KWIRE: A
multiple-
technology, user-
reconfigurable

wiring tool for
VLS

by P. C. Elmendorf

In a VLSI design environment where a range of
chip technologies are available and concurrent
chip designs are commonplace, it is not feasible
to build a wiring program for each technology.
Additionally, a chip’s design methodology may
demand specific abilities from a wiring program.
KWIRE was developed to meet the needs of a
multiple-technology, multiple-methodology VLSI
design community. It has been used on a range
of chips, from small designs to custom
microprocessors. Modeling the users’ designs
and design rules in geometric terms allows
KWIRE to handle such a diversity of chip
designs. This paper describes the KWIRE
system and router.

Introduction
VLSI chip wiring has long been recognized as an area where
automated tools are required because manual methods are

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

too error-prone and time-consuming. Due to increasing chip
complexity and the need for rapid turnaround, automated
wire routing is generally recognized as a necessity.

A design environment where multiple VLSI technologies
and design methodologies are in use simultaneously puts
additional demands on the wiring program. It is too
expensive to develop a separate wiring program for each
technology and methodology, and quick realization of the
appropriate router is mandatory.

The KWIRE wiring system was created for a multiple-
technology, multiple-methodology VLSI environment. It
uses a single wire router which operates on a geometric
description of the wiring problem. A family of modeling
programs converts the wiring problem and its associated
technology- and methodology-dependent rules into the
geometric description. The results of the geometric wire
router are postprocessed by other programs, restoring the
technology and methodology constraints during the creation
of physical data. These modeling and postprocessing
programs are easily and quickly constructed, as opposed to
the complex wire router itself. KWIRE permits one wire
router to be used on many problems in different
technologies, with differing methodologies. The investment
in the router is thus spread over many projects.

KWIRE is implemented as a CMS [1, 2] program running
under VM/SP [3]. It is being used in ten IBM laboratories
worldwide. As of this writing, KWIRE is being used at IBM

P. C. ELMENDORF

603




604

KWIRE process flow. Physical data input is transformed to geo-
metric models. The resulting geometric routing is converted to
physical data output.

Kingston to wire five chips. Three technologies and four
methodologies are involved..

Process overview
The KWIRE wiring process may be divided into three major
phases, as illustrated in Figure 1:

1. Creation and modification of a geometric model from
chip physical data and rules.

2. Wire routing on the geometric model.

3. Postprocessing the router output into physical data.

Phase 1: Model creation

The chip physical data and technology rules are input to this
phase. The chip data are expressed in IBM’s corporate-wide
standard graphic data format, Graphics Language/One
(GL/I) [4].

Groupings of circuits on the chip are called macros.
Macros may be large circuit groupings [5], smaller groupings
[6], or even individual circuits. Macros of widely differing
sizes and shapes can be used on the same chip. The size of
the macros depends on the problem at hand. Use of large
macros helps partition a complex function into easily
handled pieces. KWIRE can be used to wire the internal
connections of large macros.

P. C. ELMENDORF

Macros are usually represented by shadow shapes and
logic service terminal (LST) shapes. Shadow shapes are
polygons which represent the containing boundary of the
actual internal circuit shapes. The use of shadow shapes
helps reduce the volume of input data. Shadows may be
manually generated, or automatically created by a macro
generation program [6, 7). The LST locations are recognized
as shapes which possess netname attributes [4]. The
objective of the router is to connect all the shapes which
have the same netname attribute.

The GL/I input is first processed into a set of data files
which represent the chip as a collection of rectangles and
netnames. This intermediate format is input to a program
which creates the geometric model files for the router. This
geometric model may need further modification because of
particular technology constraints which are not accounted
for in the model builder. A large collection of modification
programs has been created for this purpose. Their functions
are 100 specific to warrant inclusion in the model builder.

To keep the geometric model file and the model builder
simple, only rectangles, orthogonal polygons, and orthogonal
lines are accepted as input. Any shapes not meeting these
criteria are flagged and rejected during the model creation
process. Orthogonal polygons and lines are fractured into
rectangles.

