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van  der  Waals  interactions  between isolated 
magnetic  spheres  which  are  coated  with  an inert 
material  and  immersed in an  aqueous  electrolyte 
solution  are  obtained  and used to  study  the 
stability of a colloid of spheres in an  electrolyte. 
Use is made  of a  simplified  version  of  the  theory 
of colloid stability of  Derjaguin,  Landau,  Verwey, 
and  Overbeek. We find that  the colloidal 
dispersion  becomes  more  stable as 1) the 
electrolyte  concentration is decreased, 2) the 
radius of the  magnetic  spheres is decreased,  or 
3) the  thickness  of  the inert layer is increased. In 
order  to  obtain stability with  uncoated  spheres, 
the  spheres  should  have radii of  about 5 nm. 
Such radii are typical of ferrofluids. 

consisting  of two  components:  an attractive London-van  der 
Waals energy, W,,, arising  from the  induced dipole-dipole 
interactions between neutral particles, and a repulsive 
interaction, WE,, arising from  the overlapping  of the electric 
double layers in the intervening electrolyte. Assuming that 
these two components  are  independent,  the  total  interaction 
free energy, V, could be expressed as 

For the specific case of  magnetic colloids, we have 
extended the  DLVO theory of colloidal stability to  include 
an  additive attractive  magnetic  dipole-dipole interaction, 
VM,; viz., in the presence of induced or permanent 
magnetic  dipoles, the total  interaction free energy  of the  two 
particles is assumed to be 

1.  introduction v = v,, + v"dw + v". (2) 
A considerable advance in the  understanding of colloidal 
systems was achieved with the  Dejaguin-Landau-Venvey- 
Overbeek (DLVO) theory of the interaction of two colloidal 
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Two criteria of the  DLVO theory  for  stability are  that  the 
potential as a function  of  the  distance of  separation of the 
two  particles  should  have  a maximum which is  considerably 

latter  ensures that kinetic  energy due  to  thermal  motion of 

free  without  further permission by computer-based and other 
information-service systems. Permission to republish any  other 
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In our  approach,  the particles are encapsulated  within  a 
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The magnetic  interaclion 
Because of the spherical shape of the magnetic particles, we 
may  consider them  to be point dipoles of magnetic moment 
p = 4ra3m/3, where m is the magnetic moment per unit 
volume  of Fe,O,. Thus, for a given orientation p , ,  p, of the 
dipoles, the pair  interaction is 

u(r) = - D( 1, 2), 
r 
F2 

(3) 

- I  
I C ” - - - - - - r  4 

I Geometry used in the integration to obtain f,,. 
~ ~ ~ ~~~~~ 

as  a  steric  barrier which reduces the magnetic attraction 
between the particles and results in  a  considerable 
improvement in the stability of the dispersion. Our objective 
in this  paper is to  incorporate  the magnetic  dipole-dipole 
interaction into  the DLVO theory and assess its effect upon 
the stability of  magnetic particles. We examine  the 
interaction free energy for two charged magnetic particles as 
a  function  of 1 )  salt concentration, 2) particle size, and 3) 
thickness of the inert  coating. 

2. Calculation of the interaction between a pair 
of colloidal particles 
We consider the colloidal suspension to consist of  spheres of 
radius h in  a monovalent  aqueous electrolyte  solution. The 
ions  are  approximated  as  point charges  whose  charge is f e  
and  the solvent is approximated as a  uniform  dielectric 
medium whose dielectric constant E = 78.5. The spheres are 
considered to be spheres of Fe,O, of  radius a coated with a 
uniform layer of an inert  material  of  thickness b - a, and 
their surfaces are taken to be separated by a  distance H (see 
Figure 1). We assume  that  the  concentration of colloidal 
particles is sufficiently dilute that we need to consider  only 
the interaction between pairs of colloidal particles. 

where 

D(I, 2) = 3(L1 . i)(ji2 . f )  - i ,  . L, (4) 

and r is the distance beteen the dipoles. The caret indicates 
that  the vectors are unit vectors. 

The effective magnetic  interaction is obtained by averaging 
u(r) over all orientations of the colloidal particles. Thus, 

ptIMa8(r) = -In ( 5 )  

where = l /kT ( k  is Boltzmann’s constant  and Tis  the 
temperature), 

x sin B,dB,d4, sin 82d82d42 . (6)  

Choosing the  coordinate system so that i = (sin B,, 0, cos B,), 
ji, = (0, 0, I) ,  b, = (sin 8, cos &2, sin B2 sin &2, cos B,), we 
have [ 2 ,  31 

D( I ,  2 )  = 3 cos2 8 ,  cos 8, 

+ 3 sin B ,  cos 8 ,  sin 8, cos &, - cos B2 

1 3 
2 2 = - COS B 2  + - COS a, (7)  

where 

cos a = cos 28, sin 8, + sin 2B1 sin 8, cos 4,. (8) 

