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Yield model for
fault clusters
within integrated
circuits

by C. H. Stapper

Generalized negative binomial statistics turns
out to be a model of the fault distribution in very
large chips or wafers with internal defect
clusters. This is expected to influence large chip
and full wafer redundancy requirements.
Furthermore, the yield appears to be affected by
an experimental dependence of the average
number of fauits on chip area.

1. Introduction

With the advent of wafer scale integration the question of
the adequacy of existing yield models has come up. Until
now, clustering of faults within a chip or integrated circuit
has not been addressed properly. It has been assumed that
the defects causing faults on a wafer, or in some cases in
given regions of a wafer, can be modeled with Poisson
distributions [1-3]. It was observed experimentally that the
defect densities of each region or wafer had to be modeled as
an additional random variable. These variations in defect
densities were modeled by using mixed or compounded
Poisson statistics. Another approach described by Stapper,
Armstrong, and Saji took clustering into account by
considering the formation of defects on a chip during the
manufacturing process [4]. It was fortuitous that all these
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approaches led to the same yield expression:
Y=(+ M), 8Y;

where Y is the chip yield, A the average number of faults (or
the mean number of defects per chip causing failure), and «
a cluster parameter.

The derivations of yield formula (1) did not deal with the
clustering of defects within the chip. As chip sizes increase
up to the limits of full wafers, the likelihood of having
clusters within the chip area increases. The purpose of this
paper is to provide the mathematical proof of formula (1),
taking clustering within the chip into account. It is also
shown that generalized negative binomial statistics associated
with (1) is applicable to model within-chip clustering.

In a previous paper [5] a method was described for
deriving Poisson statistics to model the fault distribution on
chips. In this paper the same approach is taken, but it is
extended to include clustering. The method is very similar to
the one described in [4]. In that paper, however, clustering
was the result of fault formation as a function of time. In
this paper the probability of a defect causing a failure in a
given area increases when a fault already occurs in an
adjacent area.

2. Base for the model

The probability of x faults occurring within an integrated
circuit area .S can be denoted by p(x,S). Let the random
variable X designate the number of faults in S. Similarly, let
X, be the random variable associated with the number of
faults in a small area of integrated circuitry AS adjacent to
and connected to S. The number of faults in the combined
area S + AS is then given by the random variable X, ,c =
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X+ X, The objective of the derivation that follows is to
determine an expression for the probability of finding X, ,¢
faults in area S + AS. This expression must be a function of
the probabilities for finding faults in S.

There are x + 1 ways that x faults can occur in S + AS.
This includes combinations such as all x faults in S and
none in AS; or x — | faults in S and one in AS; or x — 2
faults in S and two in AS; and so on. These are all
independent events. The probability of finding X, . = x
faults in area S + AS is therefore

pxS + AS) = ¥ plx — i,S)p(i,AS|x = 1,S), 9}
=0

where p(i,AS|x — i,5) is the probability of finding i faults in

AS given that there are x — i faults in area S. Expansion of

the first two terms gives

px,S + AS) = p(x,S)p(0,AS5| x,S)
+ plx — 1LLS)p(1,AS]x — 1,S)
+ E‘, plx — LS)p(i,AS | x ~ i,S). 3)

=2
If the area of AS is small enough, we can assume that the
probability of finding two or more faults in AS becomes
negligibly small. In that case

xS + AS) = p(x,5)p(0,AS5] x,S)
+ plx — 1,S)(1,48]x — 1,S). 4

The probability of finding no faults in AS is the
complementary event to finding one or more faults. This can
be written as

P0,AS|x.S) =1 — Y pli,AS]x,S). (5)

i=1
Since it was assumed that the probability of finding two or

more faults in AS is negligibly small, (5) can be
approximated by

p0,AS) = 1 — p(1,AS[x,S). 6)

Next an estimate must be made for the magnitude of the
probability of one fault occurring in AS. In a previous paper
a simple proportionality was assumed [S]:

P(LAS|x,S) = ¢AS, )

where ¢ was taken to be a constant. However, in this case
the left-hand side depends on the number of faults in the
adjacent areas. The more faults there are in this region, the
more likely it becomes that one fault will be found in AS.
Consequently the proportionality factor ¢ in (7) must be
#(x), a function of the number of faults X; = x.

