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The dynamical  equations  governing  a  two-phase 
lubricating  configuration are derived.  It is 
assumed that  a gas film overlies a  liquid  film, 
both thin enough  that  the  lubrication 
approximation  may be used. The analysis leads 
to coupled  Reynolds  equations  governing the 
pressure and the relative thickness of the  two 
films. The coupling,  which is determined by 
continuity  of tangential stress across  the gas- 
liquid interface, is considerably  simplified if the 
shear  viscosity of the  liquid greatly exceeds that 
of the  gas. 

1. Introduction 
Virtually all work on  hydrodynamic lubrication  deals with 
configurations where the load is camed by a single fluid, 
which may be either a liquid or a gas. The basic theory is 
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encompassed by Reynolds’  lubrication equation, which is 
derived from  the  hydrodynamic  equations by using the 
thinness of the film, relative to its lateral  extent, to provide  a 
perturbation  parameter. Fluid-film bearings may  either be 
externally pressurized or self-acting. That is, the load- 
carrying pressure may be generated either by pumping fluid 
through the bearing or by relative motion of its surfaces. 
Both types have been the subject of extensive theoretical and 
experimental  literatures. 

By contrast,  there has been almost  no work on bearings 
that involve multiple-fluid films. An exception is a  recent 
experimental  paper [ 11 dealing with an externally pressurized 
gas bearing whose load-carrying  capacity and stiffness are 
enhanced by an oil film under  the gas layer. However, one 
design for computer  memory disks that is currently  in wide 
use involves coating the disk with a film of very viscous 
liquid.  Although it is exceedingly thin, this film is of a 
thickness that is comparable with the  air film beneath the 
self-acting slider bearing that carries the read-write  circuitry. 
It is to be expected that  the gliding characteristics  of the 
slider are modified by the presence of a  liquid  substrate in 
place of the conventional rigid driving  surface. 

example, it is not certain that  the liquid layer behaves as  a 
The actual  situation is even more complicated. For 



classical film. However, even the ideal situation of two fluid 
layers, gas overlying liquid, appears  to lie beyond prior 
theoretical  investigations. 

The present study derives the  dynamical  equations 
governing  such a two-phase  lubricating  configuration. We 
assume  that  the total  thickness H of the  combined films is a 
specified function of time  and space. In practice, the 
equations derived here  may be coupled to  the external 
dynamics of the slider suspension system, so that H becomes 
a dependent variable in a more general problem. We take 

H = L + G ,  (1) 

where L and G denote, respectively, the thicknesses of the 
liquid and gas films. Since these are related through  (l),  one 
or  the  other of them is a dependent variable that  must be 
determined  as  part of the lubrication problem. 

In the next section, we  use the lubrication approximation 
to  examine those  relationships which are  common  to  both 
phases. More analysis can  be  camed  out  in  this  joint fashion 
if  we allow for  partial  slip in  both phases and, later, set the 
slip coefficients to zero for the liquid.  Since the gas is 
bounded  from above by a solid and  from below by the 
liquid, we permit  the slip coefficients on  the  bounding 
surfaces to be different. 

Section 3 specializes the result to  the gas layer, which is 
assumed to be formed by an isothermal ideal gas. The 
corresponding  Reynolds equation extends  a result due  to 
Burgdorfer [2],  who dealt with a steady-state gas film with 
slip terms corresponding to perfectly diffuse reflection of gas 
molecules from  both boundaries.  Section 4 carries out  the 
corresponding  specialization  for the liquid layer. The 
coupled  Reynolds equations developed  in  these two sections 
govern the film pressure and  the thickness L (or, 
equivalently, C) as  dependent variables. They also involve 
the interface velocity. This is determined  in Section 5 by 
imposing continuity of  tangential stress across the interface. 
When  the  shear viscosity of the liquid  is much larger than 
that of the gas, their  ratio  can be introduced  as a 
perturbation  parameter,  thus simplifying the results 
considerably. This reduction is camed  out  in Section 6. 

