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Automatic test pattern generators based on the
stuck-fault concept are theoretically inadequate
in their ability to generate test patterns for
CMOS circuits. A new set of pin faults, called
CMOS faults, is discussed that can represent
the necessary test pattern sequences for these
circuits. Processing of these faults by a new test
pattern generator, called the Enhanced Test
Generator (ETG), is also described.

Introduction
The test generation problem can be stated as follows.

Given A system, hereafter called a design, consisting of
blocks interconnected by nets.
The blocks are of three types:

1. PI blocks—Single output, directly controllable.

2. PO blocks—Single input, directly observable.

3. Logic blocks—n input nodes, n > 0, m output nodes, m
> 0. The ith block has K, , transfer functions, all of
which are Boolean functions of limited time domain. One
of these functions is called the good machine, or GM,
function, and is intended to be the transfer function of
the block without any faults in it. The other K functions
are called failing machine, or FM, functions, and are
associated with fault classes of the block. Some transfer
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functions can have a finite amount of delay, but no
feedback. Others can have feedback and store
information.

The nets are almost always assumed to be unidirectional,
with no logical function and zero delay.

Problem Find an algorithm that, for each defined FM
function, generates at least one design behavior that is
different from that of the GM.

Algorithms that attempt to solve this problem are usually
evaluated according to a measure that reduces to the
percentage of FMs that are detected, assuming that only one
FM can occur at a time. Other performance criteria used to
evaluate test pattern generation algorithms include

& The time required to generate the patterns.

e The resources (computer time, computer memory,
computer DASD, number of people, and the people skills)
required to generate the patterns.

& The time required to apply the test patterns and determine
that the design is entirely GM.

& The average time to apply the test patterns and determine
that the design is entirely GM, assuming a mix of both
GM and FM designs.

& The probability that a design classified as GM cannot
function in its assigned environment at a later time. {This
criterion is, to a large extent, dependent on the adequacy
of the FM functions to incorporate the significant failure
modes of the design.)

This paper makes the following assumptions about a
design:

& The failure modes considered are only those that can lead
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I SRL block.

| High-Level Function of the Automatic Test System.

to a steady state difference between the GM and FMs
(static-fault assumption).

& Only one defective block at a time (single-fault
assumption).

& Nets between blocks do not short except at block input
nodes.

& The stimulus and response values are taken from the set
(0, 1, X, H). 0 and 1 are the standard logic values. X
means an unknown logic value. H means a high-
impedance state.

» The logic blocks are A, Al, O, O, DOTA, DOTO, DOTT,
and SRL. The first four blocks are the standard logic
primitives. The DOTA and DOTO blocks have transfer
functions that are the same as the A and O blocks,
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respectively, but they can be different from the primitive
functions in some other respects, such as their fault model.
The DOTT block is the only block that can process and
generate an H value.

The SRL is an LSSD-compatible latch, such as the
polarity hold latch, whose block diagram is shown in
Figure 1. It is a level-sensitive master slave latch with a
two-port first stage, called L1, feeding a second stage called
L2. There are two clocks driving L1, C and A, with the C
clock gating D and the A clock gating I. There is one clock
gating L2, the B clock, which does not overlap in time
either A or B. Operationally, C is the system clock and D
is the data port. A is called the scan clock.

The SRLs are connected into one or more shift registers
by chaining the I inputs. A design input and output are
designated to feed the first SRL and receive the last SRL
output, respectively, for each shift register. This
arrangement offers a way to directly observe and control
every state in the design.

& The design obeys the LSSD design rules. These rules
ensure that the various clocks operate properly and can be
tested and that scanning occurs with complete
controllability and observability. (For more information
on the LSSD design methodology, see [1] and [2].)

Most logic chip manufacturers have a collection of
hardware and software tools that help them generate test
patterns [3, 4]. Some have integrated their software tools
into a large software system similar to the one discussed in
this paper. In fact, an executive program might be used to
control and select the appropriate tool for a given situation
[5].

In Figure 2, the tools are divided into five classes, three of
which are associated with test pattern generation (TPG):
random (random TPG), functional behavior (functional
TPG), and automatic deterministic (ADTPG). The other
two classes are fault simulators and utilities.