The combination of (6) and (7) gives

p0,AS|x,8) = 1 — ¢AS. (8)
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Substituting (7) and (8) into (4) results in
px,S + AS) = p(x,S)[1 — $(x)AS]
+ p(x = 1,S)e(x — 1AS. Gl
Rearrangement of this formula leads to the recursive
difference relationship
pxS + AS) — p(x,S)
AS

=¢(x)p(x,S)

+ ¢(x — Dp(x = 1,S). (109)

By letting the incremental area AS shrink to zero, the
above becomes a differential recursive equation,

(—%p(x,S) = —¢()p(x,S) + ¢(x — Dp(x — 1,9). (11a)

Using the preceding approach, it is not difficult to show
that the starting equation for x = 0 becomes [5]

)
S p(0,8) = —¢(0)p(0,S). (11b)

These two equations must be solved to obtain the
distribution p(x,S). The nature of this distribution depends
entirely on ¢(x).

3. Yield formula
The solution of (11b) is straightforward and results in

p0,8) = Ce %, (12)

where C is a constant of the integration. The result looks like
a straightforward exponential and results in the yield

Y = Ce 0%, (13)

This has all the appearances of the yield model associated
with Poisson statistics which is usually written in the form
(4,5]

Y=Ye ™ (14)

where Y is a gross yield and 6 a defect sensitivity factor
(often referred to as the probability of failure), 4 the chip
area, and D a defect density.

Indeed the theory of Hu [6] and the data analysis of
Warner [7] lead us to believe that for large chips an
exponential yield model like (14) is sufficient. The above
result in (13) appears to agree with those conclusions.
However, appearances are deceiving and it is shown in this
paper that (13) does not follow Poisson statistics. Instead
(13) equals the model in (1) and is associated with
generalized negative binomial statistics. To show this
requires solving (11a) and (11b) for the actual fault
distribution p(x,S).

4. Solution of the fault distribution

The solution to Eqs. (11a) and (11b) can be found
systematically. The approach is similar to one described in
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[4]. In this case (11a) is multiplied by £ and (11b) by £ =1.
Summing the results for all possible values of x results in the
differential equation

22 xS == 1) 3 A (15)
x=0 x=0

The summation within the derivative on the left-hand side
of the equation is the probability distribution generating
function defined by

o

G(:S) = ¥ pxS). (16)

x=0

The fault distribution probabilities are obtained from the
probability distribution generating function with

13649
x o

px,S) = (17

=0
The objective is to determine G(z;S) from (15). When this is
done, p(x,S) can be calculated with (17).

When ¢(x) = ¢ instead of a function of x, Eq. (14) can be
simplified to

Z—g= (t — 1)cG. (18)

This has the solution ‘
G(,S) = ¢, (19)
which by application of (17) results in

~—cS, X
_e (c8)
Px,S) = — (20)
better known as the Poisson distribution. This result is not
surprising.

In the case of clustering ¢(x) is dependent on the number
of faults x already in S. Assume the linear relationship

&(x) = ¢ + bx, 20

where ¢ and b are constants. Introducing this into (15) and
regrouping terms on the right-hand side of (15) results in

aG(t;S)
as

=(- 1)[cG(t;S) + bt%g—)]. 22)

The solution to this equation is
G(1:S) = {exp (bS) — [exp (bS) — 1] (23)

Again the probability distribution p(x,S) can be obtained
from this probability distribution generating function with
(17). This gives

T(x + ¢/b) —(x+eiops, bs _

PxS) = e ) @4

which is a generalized negative binomial distribution, and
not a Poisson distribution as might have been expected from
(12) and (13).
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The yield appears to be given by Y = p(0,5), which results
in
Y=¢% (25)

Except for the integration constant, this is the same result
as the one obtained in (13), and is similar to the yield
expression for Poisson statistics. This is often believed to
show that when clusters are included in the chip area, the
yield vs. area dependence should be like the Poisson yield
model, as indeed it is here [6, 7]. What proponents of such
theories usually neglect is the wafer-to-wafer, lot-to-lot, day-
to-day, week-to-week, and month-to-month variations of
defect levels in integrated circuit fabricators. This was taken
care of by mixing or compounding Poisson statistics [1-3].
In exactly this same way the results in (24) and (25) still have
to be compounded to take care of regional and long-time
variations in the parameters ¢ and . When we do this, the
resulting yield vs. area plots are still expected to show the
familiar uplift that resulted from compounding Poisson
statistics. Such data undoubtedly can still be approximated
by a model of the type

Y=(1 + aS/a)"",

with ¢ and « as parameters. What the results of this paper
imply is that the average number of faults is going to be
higher than aS. The reason for this is described in the next
section.