Hence, 

ePu(r) - exLX1.2) - xmSe2/2 3xcosal2 - - e  e 

= (2n + lli,($Pn(cos 0,) 
?I= I 

where x = pp2/r3,  i, and P, are  the modified spherical Bessel 
functions  and  the Legendre polynomials, respectively [4]. 
Now [ 5 ]  

P,(COS a )  

and so 
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x $' Pn(cos 8,) P>(cos 8,) sin 8,d02 

The integrals over 4, and 4, give 27r and 27r6.,, respectively. 
The integral over 8, then gives 2hm,/(2n + I ) ,  where dm, is 
the  Kronecker delta. Thus, 

X 1' P,(cos 28,) sin 8,d8, . 1 
Since 

COS 28, = cos 8, cos 8 ,  + sin 8,  sin 8, cos T ,  

we may write [SI 

Therefore, 

where we have used 
n 

(-1)" = (-1)". 
v=-n 

Hence, 

I =  1 + - x  + - x  +- 1 2  1 4  29 6 

3 25 11025 x + ". 

1 and 

and if x = Pp2/r3 is large, 

IBM J .  RES. DEVELOP. VOL. 29 NO. I JANUARY 1985 

and 

For practical applications,  it is desirable to have  a  simple 
analytic expression for the magnetic  interaction that  does 
not involve  infinite sums of Bessel functions. We have 
constructed an analytical  interpolation formula, based on 
Eqs. (19) and (21), whose error is less than +0.75% for all 
positive values of x. Our expression is 

-2x + 1n(6x2) - - - '1 (22) 
2 
3x 9x2 ' 

where the "switching" function, 

is simply  a mathematical device to  connect  the large and 
small x expansions  for VM,. The coefficients In 2 and 2.4 
were chosen so that  S(2.4) = 1/2 and  the power 8 was 
chosen to  minimize  the  error.  The value x = 2.4 was chosen 
because at this point,  the  errors  in  the large and small x 
expansions were approximately equal. 

expression for the orientation-averaged interaction between 
magnetic particles: 

Recently,  Scholten and  Tjaden [6]  proposed the following 

In view of the relation 

we can see that U,, is an average interaction energy, whereas 
VMe is an  averagefree energy. The latter is the  appropriate 
quantity for Eq. (2) since both V,, and Vvdw are  alsofree 
energies. It is the total free energy which determines  the 
stability of colloidal systems. 

factor  of 2, Le., 
For weak interactions, 13p2/r3 < 1 ,  U,, and VMag differ by a 

U J r )  = -- 
3r6 ' 

while in  the  strong interaction  limit, pp2/r3 > 1, U,, and 
VM, become  equal, viz., 
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Our expansion and  that of  Scholten and  Tjaden differ in 
another respect. They use p p 2 / r 3  as an expansion  parameter. 
Our expansion involves modified spherical Bessel functions 
and is equivalent to theirs but is computationally  more 
convenient when Pp2/r3 is large. 

The electrostatic interaction 
The colloidal particles  carry  a  net charge, and since the 
particles are  immersed in an electrolyte solution, there will 
on average be an excess of ions of the opposite  charge 
around  the colloidal particles which tend  to screen the 
charges on  the particles. The electrostatic  potential on  the 
surface  of the particles  when the spheres are far apart is 
taken  to be GS relative to  the bulk electrolyte. 

The electric double layer interaction arises when the 
counter  ion clouds around a  pair  of  particles overlap. For 
identical particles, this interaction results in  a  repulsion 
between the particles which varies with particle  separation. 

We consider  a 1: I electrolyte  in which the  ions  are treated 
as  point charges  in  a  solvent which is modeled  as  a  dielectric 
continuum of  dielectric constant E. The electrostatic 
potential is taken to be given by the Poisson-Boltzmann 
equation [ 11, which reads 

v26* = K2Sinh6*, (29) 

where 6* = @e@ is the dimensionless  potential. The Debye 
screening length of the electrolyte K - I  is given by 

K = (8ane2P/~)”~, (30) 

where n is the  concentration  (number/volume) of ions of 
either species in the electrolyte. 

To  determine VEl,  it is necessary to solve (numerically) 
Eq.  (29)  for the two-sphere  geometry.  However, we employ a 
simple  analytic approximation for VEI which is valid for large 
separations [7 ] :  

where 

H = r - 2a, 

and 6: = Pe6, is the dimensionless surface potential. 
Equation ( 3  1 )  is strictly only valid for K H  2 1. For 
K H  < 1, it  overestimates the electric double layer repulsion 
by about 10-15%, which does  not affect our results 

14 appreciably. 

The van der Waals interaction 
We now obtain  the van der Waals  interaction between two 
composite spheres which consist of an  inner sphere of radius 
a coated with a layer of a different material of thickness 
h - a using a  Hamaker-type approach. I f  the van der Waals 
interaction between two phases (one of radius a, and 
material i and  the  other of  radius a, and material j )  is 
assumed to be 

where A,, is the  Hamaker  constant for the i-j interaction,  the 
van der Waals  interaction between the two  composite 
spheres is, by superposition, 

where the subscripts 1 and 2  in A ,  denote  the material  in the 
outer layer and  inner sphere, respectively. Gathering like 
terms, we obtain 

where 

The  functionf(a, r, 6) is given by 

f lu ,  r, h) = 7 s R-6dVadVb 
1 

a 

= - s IbdVa, 
1 

7r2 

where 

Ib = s K 6 d V b .  

