
An iterative= by Ralph Linsker

improvement
penalty-function-
driven wire
routing system

A wire routing system (VIKING) has been
developed for interconnection packages. It uses
iterative-improvement methods that allow
“illegalities” (such as wire crossings within a
plane) at intermediate stages of the routing,
eliminates some drawbacks of conventional
sequential routers, and extends the range of
penalty functions with respect to which a wiring
configuration can be optimized. Efficient routing
in directionally uncommitted planes is provided;
specification of preferred-direction (x and y)
planes is optional but not required. Significant
reductions in required manual embedding effort,
number of vias required, routed wire length, and
the number of signal planes required to wire a
package, have been found, compared with
sequential routers that have been used.
Improved automatic control of electrical
crosstalk noise has also been provided. In
addition to presenting VIKING methods and
results, we discuss other issues relating to
wiring methods and global optimization.
Application of these methods to chip design is
also discussed.

OCopyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J . RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

1. Introduction
This paper describes some features of a wire routing system
(VIKING) that has been developed for interconnection
packages, and discusses related strategies for improving
wiring density and quality on chips and packages.

Given a description of the rules governing legal
interconnections (the board model) and given a net list (each
net is a set of locations (“pins”) to be mutually connected),
the routing problem for a chip or interconnection package
consists of finding a “legal” set of paths that accomplishes
the required interconnections. More generally, one may wish
to near-optimize the wiring configuration with respect to a
function that encompasses not only “illegal” but also other
undesirable wiring features. The board model typically
specifies the required spacings between wires, locations of
blockages and of available inter-plane electrical connections
(“vias”), number of wiring planes and dimensions of each
plane, allowed wiring directions, and so forth.

Automatic routers usually attempt to route wires
sequentially, and do not allow illegal configurations at
intermediate stages of the routing. The initial routing passes
typically leave a set of “failed” (unrouted) connections or
“overflows”; specialized algorithms may then be applied to
reduce further the number of overflows. Residual overflows
need to be either manually routed according to board model
rules, or connected by other means (e.g., using discrete
wires).

We have used instead an iterative improvement strategy,
according to which one generates an initial wiring
configuration which is successively improved by optimizing
the routing, one connection at a time, with respect to a

RALPH LINSKER

sequence of penalty functions. Illegal intermediate wiring
configurations are permitted. Independent work on iterative-
improvement routers has been described by Moore and
Ravitz [I] , and earlier by Rubin [2].

Section 2 describes the basic operation of VIKING,
including the global router (with automatic assignment of
connections to package layers) and the detailed router. A
particular application of the methods is to the case of routing
in “directionally uncommitted planes”; that is, wiring planes
for which no preferential (x or y) routing direction has been
specified. This ability, and the related ability to perform
extensive “wrong-way’’ wiring (e.g., x wiring in a
predominantly y plane), offer significant wirability
advantages in a variety of situations, and are discussed in the
section on “free-form’’ wiring.

Extensions of the basic VIKING methods are described in
Section 3. Section 4 describes a class of mazerouter
algorithms that, in effect, can calculate an optimal path with
respect to a penalty function that can vary nonlinearly with
the number of occurrences of a given penalty type along the
path (i.e., a “path-history-dependent’’ penalty function). This
is useful when the desired penalty function incorporates
crosstalk thresholds, minimum and maximum length
constraints, and the like.

part of VIKING proper) that illustrates some aspects of
iterative routing with an adjustable penalty function. The
use of such an approach, to avoid settling into locally
optimal configurations that may be far from globally
optimal, is compared with the Monte Carlo simulated
annealing method [3].

of VIKING applications. Section 7 gives conclusions.

used to near-optimize a routing configuration on an
arbitrary graph. In particular, some of these methods may
have useful application to the routing of traffic on
communications networks and the like, as well as on wiring
grids.

Section 5 describes a simplified version of a router (not a

Section 6 includes results and discussion for several types

We note that many of the methods discussed below can be

2. VIKING system: basic operation
The VIKING wiring system is organized as follows. The
board model and connection list are provided as input. To
simplify the discussion, let us first consider the following
common situation:

A printed interconnection package is being routed (i.e.,
any grid point occupied by two paths in the same wiring
plane represents a short and is illegal).
Routing is in the x and y directions on a rectangular grid.
Each net (i.e., each set of pins to be mutually connected) is

614 A more technical point: If a mazerouter algorithm is being
specified as a set of two-pin connections.

used to route a connection, then we assume (for the
present) that the penalty function being minimized does
not embody threshold penalties or constraints. It should
depend linearly on the number of occurrences of each
penalty type along a path. For example, a specified penalty
per unit length should not depend upon the total length of
the path.

After discussing the operation of the system for the above
case, we treat the following situations (see Sections 3 and 4):

Technologies in which wires may cross each other (subject

0 Diagonal or “eight-way’’ wiring on a square grid.
Dynamic decomposition of multi-pin nets into sets of two-
pin connections.
“T-ing”; i.e., cases in which paths of the same net are
allowed to join at points other than pins.
Path-history-dependent penalty functions. A mazerouter
can be used to, in effect, penalize an occurrence differently
depending upon whether it is the only such, or one of
many such, occurrences along the path. This facilitates the
imposition of timing (minimum and maximum length)
constraints, crosstalk threshold controls (wherein inter-net
adjacency is penalized only if the extent of adjacency
exceeds a given value), and the like.

to constraints) within the same plane.

Global (coarse) router
If a global routing is to be done (this is optional), the board
model includes a specification of the coordinates (on the
detailed or fine grid) of the edges of the rectangular global
cells. An edge capacity is inferred for each global cell edge
using board model information. This capacity describes the
effective number of available horizontal or vertical wiring
tracks passing through that global cell. Each layer of the
global grid typically, but not necessarily, corresponds to a
plane pair of the detailed grid. For package applications in
which we have used global routing, each global path is
confined to one global layer (though the global router
determines dynamically which layer assignment is optimal);
but this also is not essential.

