
Communication 

636 

Yield  model  for 
fault  clusters 
within  integrated 
circuits 

by C. H. Stapper 

Generalized  negative  binomial  statistics  turns 
out  to be a model  of  the  fault  distribution  in  very 
large chips  or  wafers  with  internal  defect 
clusters.  This  is expected to  influence large chip 
and  full  wafer  redundancy  requirements. 
Furthermore,  the  yield  appears  to be affected  by 
an  experimental  dependence of  the average 
number  of  faults  on  chip area. 

1. Introduction 
With the advent of  wafer scale integration the question of 
the adequacy of existing yield models has come up. Until 
now, clustering of faults within a chip or integrated circuit 
has not been  addressed  properly.  It has been  assumed that 
the defects causing faults on a wafer, or in some cases in 
given  regions  of a wafer, can be modeled  with  Poisson 
distributions [ 1-31, It was observed experimentally that the 
defect densities of each  region or wafer had to be  modeled as 
an additional random variable. These variations in defect 
densities were modeled by  using  mixed or compounded 
Poisson  statistics. Another approach described by Stapper, 
Armstrong, and Saji took clustering into account by 
considering the formation of  defects on a chip during the 
manufacturing process [4]. It was fortuitous that all these 
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approaches led to the same yield  expression: 

Y = (1 + X/&)-”, (1) 

where Y is the chip yield, X the average number of faults (or 
the mean number of defects per chip causing  failure), and a 
a cluster parameter. 

The derivations of  yield formula (1) did not deal  with the 
clustering of defects within the chip. As chip sizes  increase 
up to the limits of  full  wafers, the likelihood of having 
clusters within the chip area increases. The purpose of this 
paper is to provide the mathematical proof of formula (l) ,  
taking clustering within the chip into account. It is  also 
shown that generalized  negative binomial statistics  associated 
with (1) is  applicable to model within-chip clustering. 

In a previous paper [ 5 ]  a method was  described for 
deriving Poisson statistics to model the fault distribution on 
chips.  In this paper the same approach is taken, but it is 
extended to include clustering. The method is  very similar to 
the one described in [4]. In  that paper, however, clustering 
was the result of fault formation as a function of time. In 
this paper the probability of a defect causing a failure in a 
given area increases  when a fault already occurs in an 
adjacent area. 

2. Base for  the  model 
The probability of x faults occumng within an integrated 
circuit area S can be denoted by p(x,S). Let the random 
variable X ,  designate the number of faults in S. Similarly,  let 
X ,  be the random variable  associated  with the number of 
faults in a small area of integrated circuitry A S  adjacent to 
and connected to S. The number of faults in the combined 
area S + AS is then given  by the random variable X,,, = 
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X ,  + X,, The objective of the derivation that follows  is to 
determine an expression  for the probability of finding X,,, 
faults in  area S + AS. This expression  must be a function of 
the probabilities for finding faults in S. 

There are x + 1 ways that x faults can occur in S + AS. 
This includes combinations such as all x faults in S and 
none in AS; or x - 1 faults  in S and one in AS; or x - 2 
faults in S and two in AS; and so on. These are all 
independent events. The probability of finding X,+, = x 
faults in area S + A S  is therefore 

p(x,S + AS) = 1 p(x - i,S)p(i,aSlx - i,S), (2) 
X 

i-0 

where p(i,ASI x - i,S) is the probability of  finding i faults in 
AS given that there are x - i faults in area S. Expansion  of 
the first  two terms gives 

I p(x,S + AS) = p(x,S)p(o,As(  x,S) 

+ p(x - l,S)p(l,ASIx - 1,s) 
m 

+ p(x - i,S)p(i,AS(x - iJ ) .  (3) 
i-2 

If the area of AS is small enough, we can  assume that the 
probability of finding  two or more faults in AS becomes 
negligibly  small.  In that case 

p(x,S + AS) = p(x,S)p(O,ASI x,S) 

+ p ( X  - l,S)p(l,ASJX - 1,s). (4) 

The probability of finding no faults in A S  is the 
complementary event to finding one or more faults. This can 
be  written as 

p(O,Aslx,S) = 1 - p(i,ASlx,S). ( 5 )  
m 

i- I 

Since  it was assumed that the probability of finding  two or 
more  faults in AS is  negligibly small, ( 5 )  can be 
approximated by 

p(0,AS) E 1 - p(I,AS(x,S). (6) 

Next an estimate must be made for the magnitude of the 
probability of one fault occurring in AS. In a previous paper 
a simple proportionality was assumed [5]: 

P( 1 ,AS1 X S )  = dAS, (7) 

where was taken to be a constant. However,  in this case 
the left-hand  side depends on the number of faults in the 
adjacent areas. The more faults there are in this region, the 
more likely  it  becomes that one fault will  be found in AS. 
Consequently the proportionality factor 4 in (7) must be 
d x ) ,  a function of the number of faults X ,  = x. 