Refemng  to Fig. I ,  we see that 

= -  7r 
[z-‘ - (h2 - r2 + 2rz)”Idz 

Thus. 

(37)  

(39) 
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,+o 

= 8 b3 6, dz 

r+a 

= b3 1, [ (z2 - h2)-’ 2 

- (a2 - h2 - r2 + 2 r ~ ) - ~ )  dz 

= .! {h[  2 +  
a + b  

3 r2 - (a  + h) r2 - (a  - b)’ a - b  1 
1 r2 - ( a +  bf 

+ 2 l n  [ I 2  - (a  - b f ]  

1 - 
( r  - af - O 2  ( r  + a? - b2 

Equation (41) can be shown to be symmetric  in a and b. 

is small compared  to  the  other interactions. However, it is 
large at small  separations,  since  when H << a, b, r, 

For  most values of H = r - 26, the van der Waals energy 

We evaluate VMag, VEI, and VvdW using Eqs. (17), (31)-(33), 
(36), and  (41).  For  Fe203, we use rn = I10 S.I. (350 
emu/cm3). We have  chosen the surface  potential & of  two 
coated Fe,03 particles at infinite  separation to  be 50 mV. To 
obtain the  Hamaker constants, A,, A,,, A,,, for  coated 
Fe,O, in water, we use the Lifshitz [8] expression for the 
nonretarded van der Waals interaction. Typical values which 
we obtain  are 

A ,  = Fe20, I inert layer I Fe,O, 

= 3.73 X J, (43) 

A,, = H 2 0  I inert layer I Fe,O, 

= -2.89 X J, (44) 

and 

,4,, = inert layer I H 2 0  I inert layer 

= 7.71 X J .  (45) 

The values for A ,  and A,, are those appropriate for a-Fe203 
in water, rather than y-Fe,O,, which is used in magnetic 
coatings. We were unable  to find any refractive index data 
for y-Fe203. We expect  the values of A ,  and A,, for y-Fe,03 
in water to be similar to those given above. 

In Figure 2, values for V/kT, where Vis  the total  predicted 
interaction free energy between two isolated spherical colloid 

particles  in  this  model  magnetic  coating, are plotted for 
various  conditions. In Fig. 2(a) the spherical particles are 
assumed to be 50 nm in radius and  to be coated with inert 
layers of  various thicknesses. The colloidal suspension 
becomes more stable as  the thickness is increased.  Similarly, 
as is seen in Fig. 2(b), decreasing the radius of the magnetic 
spheres, at  constant thickness of the shell, increases the 
stability of the suspension, as is generally the case in the 
DLVO theory. In Fig. 2(c), we see that lowering the 
concentration of  electrolyte  increases the stability of the 
suspension, as is generally the case in the DLVO theory. In 
fact, for the particle case considered there (20-nm radius), 
changing the electrolyte concentration  in this  model can 
cause the suspension to pass from stability to instability. 
This can be seen from the  appearance of  a broad primary 
maximum of -5  kT in height. 

As in seen in Fig. 2(d) for the smaller  diameters,  as is 
characteristic  of ferrofluids, the analysis indicates that  the 
colloid should be stable  without  a  coating. In fact, for a 5- 
nm radius, the magnetic interaction is small enough  that it 
should not  contribute significantly to  the total  interaction. 
Of  course, the magnetic  interaction would continue  to be an 
important  contributor  to  other properties. 

The analysis  carried out in  this paper provides  a  simple 
quantitative  estimate of the various interactions  that  operate 
between particles in a  magnetic colloidal dispersion. 

In the model which was used, the  three different 
contributions  to  the  total  interaction between coated 
magnetic  particles have very different ranges. The magnetic 
interaction  operates on  the scale of the core, viz., as -(u/r),. 
The scale of the electric double layer interaction is given by 
the Debye length K - ! ,  which in turn  depends  on  the ionic 
strength  of the suspension medium.  The van der Waals 
component scales as  -(b/H)  and is relatively unimportant 
except at very small  separations. 

considered, the magnetic interaction is strongly  attractive. 
Although the magnetic  dipole-dipole interaction, Eq. (3), can 
either be attractive or repulsive depending  on  the relative 
orientation of the dipoles, the  orientational averaging 
process, Eq. ( 3 ,  gives the energetically favorable  (attractive) 
orientations heavy weighting. 

The role of the  nonmagnetic coating is mainly that  of  an 
inert  barrier that  permits  the electric double layer interaction 
to  operate  at larger center-to-center  particle  separations. 

For  the range of  magnetic  particle sizes we have 
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