A hardware
sort-merge
system

by N. Takagi
C. K. Wong

A hardware sort-merge system which can sort
large files rapidly is proposed. It consists of an
initial sorter and a pipelined merger. In the initial
sorter, record sorting is divided into two parts:
key-pointer sorting and record rearranging. The
pipelined merger is composed of several
intelligent disks each of which has a simple
processor and some buffers. The hardware sort-
merge system can sort files of any size by using
the pipelined merger repeatedly. The key-
pointer sorting circuit in the initial sorter requires
only unidirectional connections between
neighboring cells, instead of the usual
bidirectional ones. The initial sorter can also
generate sorted sequences longer than its
capacity so that the number of merging passes
can be reduced. A new data management
scheme is proposed to run all merging passes in
a pipelined fashion.

1. Introduction

Sorting is one of the most important operations in data
processing systems. Much research has been carried out in
this regard [1, 2]. However, it still takes a great deal of time
to sort large files. For example, major banks currently spend
two hours or more every night to sort large files (on the
order of several megabytes) using large computers, in order
to process their demand deposit accounts [3]. It is estimated
that within this decade files to be sorted will become more

©Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

than ten times larger, and then each sort will take 10-15
hours [3]. Thus it is necessary to develop a hardware sorting
system which can sort large files more rapidly.

In view of advances in VLSI technology, various hardware
sorters have been proposed [4-13]. However, most of them
are for internal sorting only, and the size of files which can
be sorted is limited by their capacity. To sort large files,
external sorting is a necessity.

In this paper, we propose a hardware sort-merge system,
the pipelined sort-merger, which consists of an initial sorter
and a pipelined merger. The initial sorter is continuously fed
records to be sorted from a secondary memory device and
outputs sorted sequences consecutively to the pipelined
merger, which in turn merges them into a single output
sequence. In the initial sorter, we divide record sorting into
key-pointer sorting and record rearranging. The sorting
operation itself is completely overlapped by the input/output
of the records. Furthermore, it can sort different sequences
in a pipelined way. More specifically, while one sorted
sequence is being output, a new sequence can be input (and
sorted).

The pipelined merger is composed of several intelligent
disks. Each disk has some buffers and a simple processor. All
merging passes are run in a pipelined fashion and each pass
is supported by a separate intelligent disk.

The idea of pipelined merging was first proposed by Even
[14], who used tapes. Later Todd [9] adapted it to RAM and
bubble memories. Here we consider disks since sorting
involves only relatively simple operations, and current disk
storage systems, such as the IBM 3380 and its controller, the
IBM 3880, provide enough intelligence to perform sorting
on them directly, freeing the CPU for other processing.

However, to build the merger using disks involves some
difficult problems, such as synchronizing data transmissions
and avoiding latency time. To resolve these, we attach m + |
two-bank buffers to each disk (for an m-way merge) and let

N. TAKAGI AND C. K. WONG

49

50

Buffer

The pipelined sort-merger
The initial_sorter

_____________________________ 4
. |
| Key-pointer RAM }
{ sorting circuit |
e e e |

The pipelined merger /[__________
Matelligentdisks___ " """ J- 777" -]

[Sy ot —

lI Buffer “ \

I

|
e Z i

fom—————————— -

Processor

(
i Buffer
|

% The pipelined sort-merger.

each bank size be the track size of the disk to avoid latency
time. Finally, a new data management scheme is developed
to run all merging passes in a pipelined fashion.

It should also be pointed out that our key-pointer sorting
circuit is simpler than similar sorting circuits in that we
require only two unidirectional connections between a cell
and its neighbors instead of bidirectional connections. Also
our initial sorter is, to our knowledge, the first one which can
generate sorted strings which are longer than the capacity of
the sorter so that the number of merging passes can be
decreased. In fact, it can produce, on the average, sorted
sequences of 2 X n records, where 7 is its capacity.

When the pipelined merger is composed of k intelligent
disks and an m-way merge is performed, it can merge m"
initial sorted sequences at a time. Therefore, the pipelined
sort-merger can sort about 2n X mi* records. We also show
how to sort a file which contains more records by using the
merger repeatedly.

In the next section, after some preliminary remarks, we
describe the overall structure of the sort-merger. In Section
3. we discuss the initial sorter in more detail. We also
present the modifications needed to generate sorted
sequences longer than its capacity. In Section 4, we are
concerned with the merger.

N. TAKAGI AND C. K. WONG

¢ Dwverall structure

For convenience, we call each package of information a
record. Each record contains a special field called a key. A
set of records forms a file. Sorting means to rearrange the
original file so that the records are ordered by their key
values. We call a sorted record sequence a run.

Let the number of records in a file be N (N is very large).
Also, let the size of each record and each key be L and /
bytes, respectively. For ease of discussion, we first assume
that L and / are fixed. Later, we consider the general case.
Files to be sorted are stored in secondary memory devices
and are transmitted to the hardware sort-merge system
serially.

& The pipelined sort-merger

The pipelined sort-merger consists of the initial sorter and
the pipelined merger. Figure 1 is a schematic of the sort-
merger. The initial sorting pass is supported by the initial
sorter, and each merging pass is supported by a separate
intelligent disk. A file to be sorted is transmitted from a
secondary memory device to the sort-merger, where it is
sorted, and is transmitted back to the secondary memory
device. In the sort-merger, data transmission for several
passes is done in parallel. Furthermore, input/output and
sorting are overlapped, and output starts almost immediately
after the sort-merger is filled. Thus, the total sorting time is
reduced. (See Figure 2.) Note that not only are all the passes
run in an overlapped fashion, but also the initial sorting time

is reduced by using our initial sorter.
It should be pointed out that the sorter proposed in [13]

also does a merge-sort, except that the sorter just takes the
place of the CPU and main memory in conventional merge
methods; it does a 2’-way merge in one merging pass. Since
it requires 2" buffers (each at least the track size of a disk to
avoid latency time) to do a 2"-way merge, r is bounded by
the RAM size. Thus the file to be sorted must be transmitted
several times between the sorter and the disks.

3. The initial sorter

The initial sorter is a hardware internal sorter which is
continuously fed records to be sorted and outputs sorted
sequences continuously to the merger. If # is the capacity of
the sorter, then each sorted sequence has 7 records.
(Generation of longer sequences is discussed later.)

In the initial sorter, although whole records are processed,
they are not moved after each comparison. Instead, we
divide record sorting into key-pointer sorting and record
rearranging. The initial sorter is composed of the key-pointer
sorting circuit. a RAM, and a controller. Key-pointer sorting
is done in the key-pointer sorting circuit, and record
rearranging is done according to the output of the key-
pointer sorting circuit and is overlapped with the output of
records.

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

Since the key-pointer sorting circuit processes only key-
pointer pairs, it is small and simple. Furthermore, as shown
later, it has a regular linear array structure and is therefore
suitable for VLSI implementation. The RAM can be easily
built. The controller only needs to perform very simple
operations. Thus the whole initial sorter is easily realizable.

In the remainder of this section, we first discuss the
components of the initial sorter, then its timing, and finally
the modification needed to generate longer sequences.