The subject of this paper is a new ADTPG called the
Enhanced Test Generator, or ETG. ETG is like most other
ADTPG:s in that it applies defined objectives (stimulus
sequence and GM and FM responses) to a block, or
BLOCK, in capital letters, and then attempts to force
BLOCK s response to at least one point of observability in
the design and BLOCK'’s stimulus sequence to points of
controllability in the design.

Like other ADTPGs, ETG can generate test patterns for
objectives represented as stuck faults. ETG, however, has a
unique capability: It can automatically generate test patterns
for the special faults found in CMOS circuits called CMOS
open faults. Since the stuck-fault concept is in general use,
ETG’s operation with respect to stuck faults is discussed
first. Then the concept of CMOS pin faults is introduced and
the additional capability available in ETG to process these
faults is described.
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I High-Level Function of an ADTPG.

The organization of ETG
In discussing ETG, the following data structures are
assumed:

LMOD defines the blocks, nets and connectivity of the
design.
BUGLIST contains the following information for each

objective:

¢ Design objective number.

o Code defining the objective.

o Definition of where the objective is located
in the design.

NETIMAGE is a structure of lists for every net in the design
that consists of elements containing the GM
and FM values on the net and the time image
in which they were assigned. Miscellaneous
flags are also contained in each element.

BLKLIST s a list structure of blocks to be processed.

ETG is organized as shown in Figures 3 and 4. The
functions in these figures are as follows:

BUILD builds and initializes the internal data
structures.

SELOBJ selects the objectives to be processed.

SCHED processes the objectives. Decisions are
remade whenever a conflict occurs,
discarding data that are judged unnecessary.

TSXXX applies the stimulus and response values (GM
and FM) to BLOCK.

TESTCALC invokes a TSXXX based on BOOK’s
function.

CFEXPAND adds blocks that feed BLOCK to BLKLIST.

GTEXPAND adds blocks that are fed by BLOCK to
BLKLIST.
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I High-Level Function of the Scheduler.

CFGTCALC selects other blocks to transmit or justify
values through.

TRXXX transmits values through blocks.

JUXXX justifies values through blocks. (It finds a
stimulus that produces the given response.)

ASSIGN manages the internal data structures that

contain the design’s stimulus and response
values for this objective.

The XXX in TSXXX, TRXXX, and JUXXX indicates that
there are several of these functions in ETG for the various
blocks defined in the design.

Stuck-fault test pattern generation

o Implementation of the stuck-fault concept in TSXXX

The ADTPGs generally available today rely on the stuck
faults on the pins of primitive blocks to represent objectives
[6-8]. Two reasons for this are

¢ Historically, single-stuck-fault models of designs have
resulted in good-quality product.

e The stuck-fault concept leads to an efficient
implementation in an ADTPG.

The last point is elaborated first.

The stuck-fault approach makes a basic assumption about
the FM transfer functions: They can be characterized as
being the GM transfer function except that a single input or
output is stuck at a logic value. For example, the set of
unique FM transfer functions for a three-input Al gate, with
inputs 4, B, and C and output Z, is summarized in Table 1.
The “—” in the Stimulus columns mean that a 0 can occur
on one or more of the inputs. In all columns, the GM value
is on the left of the “/” and the FM value is on the right.
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Table 1 Al test patterns.

Stuck Stimulus Response
Sault Z, GIF
A B C

Asal 0/ /1 /1 1/0

Bsal /1 0/ /1 1/0

Csal /1 /1 0/ 1/0

Zsa0 -/ -/ -/ 1/0

Zsal 1/ 1/ 1/ 0/1
Table 2 Al test patterns.

Stuck Stimulus Response
Sfault 0, G/F
I —I
Isl 0/ /1 1/0
Os0 -/ -/ 1/0

Osl 1/ 1/ 0/1

Note how compactly the FM transfer functions can be
defined as the difference between the GM and FM transfer
functions. Also, note that both the GM and the FM are
defined in both stimulus and response columns. This is not
normally done in the literature, but it emphasizes the
essential differences between the GM and FMs, as well as
resolving conflicts in circuits with feedback.

Table 1 suggests an efficient combination of database
format and program coding for applying patterns to an Al
block. The database specifying the faults need contain only
the stuck-fault name, the pin the stuck fault is on, and the
block the pin is on. A TSXXX function that might be
written for the Al primitive could take this information and
implement the table as a case statement on the stuck fault.

