The dynamical
eqguations
governing a
lubricating film
consisting of a
gas film overlying
a liquid film

by W. E. Langlois

The dynamical equations governing a two-phase
lubricating configuration are derived. It is
assumed that a gas film overlies a liquid film,
both thin enough that the lubrication
approximation may be used. The analysis leads
to coupled Reynolds equations governing the
pressure and the relative thickness of the two
films. The coupling, which is determined by
continuity of tangential stress across the gas-
liquid interface, is considerably simplified if the
shear viscosity of the liquid greatly exceeds that
of the gas.

1. Introduction

Virtually all work on hydrodynamic lubrication deals with
configurations where the load is carried by a single fluid,
which may be either a liquid or a gas. The basic theory is
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encompassed by Reynolds’ lubrication equation, which is
derived from the hydrodynamic equations by using the
thinness of the film, relative to its lateral extent, to provide a
perturbation parameter. Fluid-film bearings may either be
externally pressurized or self-acting. That is, the load-
carrying pressure may be generated ¢ither by pumping fluid
through the bearing or by relative motion of its surfaces.
Both types have been the subject of extensive theoretical and
experimental literatures.

By contrast, there has been almost no work on bearings
that involve multiple-fluid films. An exception is a recent
experimental paper [1] dealing with an externally pressurized
gas bearing whose load-carrying capacity and stiffness are
enhanced by an oil film under the gas layer. However, one
design for computer memory disks that is currently in wide
use involves coating the disk with a film of very viscous
liquid. Although it is exceedingly thin, this film is of a
thickness that is comparable with the air film beneath the
self-acting slider bearing that carries the read-write circuitry.
It is to be expected that the gliding characteristics of the
slider are modified by the presence of a liquid substrate in
place of the conventional rigid driving surface.

The actual situation is even more complicated. For
example, it is not certain that the liquid layer behaves as a
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classical film. However, even the ideal situation of two fluid
layers, gas overlying liquid, appears to lie beyond prior
theoretical investigations.

The present study derives the dynamical equations
governing such a two-phase lubricating configuration. We
assume that the total thickness H of the combined films is a
specified function of time and space. In practice, the
equations derived here may be coupled to the external
dynamics of the slider suspension system, so that / becomes
a dependent variable in a more general problem. We take

H=L+G, (1)

where L and G denote, respectively, the thicknesses of the
liquid and gas films. Since these are related through (1), one
or the other of them is a dependent variable that must be
determined as part of the lubrication problem.

In the next section, we use the lubrication approximation
to examine those relationships which are common to both
phases. More analysis can be carried out in this joint fashion
if we allow for partial slip in both phases and, later, set the
slip coeflicients to zero for the liquid. Since the gas is
bounded from above by a solid and from below by the
liquid, we permit the slip coefficients on the bounding
surfaces to be different.

Section 3 specializes the result to the gas layer, which is
assumed to be formed by an isothermal ideal gas. The
corresponding Reynolds equation extends a result due to
Burgdorfer [2], who dealt with a steady-state gas film with
slip terms corresponding to perfectly diffuse reflection of gas
molecules from both boundaries. Section 4 carries out the
corresponding specialization for the liquid layer. The
coupled Reynolds equations developed in these two sections
govern the film pressure and the thickness L (or,
equivalently, G) as dependent variables. They also involve
the interface velocity. This is determined in Section 5 by
imposing continuity of tangential stress across the interface.
When the shear viscosity of the liquid is much larger than
that of the gas, their ratio can be introduced as a
perturbation parameter, thus simplifying the results
considerably. This reduction is carried out in Section 6.