& The key-pointer sorting circuit

The key-pointer sorting circuit is fed a sequence of n key-
pointer pairs serially and outputs them serially according to
the order of the key values. In the sorting circuit, the sorting
time 1s completely overlapped with the input/output time. It
has complete parallel operation and processes key-pointer
pairs in a pipelined fashion. Furthermore, it can overlap the
sorting time for two consecutive input sequences.

Its basic algorithm is a pipelined version of the odd-even
transposition sort [1, 15]. (The odd-even transposition sort is
a parallel version of the bubble sort [1].) It is similar to the
up-down sorter of Lee et al. [5], the zero-time sorter of
Miranker et al. [6], the weave sorter of Mukhopadhyay [7],
and the RESST of Carey et al. [8], whose basic algorithms
are all pipelined versions of the odd-even transposition sort.
In our sorting circuit, unlike the others, all inner connections
are unidirectional. It should also be pointed out that the
systolic priority queue proposed in [12] cannot sort different
sequences in a pipelined fashion as we can.

The key-pointer sorting circuit consists of a linear array of
n/2 cells (we assume that # is even), each of which has two
registers and a comparator (Figure 3). Each cell can store
two key-pointer pairs and can exchange them according to
their key values. There are only two unidirectional
connections between a cell and its left and its right neighbor
cell.

Here n key-pointer pairs are serially input to the lower
register of the leftmost cell by n right-shift (input) steps and
serially output from the upper register of the leftmost cell by
n left-shift (output) steps. One right-shift (left-shift) step of
the sorting circuit consists of a right-shift (left-shift) phase
followed by a compare-exchange phase. (The removed pair
at the rightmost cell goes out of the array in a right-shift
step.)

Figure 4 shows an example of the sorting of the key
sequence “5, 3, 2,9, 1, 7" (n = 6) in ascending order.
(Pointers are not shown.) Initially, each register contains +o,
In the right-shift phase of each input step, key-pointer pairs
in lower registers are shifted to the right. In the left-shift
phase of each output step, pairs in upper registers are shifted
to the left. and + is entered into the upper register of the
rightmost cell. In the compare-exchange phase of any step,
in each cell, two keys are compared, and the pair with the
smaller key value goes to the upper register. At the end of

IBM J. RES. DEVELOP, VOL. 29 NO. 1 JANUARY 1985

Initial sorting
+Merge 1

‘Merge 2
Pa——y

‘Merge 3

1

|

|
Serial sort-merge : {Merge 3

| +Merge 4

| | —]

|

1 Total sorting time

-
i
Initial
sorting
Merge 1
Merge 2

Pipelined sort-merge

Merge 4
———y

[rm—s—
Total sorting
time

i
t
i Merge 3
I —_—
|
|
|

A comparison of serial sort-merge and the pipelined sort-merge.

AT
® ® ® ®
] M — __.D__.

operation, the circuit is filled with +%’s. Note that at the end
of any step, the pair with the smallest key value in the circuit
at that time must be in the upper register of the leftmost cell
and the second smallest must be in either the lower register
of the leftmost cell or the upper register of the second
leftmost cell. In general, the pair with the ith smallest key
value must be 1n one of the left / cells.

The same principle applies to the descending sort. We
have only to replace +o with —e and interchange “smaller”
and “larger.” In order to distinguish between the ascending
and the descending sort, we only need a single control line.
In the remainder of this section, we consider the ascending
sort only.

The sorting circuit not only processes the key-pointer pairs
of a given sequence in a pipelined fashion, but also can sort
different sequences in a pipelined ways; i.e., while one sorted
sequence is being output, a new sequence can be input from
the other end of the circuit. In order to distinguish
sequences, we attach tag 0 to each key-pointer pair input
from the left end and tag | to each pair input from the right
end. The tags are not compared.

N. TAKAGI AND C. K. WONG

51

52

Shift Compare-exchange

0 o[04
+ |4 o[t
1 +ol 40|40 5 [+x|+o 5
5 |+oo|+ofm +x 400|404 Input
2 5 |+®|+w 3 4wt
3 |+oltofmtw 5 |+o0 |+ Input 3
3 3 [+ojt+o 2|5+ Inout 2
-l 2 5 [+t 3 j+o|+> mpu
4 2] 5 |+= 213 [+
. oy ey TG I ™ Input 9
2| 3 |+» 113 5
5
195 =+ 2]9 |+ Input 1
13 5 1 2|5
6 Input 7
- 729 r+= 73|09 Py

An example of key-pointer sorting using key-pointer sorting circuit

Shift Compare-exchange
lwq 2 {5 [+ fa— 21319
Output 1
7 713 [9 715 [+= P
2«4 3| 9 |+ola~ 315 |4
8 tput 2
715 [+ 719 [+2| O
0 3] 5 |+o|+ofa 519 [+» Output 3
7] 9 [+= 7 [+|+ e
10 S5af 9 |+®|+ % g 7 |4+ s
7 |+ |+ o [+olva| OvPM
1 7]+ 0 [+ 04 0 la— 9 |+o|+x o 7
9 4o+ 00 +o|+o|+0 utput
N O] + 0|+ 0|+ 0 fat— 4o |+ x|+oo
1 Iap Py prapes Tolrol+e Output 9

. The key sequence is “‘5, 3, 2, 9, 1, 7. Only keys are shown.

Figure 5 shows ascending sorting for four sequences in a
pipelined way. (Pointers are not shown.) Whenever two pairs
with different tags meet at a cell, they are exchanged (no
comparison is performed). When two pairs input from the
right end (1-tagged) meet at a cell, the smaller one goes to
the lower register. As we can see in the third sequence of the
example, the sorting circuit still works when a sequence
contains equal keys. However, if we require that two pairs
with equal keys be output in the same order as they are
input, i.e., first in first out, we can attach a counter value to
each key which indicates its input number in a sequence. Of
course, llog, n1 extra bits are then needed for each register of
the key-pointer sorting circuit. (Counter values are not
shown in the figure.) After input is completed, +%’s are
input. +o’s input from the left (right) end are tagged with 0
(1). As shown in the last sequence of the example, the
sorting circuit still works in a pipelined way when the length
of the last sequence is smaller than n. The output of the last
sequence starts immediately after the output of the second
from the last sequence is complete. Thus pairs are
continuously output.

Initially, the sorting circuit must be filled with +o’s. After
several sequences have been sorted (see Step 28 of Fig. 5),
the sorter is filled with +o’s with different tags. However, to
sort the next batch of sequences, no reinitialization is needed
because all O-tagged (1-tagged) +’s must reside in the left

N. TAKAGI AND C. K. WONG

(right) part of the sorter, which is sufficient to guarantee that
the later sequences are correctly sorted.