Table 1 implies that a separate copy of the function is not
needed for each size Al block in the design. In all cases, the
decision table says to do something to one input, and to do
something else to every other pin. As a matter of fact, Table
2 is a shorter way to write Table 1 for all Al sizes.

A table can be constructed for all the primitive blocks, not
just the Al block, by using the concept of controlling value.
A controlling value is a value on a single input that forces
the output response to be a certain value, regardless of the
other input values. The controlling value for A and Al
blocks is 0; the controlling value for O and OI blocks is 1.

With CV representing controlling value and NV
representing noncontrolling value, Table 3 is the combined
decision table for all primitives. The response column in this
table defines the outputs for the true primitives A and O.
The inverted primitives Al and OI are assigned values in
which CV and NV are reversed.
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Let TSAOI be the TSXXX function associated with the
primitive blocks. Its task is to assign values, based on this
table, to nets feeding a block. (The values are placed in the
NETIMAGE structure.)

The following points should be considered when
implementing TSAOIL:

e A blank in Table 3 means that nothing is assigned to that
net and no checks are made.

o If an assignment is required, the value already on the net
cannot conflict with the value to be assigned. If it does,
this should be communicated to higher levels of the
program.

e The OSNC entry should be interpreted as follows: Apply a
CV to one or more block inputs. A decision must be made
on which one. A mechanism should exist to keep track of
decisions, so that if one decision leads to a conflict
somewhere in the system, other decisions, if they exist, can
be tried.

o Transmitting responses to POs or SRLs
Once the test values have been assigned to BLOCK’s nets, it
is the responsibility of the ADTPG to transmit the response
values to the points of observability, which are SRL or PO
blocks when the design obeys the LSSD design rules. In
doing this, the ADTPG can be expected to call TRXXX
functions repeatedly to transmit test values through blocks.
These are some important points that were considered
when the TRXXX functions were implemented in ETG:

1. One of the flags, TFLAG, in the NETIMAGE element
can indicate that the value on the net is a test value that
should be transmitted through the block.

2. Any primitive block that has a net feeding it with a
TFLAG should apply noncontrolling values to all other
inputs in order to pass the value through the block. Table
4 is the decision table for this assignment for all primitive
blocks. The response column contains the values for the
noninverted primitives A and O. The values for the
inverted primitives have NC in place of CV and vice
versa.

o Justifying stimuli back to PIs or SRLs

The stimuli to BLOCK, plus all stimuli assigned during the
transmit operation, must eventually be justified back to
points of controllability, which are PI or SRL blocks in
LSSD designs.

The JUXXX functions are responsible for this operation
for a given biock. Table 5 is the decision table implemented
in the JUAOI function associated with the primitive blocks.
The table should be interpreted as follows:

1. Assignments should not be attempted where entries are
blank.
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2. If the stimulus value is NC, that value should be applied Table 3 Test patterns for ail primitives.
to all input pins.

3. If the stimulus value is CV, that value should be applied Stuck Stimulus Response
to one or more input pins. A decision is required and a Jault T
mechanism must exist for tracking these decisions and ! —!
remaking them when a conflict arises in the system. ISNC cvy /NC CV/NC

OsCV NC/ NC/ NC/CV

e Construction and validation of LSSD test patterns OsNC v/ cv/ CV/NC

The discussion in the previous paragraphs assumes that the
design obeys the LSSD design rules. Thus the test pattern
generator can assume that the latches are PIs and/or POs.
After the patterns are generated, one for each objective,
they must be formatted into patterns consistent with the
design’s' LSSP structure, complete with all system and scan Value o be Value on Response
clock stimuli, and then passed through a simulator to verify transmitted other pins
that they are valid patterns. Conceptually, the following

Table 4 TRXXX decision table for all primitives.

