
evelo by James A. Brown

This paper develops the rules governing the
writing of APL2 expressions and discusses the
principles that motivated design decisions.

1. introduction
IBM has numerous products which follow the IBM internal
standard for A P L (V S A P L , A P L S V , PC A P L , 8100
A P L) . In this paper this level of the A P L language is
referred to as A P L 1.

A P L 2 is based on this writer’s Ph.D. thesis [11, the array
theory of Trenchard More [2], and most of all on A P L 1. It
incorporates extensions to data structures, to primitive
operations, and to syntax. Those wishing a complete
description of A P L 2 may refer to the A P L 2 publications
library listed in the general references. The only extensions
covered here are those which have an effect on the syntax of
the language and those implied by the simplifications of
syntax.

discussion of how the syntax was designed and what
motivated the choices that were made. A longer discussion
of this and related topics appears in “The Principles of
A P L 2” [3].

A presentation of syntax would be brief. This is, rather, a

2. The objectives of APL2 syntax
A P L 1 has always had a simple syntax governed by only a
few rules. These rules are phrased in terms of general
statements that are easy to apply in practice: “All functions
have equal precedence”; “functions are executed from right
to left”: “operators have higher precedence than functions”;
etc.

eCopyright I985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Juztrnal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

When language extensions are proposed we find that the
familiar rules do not cover all cases. For example, A P L 1
has the concept of an operator (for example, /) applying to
a function (for example, +) and producing a new function
(called summation). In A P L 2 operators are generalized so
that they can apply to all functions-including those
produced by other operators. Therefore a syntactic decision
has to be made about the meaning of a statement like

+ . x /

(where ‘ I . ” is the matrix product operator). This could
mean either

(+ . x) / o r + . (X /)

Operators are extended so that they take arrays as
operands. Therefore, if “ D 0 P” is a dyadic operator taking
an array right operand,

+ DOP A x B

could mean

(+ D O P A) x B or + D O P (A x B)

and the rules of A P L 1 are of no help. In either case x gets
evaluated before DOP. The only question is “does x have
one or two arguments?”

These questions and others like them could have been
resolved by stipulating new rules that cover the cases
followed by a determination that no syntactic ambiguity was
introduced. Instead A P L 2 uses the concept of binding
strength, which brings together in one measure all the
concepts of syntax-order of execution; precedence of
operators over functions; building lists of arrays; etc.

It is well known that any precedence grammar can be
described by a matrix [4, 51. This is made easier in A P L 2
(and even A P L 1) because it has a small number of object
classes. Bunda and Gerth [6] give a development of such a
matrix as a model for evaluating various extensions to A P L
syntax. However, even a small matrix can be hard to
remember and apply in practice. Benkard [7] shows that

IBM J . RES. DEVELOP, VOL. 29 NO I JANUARY 1985 JAMES A. BROWN

A P L 2 can be simplified to a linear hierarchy of syntax
classes. It is this concept that is developed here.

x

A P L 2 recognizes three classes of objects: arrays, functions,
and operators. It is this set of objects and the operations
defined on them that must be expressed by the syntax. Since
the kind of data we want to represent is already known and
the style of the syntax is already given, it is not a surprise
that choices are made that make the syntax and the universe
of objects work together.

Thus we chose arrays that are finite, rectangular
collections of other arrays ultimately comprised of numbers
and characters. We chose operations (functions and
operators) which may take at most two arguments and
which therefore can be easily represented by an infix
notation.

: *; y&': i -

The first step in developing the rules for syntax is
establishing the rules for identifying the objects of discourse
in the written notation.

A name is a string of one or more characters which is, or
may be, associated with an A P L 2 object. Some names are
always associated with the same object; others may not be
associated with objects at all or may be associated with
different objects at different times.

Names are considered atomic, indivisible units of writing
even when they take more than one character to represent.

Once names are identified, they are considered the tokens
of the syntax and their structure is never again of interest.

Primitive names
Primitive names are those that are defined as part of the
definition of the language. They have fixed associations in
that a given primitive name is always associated with the
same object.

Prirnilive array names
A P L 2 arrays are collections of numbers and characters.
The primitive arrays (the ones given names) are single
numbers and single characters (that is, simple scalars).

representations. Complete rules for writing numbers may be
found in [8]. Here are examples of various styles of numbers:

245.5 2J3

Numeric scalars are written using their decimal

-
245.5 204 5

2.35313 1R1.716

38

J

(The second column shows three ways to write complex
numbers.)

implementation not all are associated with a scalar object.
For example, 2 E 9 8 7 6 5 4 is a legal name for a number

While any decimal number may be written, in an

but is not associated with an object in most implementations
because the number is not representable.

A given numeric object may be associated with many
names. For example, the number "fifteen" can be written

15or15.0or1.5Elor15JO.

Character scalars are written by enclosing the graphic
associated with the character in single quotation marks.

' A '

This is a single character and is treated as an indivisible
unit despite the fact that on input it occupies three print
positions. The use of the quotes means it is always possible
to distinguish between a number which is represented by a
single digit and the character whose graphic is that digit.