In this paper, we do not discuss the detailed logic design of
the key-pointer sorting circuit. Suffice it to say that it can be
implemented either in a bit-serial or a bit-parallel fashion. Of
course, parallel operation is faster but requires more
hardware. Since in the initial sorter the key-pointer sorting
circuit needs to perform only one step of an operation (shift
and compare-exchange) during each transmission of a record
and since the record transmission time is much longer than
the operation time, serial operation would be enough.

e The RAM and the controller

The RAM has a capacity of (n + 2) x L bytes and can store
n + 2 records. (The need for the extra 2 will become clear
after the timing discussion, which is next.) It has block
addresses from 0 to » + 1. (In the case that L is a power of
2, a block address consists of some most significant bits of
the corresponding byte address.) When a block address is
given by the controller, the RAM outputs the record which
is stored there and concurrently stores a newly input record
there.

The controller controls the RAM by giving it block
addresses. It also controls the key-pointer sorting circuit. The
controller gets a key-pointer pair from the key-pointer
sorting circuit and then gives a block address to the RAM

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

Shift Compare-exchange - Shift Compare-exchange

Initial left over o «
o soofl #ooll +oo from previous sorting. 5 0301,8[16 03[04]1,7 et Il Seq 1
o151+ See step 28. 08[04] L7 [o1,4 08[18(16 Input Output 4
s 1
01+ 49 0.5 P14+ q 0,31 04]1,7 0,3]04] 18
1 i -5 Pl Input 5 16 . Input 4 16
{05 oredld e, +e (0ol ol 4 ey {0405 18}e16 [04]08[L7] T Outpu
0,5 [0l 0,3 [0skedl 03]04]18 02]04]08
) ; 3[04l \ \)
e) U i S R K T tapat 3 7 _Joafosloste1r [03[o4l 1] "™ Output 7
0,3[0F eI+ 0,2]0,5 o; 0,2]04]08 0,210,3]0,4
3 0 0,5 [0+ Input 2 18 Input 6 Output 8
+{02]0,5 prefe 1,4+ | 0,3 fopefi + +06[03]04 »18 [06]04]08 o
Sequence Il $ v
. 021 0,5 |09 0,2]0,3 J03 — o 02030417 e 03]0aog] o
U
09103 oFae1, 4+ [0,9]0,5[0+ P 06104108 o604l 7] O np
0,2] 0,303 0,1]0,3]05 o3<Jo4los] 11 0,4 04] 1,7
5 . : 410811 ALOAI LT Guput 3 Input t
610505 w0,+= [0,2]09[0#= Input 1 » 0,6/ 0417 06108 L] T i
0,1]0,3]0.5 0,1]0.2]0.5 044304 1.7] 1,9} 0,4]08]19
LA Rl T Input 7 21 Output 4 Input 9
6 +[0.7[02[09 07| 030 Py 0.60.8| L1 0.6 L7111 P
0,1J0,2]0,5[1.6 }+ 0.2]0,3] 0,9] Sequence I Sequence 1 0.4« 08|19 1,3 |- 0.6]1,9] 13
7 e St t 6 ’ —— . A Input 3
0.7]03]09 0710516 Output 1 Inpu 22 06| L7111 0817111 Output 4 npuf
K3
8 0,2+ 0,3] 0,9 1,4 J= 03/0,5] 16 Output2 Input 4 23 0,6 1,9] 1,3 | +ocju— 0,8] 1,7 {4+ Output 6 (Input +%)
0,7[05] 1.6 0710914 081 1,7] 11 19 13] 11
03«]{0,5]1,6] 1,8 |- 0,5]09]1.8 0,8« 1,71+l +e— 1.9 [l 4l +
9 N s s y 1 Output 3 Input 8 4 LA o) ’ Ll o 4 Output 8 Input + <0
0710514 o7l16]1a] " P 2 o131 T 13| 11| een (nput-+)
0,54 09[1,8[1,2 e 07]1,8[1,4 1.9 |+ + [0 w0l +ool1 4] Sequence IV
10 CAL 2= 1] OutputS Input 2 25 e = —+—](Input +) Output !
0,7[1,6]1.4 0,9}1,6]1.2 —{0F 1,7 | 1,3 1.1 19(1,7]13
0,7w11,8[1411,7 091,617 054 o)t +ocll 40 042l #ooll 420
1 > - Output 7 Input 7 26 kY s . KRt ot il t+
09|16]12 tslaz] i o107 e 13 s ro] 1]+ Output3
0,9 1,61,7]1,3 ja- 1,81 L7[1,3 0oc|l 4|1 +0 0 22|02l 400
12 ’ 2 2] Output9 Input 3 il nd : i t+ 00 t 7
18[14]12 L6 14]12] eer i T ofogelore 1817 i Lo | Pt Outpu
Q q 04+ 5c{0 ool 40 04|04+l 4|
m u 0ol i e 0 o 9
1,8]11,7] 1,3 041714 2 3 28 (Input+) Output
L L) Input 4 Output 2 —a{0tx|04+oq],+%Le 1,9 4-00]0 5t oo| L+
B Loajie[1ape12 18|63 o P ek
***=FEnd of sequence
04| 1,71 14 03] 1.8 |16
14 > - 411 Input 3 Output 3
0318|1613 04|17 [14] P utp

An example of key-pointer sorting ina pipelined way. There are four key sequences: “532.9.1,7;6,4,8,2,7,37,4,3,8,4,2,67;°7,1,
9, 3. Only tags and keys are shown.

according to the pointer. As the record which is stored in the Three operations—output of a record, input of a record,

block indicated by the block address is output, a newly input and one step of the key-pointer sorting circuit—are

record is stored there. Then the controller inputs a copy of performed concurrently in one period.

the key of the newly input record and the pointer to the key-

pointer sorting circuit. Of course, to get a copy of the key, o Timing

the controller has to know the byte address where the key is We call the time period to transmit one record simply a

stored. The pointer indicates the block address where the period. As mentioned in the previous subsection, three

newly input record is stored. operations are done in one period. 53

IBM J. RES. DEVELOP, VOL. 29 NO. | JANUARY 1985 N. TAKAGI AND C. K. WONG

54

Input Delay | Output }

oy R . R
RAM [~ ~ T ural
2 periods /
Key-pointer (v, lopwt RETEA Output |
—t

sorting circuit ~—+ +]
(a)

Input Delay Output
Sequence 1 P———p———r—r—oy———pl Delay
: | (2 periods
M i Input pe)
11 Outpu!
v I? Input o ! Output

(b)

Timing chart. (a) 1/0 timing of sequence: (b) timing chart of initial
socting for N =4 records.

An input record is immediately stored into the RAM. In
the next period, the controller inputs a copy of the key of the
record and the pointer to the key-pointer sorting circuit. The
pointer indicates the block address where the record is
stored. Upon being fed a key-pointer pair, the key-pointer
sorting circuit operates for one step and outputs another key-
pointer pair from the other end. (Recall the example of
Fig. 5.)

During this period, another record is input and stored in
another block of the RAM. In the next period, the record
that was pointed to by the pointer which was output from
the key-pointer sorting circuit in the last period is output. As
the record is output, another record is input and stored.
During this period, the key-pointer pair for the record which
was input in the last period is input to the key-pointer
sorting circuit, and simultaneously another pair is output.