Under the circumstances described in Section 6, the gas
and liquid flows become substantially decoupled. At least on
short time scales, the gas film can be investigated with the
liguid film regarded as stationary. Nevertheless, the presence
of the liquid still makes a difference if the slip coefficients of
the solid and liquid boundaries are not the same. The
consequence of this is that the Reynolds equation includes
two rather awkward terms that are absent when the slip
coefficients are identical. One of these is qualitatively new, in
that it involves the difference, rather than the sum, of the
lateral surface velocities. Section 7 examines a somewhat
artificial configuration in which the effect of this term is
isolated. Without the differential slip, lubricating pressure in
this configuration would be totally absent.
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2. Dynamical relationships which hold in both
fluid layers
Assume that a thin film of fluid lies between the surfaces

Xy = L(x;, X5, 1),

X, = (X, X5 1) 2
The film thickness 4, defined by

h(xy, Xy 1) = (X, Xy, 1) = (X4, X,, 1), 3)

is assumed positive for all values of x,, x,, ¢. The bounding
surfaces move with local velocity components V,, V;, which
are subject to the kinematic constraints

V, =& /3t + V.0 [ox,,
Vi=3&' jot + VId' [ox,. 4)

In (4) and henceforth, lower-case Latin indices range over
the values 1, 2. Greek indices extend over 1, 2, 3. In either
case, a repeated index denotes summation. When it is
convenient, we shall write z in place of x;. With these
conventions, the continuity equation can be written

ap a(pVi)
— +
at ox;

i

a(pv3)
9z 0,

®

where p is the fluid density and », are the velocity
components. Integrating (5) across the film yields

e

d ’ ) o’ o’
—_ = 4 —_— ——
Y pdz = p(& ){ 3 [”, o, V3:|z= }

e [ o& 9 f «
o) {at + [ui ox, u3]z=d/} B, pv,dz. (6)

Now [v, — »,04¢" /dx], - is the velocity of the fluid normal
to the upper boundary. Hence, it is equal to the component
of that boundary’s motion normal to itself, viz., V'; —

Va7 [8x,. With the second of constraints (4), the first term
in braces on the right side of (6) vanishes. By a similar
observation about the lower boundary, the other term in
braces also vanishes. Thus,

9 &' o
— pdz = —V~f pvdz, (7

ot Jeor %

where V denotes the two-dimensional del operator (9/9x,,
8/dx,) and v denotes (v,, »,). So far this is exact. The next
step 1s to use the equations of motion to express the right
side in terms of available quantities. This will involve the
lubrication approximation, viz., that the film thickness is
small compared with its lateral dimensions.
When fluid inertia is neglected, the velocity components

and pressure within the film are governed by the creeping
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flow equations

op d v, éA

= = +(A+

ax. 9x, (“8 ) ( )axK
v, du I

o, 9%, + A&: + oF,. ®)
In (8), 1 and A denote the first and second viscosity
coefficients, A = dv_/dx, is the dilation and F, are the
components of body force per unit mass. In order to
determine the magnitude of various terms, we normalize
with respect to the following quantities:

B, a typical lateral length of the configuration;
hy, a typical value of the film thickness;

V, a typical value of the lateral surface motion;
w, a typical frequency of the squeeze motion;
#o @ typical value of the viscosity.

The lubrication approximation is that the ratio ¢ = /,/B is
small compared with unity. Since variations across the film
are steep compared with those along it, the normalized
variables are chosen in a way that “stretches” the coordinate
across the film. Following the usual procedure of lubrication
theory, we take

X, = BX,, z=x; = hy{ = eBY, t =T/w,

v,=(wB+ Vu,, v,=hww, A=(w+ V/B)D,

B = pop, = pgA¥,

P = uolw + V/B)e x. ©)

The choice of a pressure scale proportional to ¢~ is standard
in lubrication theory. If, instead, an arbitrary exponent # is
used a priori, a straightforward analysis [3] leads to the result
that n = =2,
Introducing the normalized variables into the « = 3
component of (8) yields
o]

A
oc S leB+v|ar\" ) T B¢ ar

8v du* AN 3
a; ax Da—{} + O().

+ (A* + ﬂ*) — (10)

Thus, to second order in e, the pressure is constant across the
film.

The « = 1, 2 components of (8) become

it_:’.(*"_“_f)+z[i au,
ax, a\" ac) "¢ aX,."aX
aua“

X, 6X

szF,. ]
polwB + V)]’

+(x*+ﬂ*)—+

wB QK ou*

T eB+ VX ot b
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If terms of order ¢ are neglected, this simply equates
(8/9¢)(u*du,/3¢) to dw/dX,. Returning to the physical
variables, we then have

a 1%

3z ( az> .

