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Expressions for the magnetic, electrostatic and
van der Waals interactions between isolated
magnetic spheres which are coated with an inert
material and immersed in an aqueous electrolyte
solution are obtained and used to study the
stability of a colloid of spheres in an electrolyte.
Use is made of a simplified version of the theory
of colloid stability of Derjaguin, Landau, Verwey,
and Overbeek. We find that the colloidal
dispersion becomes more stable as 1) the
electrolyte concentration is decreased, 2) the
radius of the magnetic spheres is decreased, or
3) the thickness of the inert layer is increased. In
order to obtain stability with uncoated spheres,
the spheres should have radii of about 5 nm.
Such radii are typical of ferrofluids.

1. Introduction

A considerable advance in the understanding of colloidal
systems was achieved with the Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory of the interaction of two colloidal
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particles [1]. The interaction energy was depicted as
consisting of two components: an attractive London-van der
Waals energy, W, arising from the induced dipole-dipole
interactions between neutral particles, and a repulsive
interaction, Wy, ansing from the overlapping of the electric
double layers in the intervening electrolyte. Assuming that
these two components are independent, the total interaction
free energy, V, could be expressed as

V= Vg + Viw- 0

For the specific case of magnetic colloids, we have
extended the DLVO theory of colloidal stability to include
an additive attractive magnetic dipole-dipole interaction,
Vag> ViZ., in the presence of induced or permanent
magnetic dipoles, the total interaction free energy of the two
particles 1s assumed to be

V=Vy+Vaw+ VMag' )

Two criteria of the DLVO theory for stability are that the
potential as a function of the distance of separation of the
two particles should have a maximum which is considerably
greater than k7 and should have no potential minima deeper
than kT, thus preventing agglomeration of particles. The
latter ensures that kinetic energy due to thermal motion of
the particles is large compared with the depth of the
secondary minimum.
In our approach, the particles are encapsulated within a
nonmagnetic incompressible shell. This inert layer functions 11
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| Geometry used in the integration to obtain /.

as a steric barrier which reduces the magnetic attraction
between the particles and results in a considerable
improvement in the stability of the dispersion. Our objective
in this paper is to incorporate the magnetic dipole-dipole
interaction into the DLVO theory and assess its effect upon
the stability of magnetic particles. We examine the
interaction free energy for two charged magnetic particles as
a function of 1) salt concentration, 2) particle size, and 3)
thickness of the inert coating.

2. Calculation of the interaction between a pair
of colloidal particles

We consider the colloidal suspension to consist of spheres of
radius b in a monovalent aqueous electrolyte solution. The
ions are approximated as point charges whose charge is +e
and the solvent is approximated as a uniform dielectric
medium whose dielectric constant e = 78.5, The spheres are
considered to be spheres of Fe,0, of radius a coated with a
uniform layer of an inert material of thickness # — a, and
their surfaces are taken to be separated by a distance H (see
Figure 1). We assume that the concentration of colloidal
particles is sufficiently dilute that we need to consider only
the interaction between pairs of colloidal particles.
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o The magnetic interaction

Because of the spherical shape of the magnetic particles, we
may consider them to be point dipoles of magnetic moment
u= 41ra3m/3, where m is the magnetic moment per unit
volume of Fe,0,. Thus, for a given orientation g,, u, of the
dipoles, the pair interaction is

2

un = - 5% (1, 2), 3)
r

where

D(1, 2) = 3([‘1 . i')(flz ‘ i") - I:H . [‘2 (4)

and r is the distance beteen the dipoles. The caret indicates
that the vectors are unit vectors.