Figure 6 shows a timing chart for initial sorting. Output
for a sequence starts with a delay of two periods after its
input is completed. Immediately after input for a sequence is
completed, input for a new sequence can start. Thus, the
RAM must have the capacity to store # + 2 records at any
time. Although in general N is not divisible by », initial
sorting for N records is always completed in N + n + 2
periods.

Figure 7 shows the flow of initial sorting by an example in
which n = 6 and N = 22, For example, the first input record,
#0(5), is input to the RAM at time 0, and the key-pointer
pair for record #0(3) is input to the key-pointer sorting
circuit at time 1. And the key-pointer pair for the first
output record, #4(1), is output from the key-pointer sorting
circuit at time 7, and record #4(1) is output from the RAM

N. TAKAGI AND C. K. WONG

at time 8. The total initial sorting is completed in 22 + 6 + 2
= 30 penods.

o Generating longer runs

Although the initial sorter can handle only # records at a
time, it can generate runs of 2 X » records on the average.
The principle is the same as that of the replacement-selection
sort [1]. Instead of a selection tree, we use the key-pointer
sorting circuit.

In the previous method, we always input a key-pointer
pair for the newly input record from the other end of the
key-pointer sorting circuit. In the current method, we input
a key-pointer pair to the sorting circuit from either end
according to the following condition: If the key value of the
input record is larger than or equal to that of the record to
be output next, we input the key-pointer pair for the input
record from the same end where the current output 1s
carried out; otherwise we input the pair from the other end.
In the former case, the newly input record is added to the
currently processed sequence. In the latter case, it belongs to
the next sequence.

The timing is as follows. In a certain period, a record is
input and stored in the RAM. In the next period, first the
key-pointer sorting circuit operates for one step and outputs
a key-pointer pair for the record to be output in the next
period. In this step, — is input from the other end. Then
the key value of the record input in the last period is
compared with that of the record to be output in the next
period. If the key value of the input record is larger than or
equal to that of the record to be output, the key-pointer pair
for the input record is input from the same end. Otherwise,
it is input from the other end. To input the key-pointer pair
from the other end, we have first to remove the previously
input —oo. Thus, in this period, the key-pointer sorting
circuit operates for two or three steps.

Figure 8 shows an example of initial sorting for the same
record sequence as in Fig. 7, using the new method. In the
key-pointer sorting circuit, pairs with the same key value are
sorted according to their attached counter values (which are
not shown in the figure), when their input order must be
preserved. However, in such a case, more than flog, n1 extra
bits are needed for each register of the sorting circuit since
the length of the run is at least n. (On the average, it1s 2 X n.
In the best case, it could be the length of the whole input
sequence.) If only p extra bits per register are used, the
length of a run will be bounded above by 2”.

o Further considerations

Throughout the previous discussions, we assumed that the
records and the keys had fixed size, namely, L and ¢ bytes,
respectively, and that they could always fit in the initial
sorter, However, this may not always be true. Suppose that
the size of each block of the RAM and the size of each
register for a key in a cell of the key-pointer circuit are L’
and /', respectively.

IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985

RAM Key-pointer

sorting circuit Input/output
(key-pointer) (record # (key value))
Address @ 1 2 3 4 5 6 7 Input Output
0 (5)|||||IIJ E_—_I # 00)
! (5)|(3) I l l l I J 5.0 _.D__>+m #10)
2 |<5)|<3> @ l | l | J 3-1—":‘—'*“” #22)
®
#21 #3
} 5 <3>|<z>|(9)[L 1] B “-’D—'“ #30)
¢ 5 |(2)|(9)l(1) I I J 9:3 "D"*‘” #4
> K (9)|(1) 5l 1] 1-4 —>D—>+°° #3()
#4\| #5
6 515 (z>|(9>|(1)|<7)|(6)| | 7~5—>D—>+°° #6(6)
#0 # 1-4 6-6
7 BIEIEE5]E & (6)]@ I—_—.l #14
®
#OL#1| #2]| #3 2-2 4-7
8 |<5>|(3)|(2>|<9)|<8>|(7)|(6)|<4)| l | #3(8) #4)
®
FOT#L| #91#3] #81 #5] #6| #7 3-1 8-4
? oleiololelnlel® l l #9Q2) #2Q2)
FO[ZI10T#O T #3 | #8] #5] #6]| #7 X X
10 sl lololelolel® >0 | | 22 #10() #10)
©
#11#10] #9| #3| #8] #5| #6]| #7 7-5 7-1 ;
i alnlolelelolele [e #o
Z1NH#I10] #9] #3 | #8 | #12] #6| #7 9-3 30
12 oo lolo|®l@]e | I #12(4) #5(
#11T#10] #5 | #13] #8|#12] #6
B 3 o |eolaiel@ ®]® 4-5_—D-—>2-2 #130) #19)
FL#F10]#14] #13] #8 J#12] #6] #7 S
u Al e 13 |®]lw |©] @ 3-3—>D—>3-0 #14(8) #92)

Flow of initial sorting of 22 records with key values of 5,3,2,9,1,7,6.4,8, 2,7,3,4,3,8,4,2,6,7,1,9,7

55

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985 N. TAKAGI AND C. K. WONG

RAM Key-pointer Lo ! :
sorting circuit . el Input/output

AR » (key-pointer) ; L lr record # (Key value))
ceiiAddress @ 12 3 45 6 7 : _ Input : Output
RIS IO# 14 # 13 #8THIZT #6 T #7 . e ,
B o le e ele el® 82 ——‘} 47 o e #1163
B FOROFAET R RES P
6 @ 10 |® 13 ® @ © o 4.0—»I—___J——> 66 #e@ #1®
, #151#101#14] #13] #8T#12[#17|#16 : - S T s il 3
v, @ i 18 16 |® @ | | 2-7-»[]-»7-1 e ‘#II@ ; #6(6)
#I5|#181#141# 13] #8 [# 12| #17]#16 L é
LR @] e o 1® e le |o 66 -——D—» 84 A #ao
@ S
#15|1# 1R # 1 # 13[Z 10 #12[#171#16 2-7 7-¥ ;
o @ 1o |® o Jo e fe |@ I l #a @
- FU[A SR A# B[# I #12J#T7]#20 3.3 — 14" e ‘
bl @10 1® |30 Jw Je) o) D‘— ~ #2000 #5)
, ‘ 1S[# 18] # 14| #2 ([#F O # 12| # 17| #20] 4.5 -7 8 S
2 @ 1o @ 1 |0 @ [© |6 l l o O o #B
poces PG EIE EIE EA £ FT7[#20 40 33
z @l e e o] |6 [© I l #124)
’ F181#14]421]#19] #171#20] 6-6 +
B Ldode e jn] e i l TR #156h
S A Z2#19 # 82 4+
2 L 5% 515 | & l * I I‘ #17(6)
#18 #21{#19 #20
» L& | 18 | | & +o "’D—’ 1-4 O
#18 #21 #20
2 [l(7) I l %2 l I I(9>] o ﬂ 33 #19(1)
27 #18 #20
LT [T T T - 2 #2106
#20
28 L] I I | l |](9) +,__,[:|__, 07 #18(7)
' #3009)
. #kok
LITTTTTT] [])