Phase 2: Geometric router
The KWIRE router operates on the geometric data. The
LSTs have become locations of netnames, and the shadows
have become blocked areas. Wires, contacts [8], and vias [9]
are laid down according to the rules implicit in the structure
of the model files and the explicit router options selected by
the user. (For the purposes of discussion, via means a level
change from one wiring layer to an adjacent layer.) Wires
and vias are abstract: zero-width lines and points,
respectively, with no overlaps. KWIRE assumes that wires
can be placed in adjacent tracks and that vias can be placed
adjacent to wires. These assumptions simplify the problem
but may result in a loss of wiring density. KWIRE does not
permit 45-degree wiring, further simplifying the problem.
The router is built around a heavily modified Lee Method
[10]. Most of the router parameters are under user control.
A weighted wiring search gives the user a lot of control over
router behavior. The weights specify the relative cost of
moves in the various directions. The weights and regions of
differing weights are assigned by the user. An iterative rip-
up-and-reroute wiring approach, user-selectable via
adjacency rules, and several search restriction methods under
user control round out the major router capabilities and
features. LSTs can be given specialized treatment. All these
features are described in more detail below.

Phase 3: Postprocessing
In the postprocessing phase, technology rules and
methodology requirements are restored to the purely

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984




geometric results from the router. In general, each
technology (and sometimes each methodology) requires its
own postprocessor. KWIRE'’s library of postprocessor
subroutines provides a set of building blocks which makes
postprocessor construction easy.

Line widths, material overlaps, selection and rotation of
vias, and which layer names to assign are some of the
physical requirements which the postprocessors restore to the
router results.

Process description
The nature of the geometric model is discussed below. The

creation of the model, routing on the model, and
postprocessing the router results are then discussed in more
detail.

o Geometric model

The grid

The grid is a discrete Cartesian space. The X and Y spacing
of the grid remain constant throughout the levels of wiring,
but the X spacing need not be equal to the Y spacing. The
grid must be chosen so wires may run adjacently without
breaking minimum spacing dimensions for the technology in
every wiring level.

All shapes present in the input data are mapped into the
grid points. The rules for shape construction are liberal; that
is, LSTs must be positioned so that they contain at least one
grid intersection and the edges of shapes need not fall on the
grid. During model construction, the technology spacing and
width rules are applied to determine whether an off-grid
shape edge will shrink or expand to the nearest grid point.

Chip map

A storage image of the chip is used as the geometric model.
A block of contiguous storage represents a mapping of the
macro and wiring blockages and the space that is available
for wiring into grid intersection points. Each grid
intersection point is represented by a one-byte code. The
image is organized such that successive storage locations
correspond to increasing values in the X direction of the
chip. When the right edge of the chip is reached, the next
storage location wraps to the left edge (X = 0) and increases
in the Y direction.

Multiple contiguous chip images as described above
correspond to the multiple levels of wiring. Each image
reflects blockages only in that level of wiring.

Each of the eight bits in the byte is utilized. The weight
region type, presence of blockage, and presence of wire are
recorded. Three bits are used during the wiring scan cycle to
remember the direction the search took.

The images are stored in a single map file.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Via map

Storage images of the chip for via blockages are built in the
same manner as the wiring levels. There is one less
contiguous via map in storage than there are wiring maps. A
blockage code at a point in the Mth via plane will prohibit a
via from being placed between wiring levels M and M + 1 at
the same point.

The via planes are used to enforce specific via rules. Each
via has a “domain of influence” in its own via plane, the via
plane below (if existing), and the via plane above (if
existing). These domains and their overlaps are recorded in
the via maps. This permits the enforcement of, for example,
contact-to-via adjacency rules.

Certain areas in a chip may be restricted from vias. Shapes
can be included in the input GL/I which represent via
blockages in regions where wires are allowed. A common use
of this feature is the prohibition of vias on LSTs.

