Moisture solubility and diffusion in epoxy and epoxy-glass composites

by L. L. Marsh

R. Lasky

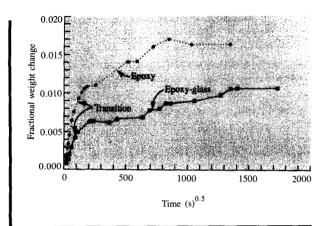
D. P. Seraphim

G. S. Springer

The solubility and kinetics of moisture transport mechanisms in epoxy-type resin and resin-glass composites have been investigated over a range of partial pressure and temperature. Moisture absorption-desorption in these systems is a quasi-reversible process, the kinetics of which are non-Fickian (Type II) and dependent on prior history. The multistaged sorption and transport behavior are interpreted in terms of multiphase models.

Introduction

The diffusion and/or solubility characteristics of H₂O and other molecular species in polymer materials have been discussed in numerous papers, mostly on studies conducted in the last fifteen years [1–10]. These investigations have highlighted the limited understanding of the actual solution and transport processes in resins and resin-glass composites, particularly the role of chain chemistry and sinks, i.e., chain sites or cavities, in affecting the sorption-desorption process.


The process by which permeation occurs when these materials are pore-free is activated diffusion. The molecules

Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the *Journal* reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to *republish* any other portion of this paper must be obtained from the Editor.

dissolve in the surface of a polymer, equilibrating with the atmosphere, establish a chemical potential, and diffuse in the direction of the gradient. Thus two fundamental properties are of interest which lead to an understanding of the phenomena. The first of these is solubility (c), which is related to the partial pressure (P) through Henry's law $(c = \gamma P)$, where γ is an activity coefficient. The second property is the diffusion constant (D), which is the ratio of the molecular flux (Q) divided by the gradient of the concentration (dc/dx) of the diffusing species, i.e., Fick's law, Q = Ddc/dx. These parameters can be evaluated as functions of concentration and temperature, and reversibility can also be determined.

In the case of highly sorbed penetrants [11, 12] the diffusion coefficient normally increases with concentration. This has been discussed as a plasticizing effect and is often accompanied by a decrease in glass transition temperature $T_{\rm g}$. Although this behavior is exhibited by H_2O in some polymers, a more common behavior appears to be a decrease in the diffusion coefficient with increasing concentration. In this case an appropriate model involves the clustering of the penetrant so as to render immobile an increasing fraction of it. An alternative model might be devised by considering the polymer chains to include reacting sites or trapping sites. This type of behavior is exhibited by polyurethane elastomers and is described as a clustering phenomenon by Barrie et al. [13].

The network of epoxies can be easily modified by varying the appropriate components. In dicyanamide (DICY) epoxies, for example, the functionality is affected by the

Figure 1 Typical moisture absorption in epoxy-glass composites vs time compared to the same event for epoxy alone. Fractional increase in weight: Epoxy and epoxy-glass exposed to 75°C/100% relative humidity.

DICY content. One may therefore expect the solubility and diffusion to vary from system to system, and even within a system depending on chemistry, degree of cure, and other factors. However, the effects observed by Diamant et al. [9] are not dramatic in epoxy even though the experiments covered a range of densities of 10% and $T_{\rm g}$ varied from $113^{\circ}{\rm C}$ to $150^{\circ}{\rm C}$ for the cured epoxy system. Surprisingly enough, the highest solubility occurred with the highest-density material, which also had the highest $T_{\rm g}$. A most interesting effect is that shown by Apicella et al. [10], wherein there is a humidity history dependency which is progressively lost as the test temperature is decreased.

E. R. Lange [14] and E. L. McKange et al. [15] have shown that pure resins and composites have approximately the same D and saturation moisture contents when corrections are made for fiber content. Apparently there is no degradation of the fiberglass interface in this experiment. Nevertheless at very long exposures (e.g., 25 days) at 98% relative humidity, an incremental increase of 0.2% (0.66% of bulk resin) occurs in absorbed moisture. This effect was not shown in any of the base polymer absorption experiments.