The combination of (6) and (7) gives 

p(0,ASl x,S)  = 1 - 4AS. (8) 
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Substituting (7) and (8) into (4) results in 

p(x,S + AS) C- p(x,S)[ I - 4(x)As] 

+ p(x - 1,S)q5(~ - 1)AS. (9) 

Rearrangement of this formula leads to the recursive 
difference relationship 

p(x,S + AS) - p(x,S) 
AS = -4(XlP(X,S) 

+ 4(x - l)p(x - 1,s). 
By letting the incremental area AS shrink to zero, the 

above  becomes a differential  recursive equation, 

a 
as - p(X,S) = -4(X)p(X,S) + 4(x - l)p(x - 1,s). ( 1  la) 

Using the preceding approach, it is not difficult to show 
that the starting equation for x = 0 becomes [ 5 ]  

- p(0,S) = -4(O)p(O,S). 
a 
as 

These  two equations must be solved to obtain the 
distribution p(x,S). The nature of this distribution depends 
entirely on d x ) .  

3. Yield  formula 
The solution of ( 1  1 b) is straightforward and results in 

~(o,s)  = Ce-'*OS, (12) 

where C is a constant of the integration. The result looks like 
a straightforward exponential and results in the yield 
y = ce-'-s. (13) 

This has  all the appearances of the yield  model  associated 
with Poisson statistics which  is  usually  written in the form 
[4,51 

Y = Yoe-eAD, 

where Yo is a gross yield and 0 a defect  sensitivity  factor 
(often referred to as the probability of failure), A the chip 
area, and D a defect  density. 

Indeed the theory of Hu [6] and the data analysis of 
Warner [7] lead us to believe that for  large chips an 
exponential yield  model  like (14) is  sufficient. The above 
result in ( 1  3) appears to agree  with  those conclusions. 
However, appearances are deceiving and it is shown  in this 
paper that ( 13) does not follow  Poisson  statistics.  Instead 
( 13) equals the model in ( 1)  and is associated  with 
generalized  negative binomial statistics. To show this 
requires  solving ( 1 la) and ( 1 1 b)  for the actual fault 
distribution p(x,S). 

4. Solution  of  the fault  distribution 
The solution to Eqs. (1 1 a) and ( 1  1 b) can be found 
systematically. The approach is similar to one described in 
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[4]. In this case (1 la) is multiplied by tX  and (1 lb) by tn = 1 .  
Summing the results  for  all  possible  values  of x results in the 
differential equation 

a "  
- c p(x,S)tX = (t  - 1)  p(X,S)@(X)t". (15) 
dS x=n .t=o 

The summation within the derivative on the left-hand  side 
of the equation is the probability distribution generating 
function defined by 

G(t;S) = p(x,S)tX. (16) 

m 

m 

P o  

The fault distribution probabilities are obtained from the 
probability distribution generating function with 

The objective is to determine G(t;S) from (1 5). When this is 
done, p(x,S) can be calculated with (1 7). 

When &(x) = c instead of a function of x, Eq. (14) can be 
simplified to 

dG 
dS 
" - ( t  - 1 ) c G .  (18) 

This has the solution 

G(t;S) = 8"", 
which  by application of ( 1 7 )  results in 

better known as the Poisson distribution. This result is not 
surprising. 

of faults x already in S. Assume the linear relationship 

$(x) = c + bx, (21) 

where c and b are constants. Introducing this into ( 1 5 )  and 
regrouping terms on the right-hand side of (1 5) results in 

In the case  of clustering @(x) is dependent on the number 

The solution to this equation is 

G(t;S) = {exp(bS) - [exp(bS) - l]t)-c'b. (23) 

Again the probability distribution p(x,S) can be obtained 
from this probability distribution generating function with 
( 17). This gives 

which  is a generalized  negative binomial distribution, and 
not a Poisson distribution as might  have  been  expected from 
(12)and(l3). 

The yield appears to be given  by Y = p(O,S), which  results 
in 

y = e-cS. (25) 

Except  for the integration constant, this is the same result 
as the one obtained in (1 3), and is similar to the yield 
expression  for  Poisson  statistics. This is often believed to 
show that when  clusters are included in the chip area, the 
yield  vs. area dependence should be like the Poisson  yield 
model, as indeed it  is  here [6,7]. What proponents of such 
theories usually  neglect is the wafer-to-wafer, lot-to-lot, day- 
to-day,  week-to-week, and month-to-month variations of 
defect  levels in integrated circuit fabricators. This was taken 
care of  by mixing or compounding Poisson  statistics [ 1-31. 
In  exactly this same way the results in (24) and (25) still  have 
to be compounded to take care of regional and long-time 
variations in the parameters c and b. When we do this, the 
resulting  yield  vs. area plots are still  expected to show the 
familiar  uplift that resulted  from compounding Poisson 
statistics.  Such data undoubtedly can still be approximated 
by a model of the type 

Y = ( 1  + aS/a:)-", 

with a and a: as parameters. What the results of this paper 
imply is that the average number of faults is  going to be 
higher than as. The reason for this is  described in  the next 
section. 

