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A wire  routing  system (VIKING) has  been 
developed  for  interconnection  packages. It uses 
iterative-improvement  methods  that  allow 
“illegalities” (such  as  wire  crossings  within a 
plane)  at  intermediate  stages  of  the  routing, 
eliminates  some  drawbacks of conventional 
sequential  routers,  and  extends  the  range of 
penalty  functions  with  respect to which a wiring 
configuration  can be optimized.  Efficient  routing 
in directionally  uncommitted  planes is provided; 
specification of preferred-direction (x and y) 
planes is optional  but  not  required.  Significant 
reductions in required  manual  embedding  effort, 
number  of vias  required,  routed  wire  length,  and 
the  number  of  signal  planes  required to wire  a 
package,  have  been  found,  compared  with 
sequential  routers  that  have  been  used. 
Improved  automatic  control  of electrical 
crosstalk  noise  has  also  been  provided. In 
addition  to  presenting VIKING methods  and 
results, we discuss  other  issues  relating to 
wiring  methods  and  global  optimization. 
Application  of  these  methods  to  chip  design is 
also  discussed. 
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1. Introduction 
This paper  describes some features of a wire routing system 
(VIKING) that has been developed for interconnection 
packages, and discusses related strategies for improving 
wiring density and quality on chips  and packages. 

Given  a  description of the rules  governing legal 
interconnections  (the board model)  and given a  net list (each 
net is a set of locations  (“pins”) to be mutually  connected), 
the routing  problem  for  a chip or interconnection package 
consists  of  finding  a “legal” set of paths  that accomplishes 
the required  interconnections. More generally, one  may wish 
to near-optimize the wiring configuration with respect to a 
function  that encompasses not only “illegal” but also other 
undesirable wiring features. The board  model typically 
specifies the required spacings between wires, locations of 
blockages and of available  inter-plane electrical connections 
(“vias”), number of wiring planes and  dimensions of each 
plane, allowed wiring directions, and so forth. 

Automatic  routers usually attempt  to route wires 
sequentially, and  do  not allow illegal configurations at 
intermediate stages of the routing. The initial  routing passes 
typically leave a set of  “failed” (unrouted)  connections or 
“overflows”; specialized algorithms  may then be applied to 
reduce further  the  number of overflows. Residual overflows 
need to be either manually  routed  according to board  model 
rules, or connected by other  means (e.g., using discrete 
wires). 

We have used instead an iterative improvement strategy, 
according to which one generates an initial wiring 
configuration which is successively improved by optimizing 
the routing, one connection  at a  time, with respect to a 
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sequence of penalty functions. Illegal intermediate wiring 
configurations are permitted. Independent work on iterative- 
improvement  routers  has been described by Moore  and 
Ravitz [I] ,  and earlier by Rubin [2]. 

Section 2 describes the basic operation of VIKING, 
including  the global router (with automatic assignment  of 
connections  to package layers) and  the detailed router. A 
particular application of the  methods is to  the case of routing 
in “directionally uncommitted planes”; that is, wiring planes 
for which no preferential (x or y )  routing direction  has  been 
specified. This ability, and  the related ability to perform 
extensive “wrong-way’’ wiring (e.g., x wiring in  a 
predominantly y plane), offer significant wirability 
advantages in a variety of situations, and  are discussed in the 
section on “free-form’’ wiring. 

Extensions  of the basic VIKING  methods  are described in 
Section 3.  Section 4 describes  a class of mazerouter 
algorithms  that,  in effect, can calculate an optimal  path with 
respect to a  penalty function  that can vary nonlinearly with 
the  number of  occurrences of a given penalty  type  along the 
path (i.e., a  “path-history-dependent’’  penalty  function). This 
is useful when the desired  penalty function incorporates 
crosstalk thresholds, minimum  and  maximum length 
constraints, and  the like. 

part of VIKING proper) that illustrates some aspects  of 
iterative routing with an adjustable  penalty function.  The 
use of such an  approach,  to avoid  settling into locally 
optimal configurations that may be far from globally 
optimal, is compared with the  Monte Carlo  simulated 
annealing  method [3]. 

of VIKING applications.  Section 7 gives conclusions. 

used to near-optimize  a routing configuration on   an  
arbitrary  graph. In particular, some of these methods  may 
have useful application to  the  routing of traffic on 
communications networks and  the like, as well as  on wiring 
grids. 

Section 5 describes  a simplified version of a router  (not a 

Section 6 includes results and discussion for several types 

We note  that  many of the  methods discussed below can be 

2. VIKING system: basic operation 
The  VIKING wiring system is organized as follows. The 
board  model and  connection list are provided as  input. To 
simplify the discussion, let us first consider the following 
common situation: 

A printed interconnection package is being routed (i.e., 
any grid point occupied by two  paths in the  same wiring 
plane represents  a short  and is illegal). 
Routing is in the x and y directions on a  rectangular grid. 
Each net (i.e., each set of pins  to be mutually  connected) is 

614 A more technical  point: If a mazerouter algorithm is being 
specified as a set of two-pin connections. 

used to  route a connection,  then we assume (for the 
present) that  the penalty function being minimized  does 
not  embody threshold  penalties or constraints. It  should 
depend linearly on  the  number of  occurrences  of  each 
penalty  type along a  path. For example, a specified penalty 
per unit length  should not  depend  upon  the total  length of 
the  path. 

After discussing the  operation of the system for the above 
case, we treat  the following situations (see Sections 3 and 4): 

Technologies  in which wires may cross each other (subject 

0 Diagonal or “eight-way’’ wiring on a square grid. 
Dynamic  decomposition of  multi-pin nets  into sets of two- 
pin  connections. 
“T-ing”; i.e., cases in which paths  of the  same net are 
allowed to  join  at  points  other  than pins. 
Path-history-dependent  penalty  functions. A mazerouter 
can  be used to,  in effect, penalize an occurrence differently 
depending  upon whether  it  is the  only such, or one of 
many such,  occurrences along  the path. This facilitates the 
imposition of timing  (minimum  and  maximum length) 
constraints, crosstalk threshold controls (wherein inter-net 
adjacency  is  penalized only if the extent of adjacency 
exceeds a given value), and  the like. 

to  constraints) within the  same plane. 