procedure is used by ETG to accomplish this: gg gs N C; NC IS\CI%\C/
t. The utility LSSDST (see Fig. 2) is called to define the
stimuli necessary to set the design up for scanning. After
the stimuli are applied, the design is said to be in its
“stability state.” Table 5 JUXXX decision table for all primitives.
2. The utility LSSDSR is called to define a set of test
patterns for the shift registers themselves. These patterns Defined response Required stimuli
may or may not be simulated.
3. The test pattern generator is called, perhaps several times Igg; 25;
either for different strategies or just to break the patterns JNC /NC
up into smaller groups. Each time the test pattern /CV Y
generator is called:
a. The test pattern generator generates tests for the
objectives in the list passed to it.
b. The patterns are subsumed where possible using the 4. Tester loops that have no diagnostics are discarded.
utility SUBSUME. (This reduces the test pattern
count, but it means that there can be multiple A typical tester loop has the following format:
diagnostics for a given test pattern.)
c. LSSD tester loops are constructed using the utility 1. Load the SRLs.
LSSD. (A tester loop is defined below.) a. Apply the stimuli necessary to establish the stability
d. The tester loops are sent to the fault simulator. This state.
simulator might use a concurrent, deductive, or b. Order the values assigned to the SRLs according to
parallel approach to fault simulation (CONCUR, their location in the shift registers.
DEDUCT, and PARAL in Fig. 2. See [9].). The fault c. Provide a series of A and B clocks and apply stimuli to
simulator applies the defined stimuli to the design and scan-in ports to scan values into the SRLs. (The values
marks off a fault whenever it is detected. It defines the have been previously assigned to the SRLs according
responses of the design to the stimuli. Each marked-off to their order in the SRL scan chain.)
fault results in a diagnostic being recorded in a 2. Apply values to the Pls.
diagnostic data set. (It should be noted that the fault 3. Provide a CB clock pair to store the response of the
simulator will mark off any faults that are detected by design to the stimulus.
a test pattern. This means that even though the first 4. Measure the PO responses.
tester loop may have been generated for one objective, 5. Unload the SRLs.
it might in fact be effective in detecting several other a. Apply the stimuli necessary to establish the stability
faults. This in turn means that the subsequent patterns state.
that were generated for those faults are no longer b. Provide a series of A and B clocks to scan values out
required, unless, of course, they too detect faults other of the SRLs, measuring the scan-out ports after each
than the one for which they were generated.) pair of clocks. 629
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| Three-input standard CMOS NAND gate.

CMOS test pattern generation

o CMOS pin faults, the TSXXX routine, and the BUGLIST
Although the CMOS technology has many design and
technology advantages over the common bipolar and nMOS
technologies [10], it has a potentially serious testing
disadvantage, particularly in low-yield situations: the CMOS
open fault [11, 12].

Figure S is a standard CMOS three-input Al gate. It is
“standard” in the sense that the circuit has pairs of p- and n-
type transistors, each pair driven by the same input. In this
figure, all the transistors have been numbered and all the
wire segments have been lettered.

This circuit and the circuits that implement the other
primitives have been analyzed for their behavior, given these
device-level faults in the circuit.

e Open transistors.

e Short transistors.

e Open wire segments.

e Two wire segments shorted together.

To summarize the results for the given Al gate: The faults
could be classified into the following three major groups
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based on the stimuli necessary to detect them (the number in
parentheses is the percentage of all the faults that belong to
this group):

1. Stuck-at faults (24 percent) exhibit stuck-fault behavior.

2. CMOS open faults (47 percent) exhibit CMOS open-fault
behavior. That is, in order to guarantee a test for the
fault, the output of the circuit must be either charged or
discharged to the FM value and then a second stimulus
must be applied in an attempt to change this value.

3. Shorted device faults (27 percent) exhibit behavior that
can be modeled as one of the devices shorted from source
to drain. These faults may or may not be dc-detectable,
depending on technology specifics.

The CMOS open fault is important for two reasons. First,
with the right sequence of stimuli, it is dc-testable. As a
matter of fact, if the ADTPG generated the appropriate
clocks, it is likely that at least some of these faults can be
serendipitously caught. Second, without any information on
defect densities, it must be assumed that this fault
constituted a significant fraction of the faults in the design.

This was the motivation for the development of ETG,
which actively generates test patterns for CMOS open faults,
and the associated fault simulators, which grade the resulting
patterns for effectiveness.

Key to the development of ETG was the realization that
CMOS open faults can be represented in basically the same
way as stuck faults; that is, as pin faults on a primitive block.
This realization is based on the observation that the open
device faults can be further classified into one of three

groups:

1. Inclusive input faults—those that require a transition on
the specified input pin. An example of this fault in Fig. §
is device 1 open from source to drain. To test this fault,
the output must first be discharged with a stimulus of (4,
B, C) = (1, 1, 1), and then device 1 must be used to
charge the output with a stimulus of (0, 1, 1). Note that
devices 2 and 3 are held off to ensure that it is device 1
that does the charging.