The global routing configuration is initialized by assigning
to each connection a trial path, which provides a reasonable
background of congestion against which to start rerouting
connections. A series of iterative passes is then performed. In
each pass, all (or some) of the connections are, one at a time,
removed from and rerouted on the global grid. The rerouting
typically uses a mazerouter algorithm [4] (e.g., of Lee type
[5]) , but may be by other means (e.g., the “LZU” method
described in Section 5) .

Each connection is to be optimized in turn, against the
background of the others, according to a specified penalty
function (for that pass). The penalty function is chosen to
have the form

RALPH LINSKER IBM J . RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

PENFUN = 2 [(W, or W,)

+ (BEND, if bend present) + CONGESTIONPEN],

where the sum is over the links of the path (each link by
definition crosses one global cell edge), a cost W, or W , is
assigned depending on link direction, and the congestion
penalty for each link is a piecewise-linear function depending
on the load (the number of paths, other than the one being
routed, that pass through the cell edge) and of the edge
capacity defined earlier:

CONGESTIONPEN = CONG, X max [0, (LOAD

- THRESH, X CAPAC)]

+ CONG, X max [0, (LOAD

- THRESH, x CAPAC)].

Penalty parameters (in particular W,, W,, and BEND) can
vary with the wiring layer and/or region within a layer, and
can differ for different subclasses of connections, if desired.
For example, wiring through specified regions can be
inhibited by increasing W, and W , or decreasing edge
capacities in those regions.

deciding, for the particular problem, on an acceptable
general level of wiring congestion. On successive passes,
routing through global cell edges having excessive congestion
is penalized increasingly (relative to length costs), so that
affected connections gradually lengthen in order to avoid
congested regions. A satisfactory global routing is thereby
accomplished with balanced congestion within and among
layers.

Output from the global router includes the coordinates of
path segments (on the global grid) for each connection, and
diagnostic information describing the degree of congestion
imbalance, routed length on the global grid, etc., after each
pass. Penalty parameters for the next pass (if any) can be
determined based on these diagnostics.

The penalty function parameters are typically chosen by

Detailed router
The above description of the global router facilitates
discussion of the detailed router, which operates in a similar
way. Many global routers have used iterative-improvement
techniques to balance congestion, by using information from
the trial global routing of all connections after one pass to
determine improved routings for the succeeding pass. It is
striking that this approach has not generally been applied to
the detailed routing problem (Refs. [I] and [2] are
exceptions); this may have to do with the idea that
intermediate wiring configurations should not embody
illegalities such as shorts between different nets. (An
imbalance in global congestion, on the other hand, is
undesirable but not illegal.)

IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEFTEMBER 1984

An initial detailed routing configuration, which makes usc
of the results of a prior global routing (if one has been
performed), is defined. A series of iterative passes is then
performed, with penalty parameters specified for each pass,
as was done for the global routing. A Lee-type mazerouter o r
line probe router [6] is used to optimize the rerouting of
each connection in turn. The penalty function is the sum of
the following terms:

Length costs (per grid unit) for x and y directions in each

0 Node overload costs (for two or more wires, or a wire and
plane.

a blockage, occupying the same gridpoint in the same
plane).
Via and bend costs.
Adjacency costs (for each grid unit in which a path is
routed adjacent to another path, within the same plane or
in adjacent planes).
Other penalties as required.

Different penalty parameters may be specified for different
regons of the board, or for different subsets of connections.
as required. The node overload penalty (for example) may
be varied depending upon the location of other overloaded
nodes on the grid; this can be used to inhibit the clustering
of overloaded nodes, for cases in which clustered illegalities
may be more difficult to repair automatically or manually.

One may, at each pass, either constrain the routing to lie
within the global cells traversed during the final global
routing pass (if any), or expand the region available for
routing, or eliminate the constraint altogether. An alternative
approach is to include a penalty term for each grid unit in
which a path is routed outside (or at some distance from) the
global swath for that connection.

On later passes, computing time can be reduced by
rerouting only a subset of the connections. The penalty
function is tailored to improve routing success for these
connections.

We indicate some ways in which the flexibility of an
iterative-improvement penalty-function-driven router can be
exploited to improve wiring success.

“Free- form” wiring
In other work on multi-plane package routing, one typicall!
is advised not to set weights equal for x and y routing within
the same region of a plane, and particularly not during the
stage in which most routings are being made. One reason is
the belief that the resulting “wrong-way wiring” would lead
to large numbers of blocked escapes. This can be a
significant problem for sequential routers, since earlier-wired
connections could block x and y tracks in all planes,
impairing the ability of later-routed connections to escape
from their source pins or otherwise complete their routings.
As we shall illustrate, the present iterative methods

RALPH LlNSKl K

accommodate “free-form” wiring (i.e., wiring in planes for
which no preferred wiring direction has been specified)
without difficulty. There are no “earlier” or “later” routed
connections. Crossings occumng in the initial passes are
gradually resolved, and regions of predominantly x or y
wiring in each plane can form dynamically, without user
intervention. Advantages of free-form or extensive “wrong-
way” wiring can include the following, depending on the
application:

Reduction in via count.
Improved balancing of wiring load among planes, when
some planes have extensive blockages (e.g., macro
blockages on a chip).
Improved wirability when component placement dictates
regional imbalances between x and y wiring loads.
Increase in number of wiring channels available for
“escape” from pins lying in congested regions (e.g., under
dense components on interconnection boards).
Finally, methods that enhance free-form wirability are of
obvious utility for wiring of single-plane boards.

0 Penalty parameter choices
One strategy [1, 21 is to gradually increase the overloaded-
node penalty in relation to the wire-length penalty, as one
proceeds from early to later iterative passes. We have also
found other types of penalty schedules that aid convergence
to a near-optimal configuration while avoiding undesirable
metastable configurations. Put another way, one can escape
from local minima of a penalty function by allowing
“uphill” moves, or (as in the present method) by
appropriately changing the parameters in the penalty
function itself.

