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Automatic  test  pattern  generators  based  on  the 
stuck-fault  concept  are  theoretically  inadequate 
in  their  ability  to  generate  test  patterns  for 
CMOS  circuits. A new  set  of  pin  faults,  called 
CMOS faults,  is  discussed  that  can  represent 
the  necessary  test  pattern  sequences  for  these 
circuits.  Processing  of  these  faults  by  a  new  test 
pattern  generator,  called  the  Enhanced  Test 
Generator  (ETG), is also  described. 

Introduction 
The test generation problem can be stated as follows. 

Given A system,  hereafter  called a design,  consisting of 
blocks interconnected by  nets. 

The blocks are of three types: 

I .  PI blocks-Single output, directly controllable. 
2. PO blocks-Single input, directly  observable. 
3. Logic  blocks-n input nodes, n > 0, m output nodes, m 

> 0. The ith block  has K,,, transfer functions, all  of 
which are Boolean functions of limited time domain. One 
of these functions is called the good machine, or GM, 
function, and is intended to be the transfer function of 
the block without any faults in it. The other K, functions 
are called failing machine, or FM, functions, and are 
associated  with fault classes  of the block. Some transfer 
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functions can have a finite amount of delay, but no 
feedback. Others can have  feedback and store 
information. 

The nets are almost always assumed to be unidirectional, 
with no logical function and zero  delay. 

Problem Find an algorithm that, for  each  defined  FM 
function, generates at least one design behavior that is 
different  from that of the GM. 

Algorithms that attempt to solve this problem are usually 
evaluated according to a measure that reduces to the 
percentage of FMs that are detected, assuming that only one 
FM can occur at a time. Other performance criteria used to 
evaluate test pattern generation algorithms include 

The time required to generate the patterns. 
0 The resources (computer time, computer memory, 

computer DASD, number of people, and the people  skills) 
required to generate the patterns. 
The time required to apply the test patterns and determine 
that the design  is entirely GM. 
The average time to apply the test patterns and determine 
that the design  is  entirely GM, assuming a mix  of  both 
GM and FM designs. 

function in its assigned environment at a later time. (This 
criterion is, to a large extent, dependent on the adequacy 
of the FM functions to incorporate the significant  failure 
modes of the design.) 

The probability that a design  classified as GM cannot 

This paper makes the following assumptions about a 
design: 

The failure  modes  considered are only those that can lead 
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I SRL block. 

I High-Level Function of the Automatic Test System 

to a steady state difference  between the GM and FMs 
(static-fault assumption). 

assumption). 

nodes. 

Only one defective  block at a time (single-fault 

Nets between  blocks do not short except at block input 

The stimulus and response  values are taken from the set 
(0, 1, X ,  H).  0 and 1 are the standard logic  values. X 
means an unknown logic  value. H means a high- 
impedance state. 
The logic blocks are A, AI, 0, 01, DOTA, DOTO, DOTT, 
and SRL. The first four blocks are the standard logic 
primitives. The DOTA and DOTO blocks  have transfer 

626 functions that  are  the same as the A and 0 blocks, 
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respectively, but they can be different from the primitive 
functions in some other respects, such as their fault model. 
The DOTT block  is the only block that can process and 
generate an H value. 

The SRL is an LSSD-compatible latch, such as the 
polarity hold latch, whose  block diagram is  shown in 
Figure 1. It  is a level-sensitive master slave latch with a 
two-port first  stage,  called L 1, feeding a second stage  called 
L2. There are two clocks driving L1, C and A, with the C 
clock gating D and the A clock gating I. There is one clock 
gating L2, the B clock,  which does not overlap in time 
either A or B. Operationally, C is the system  clock and D 
is the  data port. A is  called the scan clock. 

by chaining the I inputs. A design input and output are 
designated to feed the first SRL and receive the last SRL 
output, respectively,  for  each  shift  register. This 
arrangement offers a way to directly observe and control 
every state in the design. 

ensure that  the various clocks operate properly and can be 
tested and that scanning occurs with complete 
controllability and observability. (For more information 
on  the LSSD  design methodology, see [ I ]  and [2].) 