Global (coarse) router 
If a global routing is to be done (this is optional), the  board 
model  includes  a specification of the  coordinates  (on  the 
detailed or fine grid)  of the edges of the rectangular global 
cells. An edge capacity  is  inferred  for each global cell edge 
using board  model information.  This capacity  describes the 
effective number of  available  horizontal or vertical wiring 
tracks passing through  that global cell. Each layer of the 
global grid typically, but  not necessarily, corresponds to a 
plane  pair of the detailed  grid. For package applications  in 
which we have used global routing,  each global path is 
confined to  one global layer (though  the global router 
determines dynamically which layer assignment is optimal); 
but  this also is not essential. 

The global routing configuration  is  initialized by assigning 
to each connection a  trial path, which provides  a  reasonable 
background  of  congestion  against which to start rerouting 
connections. A series of iterative passes is then performed. In 
each pass, all (or some) of the  connections are, one  at a time, 
removed from  and rerouted on  the global grid. The rerouting 
typically uses a mazerouter algorithm [4] (e.g., of Lee type 
[ 5 ] ) ,  but  may be by other  means (e.g., the “LZU” method 
described in  Section 5 ) .  

Each connection is to be optimized  in  turn, against the 
background  of the others,  according to a specified penalty 
function (for that pass). The penalty function is chosen to 
have the  form 
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PENFUN = 2 [( W, or W,) 

+ (BEND, if bend  present) + CONGESTIONPEN], 

where the  sum is over the links of the path  (each  link by 
definition crosses one global cell edge), a cost W, or W ,  is 
assigned depending on link  direction, and  the congestion 
penalty for each  link is a piecewise-linear function depending 
on  the load (the  number of paths, other  than the one being 
routed, that pass through  the cell edge) and of the edge 
capacity  defined earlier: 

CONGESTIONPEN = CONG, X max [0, (LOAD 

- THRESH, X CAPAC)] 

+ CONG, X max [0, (LOAD 

- THRESH, x CAPAC)]. 

Penalty parameters (in  particular W,, W,, and BEND) can 
vary with the wiring layer and/or region within  a layer, and 
can differ for different subclasses of connections, if desired. 
For example, wiring through specified regions can be 
inhibited by increasing W, and W ,  or decreasing edge 
capacities in those regions. 

deciding,  for the particular  problem, on an acceptable 
general level of wiring congestion. On successive passes, 
routing  through global cell edges having excessive congestion 
is penalized increasingly (relative to length costs), so that 
affected connections gradually lengthen in order  to avoid 
congested regions. A satisfactory global routing is thereby 
accomplished with balanced  congestion within and  among 
layers. 

Output from the global router includes the coordinates  of 
path  segments (on  the global grid) for each connection,  and 
diagnostic information describing the degree of congestion 
imbalance,  routed length on  the global grid, etc.,  after each 
pass. Penalty parameters for the next pass (if any)  can be 
determined based on these diagnostics. 

The penalty function  parameters  are typically chosen by 

Detailed router 
The  above description  of  the global router facilitates 
discussion of  the detailed router, which operates in a  similar 
way. Many global routers  have used iterative-improvement 
techniques  to balance  congestion, by using information from 
the trial global routing of all connections after one pass to 
determine  improved routings for the succeeding pass. It  is 
striking that  this  approach has not generally been  applied to 
the detailed routing problem (Refs. [ I ]  and [2] are 
exceptions); this  may have to  do with the idea that 
intermediate wiring configurations  should not  embody 
illegalities such as  shorts between different nets. (An 
imbalance  in global congestion, on  the  other  hand, is 
undesirable  but not illegal.) 
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An initial  detailed routing configuration, which makes usc 
of the results of a  prior global routing (if one has been 
performed), is defined.  A series of iterative passes is then 
performed, with penalty parameters specified for each pass, 
as was done for the global routing. A Lee-type mazerouter o r  
line  probe router [6] is used to  optimize  the rerouting of 
each connection in turn.  The penalty  function is the  sum of 
the following terms: 

Length costs  (per grid unit) for x and y directions in each 

0 Node overload  costs  (for  two or more wires, or a wire and 
plane. 

a blockage, occupying  the same gridpoint in the  same 
plane). 
Via and bend costs. 
Adjacency costs (for each grid unit in which a  path is 
routed  adjacent to  another  path, within the  same plane or 
in  adjacent  planes). 
Other penalties  as  required. 

Different penalty parameters  may be specified for different 
regons of the  board, or for different subsets of connections. 
as  required. The node  overload  penalty (for example)  may 
be varied depending upon the location of other overloaded 
nodes on the grid;  this can be  used to  inhibit  the clustering 
of overloaded nodes, for cases in which clustered illegalities 
may be more difficult to repair  automatically or manually. 

One may, at each pass, either  constrain the routing to lie 
within the global cells traversed during  the final global 
routing pass (if any), or expand  the region available  for 
routing, or eliminate  the  constraint altogether. An alternative 
approach is to  include a  penalty term for  each grid unit in 
which a  path is routed  outside (or at  some distance from) the 
global swath for that  connection. 

On later passes, computing  time can be reduced by 
rerouting  only  a  subset of the connections. The penalty 
function is tailored to  improve routing success for these 
connections. 

We indicate some ways in which the flexibility of an 
iterative-improvement  penalty-function-driven router can be 
exploited to  improve wiring success. 

