Figure 
11.) Note  that  although  there  are rn - 1 waiting queues, 
since input is done serially, only one buffer is required  for 
the rear block of the  FIFO  queue which is currently input. 
For parallel processing and  data transmission, we divide  each 
buffer into two banks  and use them alternately; i.e., while 
one of them is used for data transmission to or from  the 
disk, the  other  can be used for processing. To avoid the 
latency of the disk, we let the  bank size be the track size of 
the disk. We also let the block size be the  bank size and  do 

In the ideal pipelined merge, all data transmission is done 

64 data transmission to  and  from disks  in blocks. The blocking 

delays the transmission  of  records between processors, since 
the processor has to wait for  a block of data before merging 
starts.  Consequently, it slightly slows down  the merging. 

them  run asynchronously, so that a processor may have to 
wait for a  neighbor processor to  complete its operation. 
However, when the  operations  of  the processors are faster 
than  the  data transmission, i.e., they are  not  the bottleneck, 
then  the performance is comparable  to  that of the 
synchronous case. 

Figure 12 shows an  example of the flow during merging at 
a  certain intelligent disk of the pipelined merger. There each 
4 input  runs of 8  records are merged. Each block contains 
two  records. As shown in stages ( 16) and ( 17), the first few 
blocks of the last run of rn runs  to be merged can sometimes 
be directly transmitted from the  input buffer to  one of the 
work buffers instead of via the disk. This is due  to  the 
availability of the  appropriate work buffer at  that  moment. 

To  summarize,  the pipelined merger is composed of 
several intelligent disks, each of which has  a  simple processor 
and m + 1 two-bank buffers. The processor is only  required 
to  do  an rn-way merge and  to manage the buffers and  the 
disks. The bank size of buffers should be the track size of the 
disk (which is 4.8 X IO4 bytes for the IBM 3380  disk). rn 
buffers are for the front  blocks  of the FIFO queues for the 
runs currently merged, and  the  other is for the rear block of 
the  queue for the  run currently input.  Other parts  of the 
queues  are  maintained in the disks by linking  tracks with 
pointers. 

It  is also difficult to synchronize the processors. We just let 

8 Other considerations 
If the pipelined merger is composed of k intelligent disks, it 
can merge r n k  initial runs  at a  time. Of course,  it  can merge 
fewer than r n k  initial  runs. In such  a case, the final run is 
directly output from the Hog, Rlth intelligent disk, where R 
is the  number of initial  runs. 

Since the processor may  operate asynchronously, the 
pipelined  merger can merge initial runs of variable lengths, 
such  as  those  generated by the  method in  Section 3.  It can 
also  handle  records  of variable size. In both cases, however, 
each processor may have  a longer waiting time. 

The best rn for maximum performance depends  on  the 
ratio of the speed of the processors and  the memories. Of 
course,  a large rn makes  it possible to merge more initial 
runs  at a time  but  more buffers are needed for each disk. 

In order  to reduce merging time, one  may employ  disks 
which have separate  read and write heads and  can 
concurrently read and write from/to different tracks. In this 
case, the  data transmission speed is twice as fast. 

8 Merging more  runs 
Although the pipelined merger can merge no  more  than mk 
initial runs  at a  time, we can merge more  than r n k  initial 
runs using the merger repeatedly. We can merge R (>mk) 
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runs using the merger rlog,,+ R1 times. In this case, we can 
overlap the beginning  part  of  a  certain pass with the  end  part 
of the previous pass. 

Therefore, we can sort any large file using the pipelined 
sort-merger, i.e., using the initial  sorter  once and  the 
pipelined merger several times. Of course, the size of the file 
which can be sorted using the pipelined  sort-merger is 
bounded by the capacity of the intelligent disks. However, it 
is very large. 

5. Conclusion 
We have proposed  a  hardware sort-merge system which can 
sort large files rapidly.  Since the initial  sorting pass and  the 
merging passes of the sort-merger are  run in an overlapped 
way rather than serially, the total  sorting time is dramatically 
reduced. 

Our hardware  sort-merge system consists of the initial 
sorter and  the pipelined merger, both of which can be easily 
implemented by today's technology. We can sort any large 65 
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file using the initial sorter  once  and  the pipelined merger 
repeatedly. Note also that  the RAM of the initial sorter  and 
the intelligent disks  of the pipelined merger can be efficiently 
used for other purposes  when  they are  not  doing sort-merge. 
For example, the RAM can be used as  a buffer or a  part of 
the main memory  and  the disks can be used as  work disks. 
Conversely, the pipelined sort-merger can be easily realized 
by attaching  a few facilities to a conventional  computer 
system. 
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