Most  logic chip manufacturers have a collection of 
hardware and software tools that help them generate test 
patterns [3, 41. Some have integrated their software tools 
into a large  software  system similar to the  one discussed in 
this paper. In fact, an executive program might be used to 
control and select the appropriate tool for a given situation 

The SRLs are connected into one or more shift  registers 

The design  obeys the LSSD  design  rules. These rules 

151. 
In Figure 2, the tools are divided into five  classes, three of 

which are associated  with  test pattern generation (TFG): 
random (random TPG), functional behavior (functional 
TPG), and automatic deterministic (ADTPG). The other 
two  classes are fault simulators and utilities. 

The subject of this paper is a new ADTPG called the 
Enhanced Test Generator, or ETG. ETG is like most other 
ADTPGs in that it applies defined objectives (stimulus 
sequence and  GM  and FM responses) to a block, or 
BLOCK, in capital letters, and then attempts to force 
BLOCKs response to at least one point of  observability in 
the design and  BLOCKs stimulus sequence to points of 
controllability in the design. 

Like other ADTPGs, ETG can generate test patterns for 
objectives represented as stuck faults. ETG, however,  has a 
unique capability: It can automatically generate test patterns 
for the special faults found in CMOS circuits called CMOS 
open faults. Since the stuck-fault concept is in general  use, 
ETG's operation with  respect to stuck faults is  discussed 
first. Then  the concept of CMOS pin faults is introduced and 
the additional capability available in ETG to process these 
faults is described. 
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I High-Level Function of an ADTPG. 

I High-Level Function of the Scheduler. 

The  organization of ETG 
In  discussing ETG, the following data structures are 
assumed: 

LMOD defines the blocks, nets and connectivity of the 
design. 

BUGLIST contains the following information for each 
objective: 

Design  objective number. 
Code defining the objective. 
Definition of where the objective  is  located 
in the design. 

NETIMAGE  is a structure of lists for every  net  in the design 
that consists of elements containing the GM 
and FM values on the net and the time image 
in which  they  were  assigned.  Miscellaneous 
flags are also contained in each element. 

BLKLIST  is a list structure of blocks to be processed. 

ETG is  organized as shown in Figures 3 and 4. The 
functions in  these  figures are as follows: 

BUILD  builds and initializes the internal data 
structures. 

SELOBJ  selects the objectives to be processed. 

SCHED processes the objectives.  Decisions are 
remade whenever a conflict  occurs, 
discarding data that are judged unnecessary. 

TSXXX applies the stimulus and response  values (GM 
and FM) to BLOCK. 

TESTCALC invokes a TSXXX based on BOOK'S 
function. 

CFEXPAND adds blocks that feed  BLOCK to BLKLIST. 
GTEXPAND adds blocks that are fed  by  BLOCK to 

BLKLIST. 

CFGTCALC selects other blocks to transmit or justify 
values through. 

TRXXX transmits values through blocks. 
JUXXX justifies  values through blocks. (It finds a 

stimulus that produces the given  response.) 
ASSIGN manages the internal data structures that 

contain the design's stimulus and response 
values  for this objective. 

The XXX in TSXXX, TRXXX, and JUXXX indicates that 
there are several of these functions in ETG  for the various 
blocks  defined in the design. 

Stuck-fault  test  pattern  generation 

Implementation of the  stuck-jault  concept in TSXXX 
The ADTPGs generally  available  today rely on the stuck 
faults  on the pins of primitive blocks to represent  objectives 
[6-81. Two  reasons  for this are 

Historically,  single-stuck-fault  models of designs  have 

The stuck-fault concept leads to an  efficient 
resulted in good-quality product. 

implementation in an ADTPG. 

The last point is elaborated first. 
The stuck-fault approach makes a basic assumption about 

the FM transfer functions: They can be characterized as 
being the GM transfer function except that a single input or 
output is stuck at a logic  value. For example, the set of 
unique FM transfer functions for a three-input AI gate,  with 
inputs A ,  B, and C and output Z ,  is summarized in Table 1. 
The "-" in the Stimulus columns mean that a 0 can occur 
on one or more of the inputs. In  all columns, the GM  value 
is on the left  of the "/" and the FM value is on the right. 
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Table 1 AI test  patterns. Let  TSAOI  be the  TSXXX function associated  with the 

Stuck Stimulus Response 
fault Z,  GIF 

A B C 

Asa I 01 11 11 1 10 
Bsa 1 11 01 11 1 10 
csa I 11 11 01 1 10 
zsao -I  -I -1 1 10 
Zsa 1 11  11 11 01 1 

Table 2 AI test  patterns. 