Under  the circumstances  described in Section 6, the gas 
and liquid flows become  substantially  decoupled. At least on 
short  time scales, the gas film can be investigated with the 
liquid film regarded as stationary. Nevertheless, the presence 
of the liquid still makes a difference if the slip coefficients of 
the solid and liquid boundaries  are  not  the same. The 
consequence of this is that  the Reynolds equation includes 
two rather awkward terms  that  are  absent when the slip 
coefficients are identical. One of  these is qualitatively new, in 
that it involves the difference, rather  than  the  sum, of the 
lateral surface velocities. Section 7 examines  a  somewhat 
artificial configuration  in which the effect of this  term is 
isolated. Without  the differential slip, lubricating  pressure  in 
this  configuration  would be totally  absent. 

2. Dynamical relationships which hold an both 
fluid layers 
Assume that a thin film of fluid lies between the surfaces 

x3 = hf(x,, x,, 0 ,  

xj = "(x,, x,, t).  

The film thickness h, defined by 

is assumed positive for all values of x, ,  x,, t. The  bounding 
surfaces move with local velocity components V., V: , which 
are subject to  the  kinematic  constraints 

In (4) and henceforth, lower-case Latin  indices range over 
the values 1, 2 .  Greek indices extend over 1, 2, 3. In either 
case, a  repeated  index denotes  summation.  When it is 
convenient, we shall write z in place of x3. With these 
conventions, the  continuity  equation  can be written 

where p is the fluid density and U. are  the velocity 
components. Integrating (5) across the film yields 

Now [v, - ~ , a M ' / a x ~ ] ~ = ~ ,  is the velocity of the fluid normal 
to  the  upper  boundary. Hence,  it is equal to  the  component 
of that boundary's motion  normal  to itself, viz., Vi - 
V,!aM'/ax, .  With  the second  of constraints (4), the first term 
in braces on  the right side of (6) vanishes. By a similar 
observation about  the lower boundary,  the  other  term  in 
braces also vanishes. Thus, 

d s " p d z  = -V.&r' pvdz, 
at 

where V denotes  the two-dimensional del  operator (alax,, 
afax,) and v denotes (u,, u,). So far this is exact. The next 
step is to use the  equations of motion  to express the right 
side in terms of  available  quantities. This will involve the 
lubrication approximation, viz., that  the film thickness is 
small compared with its  lateral  dimensions. 

and pressure within the film are governed by the creeping 
When fluid inertia is neglected, the velocity components 
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flow equations 

In (8), p and X denote  the first and second viscosity 
coefficients, A = aua/axa is the dilation and F. are  the 
components of  body force per unit mass. In order  to 
determine  the  magnitude of  various terms, we normalize 
with respect to  the following quantities: 

B, a typical lateral  length  of the configuration; 
h,, a typical value of the film thickness; 
V, a typical value of the lateral surface motion; 
W ,  a typical frequency of the squeeze motion; 
p,, a typical value of the viscosity. 

The lubrication approximation is that  the  ratio e = h,/B is 
small compared with unity.  Since  variations  across the film 
are steep compared with those  along  it, the normalized 
variables are chosen  in  a way that “stretches” the  coordinate 
across the film. Following the usual  procedure of lubrication 
theory, we take 

X, = BX,, z = x3 = h,< = &By, t = T/w, 

u, = (we + V u , ,  u3 = h,ww, A = (w + V/B)D, 

The choice  of  a pressure scale proportional  to e-’ is standard 
in  lubrication  theory. If, instead, an  arbitrary  exponent n is 
used a priori, a  straightforward analysis [3] leads to  the result 
that n = -2. 

Introducing  the normalized variables into  the K = 3 
component of (8) yields 

+ (X* + p*) - + ”! - + D 
aD av. ap* 
ab a< ax, a( 

Thus,  to second order in e ,  the pressure is constant across the 
film. 

The K = 1, 2 components of (8) become 

ax, 
dD  du,  ap* + (X* + p*)  - + - - ax,  ax, a x ,  

w~ aw aCL* 
w~ + vax, a y  p o ( w ~  + v) 

+ 
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If terms of order 2 are neglected, this  simply  equates 
(a/ay)(CL*au,/a<) to ar/dX,. Returning  to  the physical 
variables, we then have 

; (fig) = VP. 

Since the pressure variation  across the film is negligibly 
small, the right side of (1 2 )  is independent of z. Hence, ( 1  2) 
is easily integrated if we assume  that  the viscosity is 
independent of z. For fluids with variable viscosity, this is 
tantamount  to assuming that  the  temperature is constant 
across the film. The  argument goes as follows. 