“Free- form” wiring 
In other work on multi-plane package routing, one typicall! 
is advised not to set weights equal for x and y routing within 
the  same region of a  plane, and particularly not  during  the 
stage in which most  routings are being made. One reason is 
the belief that  the resulting “wrong-way wiring” would lead 
to large numbers of blocked escapes. This can be a 
significant problem  for  sequential  routers,  since earlier-wired 
connections  could block x and y tracks in all planes, 
impairing  the ability of  later-routed connections  to escape 
from  their  source  pins or otherwise complete their  routings. 
As  we shall illustrate, the present  iterative methods 
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accommodate “free-form” wiring (i.e., wiring in  planes  for 
which no preferred wiring direction  has been specified) 
without difficulty. There  are no “earlier” or “later” routed 
connections. Crossings occumng in the initial passes are 
gradually resolved, and regions of predominantly x or y 
wiring in  each  plane can form  dynamically,  without  user 
intervention. Advantages  of free-form or extensive “wrong- 
way” wiring can include the following, depending  on  the 
application: 

Reduction in via count. 
Improved  balancing  of wiring load among planes,  when 
some planes  have  extensive blockages (e.g., macro 
blockages on a  chip). 
Improved wirability when component  placement dictates 
regional imbalances between x and y wiring loads. 
Increase  in number of wiring channels available  for 
“escape”  from pins lying in congested regions (e.g., under 
dense components  on  interconnection boards). 
Finally, methods  that  enhance free-form wirability are of 
obvious utility for wiring of single-plane boards. 

0 Penalty parameter choices 
One strategy [ 1, 21 is to gradually  increase the overloaded- 
node penalty in relation to  the wire-length penalty, as  one 
proceeds from early to later  iterative passes. We have  also 
found  other types  of  penalty  schedules that  aid convergence 
to a near-optimal  configuration while avoiding  undesirable 
metastable  configurations. Put  another way, one  can escape 
from local minima of  a  penalty function by allowing 
“uphill”  moves, or (as in  the present method) by 
appropriately  changing the  parameters in the penalty 
function itself. 

Manual embedding  simplified 
As an  important by-product  of the present method, all illegal 
connections  are typically left on  the board. This  contrasts 
with sequential  routers, which “fail” unrouted  connections 
and require the  manual  embedder  to  route  them in  their 
entirety  against  a congested board. The types of illegalities 
(usually wire crossings) that  remain after  a VIKING  run  are 
usually correctable by strictly local rework, consisting  of 
moving several paths in the vicinity of the crossing in  order 
to create  space  within which the crossing can be resolved. 
These corrections are far easier and faster than generating 
entire  paths for unrouted  connections. 

If it is deemed desirable, wires involved  in more  than a 
specified number of crossings can be removed from  the 
board during  any pass, and  their rerouting can be attempted 
on  the succeeding pass. One purpose is to  remove  from  the 
board those connections  that  are so poorly routable  that they 
are expected to require  discrete wires for their 

616 implementation. 

3. VIKING system:  extensions of basic methods 

Technologies allowing intra-plane wire crossings 
VIKING has been applied to  the  routing of  individually 
insulated  discrete wires on a  multi-layer grid. The  node 
overload  cost is modified so that  only those crossings that 
violate the technology  rules are penalized. 

Diagonal or “eight-way” routing 
Within a Lee-type mazerouting algorithm the grid points to 
be explored  starting from a given grid point  are its  neighbors 
in the x, y ,  and z (if a via is available) directions  for 
orthogonal routing, and also  its  diagonal  neighbors in  the x- 
y plane  for  diagonal  routing. The present methods  can  thus 
be used to generate  diagonal or directionally  unconstrained 
eight-way wire routings in several planes  simultaneously. 

The global router was modified in a different way to 
accommodate problems  requiring x-y routing in some 
planes, and diagonal (45-degree) routing in  others. Since 
rectangular components  (on  the  boards  to be wired) are 
oriented  along x and y axes, it is convenient  to use global 
cells aligned with component boundaries.  Nearly-square 
global cells of  similar size are used. At each global reroute 
step,  a connection is mazerouted (using x and y wiring 
directions  only) using all layers. Each  layer is represented 
internally as a  plane  pair  consisting  of strictly x and y wiring 
planes. Within  the diagonal wiring layers, the primitive 
moves allowed to  the  mazerouter consist only of  traversing  a 
global cell edge in  the x or y direction (depending  upon 
which plane the  current grid point lies in) followed by a 
mandatory via (to  the  other plane  of that layer). Thus each 
completed global path  in  the diagonal  layers  consists of one 
or  more “staircases” (each x or y “step”  traversing one global 
cell). The global swath (used to  control  the detailed  routing) 
is formed as  the  union of 45-degree diagonal rectangles, each 
such rectangle enclosing one of the “staircases.” 

Dynamic decomposition of multi-pin  nets into two-pin 
connections 
Suppose the choice  of  two-pin connections used to 
implement  the wiring of  a  multi-pin  net  is not constrained 
(e.g., by electrical  requirements). One  may  improve  upon a 
specified net  decomposition by removing and rerouting, at 
each  iterative pass, one  net  (rather  than  one  connection)  at a 
time. Use the  mazerouter algorithm to find the lowest-cost 
path  connecting  any of  a set of  source pins  to  any of  a set of 
target  pins;  repeat until all pins of that net are  connected. 