Stuck Stimulus Response 
fault 0, GIF 

I -I 

Is1 01 11 1 10 
os0 -1 -1 1 10 
os 1 11 11 01 1 

Note how compactly the FM transfer functions can be 
defined as the difference  between the GM and FM transfer 
functions. Also, note that both the GM and the FM are 
defined  in both stimulus and response columns. This is not 
normally done in the literature, but it emphasizes the 
essential  differences  between the GM and FMs, as well as 
resolving conflicts in circuits with  feedback. 

Table 1 suggests an efficient combination of database 
format and program coding for applying patterns to an AI 
block. The database specifying the faults need contain only 
the stuck-fault name, the pin the stuck fault is on, and the 
block the pin is on. A TSXXX function that might  be 
written for the AI primitive could take this information and 
implement the table as a case statement on  the stuck fault. 

Table 1 implies that a separate copy  of the function is not 
needed  for each size AI block in the design. In all cases, the 
decision table says to  do something to one  input,  and to  do 
something else to every other pin. As a matter of fact, Table 
2 is a shorter way to write Table 1 for  all AI  sizes. 

just  the AI block, by using the concept of controlling value. 
A controlling value is a value on a single input  that forces 
the  output response to be a certain value,  regardless of the 
other  input values. The controlling value  for A and AI 
blocks is 0; the controlling value for 0 and 0 1  blocks is 1. 

With CV representing controlling value and NV 
representing noncontrolling value,  Table 3 is the combined 
decision table for all primitives. The response column in this 
table defines the  outputs for the  true primitives A and 0. 
The inverted primitives AI and 01 are assigned  values  in 

A table can be constructed for all the primitive blocks, not 

628 which CV and NV are reversed. 

primitive blocks. Its task  is to assign  values,  based on this 
table, to nets feeding a block. (The values are placed  in the 
NETIMAGE structure.) 

implementing TSAOI: 

A blank in Table 3 means that nothing is assigned to that 

If an assignment is required, the value already on  the net 
cannot conflict  with the value to be assigned. If it does, 
this should be communicated to higher  levels  of the 
program. 
The OSNC entry should be interpreted as follows:  Apply a 
CV to one  or more block inputs. A decision must be made 
on which one. A mechanism should exist to keep track of 
decisions, so that if one decision leads to a conflict 
somewhere in the system, other decisions, if they exist, can 
be tried. 

The following points should be considered when 

net and no checks are made. 

Transmitting responses to POs or SRLs 
Once the test values have been  assigned to BLOCKS nets, it 
is the responsibility of the ADTPG to transmit the response 
values to the points of observability, which are SRL or PO 
blocks  when the design  obeys the LSSD  design  rules. In 
doing this, the ADTPG can be expected to call TRXXX 
functions repeatedly to transmit test  values through blocks. 

These are some important points that were considered 
when the TRXXX functions were implemented in ETG 

1. One of the flags, TFLAG, in the NETIMAGE element 
can indicate that  the value on  the net is a test  value that 
should be transmitted through the block. 

TFLAG should apply noncontrolling values to all other 
inputs in order to pass the value through the block.  Table 
4 is the decision table for this assignment for  all primitive 
blocks. The response column  contains  the values  for the 
noninverted primitives A and 0. The values  for the 
inverted primitives have NC in place  of  CV and vice 
versa. 

2. Any primitive block that has a net feeding  it  with a 

Justifying stimuli buck to PIS or SRLs 
The stimuli to BLOCK, plus all stimuli assigned during the 
transmit operation, must eventually be justified back to 
points of controllability, which are PI or SRL blocks in 
LSSD  designs. 

The JUXXX functions are responsible for this operation 
for a given  block.  Table 5 is the decision table implemented 
in the JUAOI function associated  with the primitive blocks. 
The table should be interpreted as follows: 

I. Assignments should not be attempted where entries are 
blank. 
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2.  

3. 

If the stimulus value is NC, that value should be applied 
to all input pins. 
If the stimulus value is CV, that value should be applied 
to one or more input pins. A decision  is required and a 
mechanism must exist  for tracking these  decisions and 
remaking them when a conflict  arises in the system. 