2. Exclusive input faults—those that require a transition on
any input pin other than the one specified. An example of
this fault is a break in wire segment p. To test for this
fault, the output node must first be precharged with a
stimulus from the set [(X, 0, X), (0, X, X)]. Then the
stimulus (1, 1, 1) must be applied to discharge the output.
If the gate to device 6 is floating at a value that does not
permit 6 to turn on and stay on, the fault will be
detected. (In other words, if this fault is dc-detectable at
the time of the test, this test will detect it.)

3. Output faults—those that require a transition on the
output pin. An example of this fault for a 0 to 1
transition is a break in wire segment v. The test for this
fault is to apply a (1, 1, 1) stimulus to discharge the
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Table 6 CMOS pin fault decision table.

CMOS Time 1 Time 2

pin
Jault I —I T I —I T
IsNC cv/ /NC CV/NC
OsCV NC/ NC/ NC/CV
OsNC cv/ Ccv/ CV/NC
EINC X/X CV/CV NC/ NC/ NC/CV
ICv NC/NC NC/NC cv/ /NC CV/NC
OtNC CvV/CV CV/CV NC/ NC/ NC/CV
OotcvV NC/NC NC/NC cv/ cv/ CV/NC

output and then apply a 0 to any input in an attempt to
charge the output. An example of this fault for the 1 to 0
transition is device 4 open from source to drain. The test
for this fault is to apply a 0 to any input to charge the
output and then a (1, 1, 1) stimulus in an attempt to
discharge the output.

These new definitions result in Table 6, the CMOS analog
to the stuck-fault decision table (Table 3). The interpretation
given to this table is the same as before. In addition, the
X/X symbol means “assign any logic value” to both the GM
and the FM. This is different from a blank, which means “do
not assign anything.” Consequently, the exclusive input
transition fault requires two independent sets of decisions,
the first to set the specific pin and the other to set all the
other pins.

The ETG TSXXX function for the primitive blocks,
TSAOI, implements this table. The code defining the
objective in the BUGLIST data structure includes the
CMOS faults. TSAOI assigns values for a given time image
in the general way the stuck-fault TSAOI function does. The
difference is that it does so for two time images on the input
nets: two NETIMAGE elements are generated for these nets.

e Transmitting responses to POs or SRLs

The TRXXX functions are the same as for stuck faults.
Note that TRXXX will be called for the second time image
only.

o Justifying stimuli back to PIs or SRLs

For the standard primitives, the JUAOI function is the same
as for the stuck-fault test generator. Of course, two images
must be processed. However, the justify function for the
SRLs, JUSRL, is fundamentally different from the stuck-
fault version.

The basic justify philosophy implemented at an SRL is
this: The first time image of a test is loaded into the
appropriate SRL during the SRL load of the tester loop; the
second time image is generated either by shifting the value in
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from the previous SRL in the scan string or clocking the
value in through the data input.

To accomplish this, JUSRL must make a decision
between the following two alternatives:

1. Generate an AB clock pair. Place the second time image
value into the previous SRL in the first time image.

2. Generate a CB clock pair. Place the second time image
value on the SRL’s data input net in the first time image.

JUSRL must keep track of the decisions it makes.

e Construction and validation of LSSD test patterns
Tester loops generated by ETG for CMOS faults have a
different format than the tester loops generated for stuck
faults:

1. Load the SRLs.

2. Apply stimuli to the PIs.

3. Do one of the following:
e Apply stimuli to the Pls.
e Apply an AB clock pair.
e Apply a CB clock pair.

4. Apply a CB clock pair.

. Measure the PO responses.

6. Unload the SRLs.

(9]

The addition of the extra stimuli or clock pairs in the middle
of the tester loop produces the sequences necessary to test
the CMOS open faults.

CMOS fault simulators

The algorithms associated with the fault simulators used by
ETG are not trivial. These simulators have two novel
capabilities that are important to this discussion. Previous
treatments of CMOS open failures [11] reflected that the
nature of these defects implied a latch in the fault model that
does not exist in the good machine model. The ETG
simulators are capable of treating each block in the circuit as

if such latches existed in the model. 631
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The second capability involves a condition designated as a
B faul:r. A B fault is a CMOS open fault in which the first
time image setup is invalidated by a race condition that
permits a momentary glitch to occur on a block pin other
than the one under test [13]. In these simulation algorithms,
each transition on a net goes through an unknown state
(“X™) prior to achieving the steady state value. This built-in
pessimism effectively negates all effects of momentary
glitches, thus suppressing implied tests on these B faults.