Primitive operation names
Primitive operations are named by single symbols each of
which occupies one print position.

symbols
There is a large set of primitive functions using the

There are only a few primitive operators using the symbols

. / \ f t "
Note that dot (.) is an ambiguous symbol used as a decimal
point as well as an operator. Which is intended in any
instance is determined from context.

Constructed names
Constructed names are strings of one or more characters
with the following constraints:

An initial or only character is from the set

A B C . . .XYZAO
A_BC. . .XYZA
and remaining characters (if any) are from the set above
(excluding quad) along with

0123456789"

User names
User names follow the above rules except that the initial
character may not be 0. Any name constructed according to
these rules is valid (no length limitation), and none has any
value (Le., none is associated with an object) until some
action is taken to specify the association. User names may be
associated with any class of A P L 2 object.

Arrays and user names are associated through use of the
specification arrow (+), through parameter substitution
caused by invoking a defined operation, and as an implicit

AMES A. BROWN IBM J RES. DEVELOP. VOL. 29 NO I JANUARY 1985

result of the U T F function. A name which is associated with
an array is called a vuriahke.

an implicit result of the O F X and O T F functions.
Functions may also be associated with user names through
parameter substitution in a defined operator. Thus a user
name may indicate the same function as a primitive
function or even a derived function.

Functions and operators are associated with user names as

Distinguishd numL7.Y
Names which begin with the character 0 are reserved for
fixed uses in the language and are called distinguished
names. Any distinguished name is valid, but only a few are
associated with objects. Distinguished names associated with
arrays are called system variubles; distinguished names
associated with functions are called .system,fimtions.

UZiring numes
When writing a linear sequence of names, a primitive
operation name need never be separated from adjacent
names. Thus the two names + and - written next to each
other (+ -) can never be confused with a single different
operation. All other names may require more than one
symbol. When writing a linear sequence of names, these
names, if adjacent, must be separated to avoid confusing the
combination with a single different name. Thus the two
names 1 2 and 3 4, when written next to each other, must
be separated to avoid confusion with the name 1 2 3 4. The
separation character is a blank if no other nonblank
character falls between them. For example,

1 2 3 4 blank needed for separation
1 2 (3 4) blank not needed for separation

5. Syntax
This section and following sections show the derivation of
the definition of syntax for A P L 2. The Appendix includes a
summary of the rules.

The syntax of A P L 1 is simple, straightforward, and easy
to learn. This is so because of the great care exercised by the
creators of A P L 1. Similar care is required in making any
extensions or changes to syntax. With the exception of the
removal of mixed output, the syntax has been unchanged
since the early days of the language. Therefore extensions to
syntax are probably the most constrained by A P L 1. The
resulting syntax must retain at least the following properties:

It is linear-we do not want superscripts, radical signs, and
so forth.
It uses a function symbol for two (usually related)

There is no functional precedence-all functions have
functions-one monadic and one dyadic.

equal precedence and execute according to their position
in an expression.

Operators have higher binding power than functions.

The syntax of A P L 2 must be able to express

Arrays,
Functions and their application to arguments.
Operators and their application to operands.

39

IBM J. RES. DEVELOP VOL. 29 NO I JANUARY 1985 JAMES A BROWN

The linear collection of special symbols and names
(primitive and constructed) used to write arrays, functions
and their application to arguments, and operators and their
application to operands is called an euprcwion.

The names and symbols used to write an expression are
divided into six syntax classes:

Array,
Function,
Monadic operator,
Dyadic operator,
Assignment arrow,
Brackets.

(Note that the object class operator is divided into two
syntax classes: Brackets and their contents are treated as one
class: 0 and + are treated like functions.) To these classes
are added parentheses-the only punctuation symbols in an
expression.

objects or may produce no object at all and be correct
(although an attempt to display or assign the result of an
expression that produces a function or operator generates an
error).

Evaluation of an expression may produce any of the three

An expression is classified by the object it produces:

Array expression: one that evaluates to an array.
Function expression: one that evaluates to a function.
Operator expression: one that evaluates to an operator.
Valueless expression: one that evaluates to no object.

Evaluation of an expression involves scanning the names
(in a strictly right to left order), determining binding
strengths of objects next to each other, and evaluating
operations whenever they are completely determined. Thus
the fundamental concept of syntax is that of adjacency or
juxtaposition and its use for the most important actions:
forming of vectors, applying functions to arguments, and
applying operators to operands. An actual model of
evaluation using this scheme can be found in [6].

When two names are written next to each other, there is
an affinity between them-that is. the combination means
something in the notation. This affinity is called binding
strmgth. When three names are written next to one another,
the middle one exhibits affinities for the names on the left
and the right. One of these affinities is stronger than the

other, indicating that that construct in the language is more
important. In the following text, we examine binding
strengths of various combinations of objects. The goal is to
amve at a simple linear hierarchy that is easy to use in
practice to parse expressions. Bindings are chosen so that
useful expressions can be written without parentheses.
Parentheses are introduced as a way to force one binding
when another, stronger one would normally prevail. The
stronger binding is delayed while what is inside the
parentheses is evaluated. This is called a delayed binding.

Expressions without purenthc>ses
First. we investigate how to write arrays, functions, and
operators and discover the bindings implied when symbols
and names of objects are placed next to each other.