Manual embedding simplified
As an important by-product of the present method, all illegal
connections are typically left on the board. This contrasts
with sequential routers, which “fail” unrouted connections
and require the manual embedder to route them in their
entirety against a congested board. The types of illegalities
(usually wire crossings) that remain after a VIKING run are
usually correctable by strictly local rework, consisting of
moving several paths in the vicinity of the crossing in order
to create space within which the crossing can be resolved.
These corrections are far easier and faster than generating
entire paths for unrouted connections.

If it is deemed desirable, wires involved in more than a
specified number of crossings can be removed from the
board during any pass, and their rerouting can be attempted
on the succeeding pass. One purpose is to remove from the
board those connections that are so poorly routable that they
are expected to require discrete wires for their

616 implementation.

3. VIKING system: extensions of basic methods

Technologies allowing intra-plane wire crossings
VIKING has been applied to the routing of individually
insulated discrete wires on a multi-layer grid. The node
overload cost is modified so that only those crossings that
violate the technology rules are penalized.

Diagonal or “eight-way” routing
Within a Lee-type mazerouting algorithm the grid points to
be explored starting from a given grid point are its neighbors
in the x, y , and z (if a via is available) directions for
orthogonal routing, and also its diagonal neighbors in the x-
y plane for diagonal routing. The present methods can thus
be used to generate diagonal or directionally unconstrained
eight-way wire routings in several planes simultaneously.

The global router was modified in a different way to
accommodate problems requiring x-y routing in some
planes, and diagonal (45-degree) routing in others. Since
rectangular components (on the boards to be wired) are
oriented along x and y axes, it is convenient to use global
cells aligned with component boundaries. Nearly-square
global cells of similar size are used. At each global reroute
step, a connection is mazerouted (using x and y wiring
directions only) using all layers. Each layer is represented
internally as a plane pair consisting of strictly x and y wiring
planes. Within the diagonal wiring layers, the primitive
moves allowed to the mazerouter consist only of traversing a
global cell edge in the x or y direction (depending upon
which plane the current grid point lies in) followed by a
mandatory via (to the other plane of that layer). Thus each
completed global path in the diagonal layers consists of one
or more “staircases” (each x or y “step” traversing one global
cell). The global swath (used to control the detailed routing)
is formed as the union of 45-degree diagonal rectangles, each
such rectangle enclosing one of the “staircases.”

Dynamic decomposition of multi-pin nets into two-pin
connections
Suppose the choice of two-pin connections used to
implement the wiring of a multi-pin net is not constrained
(e.g., by electrical requirements). One may improve upon a
specified net decomposition by removing and rerouting, at
each iterative pass, one net (rather than one connection) at a
time. Use the mazerouter algorithm to find the lowest-cost
path connecting any of a set of source pins to any of a set of
target pins; repeat until all pins of that net are connected.

Multi-pin nets with “T-ing”
On chips and some printed-circuit boards, paths of a net can
join at points that are not pins (termini) of the net. Consider
a net consisting of pins A, B, and C. As is well known, one
can route the net by decomposing the problem into the steps

RALPH LINSKER IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

of (for example) mazerouting from A to B, then mazerouting
from C to any point on the path AB. To perform net
interconnections with “T-ing” (joins at gridpoints that are
not pins) using the iterative methods discussed, the same
changes would be made to the detailed router as were
specified for net decomposition into connections (above). A
generalized mazerouter algorithm (for multiple source and/
or target points) would be substituted for the usual two-point
router; and an entire net, rather than a two-pin connection,
would be removed and rerouted at each step of an iterative
pass. Alternatively, one may remove and reroute a subset of
the paths for a net, provided no remaining paths of that net
are “left hanging.”

There are other mazerouting algorithms [7] that guarantee
a lowest-cost path connecting three pins and generalize
heuristically to the N-pin case (N > 3). These algorithms can
be applied directly at the level of the detailed router. If
computing time for these algorithms is excessive. however,
one can still use them to fix the desired net topology (and
approximate location of “T” points) in the following way.
Perform an iterative global routing using these algorithms.
(This can be fast since the number of global cells is relatively
small.) Require the detailed routing (at least in the early
passes) to lie within the union of the global cells determined
by the global routing. Use a standard mazerouter (that can
route between multiple source and target points) to perform
the detailed routing of each part of the net on each detailed
pass. (In the previous example, one may specify that pin C is
to be connected to the portion of path AB that lies within a
prescribed global cell; this preserves the approximate
location of the “T” point if desired.)

4. Path-history-dependent penalty functions
A mazerouter algorithm labels gridpoints with the minimum
cumulative cost incurred in reaching each such gridpoint
from the source point(s), and updates these labels as the
“expansion” from source to target proceeds. (The label
values should include a “minimum cost to target” term, to
reduce computing time [8].) The optimal path is calculated
by backtracking from the target to the source, after the
labeling process has been completed. Accordingly, the
mazerouter is not able to “charge” a different penalty for the
nth occurrence of some condition during a path routing than
for the first occurrence. The penalty function being
minimized must be linear in the number of occurrences of
each penalty type, for an incremental cost to be assigned to
each link of the grid, independent of the remainder of the
path.

Nevertheless, it is important to be able to calculate an
optimal routing subject to threshold constraints, or to
optimize a penalty function that is nonlinear in the number
of Occurrences of a given penalty type along a path. We can
enumerate all allowed paths if the number of such paths is
small enough (see Section 5) . However, the great virtue of a
mazerouter is its ability to find an optimal path in O(L 2)

IBM J . RES. DEVELOP. VOL. 28 NO. 5 SEF’TEMBER 1984

time, when the number of possible paths is exponential in
wire length L. Fortunately, there is a way of optimizing a
nonlinear penalty function, or one with threshold
constraints, while retaining the advantages of a mazerouter
algorithm [9]. The method to be described also fits naturally
with the iterative-improvement approach used here, and
could indeed recommend such an approach even if iterative-
improvement routing had no other virtues.