Since the pressure variation across the film is negligibly
small, the right side of (12) is independent of z. Hence, (12)
is easily integrated if we assume that the viscosity is
independent of z. For fluids with variable viscosity, this is
tantamount to assuming that the temperature is constant
across the film. The argument goes as follows.

In general, viscosity varies with density and temperature.
But there is an equation of state relating pressure, density,
and temperature. Since we have already established that the
pressure is effectively constant across the film, uniform
temperature guarantees uniform density—a fact which we
shall explicitly use in what follows, Thus, unless the viscosity
depends on variables other than density and temperature, its
variation across the film can be neglected.

For the extremely thin films of interest here, the cross-film
temperature variations are indeed negligible. Hence we do

assume that u (and p) are independent of z. Integration of
(12) then yields

(12)

v——< Vp)z +¢,z+ ¢, (13)
2u

where ¢, and ¢, are constants of integration. In the liquid
film, these can be determined by equating the velocities at
z= & and z = &’ to the boundary velocities. In the gas,
matters are more complicated, because in some situations of
practical importance the mean free path of the gas molecules
may be a significant fraction of the film thickness. One must
then deal with partial slip between gas and boundary. In
general, the degree of slip depends in a complicated fashion
upon the geometry and thermodynamics of the situation. An
approximation sometimes used [2] relates » and its z-
derivative to the boundary velocities V = (V,, V,) and

V' = (V], V;) according to

)
W)=V + 2|
0z 2=
F
WLy =V =y 2|, (14)
9z 2=

where A is the mean free path and v, v’ are dimensionless
constants whose values depend on the nature of the
interaction between the gas molecules and the bounding
surface. Since we are interested in a gas film that is bounded
at the top by a solid and at the bottom by a liquid, we
cannot assume a priori that v and v’ are equal. However, it
seems possible that, on the molecular scale, both surfaces
will often be coarse-grained enough that the gas molecules
undergo diffuse reflection from each of them. In this case, v
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and v’ are the same, and are, in fact, nearly equal to unity.
So that our results will appear in a form for which this
important special case can easily be discerned, we introduce
the notation

a=(y+v)72,
=072 (15)

Since the mean free path is inversely proportional to the
density, we may write
A= \,p,/p, (16)

where A, is the mean free path at the ambient density o,.
With (15) and (16), the boundary conditions (14) become

(a + B)K, hyp, ov
+ —_—

W)=V P % z=w,
a — P)K, hyp,
Wiy = vr = ST ORpa ) (17)
p 0z i

where the dimensionless parameter K, is the Knudsen
number A, /#,.

Since we are assuming that the density is constant across
the film, the same value of p is used in both of the boundary
conditions (17). No-slip is recovered when the Knudsen
number approaches zero. Hence, conditions (17) apply to
the liquid as well as the gas. Using them to evaluate the
constants of integration in (13) yields

v=—<LVp>(z—sY/)(§¢’ - 2z)
2u

aKnhopa
+ (V' = V)z/h+ V&' [h =V & [h — ———

h V' =V(z— &)~ (& —2)
X {2# VP T T 2aK hupi e }

N BK, hyp./p
h+ 2aK hyp,/p

| 28K
x{[(z—w)-w'—z)+-ﬁ—”°—’ff]ivp

+V - V}. (18)
Thus,
o
f vdz
o
—_ h3 l:l + 6al(rrhopa\ 12(‘6’1(nhopa/p)2 :l
T2 ph B hh + 2aK h,p,/p)
h , BK, hy(p /o)
+§(V+V)+—_———h+2aKnh0pa/p (V' =V) (19)
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Since we have taken the density to be independent of z,
the factor p on the right side of (7) can be taken outside the
integral sign. Substituting (19) into (7) then yields a
generalized Reynolds equation:

6K hop 12(8K. hyp, /o) ] }
N noPa n'‘0Fa
Vo{ph [1 + oh h(h + 2aK,hyp,/p) d
= 6pV-[pA(V + V)] + 12¢ 6((;)th)
AV’ -V
+ lzﬂﬁKnhopaV-[h—:(zaT%ﬁ;]' >