Multi-pin nets with “T-ing” 
On  chips  and  some printed-circuit  boards, paths of  a  net can 
join  at  points  that  are  not  pins  (termini) of the net. Consider 
a net consisting  of pins A, B, and C. As is well known, one 
can  route  the  net by decomposing  the  problem  into  the steps 
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of (for example) mazerouting from A to B, then mazerouting 
from C to  any  point  on  the path AB. To perform  net 
interconnections with “T-ing” (joins  at gridpoints that  are 
not pins) using the iterative methods discussed, the  same 
changes would be made  to  the detailed router  as were 
specified for net  decomposition  into  connections (above). A 
generalized mazerouter algorithm (for multiple  source and/ 
or target  points) would be substituted  for the usual two-point 
router; and  an  entire net,  rather than a two-pin connection, 
would be removed and rerouted at each  step of an iterative 
pass. Alternatively, one may remove  and  reroute a subset of 
the  paths for  a net, provided no  remaining  paths of that net 
are “left hanging.” 

There are other  mazerouting algorithms [7] that  guarantee 
a lowest-cost path connecting  three  pins  and generalize 
heuristically to  the N-pin case (N > 3). These  algorithms  can 
be applied directly at  the level of the detailed router. If 
computing  time for  these  algorithms is excessive. however, 
one  can still use them  to fix the desired  net topology (and 
approximate location  of “T” points) in the following way. 
Perform an iterative global routing using these  algorithms. 
(This  can be fast since the  number of global cells is relatively 
small.) Require the detailed routing (at least in the early 
passes) to lie within the  union of the global cells determined 
by the global routing. Use a standard  mazerouter  (that can 
route between multiple  source and target points) to perform 
the detailed routing of  each  part of the net on each detailed 
pass. (In the previous  example, one  may specify that pin C is 
to be connected  to  the  portion  of path AB that lies within  a 
prescribed global cell; this preserves the  approximate 
location of the “T” point if desired.) 

4. Path-history-dependent penalty functions 
A mazerouter algorithm labels gridpoints with the  minimum 
cumulative cost incurred in  reaching  each  such  gridpoint 
from the source  point(s), and  updates these labels as  the 
“expansion”  from source to target proceeds. (The label 
values should include a “minimum cost to target” term,  to 
reduce computing  time [8].) The  optimal  path is calculated 
by backtracking from  the target to  the source,  after the 
labeling process has been completed. Accordingly, the 
mazerouter is not able to “charge”  a different penalty for the 
nth  occurrence of some  condition  during a  path routing  than 
for  the first occurrence. The penalty function being 
minimized must be linear  in the  number of occurrences of 
each  penalty  type,  for an  incremental cost to be assigned to 
each link  of the grid, independent  of  the  remainder  of  the 
path. 

Nevertheless, it is important  to be able to calculate an 
optimal  routing subject to threshold  constraints, or  to 
optimize a  penalty  function that is nonlinear in the  number 
of Occurrences of  a given penalty type along  a path. We can 
enumerate all allowed paths if the  number  of such  paths is 
small  enough (see Section 5 ) .  However, the great  virtue of a 
mazerouter is its ability to find an  optimal path  in O( L 2 )  
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time, when the number of possible paths is exponential in 
wire length L. Fortunately, there is a way of  optimizing  a 
nonlinear penalty function,  or  one with threshold 
constraints, while retaining the advantages of a mazerouter 
algorithm [9]. The method to be described also fits naturally 
with the iterative-improvement  approach used here, and 
could  indeed recommend such an approach even if iterative- 
improvement routing  had no other virtues. 

Minimum and maximum lenglh cons/raints 
Suppose that  some of the  connections must be routed with 
lengths lying between specified bounds. We have described 
the loop structure of the global and detailed  routers  as 
follows: 

I .  Initialize wiring configuration; 
2.  Start an iterative pass by specifying penalty parameter 

values; 
3. Do for some or all connections: 

a. Remove connection from  board; 
b. Reroute using mazerouter  to optimize connection path 

with respect to penalty  function: 
4. Generate diagnostics and wiring layout; exit if done: else 

go to 2. 

To incorporate length constraints, introduce  an additional 
loop by replacing the  “remove  and reroute” steps by the 
following: [ C, and Cy are  the  “standard” length  penalty 
parameters (costs per grid unit traversed) in the x and .v 
directions, for the present pass. The possible dependence of 
the C,, C y  values upon plane, or region within  a  plane, is 
suppressed for notational  simplicity. N,,,,-, is a specified 
maximum  number of reroute attempts for the  inner loop.] 

a.  Remove  connection from  board; 
b. Set C,,,,, and Cy,,,, (e.g., to Cx, Cy, respectively); 
c. Set TRIAL = I ;  
d. Use mazerouter to  optimize path with respect to 

penalty  function in which C,,,, and Cy,,, are  the 
penalty  parameters,  rather than C, and Cy; 

TRIAL = N,,,,,,, establish this  path on  the board and 
go to (i); 

f. Adjust C,,,w, and Cy,,, (increase if path is too long; 
decrease if too  short); 

g. Increment TRIAL by one; 
h. Go  to (d); 
i .  Done with this  connection  (on this pass). 

e. If length of optimal path satisfies constraints, or if 

Suppose that  the board  configuration is such that setting 
C,,,,, = Cy,,,, = 0 would give a path length greater than 
the  minimum allowed. Then  some choice  of (C,,,, 
Cy,,,,) will typically yield an  optimal path whose length lies 
within the allowed interval. 
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If, on the other hand, the only penalties incurred for a 
particular optimal path are length  costs, a minimum length 
constraint might not succeed in being  satisfied  for that 
connection on that iterative pass.  In that case, there would 
be no other costs that could be  reduced  by lengthening the 
wire path on  that pass, even if CxTEMpand CnEMP were to be 
set  equal to zero. There are then several options: 

0 Accept the minimum-cost path (although it violates the 
length constraint), with the possibility that on a future pass 
other costs (e.g.,  wire  crossings)  will arise that result in a 
lengthening of the path for that connection. Manual or 
automatic postprocessing  may be required to enforce the 
minimum-length constraint for those connections 
violating  it at the final iterative pass. 

pins (for that connection on that pass), in order to induce 
a longer route to be  chosen. 

connection (AB) into two connections, requiring that the 
path go from A to C, thence to B. 