Figure 7 Continued

56

N. TAKAGI AND C. K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

Input Output
#0 . 4o | 40 | 4
o & — 1 #0(5)
o [Fo]#i[#2]#3]wa]as] %0 0,14] 0,5-1]0,5-0 0,1-4]0,2:2[0,5-0 #66)
GO]ID]® —»{0,7-5]0,2-210,9-3 +00 0,7-5]0,3-1]0,9-3
, [eo[ei] sl as]#afas| 2o 27 1-4 «0,2-2]0,50]1, — 0 }u— 0,2-2]0,3-1]0,9-3 14
GS{AD|O|O]|D]® @ 0,7-51 0,3-1]0,9-3 0,7-5] 0,501, =
6=1->#6€l
0.22]0,5-1]0,9-3 0,22]0,5-1]0,50
—»10.66]0,7-5] 0,50+ - 0,66]0,75]0,9-3
go| #1] #2| #3| #8] #5| #6| #7 2-2 0,3-1]0,5-0 [1,— | 0.3-1]0,5-0] 0,93 Sequence 1
8 A A #3(8) #4()
G| O]|®|D]®]@ 0,6-6| 0,7-5]0,9-3 0,6-60,7-5}1,—
4223 #7 ¢l
0.31]0,50] 0,93 0,3-1[0,50]0,7-5
—10,4710.66] 075 -+ — 0,4-7] 0,66 0.9-3
o [#o]#i[#o[ws]#s]#s|#e]2 3.14—J0,50] 0,751, = J*— 0,4-710.6-640,9:3 #9(2) #22)
G| DIOHI® DG D 0,4-710,6-610,9-3 0,5-0]0,7-5]1, ==
8=3->#8¢l
0.47]0,66]0.93 0,4-7]0,50]0,7-5
—»10,84]0,5-0| 0,75 }» — 0,84]0,66]0,9-3
#olzi0] #o #3 | #s] #5] #e| #7 4.74J0,50]0,7-5[1,— = je— 0.50]0.6:6] 0.93
o lglolo|ole[an]e|® 54l 056]053 tatesioa] P #0)
2<a4->#9¢ell
0,50 0.6:6] 0,9-3 0.—%[0.66]0.75
—»0,-=]0,84] 0,75 0.50]0.84] 0,93
—cat0661075]1.2:2 Je— 0.50[0,75] 0,93
0.50]0,84]0,93 0,66] 0.84] 1,2-2
#olz10] #9] #3 | #8| #5] #6[#11 5.0 «—{0,7-5] 0,031, — = = 0.66]0.84]1,22
Hlsim |loleoijelo]e|® 0.66|0,84[1,22 575looalr—=| *'® #@
T=5->#10€l
0.66]084]1.22 0.66]0,7-5]0,93
—»l071[0,7-5]0.93 |+ ~o 0.7-1]084]1,22
#12]#10] #o| #3 [#a | #s] #6]#01 6.6+ 0,7-5]00-3]1, == e 0.75]0.84]1.2-2
2 ol lolo|e|ale]e 571 To84aT22 GTossioe] *20 #0O
3<6 > #llell
0.7-5]0,8-4] 1,22 0.—=]0,7.1]0,53
—»]0.-%[0,7-1] 0,93 }»—= 075|084 1,02
—wa]0.71]0,93]1,37 0.75]0.84] 1,37
0.75] 0.84] 1,22 07-1]0.9-3[1,22

Flow of initial sorting using the method of generating longer runs.

57

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985 N. TAKAGI AND C. K. WONG

® Input Output

12| #10) #9 [#3 | #8 | #5 [#13]#11 7-5 0,8-4]11,3-7 |1, = ja— 0,7-1]0,9-3] 1,2.2
Blalo|olo|e|d|d|® 07110931232 T S () #133) #6(6)
4<T7 > #12¢ll
0,7-1]0,9-3[1,2-2 0, =] 0,8-4] 1,3-7
0, —] 0,841 1,37 f»—c 07110931122
~»«—0,841]1,3-7[1,4-0 1,7-1§0,9-311,4-0
0,7-11{ 0,9-3] 1,2-2 0,8-4] 1,37} 1,2-2
F121#10] #9 | #3 | #8 |#14|#13] #11 7-1«— 0,9-3]1,4-0]1,—» 0,8-4 11,4-0}1,2-2
“lololalo|e® e |e 084 1,37 .23 ool lioe] FH® #50)
3<7 - #13ell ;
0.34]140]1,22] 0, == 093] 1,37
—»J0, —oo[0,9-31 1,3-7 b= 0.84|1,40]1.22
—o*0,9-3}1,3-7}1,3-6 0,8-4}11,4-0}1,3-6
0,8-4]1,4-0]1,22 0,9-3]1,3-7]1,2-2
F#120#15] #9 | #3 | #8 |#14| #13] #11 84+—140}1,36]1,—ola— 0,9-311,3-611,2-2
B lgla|lololel® e |o 093137153 - oo *P@ #1000
828 #ld4el
0,9-3]11,3-6]1,2-2 0,8-5]1,4-0}1,3-7
—»t 0.8-51 1,4-01 1,3-7 -~ 0,9-3113-6(1,2-2
16 FI20H15] #9| #3 1#16|#14)#13]| #11 §-5a—1,4-0]1,37[1,- 0,9-311,3-6]1,22
@ @ |ololele oo 0031361122 Ta0|137 |- #162) #3@®)
4 <8 #15ell
0,9-311,3-6]1,2-2 0,—{1,4-0]1,3-7
—»10,~»]1,4-0]1,3-7 -0 0,9-311,3-6]1,2-2
—co-w—14-0}1,3-7]1,4-1 0,9-311,3-6] 1,4-1
0,9-3]1,3-6]1,2-2 1,4-011,3-711,2-2
Jez]#is] #ol#3 [#16|#17[# 3] #11 9.3 = 1,3-6T1,41]1, =0 fu— T40]1,4-1]1,22
LS (V) 1O REIR RO 00N N [OR 1) 140 1,37 (1,22 1356|137 1,—= #17(6) #14(8)
2<9>#16€ll
1,4-0f1,4-111,2-2 0, =} 1,4-111,3-7
-0, -] 13.6]1,3-7 -0 1,4-0]11,3-6 }1,2-2
-qf141]1,3-7]1,24 1,4-011,3-6|1,2-4
1,4-0]1,3-6}1,2-2 1,4-111,3-7]1,2-2
6=2
12| #15] #9 |#18)#16]#17) #13] #11 #18(7) #3(9)
Blala oo]o e |®|e -w—»D——»M #17 € 1 won
—mﬂ- 65

Figure 8 Continued

First, consider the record size. If L is fixedand L < L', L > L’ or L is not fixed and max (L) > L’, we must use two
there is no problem. Even though L is not fixed, as long as or more blocks of the RAM for sorting each record. In this
max (L) = L’, it is still all right. However, if L is fixed and case, the initial sorter will have fewer than n/2 records at a