Minimum and maximum lenglh cons/raints
Suppose that some of the connections must be routed with
lengths lying between specified bounds. We have described
the loop structure of the global and detailed routers as
follows:

I . Initialize wiring configuration;
2. Start an iterative pass by specifying penalty parameter

values;
3. Do for some or all connections:

a. Remove connection from board;
b. Reroute using mazerouter to optimize connection path

with respect to penalty function:
4. Generate diagnostics and wiring layout; exit if done: else

go to 2.

To incorporate length constraints, introduce an additional
loop by replacing the “remove and reroute” steps by the
following: [C, and Cy are the “standard” length penalty
parameters (costs per grid unit traversed) in the x and .v
directions, for the present pass. The possible dependence of
the C,, C y values upon plane, or region within a plane, is
suppressed for notational simplicity. N,,,,-, is a specified
maximum number of reroute attempts for the inner loop.]

a. Remove connection from board;
b. Set C,,,,, and Cy,,,, (e.g., to Cx, Cy, respectively);
c. Set TRIAL = I ;
d. Use mazerouter to optimize path with respect to

penalty function in which C,,,, and Cy,,, are the
penalty parameters, rather than C, and Cy;

TRIAL = N,,,,,,, establish this path on the board and
go to (i);

f. Adjust C,,,w, and Cy,,, (increase if path is too long;
decrease if too short);

g. Increment TRIAL by one;
h. Go to (d);
i . Done with this connection (on this pass).

e. If length of optimal path satisfies constraints, or if

Suppose that the board configuration is such that setting
C,,,,, = Cy,,,, = 0 would give a path length greater than
the minimum allowed. Then some choice of (C,,,,
Cy,,,,) will typically yield an optimal path whose length lies
within the allowed interval.

RALPH LINSKER

If, on the other hand, the only penalties incurred for a
particular optimal path are length costs, a minimum length
constraint might not succeed in being satisfied for that
connection on that iterative pass. In that case, there would
be no other costs that could be reduced by lengthening the
wire path on that pass, even if CxTEMpand CnEMP were to be
set equal to zero. There are then several options:

0 Accept the minimum-cost path (although it violates the
length constraint), with the possibility that on a future pass
other costs (e.g., wire crossings) will arise that result in a
lengthening of the path for that connection. Manual or
automatic postprocessing may be required to enforce the
minimum-length constraint for those connections
violating it at the final iterative pass.

pins (for that connection on that pass), in order to induce
a longer route to be chosen.

connection (AB) into two connections, requiring that the
path go from A to C, thence to B.

Introduce a fictitious “barrier” between the connection

Alternatively but less flexibly, one can decompose the

When the minimum and maximum allowed lengths are
very close to one another and not close to “minimum-
Manhattan” length, e.g., wires of clock nets, the algorithm
described here may not be practical. (Minimum-Manhattan
length of a connection between (x, y) and (x’, y’) is defined
as I x - x’ 1 + I y - y’ I .) It is then preferable to route the
clock wires with their required lengths by other means, then
use the present methods to route the other connections
iteratively. One may either fix the layout of the clock wires
and “route around” them; or provide some flexibility by
attempting to reroute the clock wires iteratively, but
accepting a different path only if it satisfies the length
constraints.

Crosstalk constraints
A similar idea can be used to inhibit adjacency between pairs
of nets or connections, when the adjacency distance, or the
crosstalk noise resulting therefrom, exceeds a specified
threshold. We state the method in a general form that may
be more elaborate than required for practical
implementations.

After routing connection j , calculate some convenient
estimator of electrical crosstalk (e.g., adjacency distance)
between j and every other (relevant) path k. Call this
function d(j , k) .

If crosstalk noise is excessive for this routing, reroute
connection j using a penalty function including a cost
f[d(j , k)] for every grid unit in which j runs adjacent to k
(in the same or adjacent planes). The functionfshould be
chosen such that fincreases with d. In particular,fwill
typically be small for d less than some critical value, and rise
rapidly for larger d.

Alternatively, one may use the cost parameterf[d(j, k)]
to affect the routing of connection k, when it is next
rerouted.

Additional comments and applications
One can delete the inner loop (in which the cost parameter is
vaned to promote constraint satisfaction), and instead wait
until the next iterative pass to reroute connections violating
a constraint. In that case, each such connection is then
rerouted, using not the standard cost parameter value for
that pass, but a value that is greater or less than the standard
value depending upon whether the number of occurrences to
which the cost applies (e.g., length of path in grid units) was
too large or too small on the previous routing of that
connection. This approach can reduce the number of
reroutings required. However, it can result in a form of
“thrashing,” in which connections exchange roles as
constraint violators from one pass to the next. (This was
observed in the case of global routing with maximum-length
constraints.)

Constraints represented by inequalities can in general be
handled by the methods described above (subject to the type
of limitation discussed above for the case of minimum-
length constraints). More generally, nonlinear penalty
functions can be near-optimized by modifying the cost
parameter (cost per penalized occurrence) so as to drive the
number of occurrences in the desired direction on successive
reroutings of that connection.

Further discussion is given in [lo].

5. A fast global router for paths of simple shape
(“LZU” paths)
In this section we discuss another type of iterative-
improvement router, suitable for global and some simple
detailed routing of two-pin connections, and for optimizing
assignment of connections to layers of a package. The
method is faster than the routing methods discussed in
previous sections (no mazerouter is used here), but path
complexity is correspondingly limited (only paths with two
or fewer bends are considered here). Speed is important if
one wishes to use the router to estimate wiring congestion
for a particular pin placement, as a guide for improving the
placement either manually or automatically. Furthermore,
there are applications in which the great majority of wire
paths have fewer thah three discretionary bends. (Jogs
needed to route from a pin to a wiring track are excluded
from this count when they entail no significant routing
decision.) The method to be described can in such cases be
used for detailed routing.