5. The  average  number  of  faults 
It  is instructive to determine the average number of faults 
X = E(Xs) that can be  expected  from the distribution in (24). 
Using 

m 

X = E(&) = c. xp(x,S), (26) 
P O  

rearranging some terms, and making the substitution 
x = u + 1 results in 

X = e -bS ( e  bS - 1) c/b + ua(u,S)]. [ :o (27) 

The infinite sum on the right-hand side  of this equation is 
the same as the one in (26), thus reducing (27) to 

X = e ( e   l ) ( c / b  + X). -bS bS - 
(28) 

This can be  solved to give 

X = (ebs - l)c/b. (29) 

The preceding  result is most  interesting. It shows that the 
average number of faults increases exponentially with the 
surface area S. This implies, for instance, that one half  of the 
area has on the average  fewer faults than the other half. This 
is  all  caused by the initial assumption in (2 1)  and is  precisely 
the type of situation that can be expected  when clustering 
takes place within a chip. 
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It  may  be  necessary  in the future to restrict the variable S 
to a range 0 I S I A ,  where A is a chip area. The value of c 
could then depend on this area, so that we  get c(A).  This will 
then make (29) a function of A .  Applicability of this type  of 
condition will depend on the analysis of actual data. 

6. Chip yield 
The chip yield can be  expressed  in terms of the average 
number of faults. Rearrangement of (29) gives 

S = In ( I  + Xb/c)‘/’, 

which  when substituted into (25) results in 

Y = ( 1  + Xb/C)-”’. 

Substitution of (Y = c/b makes this result identical to (1). 
This completes the proof. 

Using X and (Y as the parameters in (24) results in the 
more  familiar-looking  generalized  negative binomial 
distribution [4] 

The area relationship in this case  is  implied by the average 
number of faults X, as it was in all previous theories. The 
only  difference  is that this area relationship is no longer 
linear but exponential. 

7. Discussion 
The real  world of  yield  is  very  complex. Mathematics can 
only approximate that reality.  Nevertheless, if properly  used, 
mathematics can give us insight into the nature of the 
problems that have to be solved. This is the case  here. 

The results of this paper are extremely important for  full 
wafer manufacturers. Peltzer [8] has already mentioned the 
use of Poisson  statistics as a yield  model  for  full  wafer 
manufacture at Trilogy. He wrongly quotes this author as 
the source for that model.  It  is,  however, the Poisson  model 
in Reference [6]. This is  wrong. The Poisson fault 
distribution is very narrow when compared to actual data 
[9]. Since  full  wafer manufacturers are using redundancy, 
they will be deceived if they use Poisson  statistics. The 
theoretical calculation of yield  with redundancy is too high 
when  those statistics are used. 

The fault distribution on actual products is very  wide. 
This is  caused by clustering and can be approximated with 
generalized  negative binomial statistics as shown in 
Reference [9]. In this paper it has been  shown that this 
approximation can be expected to hold  for clustering within 
the chip. In previous papers  it was shown that chipto-chip 
variations due to large area clustering could be  modeled 
similarly [ 1-51. 

To correctly  model  yield it should be realized that 
Expression ( I )  as derived in this paper holds only  for one 
chip or wafer. Variations among wafers and areas on wafers 
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give different  values of the average number of faults  for  each 
individual case.  These  effects  have a far  greater  influence on 
the yield than internal clustering. To take them into account 
required that Expression (1 )  be compounded to give 

Y = g,(l + 
I 

or 

(33) 

(34) 

Compounding like this is usually  neglected in single  wafer 
yield theories as in [6], therefore missing the major variable 
in yield  modeling. This author has  investigated  several 
functions for &X) in (34). Unfortunately, until now no  easily 
usable  results  have  been obtained. 

The statistics  associated  with (33) and (34) will  lead to 
fault distributions with  very  long  tails. Data analyzed in the 
last few years by this author have  indeed  shown a propensity 
for such  long  tails.  This is important for deciding the 
amount of redundancy that is  needed to fix the faults 
expected  in future products. Yield  modelers  who  misjudge 
this effect can  cause enormous capital losses in unsuccessful 
ventures if they do not rely on  sufficient redundancy. 
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