The effective magnetic interaction is obtained by averaging
u(r) over all orientations of the colloidal particles. Thus,

BV yagT) = —In (&), ()

where 8 = 1/kT (k is Bolizmann’s constant and T is the
temperature),

—Bulr 1
(e77) = —; f exp {82°D(1, 2)/r)
167
X sin 8,d6,de, sin 6,d0,do, . 6)
Choosing the coordinate system so that = (sin 8, 0, cos 6,),

i, =(0,0, 1), &, = (sin 6, cos ¢,, sin §, sin ¢,, cos 6,), we
have [2, 3]

D(1,2)=3 cos’ , cosd,

+ 3sin 8, cos 8, sin 8, cos ¢, — cos b,

= %cos 0, + %cos a, 7
where
cos a = cos 26, sin 6, + sin 26, sin 6, cos ¢, . 8)
Hence,

eﬁu(r) - exD(l,l) - excos&;/2e3xcosa/2
- fx
= I @n+ Dif)Pcost,)
n=1

x ¥ Cm+ l)im(%{)Pm(cos a), 9)
m=0

where x = 6;12/7‘3, i, and P, are the modified spherical Bessel
functions and the Legendre polynomials, respectively [4].
Now [5]

P (cos o)

_ o m= ). ) vos
m T o) P (cos28)) P’ (cos §,)e™, (10)

v=—m

and so
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(&1 = _61__ i (2n + 1)2m + l)1< ) <32X>

X[g (m = vl

mt I)'J(: P’ (cos 26,) sin 8,d8,

y=—p1

X f P (cos 8,) P, (cosb,)sin 6,d0,
0

2x 2x )
X f de, f e’”’d¢2] .
0 0

The integrals over ¢, and ¢, give 2x and 2r4,,, respectively.
The integral over 8, then gives 24,,./(2n + 1), where 5, is
the Kronecker delta. Thus,

xD(12), _ 3x
el Lo

xf P,,(cos201)sin0ld0,}.
(]

(I

(12)

Since
c0s 26, = cosf, cos§, + siné, sind, cos =, (13)

we may write [5]

(n— )

P(cos28) = V_Z—n Y P (cos 8,)P.(cos 8,)e"". (14)
Therefore,
_ oy _ 1 g 3X)
I= (¢ )—2’50(2n+1)1<)<2
(= 1eDt f - .

VE" T |)' 1) ) [P{cos 8,)]" sin 6,d6,

= 3 cof3)uZ) (19

n=0
where we have used
T === (16)
Hence,

3
Vm(r)=—1n{z( i ( )("’;)} (17)
n=0 2)’
Ifx= B;uz/r3 is small,
el L, B
1—1+3x +25x +11025x + .- (18)
and
2
_E LT e 16

Vo) = =3+ 255 % “ggp5 % 0 (19)

and if x = ﬂyz/r3 is large,
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&1 1 1
= — 4 — 4+ ... 20
3x{ 3x 2’ } (20)
and
Vi = =26+ In(63) = = — — + 21)
BMag— X n(6x o (

For practical applications, it is desirable to have a simple
analytic expression for the magnetic interaction that does
not involve infinite sums of Bessel functions. We have
constructed an analytical interpolation formula, based on
Egs. (19) and (21), whose error is less than +0.75% for all
positive values of x. Qur expression is

X
W = —_——
ﬂ Mag S(x) 3 l R 7__X2
150

+ [l = S(x))|{ -2 +1n(62)-3—i (22)

S(x X X x o)
where the “switching” function,
X 8
S(x) = exp [—(an) (2—4> ], (23)

is simply a mathematical device to connect the large and
small x expansions for V. The coefficients [n 2 and 2.4
were chosen so that S(2.4) = 1/2 and the power 8 was
chosen to minimize the error. The value x = 2.4 was chosen
because at this point, the errors in the large and small x
expansions were approximately equal.