In general, viscosity varies with density and  temperature. 
But there is an  equation of state relating pressure, density, 
and  temperature. Since we have  already established that  the 
pressure is effectively constant across the film, uniform 
temperature guarantees  uniform density-a fact which we 
shall explicitly use in what follows. Thus, unless the viscosity 
depends  on variables other  than density and  temperature, its 
variation  across the film can be neglected. 

For the extremely thin films of interest here, the cross-film 
temperature variations are indeed negligible. Hence we do 
assume  that p (and p )  are  independent of z. Integration of 
( 12) then yields 

v =  - v p  z + c , z  + c,, (2: 1 (13) 

where E, and c2 are  constants of  integration. In the liquid 
film, these  can be determined by equating  the velocities at 
z = .W and z = .MI to  the  boundary velocities. In the gas, 
matters  are  more complicated, because in some situations  of 
practical importance  the  mean free path of the gas molecules 
may be a significant fraction  of the film thickness. One  must 
then deal with partial  slip between gas and boundary. In 
general, the degree of slip depends in  a  complicated fashion 
upon  the geometry and  thermodynamics of the situation. An 
approximation  sometimes used [2] relates v and its z- 
derivative to  the  boundary velocities V = ( V , ,  V,) and 
V‘ = ( V i ,  V; )  according to 

where X is the mean free path  and y, y’ are dimensionless 
constants whose values depend  on  the  nature of the 
interaction between the gas molecules and  the  bounding 
surface. Since we are interested  in  a gas film that is bounded 
at the  top by a solid and  at  the  bottom by a  liquid, we 
cannot  assume a priori that y and y’ are equal.  However,  it 
seems possible that,  on  the molecular scale, both surfaces 
will often be coarse-grained enough that  the gas molecules 
undergo diffuse reflection from each of them. In this case, y 
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and y’ are  the same, and are, in fact, nearly equal  to unity. 
So that our results will appear in  a form for which this 
important special case can easily be discerned, we introduce 
the  notation 

Since the  mean free path is inversely proportional to the 
density, we may  write 

X = X,P,IP, (16) 

where X ,  is the  mean free path at  the  ambient density p a .  
With ( 15) and (16), the  boundary  conditions (14) become 

where the dimensionless parameter K, is the  Knudsen 
number h,/ho. 

Since we are  assuming  that  the density is constant across 
the film, the  same value of p is used in both of the  boundary 
conditions ( 17). No-slip is recovered when the  Knudsen 
number  approaches zero.  Hence, conditions ( 17) apply to 
the liquid  as well as  the gas. Using them  to evaluate the 
constants of integration  in ( 13) yields 

( z  - M)(” - z )  

+ (V‘ - V ) z / h  + V.M’/h - V ’ M / h  - ____ 
“K“hOP, 

P 

V ‘  - v ( z  - M )  - (.W’ - z) 
h h + 2aKnhoP,/P 

Since we have  taken the density to be independent of z, 
the factor p on  the right side  of (7) can be taken outside  the 
integral sign. Substituting (19) into (7) then yields a 
generalized Reynolds equation: 

In an isothermal ideal gas, the density  is proportional  to  the 
pressure. Thus, 

P I P ,  = PIP, (21) 

where p,  is the  ambient pressure. If we simplify the  notation 
by defining 

7 = PKnhopa = PX,P,, 

the velocity expression ( 18) becomes 

( 2  - M1)(.Wr - z)  

+ (V,  - V I ) ~ / G  + V I M T / G  - Vr.Wl/G 

v, - V I  (z - M,) - (MT - 2) 

G pG + 20 

+ {[(= - hq) - (MT - 2) + - 
pG + 20 2T1 P 

G 
x”p+Vr-V1 , (23) I- 2 h  

where the subscripts 1 and T signify the interface and  the  top 
boundary of the gas film, respectively. The generalized 
Reynolds equation (20) becomes 

+V”V . i 
Thus, 

For the  important special case in which the  two  boundary 
surfaces have  identical  slip  characteristics, i.e., for T = 0, this 
reduces to a time-dependent extension of Burgdorfer’s well- 
known result [2] for gas lubrication at spacings nearly as 

( I 9 )  small  as the  mean free path. 5 
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The case r # 0 is qualitatively different, since the 
Reynolds equation  then includes  a term involving the 
difference of the surface velocities. 