In an isothermal ideal gas, the density is proportional to the
pressure. Thus,

olp, = DD, 21

where p, is the ambient pressure. If we simplify the notation
by defining

o = aK, h,p, = a\,p,,
T = 8K, hop, = BAD,, (22)
the velocity expression {18) becomes
——LV><z-MW -2
v o p /Nty —
+(Vy = V)z/G + V, 2, /G — V. ,/G
{G Vp+VT—V,(Z—£5ﬂ/.)"($Z/T—Z)
g4 YP
Zug p G pG + 20
" ey - -9+ X
pG + 2¢ ! T D
G
X—Vp+V, -V, (23)
2,

where the subscripts 1 and T signify the interface and the top
boundary of the gas film, respectively. The generalized
Reynolds equation (20) becomes

\7{63 [1+@———12’2 v}
p Gp ~ GpGp + 20y *F

a(Gp)
ot

= 6u,V-[Gp(V1 + V)] + 125,
Gp(V; — V)
+ RurV | ——————
w [ Gp + 20 24)

For the important special case in which the two boundary
surfaces have identical slip characteristics, i.e., for r = 0, this
reduces to a time-dependent extension of Burgdorfer’s well-
known result [2] for gas lubrication at spacings nearly as
small as the mean free path.
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The case 7 # 0 is qualitatively different, since the
Reynolds equation then includes a term involving the
difference of the surface velocities.

4. The liquid phase

Since the mean free path in a liquid is virtually zero, the
Knudsen number of the liguid film is negligibly small.
Hence, the general expression (18) for the velocity reduces to

1
v=—GLw§u—ww%—m

+ (Vy = Vo)z/L + Vo ti/L — V, 2, /L, (25)

where the subscript B signifies the bottom of the liquid film.
Also, liquids are almost incompressible, so that we may take
p = p,. Hence, (20) reduces to the familiar Reynolds
equation for a liquid lubricant:

L

)
VA(L'Vp) = 6u,Y [L(V, + V)] + 120,

(26)
This is linear in p but not in L—a distinction which is
important in the present context, because the thickness of
the liquid film depends on the dynamics of the coupled gas-
liquid system. Specifically, once the interface velocity V, has
been eliminated from the problem (next section), the total
gap o/,— &, must be apportioned between L and G in such
a way that the two Reynolds equations (24) and (26), each
subject to the boundary condition of ambient pressure at the
configuration periphery, are compatible with a common
solution for the pressure field.

The last point is, technically, not precise. Because of
interfacial tension, the pressure in the liquid will differ
slightly from that in the gas. However, in the notation of
Section 2, the interface curvature is of order ¢/B, whereas the
pressure is proportional to ¢ ~. Hence the correction is
negligible in the context of the present analysis. If the
coeflicient of interfacial tension is extremely large, the
numerical factor could possibly override this asymptotic
argument, since ¢ never really goes to zero in practice. Since
the value of the interfacial tension doesn’t enter the
dertvation of the two Reynolds equations, the results
obtained so far would still apply, except that p would stand
for different pressures in Sections 3 and 4. The
apportionment of gap between L and G would then take
place in such a way that the difference between these
pressures would be that demanded by interfacial tension.

5. Elimination of the interface velocity

The coupled Reynolds equations (24) and (26), with
appropriate subsidiary conditions, are not yet sufficient to
determine the pressure and film thicknesses, because both
contain the unknown velocity V,. This velocity is
determined by requiring that the tangential tractions that the
two fluids exert on each other be equal and opposite. To the

W. E. LANGLOIS

degree of approximation used in Section 2, this is equivalent
to requiring that udw/dz be continuous at the interface
z = ;. Now, with (25) and (23),

ov L o
= == Bwv -v 27
l‘/az arr ) Vp + J2 (Vl B)’ ( )
and
L4 -G, 271G _
Peoz| .~ 2 1 + 20/pG
V.-V
Be T1— Tt (28)
G 1+ 20/pG

Equating these expressions and solving for V| leads to
1
(Gus + LV, = GV + Ly Vy = 5 (L + G)LGVp

20M

+ [u/(VB ~-V,) - % (L + G)va]

LG 2eM
+——{1+ Vo, 29
P+ 20/G < Gp ) p 29
where the dimensionless quantity A is defined by
L
M e (30)

© Guo+ Ly, + 2u,0/p

If the interfacial tension is great enough to give rise to the
possibility that the gas and liquid pressures differ
significantly, then p in Eqgs. (29) and (30) shouid be
interpreted as the gas pressure, and the right side of (29)
should be augmented by

1 MU 2
<§G+7>Lv(p—m), (31

where p; denotes the pressure in the liquid.