.4 rruy expressions
Array expressions are divided into two groups. The first
involves the writing of vectors and the second the writing of
other array-producing expressions.

Vector array expressions There is one rule for writing a
simple vector: Write the simple scalars which are the items
of the simple vector next to each other with separating
blanks as needed. Since the rule involves a separation of
items. the resulting vector must have at least two items.

Here are three examples of simple constant vectors. The
first is all numeric, the second is a mixture of numbers and
characters, and the third is all character:

2 3 4
2 ‘ B ’ 4
‘ A I ‘ B ’ ‘ C ’

The last example is a different way of writing a simple
character vector from that provided in A P L 1. (A
compatible way of writing a character vector is covered in
the discussion of vector expressions in parentheses.)

This is the first extension to syntax and is a simplification.
There is now one rule for writing a vector: Write the scalar
items separated by spaces. This may be generalized by saying
that when two arrays are written next to each other, there is
a binding between them. If I and J are arrays, writing them
next to each other implies construction of a vector
containing them as items. This is called vector binding.

Other array expressions Given that we can write some
arrays, we may now consider how we write functions and
apply them to arrays. The rule is the same as in A P L 1 :
A function symbol may represent two functions-one
monadic (one argument or valence I) and one dyadic (two
arguments or valence 2). A monadic function is written with
its single argument on the right and a dyadic function is
written with arguments on the left and the right (infix
notation):

monadic function + 2

dyadic function 5 + 2

It could be argued that, if I 2 is a monadic function, then
5 + 2 is the number 5 sitting to the left of a monadic
function. This is even easier to argue if instead of + we use a
symbol which does not have a dyadic definition. For
example, the symbol used for enclose (c) has not been given
a dyadic meaning. One could argue that 2 c 3 is really a 2
next to a monadic function. A P L 2 solves this possible
ambiguity with the following rule:

All functions are ambi-valent (both valences) and
the one written in any instance is determined only
by context.

Thus functions in the abstract are ambi-valent, but at
evaluation time (call time) the syntax uniquely determines
which function is intended. If one wrote a function symbol
with an argument on each side, he would have written a
dyadic function. In the case of c, if this should ever be given
a dyadic meaning, it would not be considered a change to
the syntax of A P L 2-it would be a change to the
semantics. This is why in A P L 2 attempting to execute such
an expression gives VALENCE ERROR rather than
SYNTAX ERROR.

In the same sense that arrays written next to each other
have vector binding, arrays next to functions have argument
binding. In the following this is called left argument binding
and right argument binding.

When an expression is written containing more than one
function, rules for determining which is to be evaluated first
must be given. In the expression

2 x 3 + 4

which is done first-the multiplication or the addition?
Another way of phrasing this question is “Which gets bound
to the 3? x or +?” A P L 1 has always had a scanning rule
called the “Right to left rule”:

In an unparenthesized expression without operators,
functions are evaluated right to left.

We can get an equivalent rule by declaring that left
argument binding is stronger than right argument binding:

40

JAMES A BROWN IBM J . RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

Binding strength (strongest on top)
left argument
right argument

Thus, the above expression means 3 + 4 , then 2 x the result.

binding fit in with argument binding?” Beginners in A P L ,
not being told otherwise, often assume that vector binding is

The next question to answer is “Where does vector

lower than right argument binding so that in the expression

2 X 3 4 + 5 (extra spaces for emphasis),

times binds its right argument 3 and plus its left argument 4,
getting two results 6 and 9. and that then these are bound
giving the two-item vector 6 9. There is absolutely nothing
wrong with this analysis except that A P L 2 chooses to put
vector binding higher than argument binding. Thus A P L 2
has the following hierarchy:

Binding strength
vector
left argument
right argument

In the above example 3 is bound to 4 first and then the
pair is bound to + as its left argument. It is this choice that
gives A P L 2 its array processing capabilities. The
fundamental data in A P L 2 are arrays. We therefore make
it easy to construct arrays and apply functions to them.

Function e-yprcssions
Without operators the only function expression that can be
written is one which contains only the name of a function.
Thus

X

is a syntactically correct function expression. It means we are
talking about the function itself, as opposed to its application
to arguments. Therefore the above expression results in the
function “times.” Although it is an error to attempt to
display or assign this result, in the future even this could be
allowed and would not be an extension of syntax. Without
these extensions, function expressions are useful only in
expressions containing operators. The reason for allowing
function expressions becomes clear after parentheses are
discussed.

Operators can be used to write other function expressions,
in which case the function result is called a derived.fitnction.

The syntax of operators is in many aspects the mirror
image of the syntax of functions. A monadic operator is
written with its single operand on the left:

+/ for / a monadic operator

A dyadic operator is written with its operands on the left
and the right:

+. x for . a dyadic operator

Each of these evaluates to a derived function and so is a
valid function expression. As before, the attempt to display
the derived function generates an error.

Operators differ from functions (even in mirror image) in
that they have fixed valence. A particular operator is either
monadic or dyadic but never both. This is why operators are
represented by two syntax classes.

A P L 2 permits the operand of an operator to be any
function-even the function which results from the
application of another operator. Without a rule, the
following expression is ambiguous:

+ . x /

This could be an inner product between + and x / or it
could be a reduction by an inner product. The question is
further complicated by the possibility of array operands.