4. The liquid phase 
Since the  mean free path in a liquid is virtually zero, the 
Knudsen  number of the liquid film is negligibly small. 
Hence, the general expression (1 8) for the velocity reduces to 

v = - (&/VP) (z - ME)(& - 2) 

+ (VI  - V,)Z/L + V,M,/L - V l U B / L ,  ( 2 5 )  

where the subscript B signifies the  bottom of the liquid film. 
Also, liquids are  almost incompressible, so that we may take 
p = pa. Hence, (20) reduces to  the familiar  Reynolds 
equation  for a  liquid  lubricant: 

This is linear in p but  not  in L-a distinction which is 
important  in  the present  context, because the thickness  of 
the liquid film depends  on  the  dynamics of the coupled gas- 
liquid system. Specifically, once  the interface velocity V I  has 
been eliminated  from  the problem  (next  section), the total 
gap .W,-MB must  be  apportioned between L and G in  such 
a way that  the two  Reynolds equations (24) and (26), each 
subject to  the  boundary  condition of ambient pressure at  the 
configuration  periphery, are  compatible with a common 
solution  for the pressure field. 

The last point is, technically, not precise. Because of 
interfacial  tension, the pressure in  the liquid will differ 
slightly from  that  in  the gas. However, in the  notation of 
Section 2 ,  the interface curvature is of order GIB, whereas the 
pressure is proportional to E-’. Hence  the correction is 
negligible in the  context of the present analysis. If the 
coefficient of interfacial  tension is extremely large, the 
numerical  factor  could possibly override this  asymptotic 
argument, since c never really goes to zero in practice. Since 
the value of the interfacial  tension doesn’t enter  the 
derivation of the two  Reynolds equations,  the results 
obtained so far would still apply,  except that p would stand 
for different pressures in  Sections 3 and 4. The 
apportionment of gap between L and G would then  take 
place in  such  a way that  the difference between these 
pressures would be that  demanded by interfacial  tension. 

5 ,  Elimination of the interface velocity 
The coupled Reynolds  equations (24) and (26), with 
appropriate subsidiary  conditions, are  not yet sufficient to 
determine  the pressure and film thicknesses, because both 
contain  the  unknown velocity V I .  This velocity is 
determined by requiring that  the tangential tractions  that  the 
two fluids exert on each other be equal  and opposite. To  the 

degree of approximation used in  Section 2, this is equivalent 
to requiring that pdvldz be continuous  at  the interface 
z = .W,. Now, with ( 2 5 )  and (23) ,  

2 
L 

L pf”/’az 
= - v p  + q v ,  - VJ, 

and 

pg v, - VI + -  
G 1 + ~ , / P C ‘  

Equating  these  expressions and solving for V I  leads to 

rLG 
p + 2a/G (29) 

where the dimensionless quantity M is defined by 

M =  Lpg 

GP/ + L/lp + ~ P L P C / P ‘  

If the interfacial  tension is great enough  to give rise to  the 
possibility that  the gas and liquid pressures differ 
significantly, then p in Eqs. (29) and (30) should be 
interpreted as  the gas pressure, and  the right side of (29) 
should be augmented by 

where p L  denotes  the pressure in  the liquid. 

6. Asymptotic results for a very viscous liquid 
phase 
An important special case arises when the shear viscosity of 
the liquid greatly exceeds that of the gas. For this case, we 
may write 

w/ = FL%/6, ( 3 2 )  

with 6 << 1. The complicated expression (29) for the 
interface velocity then reduces to 

L(L + G) 
VP 

2 4  

Thus, as 6 approaches zero,  shearing motions  in  the liquid 
layer become vanishingly small.  With ( 3 3 ) ,  the Reynolds 
equations (24) and (26) become 
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+ izpgTv.[9(vT Gp + - 2a v,'] + 0 ( 6 ) ,  (34)  

3. A configuration  which isolates the effect of 
ciiiferent  slip  coefficients 
Suppose now that  the ratio of viscosities is high enough that 
the  terms  oforder 6 can be neglected in (34). The  only 
remaining effect of the liquid is through  the  terms in T ,  

which result from the difference in  slip coefficients between 
the solid and liquid  boundaries.  Such terms also  arise  in  a 
single-phase gas bearing if one of the  bounding surfaces 
consists of a single crystal or other solid surface which might 
be expected to have  a significant component of  specular 
reflection. 