0 Construction  and  validation of LSSD test patterns 
The discussion  in the previous  paragraphs assumes that the 
design  obeys the LSSD  design  rules. Thus the test pattern 
generator can assume that the latches are PIS and/or POs. 

After the patterns are generated, one for  each  objective, 
they must be formatted into patterns consistent with the 
design’s  LSSD structure, complete with  all  system and scan 
clock stimuli, and then passed through a simulator to verify 
that they are valid patterns. Conceptually, the following 
procedure is  used  by ETG to accomplish this: 

The utility  LSSDST  (see  Fig. 2) is called to define the 
stimuli necessary to set the design up for scanning. After 
the stimuli are applied, the design  is  said to be in its 
“stability state.” 
The utility  LSSDSR  is  called to define a set of test 
patterns for the shift  registers  themselves. These patterns 
may or may not be simulated. 
The test pattern generator is  called, perhaps several times 
either for  different  strategies or just to break the patterns 
up into smaller groups.  Each time the test pattern 
generator is called: 

The test pattern generator generates  tests  for the 
objectives in the list  passed to it. 
The patterns are subsumed where  possible  using the 
utility  SUBSUME. (This reduces the test pattern 
count, but it means that there can be multiple 
diagnostics  for a given test pattern.) 
LSSD tester loops are constructed using the utility 
LSSD. (A tester loop is  defined  below.) 
The tester loops are sent to the fault simulator. This 
simulator might use a concurrent, deductive, or 
parallel approach to fault simulation (CONCUR, 
DEDUCT, and PARAL in Fig. 2.  See [9].). The fault 
simulator applies the defined stimuli to the design and 
marks off a fault whenever  it is detected. It defines the 
responses  of the design to the stimuli. Each  marked-off 
fault results in a diagnostic  being  recorded in a 
diagnostic data set. (It should be noted that the fault 
simulator will mark off any faults that are detected by 
a test pattern. This means that even though the first 
tester loop may  have  been  generated  for one objective, 
it  might in fact be  effective  in detecting several other 
faults. This in turn means that the subsequent patterns 
that were generated for those faults are no longer 
required, unless, of course, they too detect faults other 
than the one for  which they were  generated.) 

Table 3 Test  patterns for all  primitives. 
_____ 

Stuck Stimulus Response 
fault T 

I ,I 

IsNC CV/ /NC CV/NC 
o s c v  NCI NC/ NC/CV 
OsNC CV/  CV/ CV/NC 

Table 4 TRXXX decision table for all  primitives. 

Value to be Value on Response 
transmitted other pins 

CV/NC /NC CV/NC 
NC/CV NC/ NC/CV 

Table 5 JUXXX decision table for all  primitives. 

4. Tester loops that have no diagnostics are discarded. 

A typical tester loop has the following format: 

Load the SRLs. 
a. Apply the stimuli necessary to establish the stability 

state. 
b. Order the values  assigned to the SRLs  according to 

their location in the shift  registers. 
c.  Provide a series of A and B clocks and apply stimuli to 

scan-in ports to scan  values into the SRLs. (The values 
have  been  previously  assigned to the SRLs according 
to their order in the SRL scan chain.) 

Apply  values to the PIS. 
Provide a CB  clock  pair to store the response of the 
design to the stimulus. 
Measure the PO responses. 
Unload the SRLs. 
a. Apply the stimuli necessary to establish the stability 

state. 
b. Provide a series of A and B clocks to scan  values out 

of the SRLs,  measuring the scan-out ports after  each 
pair of clocks. 

1. 

2. 
3. 

4. 
5 .  

629 
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I Three-input  standard CMOS NAND gate 

CMOS test  pattern  generation 

CMOSpin faults, the TSXXX routine, and the BUGLIST 
Although the CMOS technology has many design and 
technology advantages over the common bipolar and nMOS 
technologies [IO], it has a potentially serious testing 
disadvantage, particularly in low-yield situations: the CMOS 
open fault [ 1 1, 121. 

Figure 5 is a standard CMOS three-input AI gate.  It  is 
“standard” in the sense that the circuit has pairs of p and n- 
type transistors, each  pair driven by the same input. In this 
figure,  all the transistors have  been numbered and all the 
wire  segments  have  been  lettered. 