The images are stored in a single map file.

LST, wire, via models

The LSTs, wires, and vias are stored in separate files. LSTs
are represented as rectangles, wires as lines, and vias as
points. Polygonal LSTs are represented by “continued”
rectangles, commonly called an LST family. LST families
need not be physically contiguous; this property is useful
with feedthroughs, discussed later.

& Model construction

The model building program is a general modeling process
which does not take into account technology or
methodology vagaries. Unique requirements are handled by
two approaches: alteration of the input to model building,
and alteration of the output of model building.

Alteration of input—example

Several tools exist which allow easy alteration of the
rectangle files which are input to the model builder.
Generally, alteration of input data is used when a
methodology rule imposes a restriction which is not present
in the technology rules.

Example: Suppose we have a technology in which
diffusion is a better conductor than polysilicon (poly), and
buried contacts (diffusion-poly ohmic connections) have
adverse electrical characteristics. Thus, an artificial rule may
be imposed: The wire router is not allowed to wire in poly,
nor use buried contacts, but may use diffusion, contacts, and
metal. The circuit macros use diffusion and poly LSTs. It
would seem that we could get by with modeling diffusion
and poly on the same wiring plane. However, the diffusion
and poly LSTs are the same width and are on the poly-
diffusion shadow edge (Figure 2). Simple modeling would let
diffusion wiring touch the poly LST. To implement the
artificial rule, the poly LSTs are shrunk to the enclosed grid

points before modeling starts (Figure 3). Thus, they are 605

P. C. ELMENDORF




606

| Original data showing large poly LSTs.

isolated from the diffusion wiring by the shadow, but are
available for metal wires to drop contacts. The diffusion
LSTs model normally: Diffusion wires or contacts may
touch them,

Alteration of model—example

In a situation where vias are not permitted unless they are
greater than N microns away from macro shadows, block-via
shapes could be designed which were N microns larger than
the macro shadows. However, this can be avoided by taking
all the macro shadow rectangles, expanding them by the N
microns, and using those data to block vias in the via rules
map. This kind of processing has been used on many chips.

o KWIRE router

The heart of the KWIRE system is the KWIRE router. The
router implements general geometric concepts which are
used in specific ways to model wiring problems. The search
algorithm is based on Lee’s Method, although heavily
modified for faster run times. The most often used features
of the router are discussed below.

Weight regions and costs

Each grid point on each wiring plane is associated with a
weight region. A weight region is an area in which a certain

P. C. ELMENDORF

I Modified data with shrunk poly LSTs.

set of wiring costs is in effect. The weight region type is an
inherent property of each grid point and is encoded in the
bit pattern of each byte in the chip map.

Up to four weight region types may be used in a wiring
plane, with any number of regions of a given type. The size
of a weight region can be as small as a single grid point or as
large as the entire wiring plane. The wiring costs assigned to
the same type regions in different wiring planes can be
different.

The user assigns wiring costs to the different weight region
types. These costs are integers ranging from 1 to 31. They
represent the penalty for movement horizontally, vertically,
up, and down. A cost of | represents no penalty. Increasing
the cost increases the penalty. Zero cost represents infinite
penalty and acts as a directionally dependent blockage. This
feature is used when wrong-way moves must be prohibited.

Use of the weight regions and their associated costs gives
the user great flexibility in determining the router behavior.
The double-level-metal chip shown in Figure 4(a) is a typical
example. The user wanted most of the global connections to
reside in the T-shaped path, and be on first-level metal. This
required a strong bias against wrong-way moves in the T.
Some slight bias against wiring in the local areas would help
keep global nets in the T path, while allowing local
connections to wire normally. In addition, the local power

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984




Table 1 Wiring costs assigned to weight regions used on the
layout shown in Fig. 4(a).