Global routing; no layer assignment
For global routing without respect to layer assignment, first
assign to each connection an L-shaped path of random
orientation on the rectangular grid. On each succeeding pass,
remove and reroute each connection in turn. Rerouting

RALPH LINSKER IBM J. R E S . DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

requires evaluating a penalty function for each path that
joins the pins of that connection, has two or fewer bends
(hence L-, Z-, or U-shaped paths), and does not exceed a
specified length. The penalty function takes into account
wiring congestion (including passage through blocked or
otherwise specified regions) and length. An example of a
simple penalty function is the sum of squares of wiring loads
across all global cell edges (assuming equal capacities at all
edges).

A path of lowest cost is usually selected for rerouting the
connection. Alternatively, a “heat bath” option is provided,
wherein the path is chosen randomly with a weighted
probability proportional to exp (-E/n, where E is the cost
of the path and Tis a positive number (analogous to
temperature). This allows moves that increase the value of
the penalty function, and is discussed further in the section
on “simulated annealing” below.

Laver assignment
Certain interconnection packages require that each
connection be routed entirely in one layer (or plane pair).
Both the mazerouter methods discussed earlier in this paper
and the LZU router can be used to near-optimize the layer
assignment for each connection, at the same time that global
(or detailed) routing is being done. We have found it useful
to perform first a layer-independent route optimization
(previous section), then make a random assignment to
layers, then optimize the layer assignment (either fixing or
simultaneously optimizing the path shape).

Comments on simulated annealing and related methods
The “heat bath” option is a variant (appropriate when a
move is to be selected from among several trial alternatives)
of the Monte Carlo simulated annealing method of
Kirkpatrick, Gelatt, and Vecchi [3]. In their wiring work,
one alternative path is considered at each pass, and is
accepted as the new path if it is of lower cost, or [with
probability exp (- A E / T)] if it is of higher cost (by amount
A E) . To avoid becoming trapped in local minima (of the
penalty function) that lie far above the global minimum,
their method requires and provides a means for making
“uphill” moves. Since we evaluate a large number of possible
paths for each connection at each pass (all LZU paths up to
some length), we do not require such a means; and in fact
using the heat bath option does not significantly improve
upon the results using the strict iterative-improvement
(“downhill”-only) algorithm, in the cases studied.

The placement and wiring aspects of physical design
appear to be different from one another in this respect. For
the placement problem (e.g., of components on a package),
there can be strong cooperativity: It may be optimal for
several components to cluster, but moving any one
component to its ultimately preferred location may incur a
net cost; “uphill” moves must be allowed to break high-lying

IBM J. RES. DEVELOP VOL. 28 NO. 5 SEPTEMBER 1984

metastable equilibria. If primitive moves could consist of
moving several components simultaneously, “uphill” moves
might become unnecessary: but the number of such
primitive moves would be astronomic. For the wiring
problem (using simple shapes), in contrast. there is no
difficulty in considering a large enough repertoire of
primitive moves (e.g., 50-100) to ensure, in the cases
studied, that the iterative-improvement method converges to
an acceptable solution.

Can “simulated annealing,” or other means for breaking
metastable equilibria by allowing uphill moves. be used to
route paths of greater complexity?

If each primitive move consists of replacing one segment
of path by another, a means is required to ensure that the
path does not become absurdly convoluted. (There may be
no primitive move converting an %shaped path into a
straight line, for example.)
The following alternative combines the spirit of simulated
annealing with the advantages of a mazerouter. At each
iterative pass, introduce a random element (e.g., a
fictitious fluctuating “blockage” term at some of the grid
locations) into the penalty function: then optimize the
path of each connection in turn with respect to this
function. The fluctuation amplitude corresponds to an
annealing “temperature.” This should indeed result in
breaking otherwise metastable configurations. It has not
been attempted because the present methods work well
and are probably more efficient. The variation of the
penalty function from pass to pass in the present methods
(without random fluctuations) serves both to drive the
configuration toward greater ultimate legality and to
reduce the likelihood of convergence to unsatisfactory
(high-lying) local minima.

6. Results and discussion
We give examples of VIKING wiring of printed-circuit cards
and boards, and compare wiring results with those obtained
by two sequential routers. Some examples illustrate the use
of VIKING for free-form wiring (i.e., wiring in directionally
uncommitted planes, or extensive “wrong-way” wiring), and
its application to

Routing on via-sparse boards;
Chips or packages with extensive (e&, macro) blockages in

Packages with directionally unbalanced placement (greatly

Routing of “escapes” from under congested components.

some planes (a test case is discussed):

different x and y wiring loads in certain regions); and

Results on crosstalk control, reduction in the number of
wiring planes required, and reduction in manual embedding
effort are also presented.

RALPH LINSKER

619

I VIKING card routing example. Dots indicate pins and fixed vias.
One of six wiring planes is shown; no directional preference was
assigned to any plane.

The results of Sections B and H which follow were
obtained using the original code developed by the author.
The results of Sections A, C-E, and G were obtained using
the production code implemented within the FSD package
design system by J. F. Cooper and C. N. Lamendola. The
global router is identical in both codes. The detailed router
of the FSD version of VIKING incorporates (in addition to
the basic algorithms) methods for limiting the number of
connections requiring reroute after the first few passes, and
storage handling methods valuable for large board design. It
also uses a line-probe mazerouter rather than the Lee-type
mazerouter of the original version; the line-probe method is
used to simplify the imposition of crosstalk penalties.

For the runs of Sections A-E and H, the basic detailed
router discussed in Section 2 was used. The results of Section
G were obtained using the VIKING global and detailed
routers, and a crosstalk heuristic differing from, but with
similar effect to, that discussed in the section on crosstalk
constraints.