N. TAKAGI AND C. K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

@ Input Output. - S

7=2 Sequenée'ﬂ
#i2|#sl# o] #is[#is]# 17| #13]#11
G e o o o |e |6 |® —o-nl |24 #18 <10 #19() #92)
— 0 -] -— 7.3 .
@ 1<3
F#12|#15 | #19] #18|#20] #17] #13] #11 . ;
D@ @ oo o e o]) > 3.7 #19 € I #200) #162
-— 0 -f— -_—0
1-2 —= L — o
@ :
2] #1s|#10] #isfa20[#17[# 3] #21 9=3
L A 1A O O Ol (R ER 1) o }e36 0 et #2213 #UG
-0 ~g— ja— 9-4
®
5, [Frfrs[Eslaefe] e 3<4
@ @ | D {9 |® 3) —x 40 #21 ¢ 111
— 00— la— —
3-7 =] bt — 00
@ N
#sl#olmisleolE] |#21 i
Bl e oo l@ © | |® +o] 41 #1248
®
eof#isleol#7] [#21 i
24 I(l) o ool |® +00 > 65 #15(4)
@ N
#1901 #18]#20 #21
») | |© 3) $oo —> 73 #176)
®
19 20 #21
2 lﬁ) 5) +o0 > 94 #1807
@
#19 #21 12w e 4o
z |) #2009
@
Sequenc
.7 + .
28 ggl 3.7 - lat— #‘19(1)>
@
» #2103)

time, and in any period, more than n/4 cells of the key- Next, consider the key size. When / is not fixed, we
pointer sorting circuit must be idle. temporarily let all key lengths be max / by attaching 0s. (If 59

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985 N. TAKAGI AND C. K. WONG

@ 1+ 2 3 4 5.6 1 : : Input

’ (3’2, ‘ i I . #0(324)
] | (g?")l‘?ig)‘ : ' - bt 40 #1(329)
) w0 | #1] #2 ; 1 3
‘ (324)]323)}(424) i %1;] o #2024)
HOL#1 P #21 #3 I
3 (324){(323) (424) (223)) 1 l(tii i e 40 #3(223)
: solsifwm e[l] :
R (20 (3231@4) eyjere] | : 33> Fo #4220
T#ol sl #3] #afast - : ~ ‘
5 KE0) (€P5)) (oI (PR (S 201 T ko) S I ; ?3* | 400 #5*(333)
6 #0 [#1 m2 | w3 #a] 5] #e o
Eajenjdfeiealcsy —§] o %g—. | S o #6
7 #0 [#L L #2) #3] #4 #5 w6l #7 | 3.1 - b . -
ej@ajenemlea) —] — | o) S S :
' #1323
3-3 - l— 2-1
3 ©
C#m)
3.5+ 23
L] -
#5(323)
4-0 fat— 2-5
(V)] @
#0(324)
4-2 T 2.0
(2)<_1 [N
#2(424) .
4-4 w1 g 2-2
@ @ :
#4224y]
+ oo - j— 24
1 &

I Sorting of records with long keys.

the keys are characters, we attach O’s to their least significant becomes ¢ (if / is not divisible by ¢, we attach 0’s) and sort

parts. If the keys are numbers, we attach 0’s to their most key-pointer pairs by a method such as the least-significant-
significant parts.) If max /< 7, we attach more 0’s to each digit-first radix sort [1] using the key-pointer sorting circuit
key so that its length becomes 7. If max 7/ > ¢, we divide (#¢1 times. Namely, first we sort pairs according to the
each key into several parts so that the size of each part values of the least significant parts of the keys, next

N. TAKAGI AND C. K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

Input Output

+oo —p - 2

#1(323)

3-1 Lo 2-3
© M

#3(223)

2.3 —pwl 2-5
(¢)) (2)

#5(323)

3-5 - - 2-0-
(2) 3

#0(324)

3-0 o 2-2
3)

#2(429)

42 - > 24
@ 5
#4(224)

2-4 L+
(5)

2-3 -] [— #6
[4Y]

8 Fald|da| 2 (Bald] * | ¥ g #7 #8 #3(223)
o e fer o % & | ¥ o * #9 #4224)
®
10 (3?;?:) o (fzi) il Rl B el Bl ptal B #10 #10323)
®
11 (:ﬁ%) #10 (zﬁi) ff #_9 ﬂl ai6 ﬂ ?3())‘- [#10 f*l’: #5(323)
. P PEEEEE g T G
13 12 #_“’%‘3 il il kil Ral il #1 e #13 #2620

according to the values of the second least significant parts, distinguish pairs with the same key-part value. Of course, the
and so on, and finally sort them according to the values of method delays the initial sorting time. However, since
the most significant parts. records are transmitted only once, overall sorting is still very
Figure 9 shows an example of a case when /= 3/, In this efficient. This method clearly applies to multi-key sorting.
method, the input order is important, and counter values On the other hand, it is difficult to incorporate the method
must be attached to the parts of the keys in order to of generating longer runs mentioned previously. 61

IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985 N. TAKAGI AND C. K. WONG

<ﬁ>&3 o <> 13 <2> i <3> +0

; 3) (3.,8) 3,8
Pl B3>0
| [[T
I | |
I I [l
<h“;>_f' 44 <S> 16 <> 12 <>
e g v
3 =100 10 @=1010 f 4>2
4) (4,6) 4,6
13 ¥8 . 10 12
ua I3} (1,3) (1,3.8) (1,3.8,10)
] | | |
| I [[
<9> 4 <10> 10 <1i> T
i2
©6=1))(13) ¥ lasae (13> 0)[13,14
6 12 0
! 3,8,10 ! 8,10 y 8,10
3>l (3 =< 4)]4.6 8> 46,12
¥2 ¥3 4
1 1,2
S a2 1,23
| i I [
<13> 4 <14> T <15> L
59| i3.14 ¥ ¥ f° .15 R
= ¥13 4
8,10 10 ¥ 15
12 (8 < 12) (Iég) a0=12){12 f
eA 1]) 0,9,13 13,
) D T (0,9,13) TP (0,9,13,14)
(1.2,3,8) (1,2,3,4.6) 1,2,3,4,6,8) (1,2,3,4,6,8,10)

Figure 10 e R e]
I Flow of the ideal pipelined merge (3, 8/1, 1074, 6/2, 12/13, 14/0, 9/7, 15/5, 11). () indicates waiting queue.
4. The pipelined merger generates runs of length exactly #, as described in Section 3.
The pipelined merger is fed initial runs consecutively from Merging of longer initial runs is discussed later. The first pass
the initial sorter, merges them into a single run, and outputs is fed N/n runs of »n records each and generates N/(m X n)
it serially. The pipelined merger is composed of several runs of m X n records. The second pass merges these runs
intelligent disks, each of which has a simple processor and into runs of m” X n records. After i passes, the runs have
several two-bank buffers, length m' x n. After Mog,, (N/n)1 passes, all N records are in
The basic scheme is a pipelined version of an m-way one run. In this scheme, all merging passes are run in an
merge. The serial m-way merge operates in several passes, overlapped way, rather than serially.
with each pass generating longer runs by merging every m First, we describe the principle through a two-way merge.
62 input runs. For simplicity, we assume that the initial sorter Figure 10 shows an example of an ideal pipelined merge for