First metal
Vertical Horizontal Up Down
Weight region 0 05 02 07 00
1 06 01 08 00
2 02 05 07 00
3 01 06 08 00
Second metal
Vertical Horizontal Up Down
Weight region 0 02 05 00 07
1 01 06 00 08
2 05 02 00 07
3 06 01 00 08

buses were on first-level metal and ran vertically in the top
portion of the chip, but horizontally in the bottom portion.
Local first-level metal should be parallel to the power buses.
The user wanted to limit the number of vias used, and allow
wrong-way wiring at higher penalty. The preferred direction
for second-level metal was always perpendicular to that of
first-level metal.

Figure 4(b) shows the weight regions which were
employed. The user outlined the weight regions by using a
graphical aid which displays the chip data on a 3277
Graphics Attachment [11]. The wiring costs used are shown
in Table 1.

If desired, the wiring costs associated with the weight
regions may be assigned on a per-net basis. For example, in
a technology using diffusion and two metal layers of wiring,
it is desirable to keep critical nets from ever using diffusion,
while allowing other nets to use it. The costs-per-net feature
is used to implement such a restriction.

Restricted search

A Lee router tends to search too thoroughly for a path. It
spends much time searching in the wrong direction. To
speed up the search, a restricted-search feature is offered. It
makes use of a search box. The size of the search box is
initially the least enclosing rectangle which contains the
portion of the net that is aiready wired and the LST to be
wired. The initial coordinates of the search box are
calculated by the router prior to wiring the LST. This initial
search box is then expanded. The expanston is controlled by
three user-specified router inputs: a minimum expansion
amount, a maximum expansion amount, and an expansion
multiplier. The expanded search box is then used to limit the
search area (Figure 5). This approach results in small search
areas for LSTs which are close together, and larger search
areas for LSTs which are more spread out.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

"!IHHH*‘?

Region type 2

Region type 1

Region type 0 Region type 0

Region type 3

®

(a) Layout which requires specific routing behavior. (b) Weight
regions used on the layout in Fig. 4(a).

The search box is dynamically placed into the chip map so
that it appears to be a blockage and limits the search. The
search algorithm cannot differentiate between blockages and
the search box. After the LST has been processed, its search
box is removed from the chip map.

P. C. ELMENDORF

607




608

I Initial search box and expansion.

Search boxes are not the best solution, but they have been
effective in practice and entail very little overhead.

Continued LST (feedthrough)

The router permits a “single” LST to consist of multiple
pieces. Such a multiple-piece LST is called a continued LST
or LST family. A continued LST can be used to represent a
polygonal LST. (Remember that all polygons are fractured
into rectangles during the first phase.) However, the router
permits the pieces of a continued LST to be discontiguous
and/or on different wiring planes. This property of
continued LSTs is used to advantage in the concept of a
Seedthrough.

As was previously stated, the router tries to connect all
like-named LSTs. Often, a particular net can be connected
to a macro in more than one location. Thus, there could be
many LSTs on a macro which have the same netname and
which are all electrically common. It would be advantageous
to let the router decide which LST it prefers. Wiring one of
these LSTs would wire all, and the net could continue out
the other LSTs, if need be. At best, this offers the advantage
of using the (invisible) macro internal connections to help
wire some nets, at a saving in global wiring space. Nets could
“feed through™ the macro instead of going around it. At least
the router would get an alternate way to achieve a
connection. However, since the LSTs would be (obviously)
disjoint, the router would try to connect them all together
[Figure 6(a)]. A convention was defined in which internal

P. C. ELMENDORF

continuity between LSTs of the same net is designated by
their connection with a line on a special, nonmanufacturable
level. The model builder traps these lines during model
creation, and generates a continued LST from the disjoint
LSTs. This type of continued LST is called a feedthrough.
The router then uses the continued LST in its regular way,
and the benefits are realized [Figures 6(b), 6(c)].

A problem occurs when the internal path between
feedthroughs has poor electrical characteristics. It would then
be incorrect to use the internal path in continuing the net.
The router supports a type of continued LST which may be
wired at any point, but which is not used to continue the
net. These are called “soft” feedthroughs.