Experience with ETG

ETG is being used for test pattern generation by several IBM
CMOS masterslice design systems. As part of the technology
support, a library of fault models is provided, with an entry
for each circuit, or “book,” that can be placed on the
masterslice. These models were developed using the
following methodology:

1. The set of test objectives is determined for each circuit by
determining the behavior of the circuit for each circuit
fault. (The assumed failing modes are open metal or poly
wire and open and shorted devices from source to drain.)

2. A logic circuit of primitive blocks is defined that the
technologist believes will model both the circuit’s GM
and FM machine behavior.

3. CMOS pin faults are identified for each objective. That is,
for each test objective, a CMOS pin fault is found in the
logic model that generates the same tests as defined by the
test objective. If such a fault cannot be found, three
courses of action are possible:

a. A new fault model can be defined that has an
appropriate CMOS pin fault.

b. The circuit can be redesigned so that that test
objective is no longer required.

¢. The circuit can be identified as not fully testable and a
quality detractor computed for each chip containing
the circuit.

In practice, all three courses of action have been taken.

4. ETG is run against the model to verify that the correct
model has been defined and that the CMOS pin faults
generate the predicted patterns.

5. Up to this point, the fault model contains both the pin
faults that have been identified as necessary and all other
possible pin faults on all the primitives in the model. If
desired, the number of faults in the fault model can be
reduced according to the following criteria:

o Some CMOS pin faults on the primitivés do not lead to
legitimate test patterns at the inputs of the circuit.
Assuming that these faults are not required to test the
circuit, they can be eliminated from the model.

& Other CMOS pin faults result in legitimate test
patterns, but they are not required to test the fault
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modes that have been defined (for example, wire-to-
wire shorts). If these fault modes are determined to be
unimportant, the faults can be eliminated.

The design system procedure for test generation starts with
a data set defining the design in terms of a design language.
The basic operators in this language are the books of the
design system. This data set is processed in order to obtain a
preliminary logic structure on which LSSD design rules
checks are run, the stability state defined, and the shift
register tests generated. In the next step, a more refined logic
structure is generated, the LMOD, along with the
BUGLIST. Finally, a test generation system is called that, in
turn, uses ETG to generate the test patterns and one of
ETG’s supporting simulators to determine the test coverage.

Statistics on a few designs processed by ETG are shown in
Table 7. The Blocks column shows the number of blocks in
the design, SRLs the number of SRLs. SRL % is the
approximate percent of the system’s blocks devoted to SRLs;
Come froms is the number of block inputs in the system—
this number gives an idea of the design’s complexity; Stuck
Jaults is the number of stuck faults; CMOS faults is the
number of CMOS open pin faults. (From this point on,
CMOS faults will always mean CMOS open pin faults,
unless otherwise indicated.)

The St design in this table is a simple but important
circuit. It is the circuit used by Reddy et al. [12] as an
example of a circuit with a B fault.

S2 is another special design. It has a four-bit counter that
has proven particularly resistant to CMOS testing.

The other designs are chips that have been designed for
product applications. Note that S4 is mostly latches.

Note also that the total number of faults using a CMOS
fault model is about double the number of faults in a stuck-
fault model.

Table 8 is a comparison of the fault coverage provided by
ETG and a popular IBM stuck-fault test generator. The
columns in the table are the following:

Data from the stuck-fault generator with
no shift register test fault simulation
before the stuck-fault generator was run.
Stuck fault + SR Data from the stuck-fault generator with
the shift register test fault simulated before
the stuck-fault generator was run.

Stuck fault

ETG ETG data without shift register test fault
simulation.

ETG + SR ETG data with shift register test fault
simulation.

SF Percent test coverage on the stuck faults.

cM Percent test coverage on the CMOS faults.

T Percent test coverage for all faults.
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Table 7 Statistics of some CMOS designs.