As with functions the answer can be approached by
specifying the binding strengths of operators to their
operands. In A P L 1 operators have always been thought of
as “more powerful” than functions, and this concept can be
turned into an assignment of binding strengths. Since the
operands are presented in the mirror image of functions, we
choose binding strengths in the mirror image. Thus we
stipulate the following:

Binding strength
right operand
left operand

with the understanding that monadic operators have no
binding strength on the right at all. Therefore the conclusion
is that in the expression

+ . x /

the right binding strength of . is stronger than the left
binding strength of / and the expression is a reduction by
an inner product.

These bindings must now be fitted in with those already
determined. Any choice is correct, but the A P L 1 expression

A+.xB

requires that right operand binding be higher than left
argument binding. This gives

Binding strength
right operand
left argument
right argument

Left operand binding could go in any of three places (since
it is below right operand binding), but since we are not
trying to express the sum of A with anything, we make left
operand binding higher than right argument binding.
Because no object is both a function and an operator, the
ordering of left argument and left operand does not matter.
Therefore the binding hierarchy for functions and operators
is defined as

Binding strength
right operand
left operand
left argument
right argument 41

IBM J RES DEVELOP VOL. 29 NO. I JANUARY 1985 JAMES A. BROWN

It is in this sense that operators have higher precedence than
functions: they have stronger bindings.

Now only vector binding needs to be placed in the
hierarchy. Because / is an operator, compatibility with
A P L 1 requires that vector binding be higher than left
operand binding. In the expression

1 0 1 / A

we want the vector to be formed before the left operand of /
is bound. Therefore vector binding must be stronger than
left operand binding, leaving two possibilities:

Binding strength
+""

right operand

left operand
left argument
right argument

+- - - -

Either of these positions is correct, and both were tried
experimentally in the A P L 2 Installed User Program [9]
(which did not allow array left operands). The question is
exemplified by the following expression using a dyadic
defined operator DOP (there is no primitive dyadic operator
that takes an array right operand):

+ D O P A B

If vector binding is above right operand binding, this is a
function expression with A B as the right operand. If vector
binding is below right operand, this is an array expression
which applies the derived function + D O P A to argument
B. This second choice makes operators with array right
operands easy to use and so is the order chosen.

and vectors is
Therefore the binding hierarchy for functions, operators,

Binding strength
right operand
vector
left operand
left argument
right argument

42 function. or an empty expression such as another part of the expression are redundant. For example.

JAMES A . BROWN IBM J. RES. DEVELOP VOL 29 N O , I J A N U A R Y 198s

L1: R EMPTY EXPRESSION

E.yprc.s.sions with purentheses
In A P L 1 parentheses are used only to group functions with
their arguments. In A PL 2 there is the need to express other
groupings (for example, grouping an operator with its
operands). Rather than use a new pair of grouping symbols,
a new simplified parentheses rule has been adopted. This
rule is

Parentheses are used for grouping.

They may be used anywhere as long as they are properly
paired and what is inside the pair evaluates to an array, a
function, or an operator. An expression inside parentheses
(or one which could be put in parentheses without changing
the evaluation of anything) is called a subexpression.

evaluating what is inside the parentheses and then
substituting for the parenthesized expression the value it
produces. This leads to a statement of a substitution rule
that is the basis for mechanical evaluation of A PL 2
expressions [3].

Correct parentheses that do not delay any bindings are
called redundant parentheses and may be removed from, or
added to, an expression without affecting the result of the
expression. While this is a sufficient definition of redundant
parentheses, it is useful to identify particular cases where
parentheses are needed.

Evaluating expressions with parentheses is only a matter of

Parentheses surrounding a single name or an expression
already in parentheses could not delay any bindings and so
must be redundant. For example,

2 (+) 3 Constant operation name
A + (.) x B Constant operation name
(A) +3 Constructed name
(2)+1 Constant array name
((2 - 3)) + 1 Parenthesized expression

Here is an example of parentheses that seem redundant by
this rule but are not:

(N D F N) niladic function without result
Operator expressions
The only operator expressions are a single operator name or These parentheses are not correct (let alone redundant)
a single operator name to the left of brackets. (Brackets are because what is inside does not evaluate to any array, a
discussed separately.) function, or an operator.

Valueless expressions Array e,upres.sions with purentheses
User-defined functions that do not return explicit results Again, array expressions are divided into two groups.
may be written. The only valueless expressions that can be
written involve such a user-defined function, the primitive Vector array expressions in purentheses In expressions of
function execute (e) whose evaluation includes such a arrays, parentheses that d o not separate a group from

2 (3) 4 These do not group.
(2 3 4) These group but do not separate.

Nonredundant uses of parentheses in vector expressions
give a facility for writing nested vectors. For example,
consider

What is inside the parentheses is a valid A P L 2 expression
and so the parentheses are correct. Evaluating what is inside
the parentheses gives us an array (a two-item vector). Vector
binding tells us that writing 2 next to an array gives us a
vector. Thus parentheses may be used to write nested
vectors. This is called vector notation in A P L 2 and strand
norution by others 12).

compatibility for character vectors:
The following rewriting rule provides A P L 1

If a vector in parentheses is made up entirely of single
characters, it may be rewritten with a single pair of
enclosing quotes.