6. Asymptotic results for a very viscous liquid
phase

An important special case arises when the shear viscosity of
the liquid greatly exceeds that of the gas. For this case, we
may write

W= pyl, (32)

with § <« 1. The complicated expression (29) for the
interface velocity then reduces to

L (L + G)
vV, =V +5[—(v V) - Vp
1 B G T B z'ug
20(L/G)XVy — V1) 7LGVp

] + 0. (33)

Gp + 20 w1 (Gp + 20)

Thus, as 8 approaches zero, shearing motions in the liquid
layer become vanishingly small. With (33), the Reynolds
equations (24) and (26) become
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vV.1G? 1+@———12i—]v}
B Gp  Gp(Gp + 20)) ¥

NG,
= 6;4gV-[Gp(VT + V)l + 12;1g —%tp—)
Gp(Vy — V)
+ IZ#ETVI}TI)EU—] + 0(5), (34)
and
3 oL
VA(L'Vp) = 12u, [V-(LVB) + _67:| + O(8). (3%5)

7. A configuration which isolates the effect of
different slip coefficients

Suppose now that the ratio of viscosities is high enough that
the terms of order 6 can be neglected in (34). The only
remaining effect of the liquid 1s through the terms in r,
which result from the difference in slip coeflicients between
the solid and liquid boundaries. Such terms also arise in a
single-phase gas bearing if one of the bounding surfaces
consists of a single crystal or other solid surface which might
be expected to have a significant component of specular
reflection.

For the configuration shown in Figure 1, only those terms
arising from the difference in slip coefficients contribute to
the lubricating pressure. Two identical circular cylinders
rotate with the same angular velocity  and in the same
sense, so that the lateral velocities are equal but opposite,
and there is no squeeze motion. Hence, the lubricating
pressure in the nip between the cylinders vanishes unless
there is asymmetrical slip. In principle, this offers the
experimental possibility of isolating the effect [4]. In practice,
of course, a slight misalignment of the cylinders or a tiny
amount of vibration in their bearings would mask the small
effect one is trying to observe. The purpose of the present
section is to present a relatively simple analysis that offers
some insight, rather than to support an experimental
technique.

In the notation of Fig. 1,

G=hy+2r(1 — V1 = x*}r), (36)
V==V, =Qrv] — )cz/r2 i. 37)

The first two terms on the right side of (34) then vanish.
Hence, there is no lubricating pressure unless 7 differs from
zero. If we assume that the cylinders are long enough that
side leakage may be neglected, (34) reduces to the one-
dimensional equation

d ‘[G » 1277 dp
Gp Gp(Gp + 20) dx

Gpv1 —x/r]

Gp + 20 (38)

= 24 ,ug‘rQr:i; |:

We now normalize (38), choosing #, as the length scale and
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A configuration for which the lubricating pressure vanishes unless
there is differential slip.

P, as the pressure scale. The ambient pressure should be
taken as that obtaining in the region where the lubrication
approximation ceases to be valid. This may be
indistinguishable from the actual atmospheric pressure. In
some parameter ranges, however, there may be enough inlet
and exit flow that p, is somewhat different. Using /1, and the
appropriate p,, we define dimensionless variables X, P,
dimensionless parameters R, A, B, N, and dimensionless
functions H(X), F(P, X), ®(P, X) according to

X= X/ho, P= I)/ho, R = r/hov
A = a/hyp,, B = 1/hyp,, N =24y QR/p,
H(X) = G/hy =1 + 2R(1 ~ 1 — X*/R%)

~1+X/Rfor X <R,

64 125’
HP  HP(HP + 24)|’

HP/(HP + 24).