Chip Blocks SRLs SRL Come Stuck CMOS

% Sfroms Saults Sfaults

S1 15 0 0 20 45 50

S2 186 4 60 324 381 430

S3 1179 24 57 1976 2183 2278

S4 4837 144 83 9095 7866 8230

Table 8 Percent fault coverage for some CMOS designs.
Part Stuck fault Stuck fault + SR ETG ETG + SR

SF CM T SF CM T SF CM T SF CM T
sl 100 0 47 — - — 100 98 99 - — -
S2 93 30 61 93 41 68 96 82 89 96 82 89
S3 88 31 44 89 53 72 94 76 85 95 78 86
S4 95 36 65 95 55 75 97 70 83 99 73 86

On the basis of the data in Table 8, as well as other data,
some conclusions can be drawn about the efficacy of stuck-
fault LSSD ADTPGs and ETG:

1. ETG and the fault simulator do work correctly in not
indicating a successful test for B faults.

2. CMOS fault coverage by the stuck-fault LSSD ADTPG
without the shift register test is uniformly low. CMOS
fault coverage of less than 40 percent should be expected.
The reason for this is obvious when the tester loops are
examined. There is a low probability that the correct
sequence of clocks will be generated to provide the test
sequences necessary to catch the CMOS faults.

3. The shift register test can provide a significant increase in
CMOS fault coverage over that provided by an LSSD
ADTPG alone. The greater the proportion of SRLs to
combinational logic in the design, the better the test
coverage. This is because the shifting operation produces
useful sequences for the SRLs and logic around the SRLs.

4. ETG provides a significant increase in the CMOS fault
coverage over the stuck-fault ADTPGs, even with a shift
register test. However, the CMOS fault coverage, which is
in the 75-percent range, is lower than the stuck-fault
coverage for the design. Studies are underway to
determine how the coverage might be improved.

Several performance criteria were listed in the
Introduction section for evaluating ADTPGs. As
demonstrated above, if the measure used for the “percentage
of fault machines detected” criterion is the percent fault
coverage, ETG has significantly better performance than the
stuck-fault ADTPG.
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Data on the other criteria, namely 1) time required to
generate test patterns, 2) CPU resource requirements, 3) test
time, and 4) shipped product quality level are not included
in this paper either because development of some aspects of
ETG is still underway or there are insufficient data.

Nevertheless, some general qualitative comments about
the expected performance of ETG, compared to a stuck-fault
ADTPG, are possible:

e ETG’s “shipped product quality level” should be better. Of
course, the actual improvement depends, in part, on the
maturity of the technology: Older technologies should see
less improvement than younger technologies simply
because the yield on older technologies is higher.

¢ ETG should require more elapsed time for test generation
and more computer resources. Based on a doubling of the
number of faults and a doubling of the number of time
images that need to be processed, a crude estimate of a
factor of four increase in these criteria might be expected.

o The time required to apply ETG-generated patterns at the
tester is expected to increase. The magnitude of this
increase depends, to a significant degree, on the number of
patterns, the design’s architecture, and the tester. The
actual number of tester stimuli should be expected to be at
least approximately two times that required for a stuck-
fault test. This lower bound is achieved if a minimum-size
set of patterns to test the block input stuck faults can be
modified by separating succeeding patterns with
preconditioning patterns [13]. For example, the patterns
that test a three-input AND block are (011, 101, 110). The
minimum-size CMOS fault test pattern set is (111, 011,
111,101, 111, 110).

D. LEET, P. SHEARON, AND R. FRANCE

633




634

Summary

This paper introduces the topic of automatic test pattern
generators by describing in abstract terms the systems that
they process. The three major types of automatic test pattern
generators are defined. ETG is an ADTPG. Its high-level
structure is presented. The stuck-fault concept is reviewed
and then the operation of ETG stuck faults is discussed, with
emphasis placed on the Test, Justify, and Transmit
functions.

Building on this base, new CMOS pin faults are defined
and ETG operation with respect to these faults is described,
again with emphasis on the Test, Justify, and Transmit
functions. The fundamental capability of ETG is to generate
the sequences of length 2 necessary to detect the CMOS
technology circuit faults that can be detected by a static test.
It does this by using extra scan clocks or system clocks.

Some data are presented comparing the performance of
ETG and a stuck-fault ADTPG. It is concluded that the
LSSD stuck-fault algorithms alone are not effective against
CMOS faults, that shift register tests can help, and that ETG
does significantly increase the CMOS fault coverage.
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