For the configuration  shown  in Figure 1, on/y those terms 
arising  from the difference in  slip coefficients contribute  to 
the lubricating pressure. Two  identical  circular  cylinders 
rotate with the  same angular velocity Q and in the  same 
sense, so that  the lateral velocities are equal but opposite, 
and  there is no squeeze motion. Hence, the lubricating 
pressure in the  nip between the cylinders vanishes unless 
there is asymmetrical slip. In principle, this offers the 
experimental possibility of isolating the effect [ 4 ] .  In practice, 
of  course,  a slight misalignment  of the cylinders or a  tiny 
amount of  vibration  in  their  bearings  would  mask the small 
effect one is trying to observe. The purpose  of the present 
section is to present  a relatively simple analysis that offers 
some insight, rather  than  to  support  an experimental 
technique. 

In  the  notation of Fig. I ,  

G = h, + 2r( 1 - m), (36)  

V ,  = -v, = Or- i,. (37)  

The first two terms  on  the right side o f ( 3 4 )  then vanish. 
Hence, there is no lubricating pressure unless T differs from 
zero. If  we assume that  the cylinders are long enough  that 
side leakage may be neglected, (34)  reduces to  the  one- 
dimensional equation 

We now  normalize (38),  choosing h, as the  length scale and 

A Configuration  for  which  the  lubricatmg  pressure  vanishes  unless I there i \  differential slip. 

pa as  the pressure scale. The  ambient pressure  should be 
taken  as that  obtaining in the region where the lubrication 
approximation ceases to be valid. This may be 
indistinguishable from  the  actual  atmospheric pressure. In 
some  parameter ranges, however, there may be enough inlet 
and exit flow that pa is somewhat different. Using h, and  the 
appropriate pa ,  we define  dimensionless variables X .  P, 
dimensionless  parameters R, A ,  B, N,  and dimensionless 
functions H(X),   F(P,  X), @(P, X )  according to 

X = x/h,,, p = P/h,, R = r/ho, 

A = a/h,Pa, B = T/h,P,, N = 24 @RIPa, 

H ( X )  = G/h,  = 1 + 2R(1 - m) 
= I + X'/R for X << R, 

F(P, X )  = H'P I + - - 6 A  [ HP  HP(HP + 2A)  ' 
1 2 B 2  1 

@(P, X )  = HP/(HP + 2A). (39) 
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In passing, we note from  (22) that  the normalized slip 
coefficients may also be written 

A = K p ,  B = K J .  

With (39), the differential Eq.  (38)  becomes 

which has the first integral 

F(P, mz = B N ~  q p ,  x )  + c ,  
dP 

where C i s  a constant of  integration. This is equivalent to  the 
integral equation 

x %(P,  X)dX 
= BN .f X0 F(P, X )  

where X ,  is a  second constant of integration. 

ambient.  This supplies  subsidiary conditions for the 
elimination of C and X,,, but  the phrase  “far from  the nip” 
requires some discussion. If we were to regard this purely as 
a boundary value  problem for Eq. (40), it would be  natural 
to require that P = 1 at  the geometrical  limits  of the 
configuration, i.e., at X = -C R. However, the lubrication 
approximation underlying  (40)  breaks  down  for much 
smaller values of I X 1 . Moreover, one expects that, for 
physically realizable parameters, the pressure will be 
indistinguishable from  ambient for values of I X 1 that  are 

Far  from  the  nip  in either direction,  the pressure  is 

smaller still. Hence, we take 

P(*X,) = 1, (42) 

where 1 << X,,, << R, the actual value of X, being  chosen by 
some preliminary  numerical expenmentatibn. Using (42) in 
(41)  leads to 

where 

@(P, X )  
= [Ixm F(P, X )  

(44) 

The problem  is now in a form suitable  for a variant of 
Picard  iteration, based on (43). The variation is that Q must 
be recalculated from (44) at each step of the iteration. 