FP, X)= HP[I + —

(P, X) = (39)
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In passing, we note from (22) that the normalized slip
coefficients may also be written
A=Ka, B=Kp
With (39), the differential Eq. (38) becomes

d Pl _ N TR
[F(P, X) dX}-BNdX[ 1 - X°/R” ®(P, X)),

dX 40)

which has the first integral
F(P, X)Z—; = BNV1 - X*/R* ®(P, X) + C,

where C is a constant of integration. This is equivalent to the
integral equation

* V1 = XYR? (P, X)dX
P=BNJ‘ 1 — X*/R? ®(P, X)
Xo

F(P, X)

S ¢
+C‘£’J FPX)’ 41)
where X, is a second constant of integration.

Far from the nip in either direction, the pressure is
ambient. This supplies subsidiary conditions for the
elimination of C and X, but the phrase “far from the nip”
requires some discussion. If we were to regard this purely as
a boundary value problem for Eq. (40), it would be natural
to require that P = | at the geometrical limits of the
configuration, i.e., at X = x R. However, the lubrication
approximation underlying (40) breaks down for much
smaller values of | X'|. Moreover, one expects that, for
physically realizable parameters, the pressure will be
indistinguishable from ambient for values of | X| that are

0.8L j B | 1 1 1 1 L i 1

2000

The distribution of dimensionless pressure for B=0.05, N=0.5.
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smaller still. Hence, we take

P(xX,) =1, (42)

where | < X,, <« R, the actual value of X, being chosen by
some preliminary numerical experimentatibn. Using (42) in
(41) leads to

X 2,2 _
P(X)=1+ BN L = Xgif;:; -0 dx, (43)
where
V1= XR? ®(P, X)
Q= UX F(P, X) dX]
.
_ "X
. [ f s dX]. (44)

The problem is now in a form suitable for a variant of
Picard iteration, based on (43). The variation is that Q must
be recalculated from (44) at each step of the iteration.

To illustrate, we consider the case of cylinders of radius 2
cm rotating in air at normal conditions (u = 1.8 X 107° Pa-s,
p, = 10° N/m’, A, = 64 nm), with a 200-nm gap between
them. The Knudsen number is then 0.32. Two series of
computations were carried out. In the first, the slip
coeflicients were fixed at arbitrarily chosen but reasonable
values, and the rotation speed was allowed to vary. In the
second series, the effect of asymmetric slip was examined for
a fixed value of rotation speed. In both series, a was set to
0.78125. Thus, for both series,

R=10", N=4524%10"w,

A =025,

The distribution of dimensionless pressure for B=0.05, N=2.5.
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Figure 4
| The distribution of dimensionless pressure for B=0.05, N=4.9.
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The total force (F) per unit axial length, plotted versus the product BN,
Results obtained with B fixed at 0.05 are represented by the solid
curve; those obtained with N fixed at 2.0 are represented by the
circles.
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where « denotes the rotation rates in revolutions per minute.

The numerical integrations in (43) and (44) were carried
out trapezoidally with a uniform AX of 0.5, i.e.,, Ax = 100
nm, and with X, = 2500.

o Results for B fixed and N varying

For this series, 3 was set to 0.15625, so that B = 0.05. The
pressure distribution was calculated for twenty-four different
values of N, ranging from 0.1 up to 4.9. Representative cases
are shown in Figures 2, 3, and 4. For the largest values of N
convergence was quite sluggish, presumably because of the
steep gradients near the nip. To proceed to higher values of
N would require a more sophisticated scheme which
concentrates grid points in the region of small | X]|.

e Results for N fixed and B varying

Varying B is almost the same thing as varying N, but not
quite. The pressure field is strongly influenced by B through
the coefficient BN in Eq. (41), but it is also influenced to
some extent by the appearance of B’ in the dimensionless
function F defined in (39). With N fixed at 2.0, the pressure
distribution was calculated for seven values of B, ranging
from 0.01 to 0.07. The results were qualitatively similar to
those obtained for B = 0.05, with N adjusted to preserve the
same value of BN. For the larger values of B, there were
perceptible quantitative differences. One of these is
illustrated in Figure 5, which plots the net normalized force
generated between the cylinders versus BN. The solid curve
connects the points computed for B = 0.05 with N varying.
The circles were computed with N fixed at 2.0 and B
varying, The point for B = 0.07 lies somewhat above the
curve, the actual difference in ordinates being 0.355.
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