In the case of Kevlar epoxy [16] composites, neither diffusion nor absorption is well-behaved. Diffusion occurs two orders of magnitude more rapidly in the composite (compared to the base epoxy) and the solubility is increased by a factor of three to four over that accommodated by the base resin. It has been speculated [16] that the rapid diffusion is due to preferential diffusion of moisture in the Kevlar filaments along their length.

Rapid diffusion has also been shown by Judd [17] and correlated to void content in carbon fiber composites. Again it is speculated that moisture can permeate into a composite by diffusion through the resin and then flow along defects such as porosity and voids.

The studies previously noted for epoxy-glass were not conducted on dicyanamide hardened material, the system which we report on in this paper. When this DICY system is used as discussed by Bonniau et al. [18], we find almost all of the very interesting anomalous behavior described earlier for other polymers, which requires sophisticated two-phase-diffusion analytical treatment to model the experimental results. Since our results are substantially more copious than those of Bonniau et al. [18] and the other papers on epoxy, we now proceed to discuss our experimental results.

Experimental apparatus and oronache.

Prior to each test the samples were dried in desiccators kept at 50°C. The desiccators consisted of four-inch-diameter Pyrex tubes 16 inches long [19], each supplied with a commercial desiccant. Each tube was surrounded by a resistance heater and insulation. The temperature of the vapor, and hence the relative humidity, was controlled to within 0.5°C. Sample weight was measured with a Mettler analytical balance having a precision of $\pm 10~\mu g$. Exposures to humid air environments were obtained by placing samples inside three-inch-diameter Pyrex tubes, 16 inches long, mounted on top of a Braun Thermomix controller. The temperature of the Thermomix was maintained to within 0.05°C of the desired temperature for a specific vapor pressure.

Materials

Cast epoxy resin films and epoxy-glass composite samples laminated from 3, 5, and 10 plies of impregnated glass cloth were used in this study. The sample size was $5.1 \text{ cm} \times 5.1 \text{ cm}$ (2 in. \times 2 in.). There were three samples per exposure. The specific epoxy system was a blend of a brominated bisphenol A and Cresol Novolac, with dicyanamide as the curing agent and TMBDA as the catalyst.

The glass is E-type with a yarn diameter of 122 μ m (0.0048 in.) in both the warp and fill directions. Each strand of the yarn contains approximately 204 filaments; each filament diameter is approximately 5.3 μ m (210 μ in.). The nominal weight percent resin in the composite is 60%.

No special attention was given to the laminate other than making it to manufacturing specifications; thus there is a possible range of behavior to be expected if the chemical concentrations noted above fluctuate due to mixing or the cure state. The range of behavior will in itself be interesting because the specifications are most closely tied to rheological functional factors.

Analytical procedure

Diffusion

Gravimetric-time data measuring the sample absorptiondesorption response to an external environment have been analyzed (see Appendix) by conventional approximations [19, 20] to Fick's second law. Non-Fickian diffusion of moisture in resin composites has been examined in terms of absorption into mobile and bound phases (Carter and Kibler [21]). The evidence for anomalous absorption stems largely from the multistaged shape of weight gain—time data graphs. Such plots are characterized by plateaus or inflections preceding the actual saturation absorption. Experimental conditions are shown in the matrix in **Table 1**.

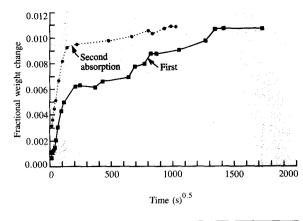
Following the analysis by Carter-Kibler [21] and Gurtin-Yatomi [22], the kinetic approach to moisture saturation at specific temperatures and partial pressures of moisture has been analyzed on the basis of the following equation:

$$[M = M_{\rm m} \{ (b/a + b) \exp(-at) y(t) + (b/a + b) [\exp(-bt) - \exp(-at) + [1 - \exp(-bt)] \},$$

$$y(t) = (1 - 8/\pi^2) \sum_{\text{add}}^{\infty} (2n + 1)^2 \exp[-(2n + 1)^2 Dt]. \tag{1}$$

In these equations a is the probability per unit time with which absorbed moisture molecules become "bound," b is the corresponding probability with which "bound" molecules become mobile. If n and N are the concentrations per unit volume of mobile and bound molecules, respectively, an equivalent statement of equilibrium is the constancy of the n/N with temperature and partial pressure of moisture.