Introduce a fictitious “barrier” between the connection 

Alternatively but less  flexibly, one can decompose the 

When the minimum and maximum allowed  lengths are 
very  close to one another and not close to “minimum- 
Manhattan” length, e.g., wires of  clock  nets, the algorithm 
described  here  may not be practical. (Minimum-Manhattan 
length of a connection between (x, y )  and (x’, y’ )  is  defined 
as I x - x’ 1 + I y - y’ I .) It is then preferable to route the 
clock  wires  with their required lengths by other means, then 
use the present methods to route the other connections 
iteratively. One may either fix the layout of the clock  wires 
and “route around” them; or provide some flexibility  by 
attempting to reroute the clock  wires  iteratively, but 
accepting a different path only if it satisfies the length 
constraints. 

Crosstalk constraints 
A similar idea can be  used to inhibit adjacency  between pairs 
of nets or connections, when the adjacency distance, or the 
crosstalk  noise  resulting therefrom, exceeds a specified 
threshold. We state the method in a general form that may 
be more elaborate than required for practical 
implementations. 

After routing connection j ,  calculate some convenient 
estimator of electrical  crosstalk (e.g., adjacency distance) 
between j and every other (relevant) path k. Call this 
function d( j ,   k ) .  

If crosstalk  noise  is  excessive for this routing, reroute 
connection j using a penalty function including a cost 
f[ d( j ,  k) ]  for  every  grid unit in which j runs adjacent to k 
(in the same or adjacent planes). The  functionfshould be 
chosen  such that fincreases with d. In particular,fwill 
typically  be small for d less than some critical value, and rise 
rapidly  for  larger d. 

Alternatively, one may use the cost parameterf[ d(j,  k)] 
to affect the routing of connection k, when it is next 
rerouted. 

Additional comments and  applications 
One can delete the inner loop (in which the cost parameter is 
vaned to promote constraint satisfaction), and instead wait 
until the next iterative pass to reroute connections violating 
a constraint. In that case, each  such connection is then 
rerouted, using not the standard cost parameter value for 
that pass, but a value that is  greater or less than the standard 
value depending upon whether the number of occurrences to 
which the cost applies (e.g., length  of path in grid units) was 
too large or too small on the previous routing of that 
connection. This approach can reduce the number of 
reroutings required. However, it can result in a form of 
“thrashing,” in which connections exchange  roles as 
constraint violators  from one pass to the next. (This was 
observed in  the case of global routing with maximum-length 
constraints.) 

Constraints represented by inequalities can in general be 
handled by the methods described above (subject to the type 
of limitation discussed above for the case of minimum- 
length constraints). More generally, nonlinear penalty 
functions can be near-optimized by modifying the cost 
parameter (cost  per  penalized occurrence) so as to drive the 
number of occurrences in  the desired direction on successive 
reroutings of that connection. 

Further discussion is given in [lo]. 

5. A fast  global  router  for  paths of simple  shape 
(“LZU” paths) 
In this section we discuss another type of iterative- 
improvement router, suitable for global and some simple 
detailed routing of two-pin connections, and for optimizing 
assignment of connections to layers of a package. The 
method is  faster than the routing methods discussed in 
previous sections (no mazerouter is used here), but path 
complexity  is correspondingly limited (only paths with  two 
or fewer bends are considered here).  Speed  is important if 
one wishes to use the router to estimate wiring  congestion 
for a particular pin placement, as a guide for improving the 
placement either manually or automatically. Furthermore, 
there are applications in which the great majority of  wire 
paths have  fewer thah three discretionary bends. (Jogs 
needed to route from a pin to a wiring track are excluded 
from this  count when they entail no significant routing 
decision.) The method to be  described can in such  cases  be 
used for detailed routing. 

Global routing; no layer assignment 
For global routing without respect to layer  assignment,  first 
assign to each connection an L-shaped path of random 
orientation on the rectangular grid. On each  succeeding  pass, 
remove and reroute each connection in  turn. Rerouting 
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requires  evaluating  a  penalty function for each  path that 
joins the pins  of that  connection, has  two or fewer bends 
(hence L-, Z-, or U-shaped  paths), and does  not exceed a 
specified length. The penalty  function  takes into  account 
wiring congestion  (including passage through blocked or 
otherwise specified regions) and length. An example of a 
simple  penalty function is the  sum of squares of wiring loads 
across all global cell edges (assuming  equal  capacities  at all 
edges). 

A path of lowest cost is usually selected for rerouting the 
connection. Alternatively,  a “heat  bath”  option is provided, 
wherein the  path is chosen randomly with a weighted 
probability proportional  to exp (-E/n, where E is the cost 
of the path and  Tis  a positive number (analogous to 
temperature). This allows moves that increase the value of 
the penalty function,  and is discussed further in the section 
on “simulated  annealing” below. 

Laver assignment 
Certain  interconnection packages require that each 
connection be routed entirely in one layer (or plane  pair). 
Both the  mazerouter  methods discussed earlier  in  this  paper 
and  the  LZU  router  can be used to near-optimize the layer 
assignment  for  each connection,  at  the  same  time  that global 
(or detailed)  routing is being done. We have found it useful 
to perform first a  layer-independent route optimization 
(previous  section), then  make a random assignment to 
layers, then optimize the layer assignment  (either fixing or 
simultaneously  optimizing the path  shape). 