Ports (wirethroughs)

The router supports an extension of the continued LST,
called a port family. A port family consists of a set of LSTs
which belong to no net, which provide continuity among ail
the LSTs in the set, and which may be assigned to any net as
part of the wiring for that net. These properties are used in
the concept of a wirethrough.

Some circuit macros may have some available wiring
paths inside. One way to use these paths is to create a
fractured shadow shape for the macro and allow the router
to lay the wire [Figure 7(a)]. This approach has two main
disadvantages: The creation of disjoint shadows is not easy,
and the available free path must fall on the wiring grid.

An alternative approach uses the port family in a form
called a wirethrough. During macro creation, real wire is
placed in the free path. This wire connects to LSTs (with no
netname) which are placed on the macro boundary. A line
on another special, nonmanufacturable level is used to
connect the LSTs. The model builder traps this construct
and models it as a port family. The router uses this prepared
path through the macro when it wires nets [Figure 7(b)]. The
port family becomes the property of the net which uses it.

Iterative mode

If the router cannot find a path for an LST, it attempts to
find a path by allowing the new wire to cross (short circuit)
other wires at very high cost. If a path is now found, any
crossed nets are deleted from the model, but the deleted data
are saved for a while. After the deletions, the router finds a
new path for the new wire, taking advantage of the
additional free space provided by the deleted wires. (The
path found by allowing shorts is not necessarily used,
because it may have too much “wrong-way” wire. The
additional path search helps maximize the number of useful
wiring channels by limiting “wrong-way” wiring.)

Once the new wire is placed, the saved data from the
deleted nets are checked against the new wire. Wherever a
crossing (short) would occur, a “super dot” is created and
assigned to the new wire. Super dots prohibit other wires
from ever crossing the point which they protect. They

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984




(a) Without feedthroughs, the router connects all like-named LSTs
together. (b) Alternate LST specified by feedthrough. (¢) Using
internal macro continuity to help wire a net.

prevent loops from occurring by forcing subsequent wires to
take alternate paths.

Those portions of nets which are not crossed may qualify
for being replaced intact into the model, without further
path searching. After these “put-backs” are determined and
placed, wiring continues. Alternate paths for the deleted
wires are found before new wires are attempted.

Probes and ghosts

When the router fails to find a path for an LST, it can flag
that LST as a “fail” and ignore it during the rest of the run.
The user has no way of knowing how much of the path the
router could complete. This approach would have dire
consequences if the fails had to be manually imbedded.
However, the router can be run in a mode which does
provide the necessary information.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER (984

(a) Wiring space through a macro specified by fractured shadow.
(b) Wiring space through a macro specified by wirethroughs. The
router assumes internal continuity.

When a fail would occur, the router tries to wire the path
by permitting shorts to occur—at high cost to maximize the
length of path taken in legal material (the “probe” portion)
and minimize the length of path causing shorts (the “ghost”
portion). “Probe” and “ghost” segments are placed on
different layers than “real” segments so they can be easily
identified (this strategy is especially vivid on color graphics
systems).

P. C. ELMENDORF

609




only a small portion of the probe-ghost path is ghost
material. It has been found that the users can merely “stitch”
the probe segments together to complete the path, with
minimal impact on surrounding wires.

o Postprocessing methods

The purely geometric router results must be transferred back
into physical constructs to be useful. The postprocessors
provide technology-dependent ways to achieve this.

Like materials can be made to overlap at wire-to-wire;
wire-to-LST, and wire-to-via junctions. The amount of
overlap in different layers at different kinds of junctions is
programmable. Such overlap rules are required in some
technologies to allow for a margin of error in mask
preparation.

Adjacency rules between via shapes and wires, or between
vias, can be satisfied by the design of vias which are
appropriate for given situations [12, 13]. A postprocessor can
select the correct via and the orientation for it.