Further study of this model raises a number of questions. For example, what is the magnitude of the ratio n/N; i.e., does the number of mobile sites exceed the quantity of bound sites? From an absorption/solubility viewpoint, at what fraction of saturation does the occupation of bound sites cause non-Fickian deviations? Does the appearance of the plateau (i.e., the second stage of absorption) signal the onset of clustering or trapping? If so, the ratio $N/n + N_n$ should then correspond to an inflection point (M_i) in the absorption with time and in the plot of log D vs concentration, i.e., a point of macro-deviation from Fickian diffusion.


Another issue of interest in clarifying moisture absorption is the issue of history-dependent saturation concentration. If (n, N) are dependent on relative humidity, reducing humidity after an absorption will bring about a saturation that differs from when the sample is equilibrated from an initially lower saturation condition. That is, the bound water does not get a chance to redistribute during the experiment.

Information collected in this study attempts to shed some light on the above questions.

Results and discussion

Solubility

The saturation solubility of moisture in epoxy and epoxyglass composites was determined at various conditions of

Fiaure 2

Fractional increase in weight: epoxy-glass first and second absorptions. Exposed to 75°C/100% relative humidity.

Table 1 Test matrix of experimental conditions.

Temperature (°C)	Layers	Pressure (mm Hg)					Immersion
		760	355	285	220	92	
50	3						×
	5					×	×
	10						×
	Epoxy						×
75	3			×			
	5			×	×	×	
	10			×			×
	Epoxy			×			
85	3			×		×	×
	5		×	×		×	×
	10		×	×		×	×
	Epoxy			×		×	×
100	3	×		×			×
	5	×	×	×	×		×
	10	×		×			×
	Epoxy	×		×			×

temperature and humidity, i.e., partial pressure (see the Appendix). Figure 1 illustrates typical moisture absorption in epoxy-glass composites versus time compared to the same event for epoxy itself. It is evident that the absorption process is a multistage process. The first stage occurs very rapidly (at a rate approximately proportional to \sqrt{t}) with completion at a temporary saturation. Then the second stage of absorption begins and very slowly proceeds. (On desorption the process appears predominately single-staged.) The total absorption of moisture in the composite and that in the epoxy itself are about the same if one takes into account the fact that the composite contains about 40% less resin. The second absorption, i.e., following a desorption, occurs very rapidly (see Figure 2). Figure 3 demonstrates

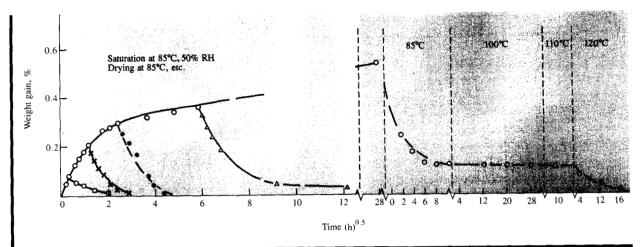
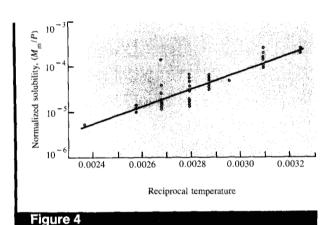



Figure 3

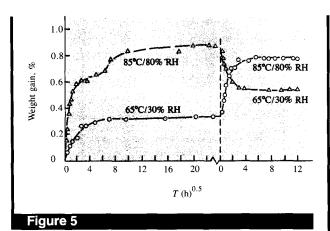
The onset of residual moisture at the transition to second stage and stability to temperatures greater than 120°C.

Temperature dependence of normalized solubility for epoxy-glass composites.

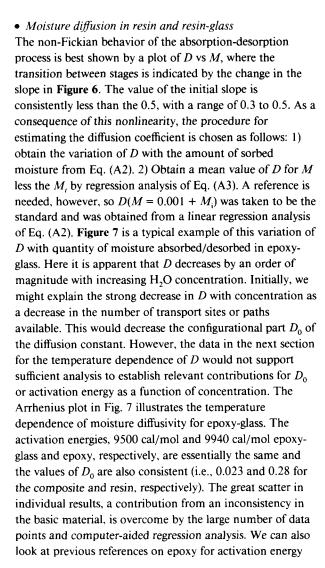
that the onset of residual moisture occurs roughly at the transition region, the end of the first stage, where there appears to be a temporary saturation. Samples experiencing absorption to values less than M_i lost the gained moisture on desorption; weight gain in excess of M_i resulted in the retention of residual moisture, as shown in the last desorption in Fig. 3. It is clear that temperatures in excess of the glass transition temperature (>120°C) are required to remove the residual moisture.