Comments on simulated annealing and related methods 
The “heat bath”  option is a  variant (appropriate when a 
move is to be selected from among several trial  alternatives) 
of the  Monte Carlo  simulated annealing method of 
Kirkpatrick, Gelatt,  and Vecchi [3]. In their wiring work, 
one alternative  path is considered at each pass, and is 
accepted  as the new path if it is of lower cost, or [with 
probability exp ( - A E / T ) ]  if it is of higher cost (by amount 
A E ) .  To avoid  becoming trapped in local minima (of the 
penalty function)  that lie far above the global minimum, 
their method requires and provides  a means for making 
“uphill” moves. Since we evaluate  a large number of possible 
paths for each connection  at each pass (all LZU  paths up  to 
some length), we do  not require  such  a  means; and in fact 
using the heat  bath option  does  not significantly improve 
upon the results using the strict iterative-improvement 
(“downhill”-only)  algorithm, in the cases studied. 

The placement and wiring aspects of physical design 
appear  to be different from one  another in this respect. For 
the placement  problem (e.g., of components on a package), 
there  can be strong cooperativity: It may be optimal for 
several components  to cluster, but moving any  one 
component  to its ultimately preferred location may  incur a 
net  cost;  “uphill”  moves must be allowed to break high-lying 
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metastable  equilibria. If primitive  moves  could consist of 
moving several components simultaneously, “uphill” moves 
might become unnecessary: but the  number of such 
primitive  moves would be astronomic. For the wiring 
problem (using  simple  shapes),  in  contrast. there is no 
difficulty in considering  a large enough  repertoire  of 
primitive  moves (e.g., 50-100) to ensure, in the cases 
studied, that  the iterative-improvement  method converges to 
an acceptable  solution. 

Can “simulated  annealing,” or other  means for breaking 
metastable  equilibria by allowing uphill moves. be  used to 
route  paths of greater  complexity? 

If each primitive  move consists of replacing one segment 
of path by another, a means is required to ensure that  the 
path  does  not  become  absurdly  convoluted. (There may be 
no  primitive  move  converting an %shaped  path into a 
straight  line, for example.) 
The following alternative combines  the spirit of simulated 
annealing with the advantages of a  mazerouter. At each 
iterative pass, introduce a random  element (e.g., a 
fictitious fluctuating  “blockage” term  at  some of the grid 
locations) into  the penalty  function:  then  optimize the 
path of each connection in turn with respect to this 
function.  The fluctuation amplitude corresponds to  an 
annealing  “temperature.”  This should indeed result in 
breaking otherwise metastable  configurations. It has not 
been attempted because the  present methods work well 
and  are probably  more efficient. The variation of the 
penalty function from pass to pass in the present methods 
(without  random fluctuations) serves both to drive the 
configuration  toward  greater  ultimate legality and  to 
reduce the likelihood of convergence to unsatisfactory 
(high-lying) local minima. 

6.  Results  and  discussion 
We give examples of VIKING wiring of printed-circuit cards 
and boards, and  compare wiring results with those obtained 
by two sequential  routers. Some examples  illustrate the use 
of VIKING for free-form wiring (i.e., wiring in directionally 
uncommitted planes, or extensive “wrong-way” wiring), and 
its application to 

Routing on via-sparse boards; 
Chips or packages with extensive (e&,  macro) blockages in 

Packages with directionally  unbalanced  placement (greatly 

Routing of “escapes” from under congested components. 

some planes (a test case is discussed): 

different x and y wiring loads in certain  regions); and 

Results on crosstalk control, reduction in the  number of 
wiring planes  required, and reduction in manual  embedding 
effort are also presented. 
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I VIKING card routing example. Dots indicate pins and fixed vias. 
One of six wiring planes is shown; no directional preference was 
assigned to any plane. 

The results of Sections  B and H which follow were 
obtained using the original  code  developed by the  author. 
The results of  Sections A, C-E, and G were obtained using 
the  production  code  implemented within the  FSD package 
design system by J. F. Cooper  and C. N. Lamendola.  The 
global router is identical  in  both codes. The detailed router 
of the  FSD version of VIKING incorporates  (in addition  to 
the basic algorithms) methods for limiting the  number of 
connections requiring reroute after the first  few passes, and 
storage handling methods valuable for large board design. It 
also uses a line-probe mazerouter  rather  than  the Lee-type 
mazerouter of the original version; the line-probe method is 
used to simplify the  imposition of crosstalk penalties. 

For  the  runs of  Sections A-E and H, the basic detailed 
router discussed in  Section 2 was used. The results of  Section 
G were obtained using the  VIKING global and detailed 
routers, and a crosstalk heuristic differing from,  but with 
similar effect to,  that discussed in  the section on crosstalk 
constraints. 

For  the  VIKING results reported, the  number of wires left 
unrouted is zero  in  each case. (This need not be true in 
general, since one  can optionally  have VIKING remove 
wires having more  than a specified number of crossings, after 
any pass.) Accordingly, we report  VIKING results in  terms 
of the  number of wires causing crossings at  the  end of the 
last pass. Results using other (sequential) routers  are 
reported in terms of the  number of remaining  unrouted 
wires. 

A .  Reduction in number of wiring planes, vias, and 
manual embedding effort 
Twelve  printed-circuit cards were routed  both by VIKING 
and by a  sequential router (call it “A”) used within IBM. 
Each  card contains 5-8 signal wiring planes and typically has 
1000-2000 connections. Available vias are fixed and sparse. 

Total wire lengths (for each card) were 10-24 percent  over 
minimum-Manhattan length using router  “A,”  and 5- 1 1 
percent  over minimum-Manhattan length using VIKING; 
“excess over minimum-Manhattan’’ length was reduced by a 
factor  of between 1.5 and 3.5. The  number of used vias was 
typically reduced by about 20 percent. Manual  embedding 
effort was reduced by a factor  of  two to  three,  and  sometimes 
much more. Based on these and similar results, it was 
projected that (on average) one wiring plane could be saved 
per 2-3 cards,  a  plane savings of about 6 percent. 