Recently, Scholten and Tjaden [6] proposed the following
expression for the orientation-averaged interaction between
magnetic particles:

(€™ u(r))

Uav(r) = (efﬂ“(r)) (24)
In view of the relation

a3
U () = % 18V as (N (25)

we can see that U, is an average interaction energy, whereas
Vag 1S N average free energy. The latter is the appropriate
quantity for Eq. (2) since both V, and V,,,, are also free
energies. It is the total free energy which determines the
stability of colloidal systems

For weak interactions, Su /r <1,U,and ¥,, differ by a
factor of 2, i.e.,

V) =~ (26)
a 3r
2 4
U ~ -2 @7)
3r
while in the strong interaction limit, 8u’/r’ > 1, U,, and
Viag DECOME equal, viz., 13
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2
Uav = VMag = T3 (28)
r
Our expansion and that of Scholten and Tjaden differ in
another respect. They use li;tz/r3 as an gxpansion parameter.
Our expansion involves modified spherical Bessel functions
and is equivalent to theirs but is computationally more

. 2, 3.
convenient when Bu’/r” is large.

& The electrostatic interaction

The colloidal particles carry a net charge, and since the
particles are immersed in an electrolyte solution, there will
on average be an excess of ions of the opposite charge
around the colloidal particles which tend to screen the
charges on the particles. The electrostatic potential on the
surface of the particles when the spheres are far apart is
taken to be ¢, relative to the bulk electrolyte.

The electric double layer interaction arises when the
counter ion clouds around a pair of particles overlap. For
identical particles, this interaction results in a repulsion
between the particles which varies with particle separation.

We constder a 1:1 electrolyte in which the ions are treated
as point charges in a solvent which is modeled as a dielectric
continuum of dielectric constant ¢. The electrostatic
potential is taken to be given by the Poisson-Boltzmann
equation [1], which reads

V2¢* = «*sinh¢*, (29)

where ¢* = Be¢ is the dimensionless potential. The Debye
screening length of the electrolyte «~' is given by

x = (8wne'Ble)"”, (30)
where 7 is the concentration {(number/volume) of ions of
either species in the electrolyte.

To determine Vg, it is necessary to solve (numerically)
Eq. (29) for the two-sphere geometry. However, we employ a
simple analytic approximation for V', which is valid for large
separations [7]:

2 —cH
kT _,a€
Va(r) =« (—e—) a(¢*y’ s 31
where
H=r-2aq, (32
*
v = 8 tanh (¢¥/4) 33)

2ka + 1 2, % 2>
1+ [l a ¥ 1) tanh (¢S/4)]

and ¢35 = Begs is the dimensionless surface potential.
Equation (31) is strictly only valid for kH = 1. For

xH < 1, it overestimates the electric double layer repulsion
by about 10-15%, which does not affect our results
appreciably.
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& The van der Waals interaction

We now obtain the van der Waals interaction between two
composite spheres which consist of an inner sphere of radius
a coated with a layer of a different material of thickness

b — a using a Hamaker-type approach. If the van der Waals
interaction between two phases (one of radius 4; and
material i and the other of radius 4; and material j) is
assumed to be

Vi = —A,la, r, ap), (34)
where 4, is the Hamaker constant for the i-j interaction, the
van der Waals interaction between the two composite
spheres is, by superposition,

View = =4, /b, 1, b) ~ A, fib,r,a) + A,f(b, 1, a)]
+[4, Mla,r,b) = A, fla,r,a) + A, la, 1, a))

_[A21f(aw r, b) - AZlf(a’ r, a) + AZZf(“v r, a)], (35)

where the subscripts | and 2 in 4;; denote the material in the
outer layer and inner sphere, respectively. Gathering like
terms, we obtain

Viaw = —Ap f(b, 1, b) + 24, fla, 1, b) = A, fla,r,a), (36)

where

Ay, = 4,

Ap =4, — 4

A=A, + 4y — 24,,. (37)

The function f{(a, r, b) is given by
fla,r, by = iz f R™°av,dv,
w
! 38
== Lav,, (38)
where

I, = f Rdv,. (39)

Referring to Fig. 1, we see that

r+b JP—(—r?
I, =27 f dz f p(p2 + zz)_adp
r—b 0

r+b
=Z f [z = = +2r) Yz
2 r—b
=Rt - o (40)
Thus,
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P—(z—rp
x f plo” + 2" = b)dp

0
_ 2. er 2 22
=30 5 (@ = b)

—@ =P =7+ 2 d:

=l{[ a+b + a—b ]

3 W ~@+ b’ P -@-b
2 2

+lln[r2—(a+b)2]
rr—(a-b

2
S
rlr-af =0 (r+af-bl)"

Equation (41) can be shown to be symmetric in ¢ and b.