To illustrate, we consider the case of  cylinders of radius  2 
cm rotating  in air  at  normal  conditions ( p  = 1.8 X Pa-s, 
pa = 10’ N/m2, X, = 64  nm), with a 200-nm gap between 
them.  The  Knudsen  number is then 0.32. Two series of 
computations were carried out. In the first, the slip 
coefficients were fixed at arbitrarily  chosen but reasonable 
values, and  the  rotation speed was allowed to vary. In the 
second series, the effect of asymmetric slip was examined  for 
a fixed value of rotation speed. In both series, a was set to 
0.78 125. Thus, for both series, 

R = los, A = 0.25, N = 4.524 X 10-5w, 

1.0 . ’ ’ 

0.9 - 
0.8 I I 1 1 1 1 1 l I  

-2000 -1000 0 1000 2000 

X 

a 

I The  distribution of dimensionless pressure for B=O.OS ,  N = O . S .  1 The  distribution of dimensionless pressure for B=0.05, N = 2 . 5  
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X Results for  Njixed and B varying 

I The distribution of dimensionless pressure for 6=0.05, N=4.9  

9 
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BN 

I The total force (F)per unit axial length, plotted versus the product EN. 
Results obtained with B fixed  at 0.05 are represented by the solid 
curve; those obtained with N fixed  at 2.0 are represented by the 
circles. 

where w denotes  the rotation  rates in revolutions per minute. 
The numerical  integrations  in (43)  and (44) were camed 

out trapezoidally with a  uniform AXof 0.5, i.e., Ax = 100 
nm.  and with Xm = 2500. 

Results for  Bjixed and N varying 
For this series, /3 was set to 0.15625, so that B = 0.05. The 
pressure distribution was calculated for twenty-four different 
values of N,  ranging  from 0.1 up to 4.9. Representative cases 
are shown  in  Figures 2, 3, and 4. For the largest values of N 
convergence was quite sluggish, presumably because of the 
steep  gradients  near the nip. To proceed to higher values of 
N would  require  a more sophisticated  scheme which 
concentrates grid points in the region of small I XI . 

Varying B is almost  the  same  thing as varying N, but not 
quite.  The pressure field is strongly  influenced by B through 
the coefficient BN in Eq. (41), but it is also  influenced to 
some extent by the  appearance of B2 in  the dimensionless 
function F defined in (39). With N fixed at 2.0, the pressure 
distribution was calculated for seven values of B, ranging 
from 0.0 I to 0.07. The results were qualitatively  similar to 
those  obtained for B = 0.05, with N adjusted to preserve the 
same value of BN. For the larger values of B,  there were 
perceptible quantitative differences. One of  these  is 
illustrated in Figure 5, which plots the  net normalized  force 
generated between the cylinders versus BN. The solid curve 
connects  the  points  computed for B = 0.05 with N varying. 
The circles were computed with N fixed at 2.0 and B 
varying, The  point for B = 0.07 lies somewhat above the 
curve, the  actual difference in  ordinates being 0.355. 

References 
I .  T. Nakahara, T. Kurisu,  and H. Aoki, “Externally Pressurized 

Two Layer Film Bearing-Gas Bearing with Liquid Layer,” 
ASME J. Lubr. Technol. 103, 573-577 (I98 I). 

2 .  A. Burgdorfer, “The Influence of the Molecular Mean Free Path 
on the  Performance of Hydrodynamic Gas Lubricated Bearings,” 
ASME J.  Basic Eng. 81,94-100  (1959). 

3. W. E. Langlois, Slow Viscous Flow, The Macmillan Co., New 
York. 1964. 

4. “Apparatus for Measuring Reflection Coefficients in  Lubrication 
at  Moderate  Knudsen  Number,” IBM Tech. Disclosure Bull. 27, 
No. ]OB, 6004  (1985). 

Received July  29, 1983; revised February 14, 1984 



1 IBM Research Division, 5600 Coltle Road, 
Sun Jose, California 95193. Dr. Langlois joined the San Jose 
Research laboratory in 1959. His  work  has  been  mainly on various 
aspects of  fluid dynamics, most  recently on the hydrodynamics and 
magnetohydrodynamics of the Czochralski  crystal pulling process. 
He  spent one year as visiting  professor of mathematics at Notre 
Dame University. He is now with the physics and modeling for 
storage group and is  also  working on the dynamics of very thin fluid 
films. Dr. Langlois  received an Sc.B.  in  physics  from Notre Dame 
University. Indiana, in 1953 and a Ph.D. in applied mathematics 
from  Brown  University, Providence, Rhode Island,  in 1957. Prior to 
joining IBM,  he did research in non-Newtonian hydrodynamics for 
the E. I. du Pont de Nemours & Co. laboratories from 1956 to 1959. 