The parentheses must be part of the rule even though they
appear redundant. Thus in the following example even
though ' B ' ' C ' is made up entirely of single characters,
the rewriting rule may not be applied:

' A ' ' B ' 'C' is not ' A ' ' B C '

The following is a correct application Of the rule:

(' A ' ' B ' ' C ') isrewritten (' A B C ') Rewriting
rule

(' A B C ') is rewritten ' ABC ' Remove
redundant
parentheses

Other urruy e.xpres.sions in purenthesev Parentheses in
array expressions are redundant if they group the right
argument of a function or a vector left argument of a
function:

2 x (3 t 4) Group right argument.
(2 3) x 4 Group vector left argument.

F~mctinn e\-pressions in purentheses
Parentheses in function expressions are redundant if they
group the left operand of an operator:

(+ . x) / Group left operand.

Parentheses around a function expression are redundant if
the left parenthesis does not separate two arrays:

A (+ . x) B Group function expression.

However, the following parentheses are not redundant
because the left parenthesis separates arrays:

A (B /) C Nonredundant parentheses.

Opuutor expressions in parentheses
It is not possible to write an operator expression that uses
nonredundant parentheses. Even in an operator expression
involving brackets, parentheses are redundant. (Brackets are
discussed separately.) Thus, in any syntactically valid
operator expression, parentheses are redundant.

Valueless expressions in parentheses
A valueless expression may not be a subexpression (that is,
may not be within parentheses). Writing a valueless
expression in parentheses results in a V A L U E ERROR.

Brackets are a special syntactic construction for writing lists
of arrays for use in indexing and axis specifications. They are
correct if correctly paired and if what is inside is one of the
following:

Nothing c 1
An array expression 1 1 c 2+ 2 1
More than one of the above separated by semicolons c ; 1
C 1 ; I C 1 ; 2 3 4 1

Brackets are used for two different purposes: indexing and
axis specification. In each case evaluating a bracket
expression is a substitution in that brackets to the right of an
array (indexing) produce an array, and brackets to the right
of a function or operator (axis specification) yield a function
or operator, respectively.

Indesing
Brackets indicate an indexing function when written to the
right of an array expression (a single name or an expression
in parentheses):

A C 2 1
(matrix expression) C 3 ; 1

Such constructions are always syntactically correct, but
there are domain restrictions implied by the semantics of
brackets. Namely, the rank of the array indexed must equal
1 plus the number of semicolons inside the brackets. The
consequences of this are that brackets cannot be used to
index a scalar and cannot be used to the right of an
expression that at different times produces an array of
different rank.

A.xi,s spec'ijcution
Brackets indicate an axis specification when written to the
right of a function or operator expression (a single name or
an expression in parentheses):

4c11

IBM J. RES DEVELOP, VOL. 29 NO. I JANUARY I985 J

43

AMES A. BROWN

The brackets are considered to be a notation for writing an
operation related to the one on its left. It cannot be
considered an operator because the definition of the related
function cannot be expressed, in a uniform way, in terms of
the original function.

Writing the brackets next to a function or operator is
always syntactically correct, but evaluation of the related
function or operator succeeds only under specific conditions.
An A X I S ERROR is generated when the conditions are
not met. The conditions are as follows:

The bracket expression must contain no semicolons.
If the related function is used monadically, the original

If the related function is used dyadically, the original

If the related operator is monadic, the original operator

function must be one of 3 c , $e.

function must be one of $e, f $. and the scalar functions.

must be one of / \ t f .

The primitive functions mentioned above may be written
as primitive symbols or as user names having the primitive
operation as value (because of parameter substitution in a
defined operator).

Here are examples of incorrect axis specifications:

2 + [2 ; 3 1 A semicolons in brackets
I I: 3 1 A and p .. C 1 3 A I and not allowed

The reason why the brackets are not treated as applying to
the derived function p .' is presented in the next section.

Evaluation of the related function could yield many error
conditions including A X I S ERROR for other reasons. For
example,

$ E 5 1 2 3 4

is allowed by the conditions but gives an A X I S ERROR
because 5 does not indicate an axis of the argument array.

..

Binding strenglh
Brackets are not an array, a function, or an operator. They
are treated as members of a special syntactic class. We must,
therefore, make an individual assessment of where they fall
in the binding hierarchy. The following example shows that
there is a choice. Let DOP be a dyadic operator:

+ D O P $ C11

If right operand binding is higher than bracket binding,
this must mean

(+DoPo) c11
which gives an A X I S ERROR because the rules do not
include any valid use of brackets with a derived function. I f
bracket binding is higher than right operand binding, this
must mean

which is a legal function expression. Neither choice is more
formally correct. The second option lets us write a useful
expression without parentheses and is the option chosen in
A P L 2. As usual, parentheses may be used to delay binding,
but no useful expression can be so produced.

If brackets have stronger binding than right operands then,
if we are to maintain the simple linear hierarchy, their
binding is stronger than any other binding yet discussed,
giving the following hierarchy:

Binding strength
brackets
right operand
vector
left operand
left argument
right argument

This implies that in the expression

+ / C l l A

the brackets bind to the operator / producing a new
monadic operator which binds to + as its left operand.