5. The average number of faults

It is instructive to determine the average number of faults

A = E(X) that can be expected from the distribution in (24).
Using

A= EXg) = ¥ xp(x,S), (26)
' x=0

rearranging some terms, and making the substitution
x=u+ 1 results in

A= e (™ - 1)[c/b + 3 up(u,S)]. (27
u=0

The infinite sum on the right-hand side of this equation is
the same as the one in (26), thus reducing (27) to

A= e = 1)c/b + M. (28)
This can be solved to give
A= (" - /b 29)

The preceding result is most interesting. It shows that the
average number of faults increases exponentially with the
surface area S. This implies, for instance, that one half of the
area has on the average fewer faults than the other half. This
is all caused by the initial assumption in (21) and is precisely
the type of situation that can be expected when clustering
takes place within a chip.
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It may be necessary in the future to restrict the variable S
to a range 0 < S < A, where A4 is a chip area. The value of ¢
could then depend on this area, so that we get c(4). This will
then make (29) a function of 4. Applicability of this type of
condition will depend on the analysis of actual data.

6. Chip yield
The chip yield can be expressed in terms of the average
number of faults. Rearrangement of (29) gives

S=1In(l + Ab/0)", (30
which when substituted into (25) results in
Y =(1 + \b/e) ™. (31)

Substitution of @ = ¢/b makes this result identical to (1).
This completes the proof.

Using X and « as the parameters in (24) results in the
more familiar-looking generalized negative binomial
distribution [4]

I'x + a) Na

A(e) (1 + Ma)y™*’ (32)

px,S) =

The area relationship in this case is implied by the average
number of faults A, as it was in all previous theories. The
only difference is that this area relationship is no longer
linear but exponential.

7. Discussion

The real world of yield is very complex. Mathematics can
only approximate that reality. Nevertheless, if properly used,
mathematics can give us insight into the nature of the
problems that have to be solved. This is the case here.

The results of this paper are extremely important for full
wafer manufacturers. Peltzer [8] has already mentioned the
use of Poisson statistics as a yield model for full wafer
manufacture at Trilogy. He wrongly quotes this author as
the source for that model. It is, however, the Poisson model
in Reference [6]. This is wrong. The Poisson fault
distribution is very narrow when compared to actual data
[9]. Since full wafer manufacturers are using redundancy,
they will be deceived if they use Poisson statistics. The
theoretical calculation of yield with redundancy is too high
when those statistics are used.

The fault distribution on actual products is very wide.
This is caused by clustering and can be approximated with
generalized negative binomial statistics as shown in
Reference [9). In this paper it has been shown that this
approximation can be expected to hold for clustering within
the chip. In previous papers it was shown that chip-to-chip
variations due to large area clustering could be modeled
similarly [1-5].

To correctly model yield it should be realized that
Expression (1) as derived in this paper holds only for one
chip or wafer. Variations among wafers and areas on wafers
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give different values of the average number of faults for each
individual case. These. effects have a far greater influence on

the yield than internal clustering. To take them into account
required that Expression (1) be compounded to give

Y=73g(l + \/a)™, (33)
or

[T _sax
Y= J; (1 + Na)* (Y

Compounding like this is usually neglected in single wafer
yield theories as in [6], therefore missing the major variable
in yield modeling. This author has investigated several
functions for g(A) in (34). Unfortunately, until now no easily
usable results have been obtained.

The statistics associated with (33) and (34) will lead to
fault distributions with very long tails. Data analyzed in the
last few years by this author have indeed shown a propensity
for such long tails. This is important for deciding the
amount of redundancy that is needed to fix the faults
expected in future products. Yield modelers who misjudge
this effect can cause enormous capital losses in unsuccessful
ventures if they do not rely on sufficient redundancy.
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