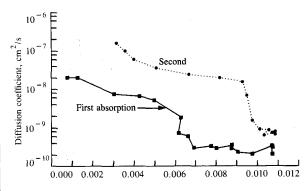
The dependence of the saturation solubility, $M_{\rm m}$, on temperature and moisture partial pressure was obtained from data reflecting the sample weight gain/loss equilibrium with the test environment. The thermodynamics are expressed by the reaction

$$P_{\text{vapor}} \leftrightharpoons (H_2O)ad \leftrightharpoons (H_2O)$$


in epoxy solution, expressing the equilibria between the vapor-adsorbed film at the surface and the dissolved H₂O in the epoxy. From the equilibrium constant, and assuming Henry's law to be valid,

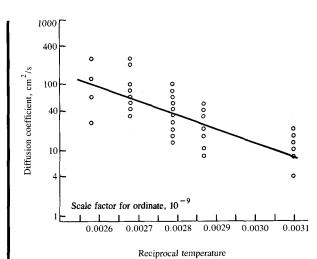
$$M_{\rm m} = Ap \exp\left(-H/RT\right),\tag{2}$$


where H is the heat of solution and p is the vapor pressure. The value of A is 1.34×10^{-10} , and 2.05×10^{-10} for epoxyglass and epoxy, respectively. The quantity $M_{\rm m}$ is expressed in percent.


The heat of solution derived from our total data set, given in Figure 4, is 8.8 kcal per mole as shown by regression analysis, with fit better than 95% confidence. "Bound" and "residual" moistures are included. The solubility decrease with increasing temperatures means that the reaction is endothermic.

An additional facet of the sorption behavior of moisture into epoxy and epoxy composites is shown in Figure 5. In these experiments we saturated at 65°C to 30% and at 85°C to 80%; then we equilibrated at reversed humidities and temperatures. From Eq. (2) and the thermodynamic argument behind it one would expect sorption reversibility: an equation of state behavior. This is clearly not the case for the second stage of absorption. These data reveal that the final moisture content, which includes the second-phase absorption, is strongly dependent on prior history. It is expected that this behavior is attributable to the multistage nature of the sorption process and the existence of internal sites or regions containing trapped moisture. The reader may wonder whether the true equilibrium would be established if the samples were left long enough. Clearly this question needs to be addressed in future studies.

Weight gain data showing lack of reversibility or history dependence to prior exposure for epoxy-glass.



Fractional change in moisture absorbed

Figure 6

Variation of moisture diffusion coefficient with absorbed moisture at 75° C/100% relative humidity. The material is an epoxy-glass. Data for first and second absorption.

Figure 7

Variation of moisture diffusion coefficient with temperature for an epoxy-glass composite.

 $(10 \pm 1.5 \text{ kcal/mol})$ and find that the results are about the same. It would appear that diffusion is dominated by bulk transport and the resin-glass interface contributes little to the process.

Application of the non-Fickian, Type II analysis described earlier was investigated. Standard regression techniques determined the optimum set of values for each set of environmental conditions. The question of the partial pressure and temperature dependence of a and b was determined. Analysis yielded the following relations:

$$a = (251.3/p) \times \exp(-4817/T),$$

$$b = (314.7/p) \times \exp(-5198/T)$$
.

From the equilibrium condition an = bN, constancy of the ratio n/N would be expected and was found.

Summary

This study of the moisture absorption and diffusion into epoxy and epoxy-glass composites has demonstrated that the solubility follows Henry's law over the range of pressures and temperatures covered. The reaction is endothermic. The diffusion is best described as non-Fickian, having a strong decrease in D with the amount absorbed, and can clearly be described by a model embracing Type II diffusion involving a mobile component and a component trapped at unspecified sites but whose number is fixed. In addition, the absorption is dependent on prior exposure history, indicating that the complexity of the solution process relative to the base laminate chemistry requires additional study. The scatter of our results may be due a) to initial chemical conditions in the base laminate which depend on manufacturing processes or b) to the incomplete removal of "bound" moisture in the stabilizing treatment.

