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In  a VLSl design  environment  where  a  range of 
chip  technologies  are  available  and  concurrent 
chip  designs are commonplace,  it is not  feasible 
to  build a wiring  program  for  each  technology. 
Additionally, a chip’s  design  methodology  may 
demand  specific  abilities  from  a  wiring  program. 
KWIRE  was developed to meet the needs of a 
multiple-technology,  multiple-methodology VLSl 
design community. It  has  been  used on a  range 
of  chips,  from  small  designs  to  custom 
microprocessors.  Modeling  the  users’  designs 
and  design  rules  in  geometric  terms  allows 
KWIRE  to  handle  such a  diversity of  chip 
designs.  This  paper  describes  the  KWIRE 
system  and  router. 

Introduction 
VLSI chip wiring has long  been  recognized as an area where 
automated tools are required because manual methods are 
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too error-prone and time-consuming. Due to increasing chip 
complexity and the need  for rapid turnaround, automated 
wire routing is generally  recognized  as a necessity. 

and design  methodologies are in use simultaneously puts 
additional demands on the wiring  program. It is too 
expensive to develop a separate wiring  program  for  each 
technology and methodology, and quick realization of the 
appropriate router is mandatory. 

The KWIRE wiring  system  was  created  for a multiple- 
technology, multiple-methodology VLSI environment. It 
uses a single  wire router which operates on a geometric 
description of the wiring problem. A family of modeling 
programs converts the wiring  problem and its associated 
technology- and methodology-dependent rules into the 
geometric description. The results of the geometric wire 
router are postprocessed by other programs,  restoring the 
technology and methodology constraints during the creation 
of  physical data. These  modeling and postprocessing 
programs are easily and quickly constructed, as opposed to 
the complex  wire router itself. KWIRE permits one wire 
router to be used on many problems in different 
technologies,  with  differing  methodologies. The investment 
in the router is thus spread over many projects. 

under VM/SP [3]. It is being  used in ten IBM laboratories 
worldwide. As of this writing, KWIRE is being used at IBM 

A design environment where multiple VLSI technologies 

KWIRE is implemented as a CMS [ 1,2] program running 
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I KWIRE process flow. Physical data input is transformed to  geo- 
metric models. The resulting geometric routing is converted to 
physical data  output. 

Kingston to wire  five chips. Three technologies and four 
methodologies are involved. 

Process  overview 
The KWIRE  wiring  process  may  be  divided into three major 
phases,  as illustrated in Figure 1: 

1. Creation and modification of a geometric model  from 

2. Wire routing on the geometric  model. 
3. Postprocessing the router output into physical data. 

chip physical data  and rules. 

Phase 1: Model  creation 
The chip physical data  and technology  rules are input to this 
phase. The chip data are expressed in IBMs corporate-wide 
standard graphic data format, Graphics Language/One 
(GL/I) P I .  

Groupings of circuits on the chip are called  macros. 
Macros may be large circuit groupings [ 5 ] ,  smaller groupings 
[6] ,  or even individual circuits. Macros of  widely differing 
sizes and shapes can be  used on the same chip. The size  of 
the macros depends on the problem at hand. Use of  large 
macros helps partition a complex function into easily 
handled pieces. KWIRE can be  used to wire the internal 
connections of large macros. 604 
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Macros are usually  represented  by  shadow  shapes and 
logic service terminal (LST)  shapes.  Shadow  shapes are 
polygons  which  represent the containing boundary of the 
actual internal circuit shapes. The use of shadow  shapes 
helps  reduce the volume of input data. Shadows  may  be 
manually generated, or automatically created by a macro 
generation program [6, 71. The LST locations are recognized 
as shapes  which  possess netname attributes [4]. The 
objective of the router is to connect all the shapes  which 
have the same netname attribute. 

The GL/I input is first processed into a set of data files 
which  represent the chip as a collection of rectangles and 
netnames. This intermediate format is input to a program 
which creates the geometric model  files  for the router. This 
geometric  model  may  need further modification  because of 
particular technology constraints which are not accounted 
for in the model builder. A large  collection  of  modification 
programs has been created for this purpose. Their functions 
are too specific to warrant inclusion in the model  builder. 

To keep the geometric model file and the model builder 
simple,  only  rectangles, orthogonal polygons, and orthogonal 
lines are accepted as input. Any shapes not meeting  these 
criteria are flagged and rejected during the model creation 
process. Orthogonal polygons and lines are fractured into 
rectangles. 