Figure 8 shows some router results from a three-wiring-
level problem. The contact and via locations have been
rendered as large dots to make them visible. Figure 9 depicts
the result of postprocessing the data of Fig. 8. Note the
material overlaps at rotations of contacts and vias (Figure
10).

The postprocessors are built from a standard subroutine
library. Via selection and orientation is table-driven. Each
postprocessor has its own set of via tables.

Router results: wires are lines without width, and vias are points.

o Some results

Since 1979, KWIRE has been successfully used on 17 chips
at IBM Kingston, and several more company-wide. These
chips range from small designs to custom bipolar [6] and
FET microprocessors using both IBM and vendor
technologies.

Statistics from eight custom chip designs are presented in
Table 2. They appear in chronological order, and span three
versions of KWIRE.

The first three chips were bipolar components with two
metal layers available for wiring. Analysis of these results led
to large performance improvements. The number of weight
region types was increased from one region type per wiring
level to four region types per design. User-selectable via
adjacency rules were implemented.

Postprpcessor output: all materials have the correct width and over- The next two designs took KWIRE into a new realm:

lap. Via cells have been selected and correctly rotated. FET, single-metal chips. The four weight regions just
developed were of immediate use. The first complex
postprocessor was built. Model-building utilities were created
to handle situations such as those shown earlier in Figs. 2
and 3. The results from these designs suggested

The probe-ghost paths are used as a guide in the manual improvements in the iteration strategy, performance
imbedding process. Such use drastically cuts down imbed enhancements, the restricted search box, probe and ghost
time because the person doing the imbedding has a path to wiring for imbed assist, and implementation of four weight

610 follow and does not have to laboriously find one. Usually, region types per wiring level.

P. C. ELMENDORF [BM J. RES. DEVELOP, VOL. 28 NO. 5 SEPTEMBER 1984




The next design, an FET processor of over 21 000 circuits,
utilized all the features of KWIRE at that time. Table 2 only
shows statistics for the global wiring of this chip; many of the
macros themselves were wired with KWIRE. Continued
LSTs were implemented for this chip. This design was done
at IBM Boca Raton.

The last two chips were processed with the latest version
of KWIRE. “Soft” feedthroughs and costs-per-net were
implemented for these chips.

To summarize, user experiences with each design
suggested improvements in KWIRE, KWIRE utilities, and
the way the KWIRE system is applied to a problem.

o Associated tools

A 3277 Graphics Attachment [11] program which can
display the router output and most of the input and model
files is part of the KWIRE tool box and is heavily slanted
towards KWIRE and its users. It provides typical graphics
viewing functions and special functions related to KWIRE
(e.g., a weight regionalization mode and super-dot viewing).

KWIRE runs both interactively and in batch mode. The
interactive mode is supported by a comprehensive set of
menus. The commonly used utilities and model
modification programs are included on the menus. The
KWIRE router has its own interactive environment and a
large set of wiring commands. On-line help menus can be
called upon when the router is run interactively.

Batch execution is supported by rules files and preset
procedures which are created for each chip design. The user
need only remember the name of the appropriate rules set to
run a complete KWIRE job. This has become the preferred
technique.

The KWIRE router has an interactive debugging mode
which is used by the program authors during debugging and
new feature verification. The debugger has been a great help
in tracking down program errors which users have found in
KWIRE.

| Overlay of Figs. 8 and 9.

Conclusions
KWIRE’s success has demonstrated that the removal of
technology and methodology constraints from a wire router
is a good strategy when multiple technologies and
methodologies must be accommodated. When
enhancements are required in the router, they represent
general concepts (e.g., port families) which benefit not only
their requestor, but also subsequent users. This spreads the
development cost of general router features over many users.
As technology advances, new tools will take KWIRE’s
place. Presently, hierarchical tools built around a central
database are being studied. The ideas of user

Table 2 Sstatistics for eight chips wired with KWIRE. Circuit counts assume 3.5 devices per circuit.