This circuit and the circuits that implement the other 
primitives  have  been  analyzed  for their behavior,  given  these 
device-level faults in the circuit. 

Open transistors. 
Short transistors. 
Open wire  segments. 
Two wire segments shorted together. 

To summarize the results  for the given  AI  gate: The faults 
630 could be  classified into the following three major groups 
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based on the stimuli necessary to detect them (the number in 
parentheses is the percentage of  all the faults that belong to 
this group): 

1. Stuck-at faults (24 percent) exhibit stuck-fault behavior. 
2. CMOS open faults (47 percent) exhibit CMOS open-fault 

behavior. That is, in order to guarantee a test  for the 
fault, the output of the circuit must  be either charged or 
discharged to the FM value and then a second stimulus 
must be applied in an attempt to change this value. 

3. Shorted device faults (27 percent) exhibit behavior that 
can be modeled as  one of the devices shorted from source 
to drain. These faults may or may not be  dc-detectable, 
depending on technology  specifics. 

The CMOS open fault is important for two  reasons.  First, 
with the right sequence of stimuli, it is  dc-testable. As a 
matter of fact, if the ADTFG generated the appropriate 
clocks,  it is  likely that at least some of these faults can be 
serendipitously caught. Second, without any information on 
defect densities, it must be  assumed that this fault 
constituted a significant fraction of the faults in the design. 

This was the motivation for the development of ETG, 
which  actively generates test patterns for CMOS open faults, 
and the associated fault simulators, which  grade the resulting 
patterns for effectiveness. 

Key to the development of ETG was the realization that 
CMOS open faults can be  represented in basically the same 
way as stuck faults; that is, as pin faults on a primitive block. 
This realization is  based on the observation that the open 
device faults can be further classified into one of three 
groups: 

1. Inclusive input faults-those that require a transition on 
the specified input pin. An example of this fault in Fig. 5 
is device 1 open from source to drain. To test this fault, 
the output must first  be  discharged  with a stimulus of (A, 
B, C )  = (1,  1, I) ,  and then device 1 must be  used to 
charge the  output with a stimulus of (0, 1, 1). Note that 
devices 2 and 3 are held off to ensure that it is device 1 
that does the charging. 

2. Exclusive input faults-those that require a transition on 
any input pin other than the one specified.  An example of 
this fault is a break in wire  segment p.  To test for this 
fault, the output node must first  be precharged  with a 
stimulus from the set [ (X ,  0, X), (0, X,  X)]. Then the 
stimulus (1, 1, 1) must be applied to discharge the output. 
If the gate to device 6 is  floating at a value that does not 
permit 6 to turn on  and stay on, the fault will be 
detected. (In other words, if this fault is dcdetectable  at 
the time of the test, this test will detect it.) 

output pin. An example of this fault for a 0 to 1 
transition is a break in wire  segment v.  The test for this 
fault is to apply a (1, I ,  I )  stimulus to discharge the 

3. Output faults-those that require a transition on the 
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Table 6 CMOS pin fault  decision table. 

CMOS Time I Time 2 

fault I -I T I -1 T 
pin 

IsNC CVI  /NC  CV/NC 
oscv NC/ NC/ NC/CV 
OsNC cv/ cv/ CV/NC 
EtNC X I X  cv/cv NC/ NC/ NC/CV 

OtNC cv/cv cv/cv NC/ NCI NC/CV 
ItCV NC/NC NC/NC cv/ /NC CV/NC 

O t c v  NC/NC NC/NC cv/ cv/ CV/NC 

output  and  then apply a 0 to any  input in an  attempt to 
charge the  output. An example of this fault for the 1 to 0 
transition is device 4 open from source to drain.  The test 
for this fault is to apply a 0 to any input to charge the 
output  and then a (1, 1,  1) stimulus in an  attempt to 
discharge the output. 

These new definitions result in Table 6, the CMOS analog 
to the stuck-fault decision table (Table 3). The interpretation 
given to this table is the same as before. In addition, the 
X/X symbol means “assign any logic value” to both the GM 
and the FM. This is  different from a blank, which means “do 
not assign anything.” Consequently, the exclusive input 
transition fault requires two independent sets of  decisions, 
the first to set the specific pin and the other to set  all the 
other pins. 