A useful way to phrase the binding strength of brackets is
to say that "Brackets are tightly bound to the object on their
left." For example,

A + . x C 2 1 B

expresses an inner product with operands + and x [2 1. If
A, B , and C are vector arrays, then

A C 1 1 B C 2 1 C C 3 1

expresses the three-item vector whose first item is A c 1 1,
whose second item is B [2 1 , and whose third item is
cc31.

A B C C 2 1

is a three-item vector whose first item is A , whose second
item is B , and whose third item is C [2 1. Substituting
scalar integers for A , B , and C in the above example shows
that

2 3 4 C 2 1 +-+ 2 3 (4 C 2 1)

which is a RANK ERROR. Such constant vectors are
viewed as expressions containing the names of three scalars.
This is different from A PL 1. Indexing of a constant
numeric vector requires parentheses. [Note that) MCO PY
(Migration COPY) and) I N make this change in defined
functions migrated from A P L 1 [8].]

The practical effect of this placement of brackets in the
hierarchy is that brackets become syntactically transparent.
Whenever brackets are seen in an expression (for indexing or

JAMES A. BROWN IBM J. RES. DEVELOP. VOL 29 NO. I JANUARY 1985

axis specification), they bind tightly to whatever is on the left
and the combination may be immediately evaluated and
replaced by the computed value from the same class. This is
why brackets and their contents may be treated as a single
syntax class. Parentheses around brackets and the object to
their left do not delay any bindings and are always
redundant.

Brackets, which have always been an exceptional case in
A P L 1 (sometimes described as a function and sometimes
as an operator), are now regularized and explained.

7. Other special symbols
A P L 2 includes the use of several special symbols that do
not represent arrays, functions, or operators. These are
parentheses, brackets, semicolons, right and left arrows, and
jot. Parentheses, brackets, and semicolons have been treated
previously.

Assignment
The assignment arrow (+) is the only syntactic construction
for associating names with arrays. There are two kinds of
assignment: one which associates a name (perhaps with no
value) with an arbitrary array (direcf assignment); and one
which merges an array into indicated positions in another
array already associated with a name (selective assignment).
In each case one parameter is an array and the other is either
a name or positions in a named array. Therefore the
assignment arrow can be neither a function nor an operator
(since these operate on values, not names). The assignment
arrow is in a separate syntactic class.

The name whose value is replaced or modified must be a
constructed name having no value or having an array value.
This, in particular, excludes names of niladic defined
functions which are otherwise treated syntactically as arrays.

Assignment syntax
To fit assignment into the binding hierarchy, we must
consider the relative strengths with which a left arrow binds
with what is on its left and what is on its right. A P L 1
answers both these questions.

Consider the expression

A+2+3

Clearly, left argument binding must be stronger than
assignment right binding so that the addition is done before
the assignment. Assignment right binding must therefore be
placed either just above or just below right argument
binding. Because the left arrow cannot be a function, the
order is immaterial. We therefore elect to place assignment
right binding as lowest, giving the following binding
hierarchy:

Binding strength
brackets
right operand
vector
left operand
left argument
right argument
assignment right

A P L 1 only helps a little in determining assignment left
binding. The expression

2+A+3

shows that assignment left binding is stronger than right
argument binding. Because A P L 1 did not have operators
with array operands, we may choose how much stronger
than right argument binding it is.

operator with array right operand:

+ DOP A 4 3

If right operand binding is stronger than assignment left
binding, then this means

(+ D O P A) 4 3

which is an error. If instead assignment left binding is
stronger than right operand binding, this means

Consider the following expression, where D 0 P is a dyadic

+ DOP (A 4 3)

which is a legal function expression. This is the choice made
in A P L 2 , giving the hierarchy

Binding strength
brackets
assignment left
right operand
vector
left operand
left argument
right argument
assignment right

(Because brackets do not bind on the right at all, assignment
left could have been put at the top.)

This choice of assignment left binding has the practical
effect of tight binding a left arrow to the thing on its left.
Thus an assignment can always be immediately evaluated
and replaced by its value (which is always the array on its
right), making assignments syntactically transparent.

Assignment result
While assignment is not treated like a function, it may be
thought of as a function whose explicit result is the value of
its right argument. Alternatively it may be considered 45

JAMES A. BROWN IBM J RES DEVELOP. VOL. 29 NO. I JANUARY 1985

syntactically transparent in the sense that after the
assignment is complete, the arrow and whatever is bound to
it on the left are removed from the expression, leaving the
right argument array as value. In either case, after the
assignment, a value is left and is considered the explicit
result of the assignment. This may then be used in further
computation.

expressions and the value that is computed:

Expression Value after execution
A4-3 3

Here are some examples of assignments in value

(A4-3 1 3
(’44-2) , (B 4 - 3) 2 3

(’44-2) (€34-4) 2 4
2+A+l 3

The following rule determines when the value of an
expression should be displayed:

If the last syntactical action in a value expression is an
assignment, the final array value of the expression is
not displayed. If any binding occurs after the last
assignment, or if there is no assignment, the final array
value is displayed.