Phase 2: Geometric  router 
The KWIRE router operates on the geometric data. The 
LSTs  have  become locations of netnames, and the shadows 
have  become  blocked  areas.  Wires, contacts [8], and vias 191 
are laid  down according to the rules implicit in the structure 
of the model files and the explicit router options selected  by 
the user. (For the purposes of discussion, via means a level 
change from one wiring  layer to  an adjacent layer.)  Wires 
and vias are abstract: zero-width lines and points, 
respectively,  with no overlaps. KWIRE assumes that wires 
can be  placed in adjacent tracks and that vias can be placed 
adjacent to wires. These assumptions simplify the problem 
but may  result in a loss  of  wiring density. KWIRE does not 
permit 45-degree  wiring, further simplifying the problem. 

The router is  built around a heavily  modified  Lee Method 
[IO]. Most of the router parameters are under user control. 
A weighted  wiring  search  gives the user a lot of control over 
router behavior. The weights  specify the relative  cost  of 
moves in the various directions. The weights and regions of 
differing  weights are assigned by the user. An iterative rip- 
up-and-reroute wiring approach, user-selectable  via 
adjacency  rules, and several  search restriction methods under 
user control round out the major router capabilities and 
features.  LSTs can be  given specialized treatment. All these 
features are described in more detail below. 

Phase 3: Postprocessing 
In the postprocessing  phase,  technology  rules and 
methodology requirements are restored to the purely 
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geometric results from the router. In general, each 
technology (and sometimes each methodology) requires its 
own postprocessor. KWIRE’s library of postprocessor 
subroutines provides a set  of building blocks  which makes 
postprocessor construction easy. 

Line widths, material overlaps,  selection and rotation of 
vias, and which layer names to assign are some of the 
physical requirements which the postprocessors restore to the 
router results. 

Process  description 
The nature of the geometric model is discussed  below. The 
creation of the model, routing on  the model, and 
postprocessing the router results are  then discussed in more 
detail. 

Geometric model 

The grid 
The grid  is a discrete Cartesian space. The X and Y spacing 
of the grid remain constant throughout the levels  of  wiring, 
but  the X spacing need not be equal to the Y spacing. The 
grid must be chosen so wires  may run adjacently without 
breaking minimum spacing dimensions for the technology in 
every  wiring  level. 

All shapes present in the input  data are mapped into the 
grid points. The rules  for shape construction are liberal; that 
is,  LSTs must be positioned so that they contain at least one 
grid intersection and the edges  of shapes need not fall on  the 
grid. During model construction, the technology spacing and 
width rules are applied to determine whether an off-grid 
shape edge will shrink or expand to the nearest grid point. 

Chip map 
A storage image of the chip is  used  as the geometric model. 
A block  of contiguous storage represents a mapping of the 
macro and wiring  blockages and the space that is available 
for  wiring into grid intersection points. Each  grid 
intersection point is represented by a one-byte code. The 
image is organized such that successive  storage locations 
correspond to increasing values in the X direction of the 
chip. When the right  edge  of the  chip is reached, the next 
storage location wraps to the left  edge ( X  = 0) and increases 
in the Y direction. 

Multiple contiguous chip images as described above 
correspond to the multiple levels  of  wiring.  Each  image 
reflects  blockages only in that level  of  wiring. 

Each  of the eight bits in the byte  is  utilized. The weight 
region type, presence  of  blockage, and presence  of  wire are 
recorded. Three bits are used during  the wiring  scan  cycle to 
remember the direction the search took. 

The images are stored in a single map file. 

Via map 
Storage  images of the chip for via blockages are built in the 
same manner as the wiring  levels. There is one less 
contiguous via map in  storage than there are wiring maps. A 
blockage code at a point in the Mth via plane will prohibit a 
via from being  placed  between  wiring  levels M and M + 1 at 
the same point. 

The via planes are used to enforce specific  via  rules.  Each 
via has a “domain of influence” in its  own via plane, the via 
plane below (if existing), and the via plane above (if 
existing). These domains and their overlaps are recorded  in 
the via maps. This permits the enforcement of,  for example, 
contact-to-via adjacency rules. 

Certain areas in a chip may be restricted from vias. Shapes 
can be included in the  input  GL/I which represent via 
blockages in regions  where  wires are allowed. A common use 
of this feature is the prohibition of  vias on LSTs. 

The images are stored in a single map file. 