The ETG TSXXX function for the primitive blocks, 
TSAOI, implements this table. The code defining the 
objective in the BUGLIST data structure includes the 
CMOS faults.  TSAOI  assigns  values  for a given time image 
in the general way the stuck-fault TSAOI function does. The 
difference  is that it does so for two time images on  the  input 
nets: two NETIMAGE elements are generated for  these  nets. 

0 Transmitting responses to POs or SRLs 
The TRXXX functions are the same as for stuck faults. 
Note that TRXXX will be called  for the second time image 
only. 

Justifving stimuli back to PIS or SRLs 
For the standard primitives, the JUAOI function is the same 
as for the stuck-fault test generator. Of course, two images 
must be processed.  However, the justify function for the 
SRLs, JUSRL, is fundamentally different from the stuck- 
fault version. 

The basic justify philosophy implemented at an SRL is 
this: The first time image  of a test is loaded into  the 
appropriate SRL during  the SRL load  of the tester loop; the 
second time image is generated either by shifting the value in 
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from the previous SRL in the scan string or clocking the 
value  in through the  data input. 

To accomplish this, JUSRL must make a decision 
between the following two alternatives: 

1. Generate an AB clock pair. Place the second time image 
value into the previous SRL in the first time image. 

2. Generate a CB  clock pair. Place the second time image 
value on  the SRL‘s data  input net in the first time image. 

JUSRL must keep track of the decisions it  makes. 

Construction  and validation of LSSD test patterns 
Tester loops generated by ETG for CMOS faults have a 
different format than  the tester loops generated for stuck 
faults: 

1. Load the SRLs. 
2. Apply stimuli to  the PIS. 
3. Do one of the following: 

Apply stimuli to  the PIS. 
0 Apply an AB clock pair. 
0 Apply a CB clock pair. 

4. Apply a CB  clock pair. 
5 .  Measure the PO responses. 
6 .  Unload the SRLs. 

The addition of the extra stimuli or clock pairs in the middle 
of the tester loop produces the sequences necessary to test 
the CMOS open faults. 

CMOS fault  simulators 
The algorithms associated  with the fault simulators used  by 
ETG are not trivial. These simulators have two novel 
capabilities that are important to this discussion. Previous 
treatments of CMOS open failures [ 1 11 reflected that  the 
nature of these defects implied a latch in the fault model that 
does not exist  in the good machine model. The ETG 
simulators are capable of treating each  block in the circuit as 
if such latches existed in the model. 
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The second capability involves a condition designated as a 
B fault. A B fault is a CMOS open fault in which the first 
time image setup is invalidated by a race condition that 
permits a momentary glitch to occur on a block  pin other 
than the one under test [ 131. In  these simulation algorithms, 
each transition on a net  goes through an unknown state 
( “ X ” )  prior to achieving the steady state value. This built-in 
pessimism  effectively  negates  all  effects  of momentary 
glitches, thus suppressing implied tests on these B faults. 

Experience with ETG 
ETG is being  used  for  test pattern generation by  several  IBM 
CMOS  masterslice  design  systems. As part of the technology 
support, a library of fault  models is provided,  with an entry 
for  each circuit, or “book,” that can be placed on the 
masterslice.  These  models  were  developed  using the 
following  methodology: 

1. The set  of test objectives  is determined for  each circuit by 
determining the behavior of the circuit for  each circuit 
fault. (The assumed  failing  modes are open metal or poly 
wire and open and shorted devices  from  source to drain.) 

technologist  believes  will  model both the circuit’s GM 
and FM machine behavior. 

3. CMOS  pin faults are identified  for  each  objective. That is, 
for  each  test  objective, a CMOS  pin fault is found in the 
logic  model that generates the same tests as defined by the 
test  objective. If such a fault cannot be found, three 
courses of action are possible: 
a. A new fault  model can be  defined that has an 

2. A logic circuit of primitive blocks is defined that the 

appropriate CMOS  pin fault. 
b. The circuit can be  redesigned so that that test 

objective is no longer required. 
c. The circuit can be identified as not  fully  testable and a 

quality detractor computed for  each chip containing 
the circuit. 

In  practice,  all three courses of action have  been taken. 

4. ETG is run against the model to verify that the correct 
model  has  been  defined and that the CMOS  pin faults 
generate the predicted patterns. 