One of the most interesting observations of this work is that the very small concentration of H₂O molecules absorbed has an anomalously large effect on those yet to be absorbed. This leads us to consider that the distribution of occupied bond sites set initially at the lamination is a significant factor in the absorption process. In fact, we have shown that the stabilizing treatments above T_s are important in desorbing all of the water.

Appendix

Shen and Springer [19] approximated Jost's [21] solution

$$M = M_i + \{(M_m - M_i) \times [1 - \exp(-7.3)(Dt/S^2)]\}^{3/4},$$
 (A1)

which, on re-arranging, gives

$$D - (s^2/t) \times [(1/7.3) \times \ln (M_m - M_i)/(M_m - M)]^{4/3},$$
 (A2)

where

M =fractional (or percent) weight gain,

 M_i = initial content of diffusing species,

 $M_{\rm m}$ = maximum content (equilibrium) of species.

For a given temperature and partial pressure,

= diffusion path: sample thickness,

D= diffusion coefficient,

For the case of Fickian diffusion, D can be satisfactorily estimated by (A1):

$$D = \pi (s/4M_{\rm m})^2 \times [(M - M_{\rm s})/\sqrt{t} - \sqrt{t}i]^2.$$
 (A3)

In this analysis both Eqs. (A2) and (A3) have been employed to obtain values for the diffusion coefficient.

References

- 1. E. Sacher and J. R. Susko, "Water Permeation of Polymer Films
- I. Polyimide," *J. Appl. Poly. Sci.* 23, 2355–2364 (1979).

 2. E. Sacher and J. R. Susko, "Water Permeation of Polymer Films III. High Temperature Polyimides," J. Appl. Poly. Sci. 26, 679-686 (1981)
- 3. E. Sacher and J. R. Susko, "Water Permeation of Polymer Films II. Decal Mode Absorption in Teflon FEP," J. Appl. Poly. Sci. 24, 1997-2003 (1979).
- 4. E. Sacher and J. R. Susko, "Water Permeation of Polymer Films IV. Teflon FEP," J. Appl. Poly. Sci. 27, 3893-3902 (1982).
- 5. H. E. Bair, G. E. Johnson, and R. Merriweather, "Water Sorption of Polycarbonate and Its Effect on the Polymers' Dielectric Behavior," J. Appl. Phys. 49, No. 10 (October 1978).
- Y. J. Chang, C. T. Chen, and A.V. Tobolsky, "Correlations Between Types of Absorbed Water Molecules and Water Permeability in Swollen Polymer Membranes," J. Poly. Sci. 12, 1-6 (1974).
- 7. V. Stannett and J. L. Williams, "The Permeability of Polyethyl Methacrylate to Gases and Water Vapor," J. Poly. Sci. 3, Part C, No. 10, 45-59 (1965).
- Antonio Apicella, Luigi Nicolais, Gionni Astarita, and Enrico Drioli, "Effect of Thermal History on Water Sorption, Elastic Properties and The Glass Transition of Epoxy Resins," Polymer 20, 1143-1148 (1979).
- Y. Diamant, G. Morom, and L. J. Broutman, "The Effect of Network Structure on Moisture Absorption of Epoxy Resins," J. Appl. Poly. Sci. 26, 3015-3025 (1981).
- 10. Antonio Apicella, Luigi Nicolais, Gionni Astarita, and Enrico Drioli, "Hygrothermal History Dependence of Equilibrium Moisture Sorption in Epoxy Resins," Polymer 22, 1064-1067 (1981).
- 11. H. L. Frisch, "Mechanisms for Fickian Diffusion of Penetrants in Polymers," J. Poly. Sci. B 3, 13-16 (1965).
- 12. "The Concentration Dependence of Diffusion Coefficients in Polymer Penetrant Systems," CRC Critical Reviews in Macromolecular Science, CRC Publications, Cleveland, 1972.
- 13. J. A. Barrie, A. Nunn, and A. Sheer, "The Sorption and Diffusion of Water in Polyurethane Elastomers," J. Amer. Chem. Soc., Div. Organic Coating 34, 489 (1974).
- 14. E. R. Lange, Jr., "Moisture Diffusion Parameter Characteristics for Epoxy Composites and Neat Resins," NASA Technical Paper 1474, National Aeronautics and Space Administration, Washington, DC, 1979.
- 15. E. L. McKange, Jr., J. D. Reynolds, and J. E. Halkins, "Moisture Diffusion in Fiber Reinforced Plastics," Trans.
- ASME, pp. 92-95 (January 1976).