Chip Levels Metals Circuits Circuit Nets LSTs Fails Imbed
area time
(%) (days)
Bipolar processor 2 2 4100 40 1383 3689 27 14
component
Bipolar processor 2 2 3975 40 1147 3095 19 3
component
Bipolar processor 2 2 4025 40 1141 3003 0 0
component
FET processor 2 1 6772 43 816 2558 46 14
FET data channel 2 1 5659 40 971 2878 26 7
FET processor 2 2 21428 57 1000 3910 0 0
FET display driver 2 2 5000 40 1315 2150 0 0
FET communications 3 2 8473 47 2034 6521 0 0
adapter

611

IBM J. RES. DEVELOP, VOL. 28 NO. 5 SEPTEMBER 984

P. C. ELMENDORF




reconfigurability and removal of dependencies—KWIRE’s
toolbox approach—will become an important feature of
these new tools.

Acknowledgments

The author wishes to acknowledge the contribution of C. B.
Killen in the initial development of KWIRE and associated
tools while at Kingston, and the subsequent developments
and contributions he made while at Boca Raton. Over the
years, many users of KWIRE have made suggestions and
comments which resulted in substantial program
improvements. Though space does not permit
comprehensive acknowledgment of all these individuals, the
author wishes to thank them for their contribution. Thanks
go to G. J. Tuma of IBM Kingston for Figs. 6 and 7, and to
all those who reviewed the manuscript and suggested
changes, especially T. A. Elmendorf and S. S. Hultquist for
reviewing several drafts.

References and notes

1. IBM Virtual Machine/System Product: CMS Command and
Macro Reference, Order No. SC19-6209; available through IBM
branch offices.

2. IBM Virtual Machine/System Produci: CMS User’s Guide,
Order No. SC19-6210; available through IBM branch offices.

3. IBM Virtual Machine/System Product: System Programmer’s
Guide, Order No. SC19-6203; available through IBM branch
offices.

4. GL/I Language Specification, Order No. GE45-1127-0; available
through IBM branch offices.

5. Anthony Correale, “Physical Design of a Custom 16-Bit
Microprocessor,” IBM J. Res. Develop. 26, 446-453 (1982).

6. K. F. Mathews and L. P. Lee, “Bipolar Chip Design for a VLSI
Microprocessor,” IBM J. Res. Develop. 26, 464-474 (1982).

7. W. C. Finger et al., Macro Assembler Process for Automated
Circuit Design, U. S. Patent 4,377,849, March 22, 1983.

8. For this discussion, a “contact” is an ohmic connection between
the first layer of metal and diffusion or polysilicon.

9. A “via” is a ohmic connection between two layers of
metallization. In this paper, the word “via” is used to mean
“vias or contacts” unless stated otherwise.

10. C. Y. Lee, “An Algorithm for Path Connections and Its
Applications,” IRE Trans. Electron. Computers 10, 346-365
(1961).

11. 1BM 3277 Display Station, Graphics Attachment RPQ 7H0284,
Custom Feature Description, Order No. GA33-3039; available
through IBM branch offices.

12. A versatile set of contacts for a single-metal technology was
designed by R. McClurg.

13. A versatile set of contacts and vias for a double-metal
technology was designed by A. Correale and G. J. Tuma.

Received December 8, 1983; revised April 26, 1984

P. C. ELMENDORF

Peter C. Eimendorf 1BM Communication Products Division,
Neighborhood Road, Kingston, New York 12401. Mr. Elmendorf is a
staff engineer in the Physical Design Development Department. He
joined IBM in 1979. He received the B.S. in electrical engineering
from Rensselaer Polytechnic Institute, Troy, New York. He is
currently enrolled in the graduate work study program at Syracuse
University. Mr. Elmendorf is a member of the Association for
Computing Machinery and an affiliate member of the Computer
Society of the Institute of Electrical and Electronics Engineers.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984