5. Up to this point, the fault model contains both the pin 
faults that have  been  identified as necessary and all other 
possible  pin faults on all the primitives in the model. If 
desired, the number of faults in the fault model can be 
reduced according to the following  criteria: 
0 Some CMOS pin  faults on the primitives do not lead to 

legitimate test patterns at the inputs of the circuit. 
Assuming that these faults are not required to test the 
circuit, they  can be eliminated from the model. 
Other CMOS pin faults result in legitimate test 
patterns, but they are not required to test the fault 632 
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modes that have  been  defined (for example, wire-to- 
wire shorts). If these fault modes are determined to be 
unimportant, the faults can be eliminated. 

The design  system procedure for test generation starts with 
a data set  defining the design in terms of a design  language. 
The basic operators in this language are the books of the 
design  system. This data set is  processed in order to obtain a 
preliminary logic structure on which  LSSD  design  rules 
checks are run, the stability state defined, and the shift 
register  tests generated. In the next step, a more refined logic 
structure is generated, the LMOD, along with the 
BUGLIST.  Finally, a test generation system  is  called that, in 
turn, uses ETG to generate the test patterns and one of 
ETGs supporting simulators to determine the test  coverage. 

Statistics on a few designs  processed  by ETG are shown in 
Table 7. The Blocks column shows the number of blocks  in 
the design, SRLs the number of  SRLs. SRL % is the 
approximate percent of the system’s  blocks devoted to SRLs; 
Comefrorns is the number of  block inputs in the system- 
this number gives  an  idea  of the design’s  complexity; Stuck 
faults is the number of stuck faults; CMOS faults is the 
number of  CMOS open pin  faults. (From this point on, 
CMOS faults will  always mean CMOS open pin  faults, 
unless  otherwise indicated.) 

The S 1 design in this table  is a simple but important 
circuit. It  is the circuit used  by Reddy  et al. [ 121  as an 
example of a circuit with a B fault. 

S2 is another special  design.  It has a four-bit counter that 
has proven particularly resistant to CMOS testing. 

The other designs are chips that have  been  designed for 
product applications. Note that S4 is mostly  latches. 

Note  also that the total number of faults using a CMOS 
fault model is about double the number of faults in a stuck- 
fault model. 

Table 8 is a comparison of the fault coverage  provided by 
ETG and a popular IBM stuck-fault test generator. The 
columns in the table are the following: 

Stuck fault Data from the stuck-fault generator with 
no shift  register  test fault simulation 
before the stuck-fault generator was run. 

Stuck fault + SR Data from the stuck-fault generator with 
the shift  register  test fault simulated before 
the stuck-fault generator was run. 

simulation. 
ETG ETG data without shift  register test fault 

ETG + SR ETG data with  shift  register  test fault 

SF Percent test  coverage on the stuck  faults. 
simulation. 

CM Percent test coverage on the CMOS faults. 
T Percent test  coverage for all faults. 
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Table 7 Statistics of some CMOS designs. 

Chip Blocks SRLs SRL Come Stuck CMOS 
% froms faults  faults 

s1 15 0 0 20  45 50 
s 2  186 4  60 324 38 1 430 
s 3  1179 24 57 1976 2183  2278 
s 4  4837 144 83 9095  1866  8230 

Table 8 Percent fault coverage for some CMOS designs. 

Part Stuck fault  Stuckfault + SR ETG ETG -+ SR 

SF CM T SF CM T SF CM T SF CM T 

SI 100 0 47 - - - 100 98 99 
s 2  93 30 61 93 41 68  96  82 89 96  82 89 
s 3  88 31 44 89 53  72  94 76 85 95 78  86 
s 4  95 36 65 95 55 75 91  70  83  99  13 86 

- - - 

On the basis of the data in Table 8, as well as other data, 
some conclusions can be drawn about the efficacy  of stuck- 
fault LSSD ADTPGs and ETG: 

1. ETG and the fault simulator do work  correctly in not 
indicating a successful test for B faults. 

2. CMOS fault coverage  by the stuck-fault LSSD ADTPG 
without the shift  register test is uniformly low.  CMOS 
fault coverage  of less than 40 percent should be expected. 
The reason  for this is obvious when the tester loops are 
examined. There is a low probability that the correct 
sequence of clocks will  be generated to provide the test 
sequences  necessary to catch the CMOS  faults. 