For most values of H = r — 2b, the van der Waals energy
is small compared to the other interactions. However, it is
large at small separations, since when H < q, b, r,

ab 1
6(a+ by H

(41)

fla,r,b) = (42)

We evaluate V.. Vi, and V,, using Egs. (17), (31)-(33),
(36), and (41). For Fe,O,, we use m = 110 S.1. (350
emu/cmB). We have chosen the surface potential ¢4 of two
coated Fe,O, particles at infinite separation to be 50 mV. To
obtain the Hamaker constants, 4,,, A, 4, for coated
Fe,0O, in water, we use the Lifshitz [8] expression for the
nonretarded van der Waals interaction. Typical values which
we obtain are

A4,, = Fe,0,|inert layer | Fe,0O,

-20

=373x 107", (43)
A, = H,O|inert layer|Fe,O,

=-289%x 107", (44)
and
Ay, = inert layer | H,O| inert layer

=771 %107 J. (45)

The values for 4,, and A4, are those appropriate for a-Fe, O,
in water, rather than y-Fe,O,, which is used in magnetic
coatings. We were unable to find any refractive index data
for y-Fe,O,. We expect the values of 4, and 4, for v-Fe,0,
in water to be similar to those given above.

In Figure 2, values for V/kT, where V is the total predicted
interaction free energy between two isolated spherical colloid
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particles in this model magnetic coating, are plotted for
various conditions. In Fig. 2(a) the spherical particles are
assumed to be 50 nm in radius and to be coated with inert
layers of various thicknesses. The colloidal suspension
becomes more stable as the thickness is increased. Similarly,
as is seen in Fig. 2(b), decreasing the radius of the magnetic
spheres, at constant thickness of the shell, increases the
stability of the suspension, as is generally the case in the
DLVO theory. In Fig. 2(c), we see that lowering the
concentration of electrolyte increases the stability of the
suspension, as is generally the case in the DLVO theory. In
fact. for the particle case considered there (20-nm radius),
changing the electrolyte concentration in this model can
cause the suspension to pass from stability to instability.
This can be seen from the appearance of a broad primary
maximum of ~5 kT in height.

As in seen in Fig. 2(d) for the smaller diameters, as is
characteristic of ferrofluids, the analysis indicates that the
colloid should be stable without a coating. In fact, for a 5-
nm radius, the magnetic interaction is small enough that it
should not contribute significantly to the total interaction.
Of course, the magnetic interaction would continue to be an
important contributor to other properties.

The analysis carried out in this paper provides a simple
quantitative estimate of the various interactions that operate
between particles in a magnetic colloidal dispersion.

In the model which was used, the three different
contributions to the total interaction between coated
magnetic particles have very different ranges. The magnetic
interaction operates on the scale of the core, viz., as ~(a/r)3.
The scale of the electric double layer interaction is given by
the Debye length K_f, which in turn depends on the ionic
strength of the suspension medium. The van der Waals
component scales as ~(b/H) and is relatively unimportant
except at very small separations.

For the range of magnetic particle sizes we have
considered, the magnetic interaction is strongly attractive.
Although the magnetic dipole-dipole interaction, Eq. (3), can
either be attractive or repulsive depending on the relative
orientation of the dipoles, the orientational averaging
process, Eq. (5), gives the energetically favorable (attractive)
orientations heavy weighting.

The role of the nonmagnetic coating is mainly that of an
inert barrier that permits the electric double layer interaction
to operate at larger center-to-center particle separations.
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