 16. R. E. Allred and A. M. Lindrose, "The Room Temperature Moisture Kinetics of Kevlar 49 Fabric/Epoxy Laminates,' Sandia Report 78-0412, Sandia Laboratories, Albuquerque, NM, May 1978.
- 17. Niegil C. W. Judd, "Adsorption of Water into Carbon Fiber Composites," Brit. Poly. J., pp. 36-40 (March 1977).
- 18. T. Bonniau and A. R. Bunsel, "A Comparative Study of Water Absorption Theory Applied to Glass-Epoxy Composition," J. Composite Mater. 15, 272 (1981).
- C. Shen and G. S. Springer, "Moisture Absorption and Desorption of Composite Materials," Environmental Effects on Composite Materials, Technomic Publishing Co., Lancaster, PA, 1981.
- 20. Wilhelm Jost, Diffusion in Solids, Liquids, and Gases, Academic Press, Inc., New York, 1960.
- 21. H. G. Carter and K. G. Kibler, "Langmuir Type Model for Anomalous Moisture Diffusion in Composite Resins," J. Composite Mater. 12, 118-131 (1978).

 M. E. Gurtin and C. Yatomi, "On A Model for Two-Phase Diffusion in Composite Materials," *J. Composite Mater.* 13, 126-130 (1979).

Received April 13, 1984; revised June 20, 1984

IBM Systems Technology Division, P.O. Box 6, Endicott, New York 13760. Mr. Lasky joined IBM in 1967. In 1970, he received a B.S. in applied physics from Cornell University, Ithaca, New York, and an M.S. in applied mathematics from the State University of New York, Binghamton, in 1974. Mr. Lasky held the position of project manager in first level packaging when he entered the Resident Study Program at Cornell, where he is working for his Ph.D. in materials science.

Lyle L. Marsh IBM Systems Technology Division, P.O. Box 6, Endicott, New York 13760. Dr. Marsh is a senior engineer currently working on reliability modeling and the interaction between packaging materials and their application environments. He received his B.S. from Case (Western Reserve) Institute of Technology, Cleveland, Ohio, in 1950, and joined IBM after receiving his Ph.D. in metallurgical engineering from Ohio State University, Columbus, in 1963. Since 1963 he has modeled defects in crystalline solids and studied atmospheric corrosion of materials.

Donald P. Seraphim IBM Systems Technology Division, P.O. Box 6, Endicott, New York 13760. Dr. Seraphim joined the IBM Research Division in 1957 with a Doctor of Engineering degree from Yale University, New Haven, Connecticut. He participated in advanced materials work in cryogenics and then led a technical team developing the processes for MOS field-effect transistors until he was transferred to the Components Division in 1965. His groups were responsible for design and development of MST chips and modules used in the IBM System 360 and 370. In 1970 at Endicott, he headed advanced packaging technology and has worked on the printed circuits used for the 4300 series and the 3081. He joined the Corporate Technical Committee in 1977 for a year and a half, and was elected an IBM Fellow in 1980. Dr. Seraphim's groups are currently responsible for providing analytical services to processors, printers, packaging, and manufacturing in Endicott. They assist manufacturing during scale-up to improve yield and reliability. Advanced technology projects provide control techniques and improved materials and processes. Dr. Seraphim also acts as special technical liaison in packaging technology with Research Division workers.

George S. Springer Stanford University, Stanford, California 94305. Dr. Springer is Professor of Aeronautics and Astronautics at Stanford University. He is in charge of the Structures and Composites Laboratory. Professor Springer's research centers on the mechanical, chemical, and physical characteristics of fiber-reinforced organic matrix composites. He is editor of the Journal of Reinforced Plastics and Composites.