LST, wire,  via models 
The LSTs,  wires, and vias are stored in separate files. LSTs 
are represented as rectangles,  wires  as  lines, and vias as 
points. Polygonal  LSTs are represented by “continued” 
rectangles, commonly called an LST family. LST  families 
need not be physically contiguous; this property is useful 
with feedthroughs, discussed later. 

Model  construction 
The model building program is a general modeling process 
which does not take into account technology or 
methodology vagaries. Unique requirements are handled by 
two approaches: alteration of the  input  to model building, 
and alteration of the  output of model building. 

Alteration of input-example 
Several tools exist  which  allow  easy alteration of the 
rectangle  files  which are input to the model builder. 
Generally, alteration of input  data is  used  when a 
methodology rule imposes a restriction which is not present 
in the technology rules. 

Example: Suppose we have a technology in which 
diffusion is a better conductor  than polysilicon (poly), and 
buried contacts (diffusion-poly ohmic connections) have 
adverse electrical characteristics. Thus, an artificial  rule  may 
be imposed: The wire router is not allowed to wire  in  poly, 
nor use buried contacts, but may use diffusion, contacts, and 
metal. The circuit macros use diffusion and poly  LSTs.  It 
would  seem that we could get  by  with modeling diffusion 
and poly on the same wiring plane. However, the diffusion 
and poly  LSTs are  the same width and  are  on  the poly- 
diffusion shadow edge (Figure 2). Simple modeling would  let 
diffusion  wiring touch the poly  LST. To implement the 
artificial rule, the poly  LSTs are shrunk to the enclosed  grid 
points before modeling starts (Figure 3). Thus, they are 605 
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I Original  data  showing large poly LSTs I Modified data with shrunk poly LSTs 

isolated from  the diffusion wiring by the shadow, but  are 
available  for  metal wires to  drop contacts. The diffusion 
LSTs model  normally: Diffusion wires or contacts  may 
touch  them. 

Alteration of model-example 
In a situation where vias are  not  permitted unless  they are 
greater than N microns away from  macro shadows, block-via 
shapes  could be designed which were N microns larger than 
the  macro shadows. However, this  can be avoided by taking 
all the  macro shadow rectangles, expanding  them by the N 
microns,  and using those  data to block vias in  the via rules 
map.  This  kind of processing has been used on  many chips. 

KWIRE router 
The heart of the KWIRE system  is the KWIRE router.  The 
router  implements general geometric concepts which are 
used in specific ways to  model wiring problems. The search 
algorithm is based on Lee’s Method,  although heavily 
modified for faster run times. The  most often  used  features 
of the  router  are discussed below. 

Weight regions and costs 
Each grid point on each wiring plane  is  associated with a 
weight region. A weight region is an area  in which a certain 
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set of wiring costs is in effect. The weight region type  is an 
inherent property of each grid point  and is encoded in  the 
bit pattern of each  byte  in the  chip  map. 

Up  to  four weight region types may be used in a wiring 
plane, with any  number of regions of  a given type. The size 
of a weight region can be as small as a single grid point or as 
large as  the  entire wiring plane. The wiring costs assigned to 
the  same  type regions in different wiring planes can be 
different. 

The user assigns wiring costs to  the different weight region 
types. These  costs are integers ranging from 1 to 3 1. They 
represent the penalty  for movement horizontally, vertically, 
up, and  down. A cost of I represents no penalty.  Increasing 
the cost  increases the penalty. Zero cost  represents  infinite 
penalty and acts as a  directionally dependent blockage. This 
feature is  used  when wrong-way moves must  be prohibited. 

Use of the weight regions and  their associated  costs gives 
the user  great flexibility in  determining  the  router behavior. 
The double-level-metal chip shown in Figure 4(a) is  a  typical 
example. The user  wanted most of the global connections  to 
reside in  the T-shaped path,  and be on first-level metal. This 
required a strong bias against wrong-way moves in  the T. 
Some slight bias  against  wiring in  the local areas would  help 
keep global nets  in  the T path, while allowing local 
connections  to wire normally. In  addition,  the local power 
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Table 1 Wiring  costs assigned to weight regions used on the 
layout  shown  in Fig. 4(a). 