For the VIKING results reported, the number of wires left
unrouted is zero in each case. (This need not be true in
general, since one can optionally have VIKING remove
wires having more than a specified number of crossings, after
any pass.) Accordingly, we report VIKING results in terms
of the number of wires causing crossings at the end of the
last pass. Results using other (sequential) routers are
reported in terms of the number of remaining unrouted
wires.

A . Reduction in number of wiring planes, vias, and
manual embedding effort
Twelve printed-circuit cards were routed both by VIKING
and by a sequential router (call it “A”) used within IBM.
Each card contains 5-8 signal wiring planes and typically has
1000-2000 connections. Available vias are fixed and sparse.

Total wire lengths (for each card) were 10-24 percent over
minimum-Manhattan length using router “A,” and 5- 1 1
percent over minimum-Manhattan length using VIKING;
“excess over minimum-Manhattan’’ length was reduced by a
factor of between 1.5 and 3.5. The number of used vias was
typically reduced by about 20 percent. Manual embedding
effort was reduced by a factor of two to three, and sometimes
much more. Based on these and similar results, it was
projected that (on average) one wiring plane could be saved
per 2-3 cards, a plane savings of about 6 percent.

B. Example of iterative-improvement routing; ‘pee-form”
wiring
This was the first case attempted using VIKING. It is a
printed-circuit card of the type used in the above study, with
16 12 connections to be routed using six planes, and with 860
fixed vias provided. Router “A” had routed this problem
with 148 overflows (unrouted connections). (That router has
facilities for reducing via usage by assigning connections to
planes so as to allow a controlled type of “wrong-way”
wiring.) Manual embedding of these overflows took three
weeks. VIKING routed the problem (using a component
placement that was nonoptimized, in contrast with the
placement input to router “A”) with 25 crossings (gridpoints
occupied by two wires in the same plane).

Since crossings require only local repair (moving of wires
in the vicinity of the crossing), manual embedding effort was
reduced by even more than a factor of six (=148/25): from
three weeks to an estimated one day. Embedding has been
substantially eased by use of VIKING, because paths
containing illegalities are left on the board rather than being
“failed,” as by a sequential router.

Figure 1 shows the VIKING routing in one of the planes,
for another run (of the same problem) in which no
directional preference was at any time assigned to any region
of any plane. There were a total of 29 wires causing
crossings.

a combination of two factors: use of iterative-improvement
rather than sequential-routing methods, and reduced via
requirements (yielding improved wirability in this via-sparse
case) due to use of free-form or extensive “wrong-way’’
wiring.

In this example, VIKING’S superior performance is due to

C. Routing in directionally committed planes
Figure 2 shows one plane of VIKING routing for a different
connection list, on a card similar to that described above. In
this case, each plane has been assigned an x or y directional

RALPH LINSKER IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

I One x plane of a VIKING card routing. Dots indicate pins and fixed
vias. No vias are available in the horizontal channels.

preference. The figure shows efficient routing within the wide
horizontal channels (where vias are absent), even though
VIKING uses no channel routing algorithms. An average of
four wires per plane have been manually “repaired in this
case, to resolve crossings left by VIKING.

D. Regional imbalance of x and y wiring requirements
Figure 3(a) shows the connections (to be routed) for a card
in which the ratio of x to y wiring demand varies greatly
from one region to another. If an equal number of x and y
wiring planes are provided, and a capability for extensive
“wrong-way“ wiring is not available, wirability is impaired.
One can explicitly assign regions of some x planes to carry
predominantly y wiring, and vice versa, but this step is
unnecessary using VIKING. Two x and two y planes were
specified in an initial pass. A y domain subsequently
developed within an x plane [see Figure 3(b), region left of
center], to supplement the capacity of the y planes in that
region. This occurred as a result of the iterative-
improvement process, and without any user specification of
regional directional preferences.

E. Potential impact of wiring method on package design
decisions
A choice was to be made between two card package designs,
one being less complex but providing less wirability
(including less via availability). A wirability study using a
sequential router “B” indicated that the less complex
package would provide inadequate wirability (too many
overflow wires).

IBM J. RES. DEVELOP, VOL. 28 NO. 5 SEPTEMBER 1984

A card with regional imbalance between x and y wiring load
(due to component placement). (a) The pin-to-pin connections.
(b) VIKING routing in a predominantly x plane, showing extensive
“wrong-way’’ wiring. (The card has two x and two y planes.)

Two cards of the less complex package type were routed
using VIKING and router “B.” Results were, for one card
Router “B,” 62 overflows; VIKING, one crossing. For the
second card: Router “B,” 94 overflows; VIKING, 39 wires
causing crossings (hence requiring local manual rerouting in
the vicinity of the crossings).