Here are executions of the above examples using this rule:

A4-3

(A t 3 1
no display-last action is assignment

no display-last action is assignment
parentheses are redundant

(A 4 - 2) , (B 4 - 3)
2 3 display-last action is binding of 2 and 3 to

catenate (followed by execution)
2+A+l
3 display-last action is binding of 2 and 1 to

plus (followed by execution)
(A 4 - 2) (B 4 - 4)
2 4 display-last action is binding 2 to 4

(no function executed)

Branch and escape
The right arrow, when used to control sequencing in a
defined operation or when used to resume execution, is
called branch. It is syntactically like a function and so does

considered a function semantically and in particular cannot
be the operand of an operator. Its only purpose is the
determination of the next line to be executed.

When the right arrow is used without a right argument, it
is called escupe, and it must be the only symbol in the
expression. Syntax is not a question because nothing is next
to it.

Jot
The jot symbol “ 0 ” is used as a special symbol to distinguish
between the two derived functions of the array product
operator dot (.). If the left operand of matrix product is a
function (F . G), the derived function is inner product. If the
left operand of matrix product is jot (0 . G), the derived
function is outer product. Inner product (F . G) takes two
functions as operands. Outer product (0 . G) takes one
function as operand, and the jot is a place holder for the
other operand. Its use is not exploited or extended beyond
its use in A P L 1 .

Strictly speaking, jot is in its own syntactic class.
Syntactically, however, it is treated as a function when it is
used in the context of ouler product and so does not
influence the binding hierarchy. It cannot be used as an
operand to other operators, but expanding its use would
introduce no formal problems.

The preceding derivation of the rules of A P L 2 syntax can
be summarized in a few pages (see the Appendix). The
derivation of the rules is seen as the orderly investigation of
the usefulness of written expressions as influenced by a few
general principles. Binding gives one concept that ties
together the concepts of order of execution, precedence of
operators over functions, use of parentheses, etc. The
principles can be phrased in terms of a few simple rules that
are easy to apply in practice, with the general rule always
ready to mediate any apparent ambiguities.

In addition to providing a simplified view of A P L 2
syntax, the principles give a framework under which other
extensions to A P L 2 can be considered.

, - . . < .

The definition of ’4 P L 2 evolved over a fifteen-year period
during which many people contributed thoughts and
suggestions. Most notably I wish to thank Garth Foster, who
was my advisor when many of these ideas were forming;

not influence the binding hierarchy. It fails to be a function Trenchard More, whose work prompted the use of vector
in the strict sense because it does not have an explicit result notation in A P L 2 ; Adin Falkoff, who together with Ken
and is not ambi-valent (dyadic use gives S Y N T A X lverson developed the syntax for operators and generally
ERROR). It can therefore only be used in a valueless supported the project for over a decade; and Phil Benkard,
expression. The execute function (2) and user-defined who promoted the concept of binding. “The Principles of
operations may also fail to return an explicit result but are A P L 2” [3] contains a list of many other people who

46 nonetheless still considered functions. Branch is not contributed to the definition and implementation of A P L 2.

JAMES A. BROWN IBM J RES. DEVELOP. VOL. 29 NO. I JANUARY 1985

I(-:. p ~ r ~ ~ ~ ~ ~ r ~ i y : ”^’. sk~r:t’>*x~r” + ‘ -’ ’,. , 1 s ‘:

Ohicct clu.s.sr.s There are three classes of objects:

arrays
functions
operators

Flrnction vulrnccl All functions are ambi-valent (both
valences) and the one written in any instance is determined
only by context.

Opcrutor ldenco Operators have fixed valence. A given
operator is either monadic or dyadic, determined by
definition, not context.

S!wtu.\- c-luxses There are six syntax classes:

arrays
functions
monadic operators
dyadic operators
assignment arrow
brackets

Purcwthesc~s rllk Parentheses are used for grouping. They
are correct if properly paired and if what is inside evaluates
to an array. a function, or an operator.

Rcdlmdant purentheses Correct parentheses that do not
alter any bindings are redundant:

general
- group a single name (primitive or constructed)
- group an expression in parentheses

- do not both group and separate
- group right argument of a function
- group vector left argument of a function

- group left operand of an operator
- group function expression and left parenthesis does not

array expressions

function expressions

separate two arrays
bracket expressions
- group brackets and object to the left

E.vpres.sion A linear string of names and symbols, taken
from the six syntax classes, punctuated with parentheses.

Right t o IC$ r d e In an unparenthesized expression without
operators. functions are evaluated from right to left.

Flrnction precedence. Functions in an expression have no
precedence. The order of execution depends only on position
in the expression.

Rol*riting rule,/Or ckuructer vectors If a vector in
parentheses is made up entirely of single characters, it may
be rewritten with a single pair of enclosing quotes.

Pvinring resulrs If the last syntactical action in a value
expression is an assignment, the final array value of the
expression is not printed. If any binding occurs after the last
assignment, or if there is no assignment, the final array value
is printed.

Binding hierarchy

brackets
assignment left
right operand
vector
left operand
left argument
right argument
assignment right

brackets binding of brackets to what is on the

assignment left binding of a left arrow to what is on

right operand binding of a dyadic operator to its

vector binding of an array to an array
left operand binding of an operator to what is on

left argument binding a function to its left argument
right argument binding of a function to its right

argument
assignment right binding of a left arrow to what is on

its right

left

its left

operand on the right

its left

Brackets and monadic operators have no binding strength on
the right.
Right arrow is syntactically a function that produces no
value.
Niladic functions are syntactically arrays.