N. TAKAGI AND C. K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY 1985

<16>
|

15
(7 = 1|1

y7

5
(0=5)
9,13,14
[1

(1,2,3,4,6,8,10,12)

<20>

15
(13>11)
13,14

[TH
4,6,8,10,12
3 = 9][57.9

3

<24> I

8,10,12
8 > 719,11,13,14,15

<28> I

]
12
(12> 1D]13,14,15

T

<32>

|
1
Vis

<17> |

(15> 11)
11

7
9,13,14
1,2,3,4,6,8,10,12

® >3
5
a>0

(13=<15)
yi3
10,

4 = 5)|5,7,9.1

10,12
(8 < 9)[9,11,13,14,15

s

<29> L

]
(12=13){13,14,15

T

<18>

y15
9>7)
9,13,14

v7
2,3,4,6,8,10,12
(1= 3|5

A

11

<22> |

]
(14=15)
1

15

6 >5)

s

<26> |

|
10,12
(10>911,13,14,15

o

<30> l

14,15

- -

IS

11,15
13,14

3,4,6,8,10,12
5.7

10,1
,9,11,13,14

12
11,13,14,15

- -

IX

Figure 10 Continued ”

8 initial runs of 2 records (i.e., N = 16 and n = 2). llog, 81 =

3 processors operate in parallel. Each processor manages

IBM J. RES. DEVELOP. VOL. 29 NO. | JANUARY (985

three FIFO queues. Two of them are for runs which are
currently merged, and the other is for a run to be merged 63

N. TAKAGI AND C. K. WONG

64

rr--—— - —_ —_ = T = = = = T |
! |
| |
| !
| !
' 1
! |
| |
| Waiting
1 queues
|

! I
| /& |
: Processor Processing
| queues
l i
: I
| _’/ |
I I
[|
| I e — -

Management of FIFO queues.

next. The maximum length of each FIFO queue of the ith
processor is 2" X n, and the total length of all three queues
isalso 27" x n.

When an m-way merge is carried out, (2m — 1) FIFO
queues are required for each processor. m of them are for
runs which are currently merged, and the others are for runs
to be merged next. The maximum length of each queue of
the ith processor is m'~" X 7, and the total length of all
(2m = 1) queuesis (m — 1) x m™" X n.

In the ideal pipelined merge, all data transmission is done
synchronously and all processors are synchronized by their
input cycles. However, when we use disks, it is difficult to
synchronize data transmission. Furthermore, the data access
in the ideal pipelined merge is rather random and not
suitable for disks. We must modify the ideal pipelined merge
to suit the disk-based implementation. In our proposed
pipelined merge scheme, we use the blocking technique
mentioned by Todd [9], i.e., we deal with records in blocks
rather than individually. In order to adopt the blocking
technique, we attach m + 1 buffers to each disk. m of them
are for the front blocks of the FIFO queues for runs which
are currently merged, and the other is for input. (See Figure
11.) Note that although there are m — 1 waiting queues,
since input is doné¢ serially, only one buffer is required for
the rear block of the FIFO queue which is currently input.
For parallel processing and data transmission, we divide each
buffer into two banks and use them alternately; i.e., while
one of them is used for data transmission to or from the
disk, the other can be used for processing. To avoid the
latency of the disk, we let the bank size be the track size of
the disk. We also let the block size be the bank size and do
data transmission to and from disks in blocks. The blocking

N. TAKAGI AND C. K. WONG

delays the transmission of records between processors, since
the processor has to wait for a block of data before merging
starts. Consequently, it slightly slows down the merging.

It is also difficult to synchronize the processors. We just let
them run asynchronously, so that a processor may have to
wait for a neighbor processor to complete its operation.
However, when the operations of the processors are faster
than the data transmission, i.e., they are not the bottleneck,
then the performance is comparable to that of the
synchronous case.

Figure 12 shows an example of the flow during merging at
a certain intelligent disk of the pipelined merger. There each
4 input runs of 8 records are merged. Each block contains
two records. As shown in stages (16) and (17), the first few
blocks of the last run of m runs to be merged can sometimes
be directly transmitted from the input buffer to one of the
work buffers instead of via the disk. This is due to the
availability of the appropriate work buffer at that moment.

To summarize, the pipelined merger is composed of
several intelligent disks, each of which has a simple processor
and m + 1 two-bank buffers. The processor is only required
to do an m-way merge and to manage the buffers and the
disks. The bank size of buffers should be the track size of the
disk (which is 4.8 X 10° bytes for the IBM 3380 disk). m
buffers are for the front blocks of the FIFO queues for the
runs currently merged, and the other is for the rear block of
the queue for the run currently input. Other parts of the
queues are maintained in the disks by linking tracks with
pointers.

e Other considerations

If the pipelined merger is composed of & intelligent disks, it
can merge m" initial runs at a time. Of course, it can merge
fewer than »7" initial runs. In such a case, the final run is
directly output from the llog,, R1th intelligent disk, where R
is the number of initial runs.

Since the processor may operate asynchronously, the
pipelined merger can merge initial runs of variable lengths,
such as those generated by the method in Section 3. It can
also handle records of variable size. In both cases, however,
each processor may have a longer waiting time.

The best m for maximum performance depends on the
ratio of the speed of the processors and the memories. Of
course, a large m makes it possible to merge more initial
runs at a time but more buffers are needed for each disk.

In order to reduce merging time, one may employ disks
which have separate read and write heads and can
concurrently read and write from/to different tracks. In this
case, the data transmission speed is twice as fast.

o Merging more runs

Although the pipelined merger can merge no more than m"
initial runs at a time, we can merge more than " initial
runs using the merger repeatedly. We can merge R (>mk)

IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1985

Stage <0>
Buffers

1719}~
1719) Disk Run

Processor [0 316 14l-’/><;,- 7§18 217831] 3
P 9]10,121~"//I// ' ¢
i e

/
/

<2> <3>

- 1524 2526]

15242526 m—— S XF T
1316 27 29 13 16 2729 1316 5729
187212831 18 2128 31 [1522]6 14) 18 212831
17 19]] | —7/ 12022} - 30 22123 30,
T M~ sho13]
<4> <5> <6>
2829
35 36
13162729 -
28 31 [1524]_13]
——? Izo 322330 B2
6 101415 D 610 14 15]2425
—
10,11 1821[2831
1719
<7>) . <8> <9>
3526
7729
V7 EK) PR
610 14,1524 252829 6 10 1415 24 252829
2 4]

l An example of the flow of merging at a particular intelligent disk of the pipelined merger.

runs using the merger log,« R1 times. In this case, we can 5. Conclusion
overlap the beginning part of a certain pass with the end part ~ We have proposed a hardware sort-merge system which can
of the previous pass. sort large files rapidly. Since the initial sorting pass and the
Therefore, we can sort any large file using the pipelined merging passes of the sort-merger are run in an overlapped
sort-merger, 1.€., using the initial sorter once and the way rather than serially, the total sorting time is dramatically
pipelined merger several times. Of course, the size of the file reduced.
which can be sorted using the pipelined sort-merger is Our hardware sort-merge system consists of the initial
bounded by the capacity of the intelligent disks. However, it sorter and the pipelined merger, both of which can be easily
is very large. implemented by today’s technology. We can sort any large 65

IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985 N. TAKAGI AND C. K. WONG

<10> <1t> <i2>

2223] 0 1
24]25 26 24[2526]
2330 .2330
[2729 6 1014 1524252829 '10[2729) 1415 24 252829) 14 15724 2528 29|
2 4 5 81116 2 4 5 8111612273 2 45 811162223
17,18 212831 — 19,20 212831 01]

20220)i9) @% () —the bank used first

(2)—the bank used next
@—fmm a waiting queue

<13>

<14> <15>

7215 2

14 15 2425 28/39|
S 8 11162223
9 1319 20]2126]

14 15 24'25.28 29,
5 8 11162223

N335

1415 24 25 28 29|

<16> <17> <18>
3031077
18127]

3 7{1217

14 15 242528 29 24,2528 29 6 1041415 24'25'28 29|

5_8 111622123 5 811162223 5811162223

9 13 192072126 9 13119 2021 26| 0,1 2 4 %19 20 21 26/
9 13|

Figure 12 Continued
file using the initial sorter once and the pipelined merger 2. H. Lorin, Sorting and Sort Systems, Addison-Wesley Publishing
Iy. P Co., Reading, MA, 1975. .
repe.ated y Note. also that th.e R,AM of the initial sorter.and 3. E. E. Lindstrom and J. S. Vitter, “Analysis of BucketSort for
the intelligent disks of the pipelined merger can be efficiently Bubble Memory Secondary Storage,” Technical Report ZZ20-
used for other purposes when they are not doing sort-merge. 6458, IBM Scientific Center, Palo Alto, CA, October 1982.
For example. 4, T. C: Chen, V. Y.. Lum, and C. '_fung, “The Rebound Sorter: An
& . ple. the RAM can be used as a buffer or a paf‘t of Efficient Sort Engine for Large Files,” Proceedings of the 4th
the main memory and the disks can be used as work disks. International Conference on Very Large Data Bases, September
Conversely, the pipelined sort-merger can be easily realized 1978, pp. 312-318. _
b hi T . 5. D. T. Lee, H. Chang, and C. K. Wong, “An On-Chip Compare/
y attaching a few facilities to a conventional computer Steer Bubble Sorter.~ IEEE Trans. Computers C-30, No. 6,
system. 396-405 (June 1981).
6. G. Miranker, L. Tang, and C. K. Wong, “A ‘Zero-Time’ VLSI
References Sorter,” IBM J. Res. Develop. 27, No. 2, 140-148 (March 1983).
1. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting 7. A. Mukhopadhyay, “WEAVESORT—A New Sorting Algorithm
and Searching, Addison-Wesley Publishing Co., Reading, MA, for VLSL,” Technical Report TR-53-81, Computer Science
66 1973. Department, University of Central Florida, Orlando, 1981.

N. TAKAGI AND C. K. WONG IBM J. RES. DEVELOP. VOL. 29 NO. 1 JANUARY 1985

8. M. I. Carey, P. M. Hansen, and C. D. Thompson, “RESST: A
VLSI Implementation of a Record-Sorting Stack,” Technical
Report UCB/CSD 82/102, Computer Science Division (EECS),
University of California, Berkeley, April 1982.

9. S. Todd, “Algorithm and Hardware for a Merge Sort Using
Multiple Processors,” IBM J. Res. Develop. 22, No. 5, 509-517
(September 1978).

10. Y. Tanaka, Y. Nozaka, and A. Masuyama, “Pipelined Searching
and Sorting Modules as Components of a Data Flow Database
Computer,” Proceedings of IFIP ‘80, October 1980, pp. 427-
432.)

11. H. Yasuura, N. Takagi, and S. Yajima, “The Parallel
Enumeration Sorting Scheme for VLSL,” IEEE Trans.
Computers C-31, No. 12, 1192-1201 (December 1982).

12. L. J. Guibas and F. M. Liang, “Systolic Stacks, Queues, and
Counters,” Proceedings of the 1982 Conference on Advanced
Research in VLSI, Massachusetts Institute of Technology,
Cambridge, 1982, pp. 155-164.

13. Y. Dohi, “Sorter Using PSC Linear Array,” Proceedings of the
1983 International Symposium on VLSI Technology, Systems,
and Applications, Taipei, Taiwan, 1983, pp. 255-259.

14. S. Even, “Parallelism in Tape-Sorting,” Commun. ACM 17, No.
4, 202-204 (April 1974).

15. A. Mukhopadhyay and T. Ichikawa, “An n-step Parallel Sorting
Machine,” Technical Report 72-03, Computer Science
Department, University of lowa, lowa City, 1972.

Received October 5, 1983; revised June 18, 1984

IBM J. RES. DEVELOP., VOL. 29 NO. | JANUARY 1985

Naofumi Takagi Kyoto University, Kyvoto, Japan. Mr. Takagi
received the B.E. and M.E. degrees in information science from
Kyoto University, Kyoto, Japan, in 1981 and 1983, respectively. He
is a graduate student at Kyoto University and is working for his
Ph.D. degree. During the summer of 1983, he visited the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York,
and performed the work reported in this paper. His current interests
include VLSI algorithm design and analysis, logic design,
computational complexity, and computer architecture. Mr. Takagi is
now doing research on VLSI algorithms for arithmetic operations.

Chak-Kuen Wong /BM Research Division, P. O. Box 218,
Yorktown Heights, New York 10598. Dr. Wong joined IBM in 1969
as a member of the Computer Sciences Department at the Thomas
J. Watson Research Center. His current interests include VLSI
design algorithms, abstract and concrete computational complexity
theory, optimization problems related to data allocation, magnetic
bubble memory structures, the theory of fuzzy sets, and satellite
switching/time domain multiple-access systems. Dr. Wong received a
B.A. in mathematics from the University of Hong Kong in 1965 and
an M.A. and a Ph.D. in mathematics from Columbia University,
New York, in 1966 and 1970, respectively. For the academic year
1972 to 1973, he was a Visiting Associate Professor of Computer
Science in the Department of Computer Science at the University of
[llinois, Urbana. For the academic year 1978 to 1979, he was a
Visiting Professor of Computer Science in the Department of
Electrical Engineering and Computer Science at Columbia
University, New York. Dr. Wong received an IBM Outstanding
Invention Award in 1971 for a new family of sorting methods, as
well as three IBM Invention Achievement Awards. He holds three
U.S. patents and one pending. He is the author of the book
Algorithmic Studies in Mass Storage Systems, published in 1983 by
Computer Science Press. Dr. Wong is a member of the Association
for Computing Machinery and a senior member of the Institute of
Electrical and Electronics Engineers. He is also an editor of the
IEEE Transactions on Computers, an Advisory Editor of the
international journal Fuzzy Sets and Systems, and a Foreign Editor
of the Chinese journal Fuzzy Mathematics.

67

N. TAKAGI AND C. K. WONG