RALPH LINSKER

622

I
~~~ ~~ 

Portion of printed-circuit board, including a congested pin-escape region (rectangle indicates boundary of this region). (a)  The pin-to-pin 
connections passing through this region (for one plane pair); (b) VIKING routing in one plane (diamonds indicate remaining wire crossings; this 
was the most congested region, and the 16 crossings shown are half  of all crossings in the entire plane); (c) Routing in same plane following 
manual repair of crossings. 

F. Wirability depends on the wiring program as well as 
the package 
The previous example illustrates that, apart from the 
question of whether one wiring  program  is “better” in a 
general  sense than another, it is important to take into 
account the specific characteristics of the programs. A few  of 
the issues are as follows: 

Does one program depend more heavily on ample via 
availability  (e.g.,  because it is  less amenable to extensive 
“wrong-way’’ wiring)? 
If avoidance of certain regions or wiring configurations 
(for which,  e.g., certain types of manufacturing defects 
may  be more likely) or avoidance of  excessive  crosstalk  is 
important, is one program  able to inhibit such occurrences 
more effectively?  If the wiring  program is not sensitive to 
such occurrences, the user  may  need to take a more broad- 
brush approach (e.g.,  block alternate wiring channels to 
reduce crosstalk; avoid certain regions of the board 
entirely), thereby impairing wirability. 
If there are x vs. y wiring  load imbalances (as  in a previous 
example), blockages in some planes (to be  discussed), or 
other special situations, does one wiring  program offer a 
specific advantage? 
In some cases, an advantage in computing speed or in ease 
of manual repair may be a critical determinant of practical 
wirability. 

These and other considerations should be examined when a 
wiring  program is  used to evaluate whether a proposed 
package  offers adequate wirability, in order to ensure that 
additional manufacturing complexity and cost are not 
incurred unnecessarily. 

G. Reduction of number of signal planes for a large board; 
crosstalk and escape considerations 
A printed-circuit board containing about 8000 connections 
and many congested  regions had been routed using a global 
router, followed  by router “B” for  detailed routing, in eight 
wiring planes. An early study using router “ B  had found 
that a large number of  overflows  resulted  when  wiring in 
only six planes was attempted. Moreover, some of the 
congested  regions  had too many “escapes” to be routable 
using the wiring track capacity of three x and three y planes. 
“Wrong-way’’  wiring  was not allowed in these runs using 
router “B.” 

VIKING produced a six-plane routing, incorporating 
adjacency controls to reduce  electrical  crosstalk. For a 
particular heuristic crosstalk criterion that was proposed, 
VIKING produced a routing with 25 times fewer violations 
in  six planes than router “B” had produced using  eight 
planes. (Router “B” does not incorporate dynamic adjacency 
control; instead, its user can impose certain artificial 
constraints in order to inhibit adjacency.) The manual effort 
of rerouting nets to satisfy the actual crosstalk criteria, to 
which the heuristic criterion was only an approximation, can 
accordingly  be  eased  greatly by incorporating a well-chosen 
adjacency control into the routing, without the need to 
impair wirability by blocking  wiring channels or the like. 

As noted above, some of the congested  regions  were 
unroutable using three x and three y planes, without “wrong- 
way”  wiring. By choosing the penalty functions 
appropriately, VIKING resolved this difficulty. One such 
region  is  shown in Figure 4: (a) shows the pin-to-pin 
connections passing through this region in one plane pair; 
(b) shows one plane of VIKING routing in this region before 
manual repair of residual  crossings  (shown as diamonds); (c) 

RALPH LINSKER IBM J. RES, DEVELOP, VOL. 28 NO, 5 SEPTEMBER 1984 



shows the  same plane following manual repair. In VIKING 
six-plane routing, the ratio  of wire length to  total wiring 
track  length was approximately 45 percent.  Wire  length was 
1.12 times  minimum-Manhattan  connection length. 

H .  Wiring  with  extensive  blockages in one plane; a test 
case 
Consider a chip with two metal wiring planes, one of which 
is substantially  blocked by macros. That is, much of the  area 
in  that plane is unavailable  for inter-macro wiring. Clearly, if 
planes are assigned directional preferences, chip wirability 
can be severely limited by the low track  capacity in  the 
blocked (say the x) plane. In  that case, one  may wish to 
optimize device  placement so as to reduce x wire load (and 
increase y load if necessary). 

uncommitted planes can provide an alternative  solution. 
Figure 5 shows a test case, intended  to (crudely) model a 
macro blockage situation.  A real chip  can have many  macro 
blockages in one  metal plane (call it plane I ) ,  some of which 
may have  a number of  small  “holes”  (regions lying within 
macros,  in which plane I is available  for wiring). For 
simplicity, we have  considered  a 100 X 100 grid with nine 
blockages. Each blockage is a square  annulus (see dotted 
outlines), with one large “hole”  instead  of  a number of  small 
ones. Approximately 50 percent  of the  area of plane 1 is 
blocked  none  of  plane 2 is blocked. Sixty-five two-pin 
connections were chosen,  with  a Poisson length distribution 
and a mean length  of 75 units. 

VIKING free-form wiring is shown  in Fig. 5 (solid wiring, 
plane I ;  dashed wiring, plane 2) .  There were no remaining 
crossings, and  routed length was 3 percent  over minimum- 
Manhattan.  When x and y directional  assignments were 
made  (and  adhered  to strictly, for a clean  comparison),  even 
a  smaller  problem with 40 connections  could  not be wired 
(there were eight wires causing crossings, and  routed length 
was 13 percent  over minimum-Manhattan).  This is not 
surprising,  since x wiring capacity  is so greatly impaired by 
the directional  plane  assignment in  this case. 

When  the 65-connection case was wired using VIKING 
with a strict rotary-wiring constraint  (the rotary method is 
due  to B. Dunham [ I  l]), the  advantage of the rotary  idea 
over conventional x, y plane  assignment was clear: the  65 
connections were routed with 13 wires causing crossings, and 
routed length 9 percent  over minimum-Manhattan. 

This example  indicates, in a  qualitative way, that  VIKING 
free-form wiring can “discover” unaided some of the virtue 