B. Example of iterative-improvement routing; ‘pee-form” 
wiring 
This was the first case attempted using VIKING. It is a 
printed-circuit card of the type used in  the above  study, with 
16 12 connections  to be routed using six planes, and with 860 
fixed vias provided. Router “A” had routed  this problem 
with 148 overflows (unrouted connections). (That  router has 
facilities for  reducing via usage by assigning connections  to 
planes so as to allow a  controlled  type  of “wrong-way” 
wiring.) Manual  embedding of these overflows took  three 
weeks. VIKING routed the problem  (using  a component 
placement that was nonoptimized, in contrast with the 
placement input  to  router “A”) with 25 crossings (gridpoints 
occupied by two wires in the  same plane). 

Since crossings require  only local repair  (moving of wires 
in the vicinity  of the crossing), manual  embedding effort was 
reduced by even  more  than a  factor of six (=148/25): from 
three weeks to  an estimated one day. Embedding has been 
substantially eased by use of VIKING, because paths 
containing illegalities are left on  the  board  rather  than being 
“failed,” as by a  sequential  router. 

Figure 1 shows the  VIKING routing in  one of the planes, 
for another  run (of the  same problem)  in which no 
directional  preference  was at any time assigned to  any region 
of any plane. There were a total  of 29 wires causing 
crossings. 

a combination of two factors: use of iterative-improvement 
rather  than sequential-routing  methods, and reduced via 
requirements (yielding improved wirability in  this via-sparse 
case) due  to use of free-form or extensive “wrong-way’’ 
wiring. 

In this  example,  VIKING’S superior  performance is due  to 

C. Routing in directionally committed planes 
Figure 2 shows one plane of  VIKING  routing for  a different 
connection list, on a  card  similar to  that described  above. In 
this case, each  plane has been assigned an x or y directional 
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I One x plane of a VIKING card routing. Dots indicate pins and fixed 
vias. No vias are available in the horizontal channels. 

preference. The figure  shows  efficient routing within the wide 
horizontal channels (where  vias are absent), even though 
VIKING uses no channel routing algorithms. An average of 
four wires  per plane have  been manually “repaired in this 
case, to resolve  crossings  left  by VIKING. 

D. Regional  imbalance of x and y wiring  requirements 
Figure 3(a) shows the connections (to be routed) for a card 
in  which the ratio of x to y wiring demand varies  greatly 
from one region to another. If an equal number of x and y 
wiring  planes are provided, and a capability  for  extensive 
“wrong-way“  wiring  is  not  available,  wirability  is impaired. 
One can explicitly  assign  regions  of some x planes to carry 
predominantly y wiring, and vice  versa, but this step is 
unnecessary  using  VIKING.  Two x and two y planes were 
specified  in an initial pass. A y domain subsequently 
developed within an x plane  [see Figure 3(b), region  left  of 
center], to supplement the capacity of the y planes in that 
region. This occurred as a result of the iterative- 
improvement process, and without any user  specification of 
regional directional preferences. 

E. Potential  impact of wiring  method on package design 
decisions 
A choice was to be made between  two card package  designs, 
one being  less  complex but providing less wirability 
(including less  via  availability). A wirability study using a 
sequential router “B” indicated that the less  complex 
package  would provide inadequate wirability (too many 
overflow  wires). 
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A card  with  regional  imbalance between x and y wiring  load 
(due  to  component  placement).  (a)  The  pin-to-pin  connections. 
(b) VIKING routing in a predominantly x plane, showing extensive 
“wrong-way’’ wiring. (The card has two x and two y planes.) 

Two cards of the less complex  package type were routed 
using VIKING and router “B.” Results  were, for one card 
Router “B,” 62 overflows; VIKING, one crossing. For the 
second card: Router “B,” 94 overflows; VIKING, 39 wires 
causing  crossings (hence requiring local manual rerouting in 
the vicinity of the crossings). 
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Portion of printed-circuit board, including a congested pin-escape region (rectangle indicates boundary of this region). (a)  The pin-to-pin 
connections passing through this region (for one plane pair); (b) VIKING routing in one plane (diamonds indicate remaining wire crossings; this 
was the most congested region, and the 16 crossings shown are half  of all crossings in the entire plane); (c) Routing in same plane following 
manual repair of crossings. 

F. Wirability depends on the wiring program as well as 
the package 
The previous example illustrates that, apart from the 
question of whether one wiring  program  is “better” in a 
general  sense than another, it is important to take into 
account the specific characteristics of the programs. A few  of 
the issues are as follows: 

Does one program depend more heavily on ample via 
availability  (e.g.,  because it is  less amenable to extensive 
“wrong-way’’ wiring)? 
If avoidance of certain regions or wiring configurations 
(for which,  e.g., certain types of manufacturing defects 
may  be more likely) or avoidance of  excessive  crosstalk  is 
important, is one program  able to inhibit such occurrences 
more effectively?  If the wiring  program is not sensitive to 
such occurrences, the user  may  need to take a more broad- 
brush approach (e.g.,  block alternate wiring channels to 
reduce crosstalk; avoid certain regions of the board 
entirely), thereby impairing wirability. 
If there are x vs. y wiring  load imbalances (as  in a previous 
example), blockages in some planes (to be  discussed), or 
other special situations, does one wiring  program offer a 
specific advantage? 
In some cases, an advantage in computing speed or in ease 
of manual repair may be a critical determinant of practical 
wirability. 

These and other considerations should be examined when a 
wiring  program is  used to evaluate whether a proposed 
package  offers adequate wirability, in order to ensure that 
additional manufacturing complexity and cost are not 
incurred unnecessarily. 

G. Reduction of number of signal planes for a large board; 
crosstalk and escape considerations 
A printed-circuit board containing about 8000 connections 
and many congested  regions had been routed using a global 
router, followed  by router “B” for  detailed routing, in eight 
wiring planes. An early study using router “ B  had found 
that a large number of  overflows  resulted  when  wiring in 
only six planes was attempted. Moreover, some of the 
congested  regions  had too many “escapes” to be routable 
using the wiring track capacity of three x and three y planes. 
“Wrong-way’’  wiring  was not allowed in these runs using 
router “B.” 