3. The shift  register  test can provide a significant  increase in 
CMOS fault coverage  over that provided by an LSSD 
ADTPG alone. The greater the proportion of SRLs to 
combinational logic  in the design, the better the test 
coverage. This is because the shifting operation produces 
useful sequences for the SRLs and logic around the SRLs. 

coverage  over the stuck-fault ADTPGs, even  with a shift 
register  test.  However, the CMOS fault coverage,  which  is 
in the 75-percent range,  is  lower than the stuck-fault 
coverage for the design. Studies are underway to 
determine how the coverage  might be improved. 

Several performance criteria were  listed in the 
Introduction section  for evaluating ADTPGs. As 
demonstrated above, if the measure  used for the “percentage 
of fault machines detected” criterion is the percent fault 
coverage, ETG has significantly better performance than the 
stuck-fault ADTPG. 

4. ETG provides a significant  increase in the CMOS fault 

Data on the other criteria, namely I )  time required to 
generate  test patterns, 2) CPU resource requirements, 3) test 
time, and 4) shipped product quality level are not included 
in this paper either because development of some aspects of 
ETG is still  underway or there are insufficient data. 

Nevertheless, some general qualitative comments about 
the expected performance of ETG, compared to a stuck-fault 
ADTPG, are possible: 

ETGs “shipped product quality level” should be better. Of 
course, the actual improvement depends, in part, on the 
maturity of the technology: Older technologies should see 
less improvement than younger  technologies  simply 
because the yield on older technologies  is  higher. 
ETG should require more elapsed time for test generation 
and more computer resources. Based on a doubling of the 
number of faults and a doubling of the number of time 
images that need to be  processed, a crude estimate of a 
factor of four increase in these criteria might be expected. 
The time required to apply  ETG-generated patterns at the 
tester  is  expected to increase. The magnitude of this 
increase depends, to a significant  degree, on the number of 
patterns, the design’s architecture, and the tester. The 
actual number of tester stimuli should be  expected to be at 
least approximately two times that required for a stuck- 
fault test. This lower bound is  achieved if a minimum-size 
set of patterns to test the block input stuck faults  can be 
modified  by separating succeeding patterns with 
preconditioning patterns [ 131. For example, the patterns 
that test a three-input AND block are (01 1, 101, 1 IO). The 
minimum-size CMOS fault test pattern set is (1 1 I ,  0 1 I ,  
111, 101, 111, 110). 
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Summary 9. R. D.  Davies, “The Case for CMOS,” IEEE Spectrum 20,26-32 

This paper introduces the topic of automatic test pattern R. L, and Logic of 
generators by describing in abstract terms the systems that CMOS and MOS Inteuated Circuits.” Bell Svst. Tech. J. 57. 

(1983). 

1 

they process. The three major types of automatic test pattern 1449-1474 (1978). 
generators are defined. ETG is an ADTPG. Its high-level 1 1. R. L. Wadsack, “Fault Coverage  in  Digital Integrated Circuits,” 

BellSvst. Tech. J. 57. 1475-1488 (1978). 
structure is presented. The stuck-fault concept is  reviewed 12. S. M.keddy, M. K. keddy, and J:G. Kuhl, “On Testable 
and then the operation of ETG stuck faults is discussed,  with Design for CMOS  Logic circuits,” International Test COnfereiZCe 

emphasis placed on the Test, Justify, and  Transmit Proceedings, 1983, pp. 435-445. 

functions. 
13. Y .  M.  Elziq, “Automatic Test Generation for Stuck-Open Faults 

in CMOS VLSI,” Proceedings of the  18th Design Automation 
Building on this base,  new CMOS pin faults are defined Conference, 1981, pp. 347-354. 

and ETG operation with  respect to these faults is described, 
again with emphasis on the Test, Justify, and Transmit 
functions. The fundamental capability of ETG is to generate 
the sequences of length 2 necessary to detect the CMOS 
technology circuit faults that can be detected by a static test. 
It does this by using extra scan clocks or system  clocks. 

Some data  are presented comparing the performance of 
ETG and a stuck-fault ADTPG. It is concluded that the 
LSSD stuck-fault algorithms alone are not effective against 
CMOS faults, that shift register tests can help, and  that ETG 
does significantly increase the CMOS fault coverage. 
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