of the rotary-wiring approach (see the rough  similarity  of the 
VIKING wiring style of Fig. 5 to  the rotary style, especially 
for  the dashed-plane wiring), and  can also  provide some 
flexibility in, for  example, the use of  “holes” for providing 
wiring overpasses to  improve wirability. Quantitative 
conclusions should  not be inferred from  this single example 
with unrealistic  macros. 

VIKING‘S capability  for wiring in directionally 

IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEEEMBER 1984 

Test case (two wiring planes) with 50 percent blockage (dotted 
square annuli) in plane 1. VIKING routing of 65 connections on a 
100 X 100 grid (mean connection length 75 units) is shown. Solid 
wiring, plane 1; dashed wiring, plane 2. No directional preference 
was assigned to any region of either plane. Arrowheads mark pin 
locations; in this run pins were not treated as blockages (i.e,, other 
wires could pass through them without penalty). 

7. Conclusions 
The  VIKING wiring system generates global routings, layer 
assignments, and detailed  routings for interconnection 
packages. It has  demonstrated advantages with respect to 
reduced wire length, via count,  manual  embedding effort, 
and required number of signal planes, for  a variety of 
applications. An iterative-improvement strategy facilitates 
global near-optimization by allowing illegal configurations at 
intermediate stages, and successively routing  each 
connection against the background of all the others. The 
penalty function being optimized  can  accommodate a wide 
range of design tradeoffs and desiderata, and in  particular 
allows fine-tuning of crosstalk control, avoidance of 
configurations that may be undesirable from  the 
manufacturing  standpoint,  and  some  control of minimum 
and  maximum length. Efficient routing  in  directionally 
uncommitted planes (free-form wiring) has  been 
demonstrated. A method  for mazerouting with nonlinear  or 
path-history-dependent  penalty functions  has been described. 
A simple version of  a global router has also been  presented, 
with some  comments on methods for  breaking  metastable 
equilibria and achieving global near-optimization. 

RALPH LINSKER 



Acknowledgments 
I thank J. F. Cooper and C. N. Lamendola, who 
implemented a production version of VIKING, and with 
whom I enjoyed close collaboration on subsequent VIKING 
development and applications work. I thank D. E. Eastman, 
C. D. Gelatt, Jr., S. Kirkpatrick, J. C. McGroddy, J. A. 
Palmieri, R. S. Rutter, J. R. Sents, D. P. Seraphim, and D. 
A. Thomas, for very  useful discussions and help during this 
work. I also thank many others at East  Fishkill, Endicott, 
Owego, Poughkeepsie, and Yorktown who have  been 
involved  with VIKING-related applications and analyses, or 
with more general  wirability and DA concerns, and from 
whom I have learned much about DA and manufacturing 
issues. 

References  and  notes 
I .  A. Moore and C. Ravitz,  “Weighted and Iterative Multi-Wire 

Routing,” IBM Tech. Disclosure Bull. 25, No. 7B, 36  19-3628 
(1982). 

2. 

3. 

4. 

5 .  

6. 

7. 

8. 

9. 

F. Rubin, “An Iterative Technique for Printed Wire  Routing,” 
Proceedings, I I th Design Automation Workshop, 1974, pp. 
308-3  13. 
S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, 
“Optimization by Simulated Annealing,” Science 220,67 1-680 
(1983); M.  P.  Vecchi and S. Kirkpatrick, “Global Wiring by 
Simulated Annealing,” IEEE Trans. Computer-Aided Design 
CAD-2, No. 4,  2 15-222 (1983); and S. Kirkpatrick, 
“Optimization by Simulated Annealing: Quantitative Studies,” 
J .  Statist. Phys. 34,975-986 (1984). 
Given a grid or more general graph (consisting of nodes and 
links), given source and target nodes (or sets of nodes) A and B 
on the graph, and given a link cost function, a mazerouter 
algorithm calculates a path (lying on  the graph) connecting A 
and B, such that the path cost  (defined as the sum of link costs 
for  all links on that path) is a minimum (over all  possible paths 
connecting A and B). 
C. Y.  Lee,  “An  Algorithm for Path Connections and Its 
Applications,” IRE Trans. Electron. Computers EC-IO, 316-365 
(1961). 
We use the term line probe router to refer to a mazerouter in 
which the set  of points being  labeled  with cumulative cost 
information at each step comprises all points along one or more 
rays emanating from the “current point” of the mazerouting out 
to some spxified distance. 
J. Hickson and W. Donath, “Connecting Three Points While 
Minimizing Cost,” IBM Tech. Disclosure Bull. 25, No. 7B, 
3853-3858 (1982); and “Procedure for Connecting NPoints 
With Near-Minimum Cost,” ibid., 25, No. 1 IA, 5571-5575 
(1983). 
P. E. Hart,  N. J. Nilsson, and B. Raphael, “A Formal Basis for 
the Heuristic Determination of Minimum Cost Paths,” IEEE 
Trans. Syst. Sci. & Cybernetics SSC-4, No. 2, 100-107 (1968); 
F. Rubin, “The Lee Path Connection Algorithm,” IEEE Trans. 
Computers C-23, No. 9, 907-9 14 (1974). 
A different method for optimizing a penalty function subject to 
constraints. which  involves  savine. multiole scores [cumulated 
costs) at each gridpoint, is d e x r i k  in R. Linsker,‘“Optimal 
Maze Routing Subject to Constraints,” IBM Tech.  Disclosure 
Bull. 27, No. 2 (July 1984). 

Penalty Functions,” IBM Tech.  Disclosure Bull. 27, No.  IA, 
10. R.  Linsker, “Wire Routing with Path History Dependent 

399-406 (1984). 
1 I .  Divide  each  of the two  planes into four sectors defined by the 

two diagonals of the “chip.” Require that plane 2 (which  is 
unblocked) carry x-running wires in the north and south sectors, 
and y-running wires in the east and west sectors; require the 624 

RALPH LINSKER 

opposite for plane 1 (which contains the blockages).  We imposed 
a strict rotary wiring constraint (no “wrong-way” routing) for 
purposes of our comparison. 

Received January 9, 1984; revised April 9, 1984 

Ralph Linsker IBM Research Division, P. 0. Box 218, Yorkown 
Heights, New York 10598, Dr. Linsker is currently manager of 
system  design  in the Semiconductor Science and Technology 
Department. Since  he joined IBM in 198 I ,  his  work has dealt with 
design automation, packaging,  medical  laser applications, and 
artificial  intelligence.  He  received  his A.B. (summa cum laude) and 
Ph.D. in physics from Columbia University, New York, the latter in 
1972, and  the M.D. degree from Cornell University Medical  College, 
Ithaca, New York, in 1976. Dr. Linsker has worked in medical and 
physics areas at New York Hospital and Princeton University. 

IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984 