VIKING produced a six-plane routing, incorporating 
adjacency controls to reduce  electrical  crosstalk. For a 
particular heuristic crosstalk criterion that was proposed, 
VIKING produced a routing with 25 times fewer violations 
in  six planes than router “B” had produced using  eight 
planes. (Router “B” does not incorporate dynamic adjacency 
control; instead, its user can impose certain artificial 
constraints in order to inhibit adjacency.) The manual effort 
of rerouting nets to satisfy the actual crosstalk criteria, to 
which the heuristic criterion was only an approximation, can 
accordingly  be  eased  greatly by incorporating a well-chosen 
adjacency control into the routing, without the need to 
impair wirability by blocking  wiring channels or the like. 

As noted above, some of the congested  regions  were 
unroutable using three x and three y planes, without “wrong- 
way”  wiring. By choosing the penalty functions 
appropriately, VIKING resolved this difficulty. One such 
region  is  shown in Figure 4: (a) shows the pin-to-pin 
connections passing through this region in one plane pair; 
(b) shows one plane of VIKING routing in this region before 
manual repair of residual  crossings  (shown as diamonds); (c) 
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shows the  same plane following manual repair. In VIKING 
six-plane routing, the ratio  of wire length to  total wiring 
track  length was approximately 45 percent.  Wire  length was 
1.12 times  minimum-Manhattan  connection length. 

H .  Wiring  with  extensive  blockages in one plane; a test 
case 
Consider a chip with two metal wiring planes, one of which 
is substantially  blocked by macros. That is, much of the  area 
in  that plane is unavailable  for inter-macro wiring. Clearly, if 
planes are assigned directional preferences, chip wirability 
can be severely limited by the low track  capacity in  the 
blocked (say the x) plane. In  that case, one  may wish to 
optimize device  placement so as to reduce x wire load (and 
increase y load if necessary). 

uncommitted planes can provide an alternative  solution. 
Figure 5 shows a test case, intended  to (crudely) model a 
macro blockage situation.  A real chip  can have many  macro 
blockages in one  metal plane (call it plane I ) ,  some of which 
may have  a number of  small  “holes”  (regions lying within 
macros,  in which plane I is available  for wiring). For 
simplicity, we have  considered  a 100 X 100 grid with nine 
blockages. Each blockage is a square  annulus (see dotted 
outlines), with one large “hole”  instead  of  a number of  small 
ones. Approximately 50 percent  of the  area of plane 1 is 
blocked  none  of  plane 2 is blocked. Sixty-five two-pin 
connections were chosen,  with  a Poisson length distribution 
and a mean length  of 75 units. 

VIKING free-form wiring is shown  in Fig. 5 (solid wiring, 
plane I ;  dashed wiring, plane 2) .  There were no remaining 
crossings, and  routed length was 3 percent  over minimum- 
Manhattan.  When x and y directional  assignments were 
made  (and  adhered  to strictly, for a clean  comparison),  even 
a  smaller  problem with 40 connections  could  not be wired 
(there were eight wires causing crossings, and  routed length 
was 13 percent  over minimum-Manhattan).  This is not 
surprising,  since x wiring capacity  is so greatly impaired by 
the directional  plane  assignment in  this case. 

When  the 65-connection case was wired using VIKING 
with a strict rotary-wiring constraint  (the rotary method is 
due  to B. Dunham [ I  l]), the  advantage of the rotary  idea 
over conventional x, y plane  assignment was clear: the  65 
connections were routed with 13 wires causing crossings, and 
routed length 9 percent  over minimum-Manhattan. 

This example  indicates, in a  qualitative way, that  VIKING 
free-form wiring can “discover” unaided some of the virtue 
of the rotary-wiring approach (see the rough  similarity  of the 
VIKING wiring style of Fig. 5 to  the rotary style, especially 
for  the dashed-plane wiring), and  can also  provide some 
flexibility in, for  example, the use of  “holes” for providing 
wiring overpasses to  improve wirability. Quantitative 
conclusions should  not be inferred from  this single example 
with unrealistic  macros. 

VIKING‘S capability  for wiring in directionally 
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Test case (two wiring planes) with 50 percent blockage (dotted 
square annuli) in plane 1. VIKING routing of 65 connections on a 
100 X 100 grid (mean connection length 75 units) is shown. Solid 
wiring, plane 1; dashed wiring, plane 2. No directional preference 
was assigned to any region of either plane. Arrowheads mark pin 
locations; in this run pins were not treated as blockages (i.e,, other 
wires could pass through them without penalty). 

7. Conclusions 
The  VIKING wiring system generates global routings, layer 
assignments, and detailed  routings for interconnection 
packages. It has  demonstrated advantages with respect to 
reduced wire length, via count,  manual  embedding effort, 
and required number of signal planes, for  a variety of 
applications. An iterative-improvement strategy facilitates 
global near-optimization by allowing illegal configurations at 
intermediate stages, and successively routing  each 
connection against the background of all the others. The 
penalty function being optimized  can  accommodate a wide 
range of design tradeoffs and desiderata, and in  particular 
allows fine-tuning of crosstalk control, avoidance of 
configurations that may be undesirable from  the 
manufacturing  standpoint,  and  some  control of minimum 
and  maximum length. Efficient routing  in  directionally 
uncommitted planes (free-form wiring) has  been 
demonstrated. A method  for mazerouting with nonlinear  or 
path-history-dependent  penalty functions  has been described. 
A simple version of  a global router has also been  presented, 
with some  comments on methods for  breaking  metastable 
equilibria and achieving global near-optimization. 
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