J . A. Brown, “A Generalization of A PL,” Doctoral Thesis, Dept.
of Computing and Information Science. Syracuse University,
Syracuse. New York. 197 I .
T. More. “Notes on the Development of a Theory of Arrays,”
1B.V Pl~rludelphia Screntific Center Report 320-3016, May 1973.
J. A. Brown, “The Principles of A P L 2,” IBM Santa Teresa
Tc.clmical Reporr TR 03-247, March 1984.
R. W. Floyd. “Syntactic Analysis and Operator Precedence,” J.
,4C“Z.I 10, No. 3, 316-333 (1963).
V. R . Pratt, “Top Down Operator Precedence,” Conference
Record. ACM Symposium on Principles of Programming
Languages, 1973.
J. D. Bunda and J . A. Gerth. “ A P L Two by Two-Syntax
Analysis by Pairwise Reduction.” Proceedrngs q f A PL84,
Helsinki. Finland. 1984. pp. 85-94.

1 .

2.

3.

4.

5 .

6.

47

JAMES A. BROWN IBM J B LES. DEVELOP VOL. 29 NO I JANUARY 1985

7. J. P. Benkard. “Valence and Precedence in A P L Extensions.”

8. A P L 2 Programmlng: Language Reference. Order No. SH20-

9. A P L 2 Installed User Program: Language Manual. Order NO.

A P L Q ~ r e Q~tud 13, NO. 3. 233-242 (1983).

9227. 1984: available through IBM branch offices.

SB21-3015. 1982; available through IBM branch offices.

The following are general references to A P L 2 and A P L extensions.
A P L 2 General Information, Order No. GH20-9214, 1984; available
through IBM branch offices.
A P L 2 Migrarion Guide, Order No. GH20-9215, 1984 available
through IBM branch offices.
A P L 2 Programming: System Services Reference, Order No. SH20-
9218. 1984: available through IBM branch offices.
A P L 2 Programming: Using Structured Query Language (SQL),
Order No. SH20-92 17, 1984: available through IBM branch offices.
J. A. Brown, “Evaluating Extensions to A PL,” A P L Quote Quad 9,
No. 4. Part I , 148-155 (June 1979).
J. A. Brown, “ A P L Syntax-Is it Really Right to Left,” A P L Quote

A. D. Falkoff and K. E. Iverson. “ A P L \360 User’s Manual.” Order
No. FH20-0683-1. 1970: available through IBM branch offices.
A. D. Falkoff. K. E. Iverson. and E. H. Sussenguth, “A Formal
Description of SYSTEM/360,” IBM Sysf. J. 3, Nos. 2/3, 198-263
(1964).
Ziad Ghandour and Jorge Mezei, “General Arrays, Operators and
Functions,” IBM J. Res. Develop. 17, No. 4, 335-352 (1973).
K. E. Iverson. “Operators and Functions.” Research Report RC-
70Y1, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY. 1978.
K. E. Iverson. A Programming Language, John Wiley & Sons, Inc.,
New York, 1962.
R. H. Lathwell and J . E. Mezei, “A Formal Description of A PL,”
Colloque A P L , Institut de Recherche d’lnformatique et
d’Automatique, Rocquencourt, France, 197 I .
T. More, “Notes on the Axioms for a Theory of Arrays.” IBM
Philadelphia Scienttfrc Center Report 320-301 7. May 1973.
Trenchard More, Jr., “Axioms and Theorems for a Theory of
Arrays,” IBM J . Res. Develop. 17, No. 2, 135-175 (1973).
T. More, “A Theory of Arrays with Applications to Databases,” IBM
Cambridge Scient& Center Report G320-2107, September 1975.
T. More, “Types and Prototypes in a Theory of Arrays,” IBM
Cambridge Scientific Center Report G320-2112, May 1976.
T. More. “On the Composition of Array-Theoretic Operations,”
IBM Cambridge Scientific Center Report G320-2113, May 1976.
T. More, “Notes on the Diagrams, Logic, and Operations of Array
Theory,” IBM Cambridge Scientific Center Report G320-2137,
September 198 I .

@tad 13, NO. 3, 219-221 (1983).

Received April 13. 1984: revised .hnQ 4. 1984

40

JAMES A BROWN

IBM General Products Division. P.O. Bo.\-
50020. Sun Jose . Cu/i/imia 95150. Dr. Brown graduated from
Syracuse University, New York. in 1971 with a Ph.D. in computer
and engineering science. He then joined the A P L design group at
IBM Research in Yorktown Heights, New York. He also worked at
the Philadelphia Scientific Center, at the Palo Alto Development
Center. and then at the Santa Teresa laboratory. Dr. Brown is
currently manager of A P L language development at the Santa
Teresa laboratory. He is language editor for the A P L Q w t e Quad.
The recently announced A P L 2 program product is based on his
doctoral thesis, “A Generalization of A P L 2 .”

IBM J . RES. DEVELOP. VOL 29 NO. I J ANUARY I 985