First rnelal 

Vertical Horizontal Up Down 

Weight region 0 05 02 07 00 
I 06 01 08 00 
2 02 05 07 00 
3 01 06 08 00 

Second metal 

Vertical Horizontal Up Down 

Weight region 0 02 05 00 07 
I 01 06 00 08 
2 05 02 00 07 
3 06 01 00 08 

buses were on first-level metal and  ran vertically in the  top 
portion of the chip, but horizontally in  the  bottom portion. 
Local first-level metal  should be parallel to  the power buses. 
The user  wanted to limit the  number of vias used, and allow 
wrong-way wiring at higher penalty. The preferred direction 
for second-level metal was always perpendicular to  that of 
first-level metal. 

Figure 4(b) shows the weight regions which were 
employed.  The user outlined the weight regions by using a 
graphical aid which displays the  chip  data  on a 3277 
Graphics  Attachment [ I  I]. The wiring costs used are shown 
in Table 1. 

If desired, the wiring costs associated with the weight 
regions may be assigned on a  per-net basis. For example,  in 
a  technology using diffusion and two  metal layers of wiring, 
it is desirable to keep critical nets  from  ever using diffusion, 
while allowing other nets to use it. The costs-per-net  feature 
is used to  implement such  a  restriction. 

Restricted search 
A Lee router  tends  to search too thoroughly for a  path. It 
spends  much  time searching  in the wrong  direction. To 
speed up  the search,  a restricted-search feature is offered. It 
makes use of a search box. The size of the search box is 
initially the least enclosing rectangle which contains  the 
portion of the net that is already wired and  the LST to be 
wired. The initial coordinates of the search box are 
calculated by the  router prior to wiring the LST. This initial 
search box is then expanded. The expansion is controlled by 
three user-specified router inputs: a minimum expansion 
amount, a maximum expansion amount,  and  an expansion 
multiplier. The  expanded search box is then used to limit the 
search area (Figure 5).  This  approach results in  small search 
areas for LSTs which are close together, and larger search 
areas  for LSTs which are  more spread out. 

Region type 2 , 
.,̂  SI ,, .. 1 . . ,\ 

Region type 0 

(a) Layout which requires specific routing behavior. (b) Weight I regions used on the layout in Fig. 4(a). 

The search box is dynamically placed into  the  chip  map so 
that it appears to be a blockage and limits the search. The 
search algorithm cannot differentiate between blockages and 
the search box. After the LST  has been processed, its search 
box is removed  from the  chip map. 
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I Initial search box and expansion. 

Search  boxes are not the best solution, but they  have  been 
effective  in  practice and entail very little overhead. 

Continued LST feedthrough) 
The router permits a “single”  LST to consist of multiple 
pieces.  Such a multiple-piece LST  is called a continued LST 
or LST family. A continued LST can be used to represent a 
polygonal  LST. (Remember that all  polygons are fractured 
into rectangles during the first  phase.)  However, the router 
permits the pieces  of a continued LST to be discontiguous 
and/or on  different  wiring  planes. This property of 
continued LSTs  is  used to advantage in the concept of a 
feedthrough. 

As  was previously stated, the router tries to connect all 
like-named LSTs. Often, a particular net can be connected 
to a macro in more than one location. Thus, there could be 
many LSTs on a macro which  have the same netname and 
which are all  electrically common. It  would be advantageous 
to let the router decide  which  LST  it  prefers.  Wiring one of 
these  LSTs  would  wire  all, and  the net could continue out 
the other LSTs,  if  need  be.  At  best, this offers the advantage 
of  using the (invisible) macro internal connections to help 
wire some nets, at a saving in global  wiring  space.  Nets  could 
“feed through” the macro instead of going around it. At least 
the router would  get an alternate way to achieve a 
connection. However,  since the LSTs  would  be  (obviously) 
disjoint, the router would  try to connect them all together 

608 [Figure 6(a)]. A convention was defined in which internal 
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continuity between  LSTs  of the same net is designated by 
their connection with a line on a special, nonmanufacturable 
level. The model builder traps these lines during model 
creation, and generates a continued LST from the disjoint 
LSTs. This type of continued LST  is called a feedthrough. 
The router then uses the continued LST in its regular way, 
and the benefits are realized [Figures 6(b), 6(c)]. 

feedthroughs has poor electrical  characteristics.  It  would then 
be incorrect to use the internal path in continuing the net. 
The router supports a type of continued LST  which  may  be 
wired at any point, but which  is  not  used to continue the 
net. These are called “soft” feedthroughs. 

A problem occurs when the internal path between 

Ports  (wirethroughs) 
The router supports an extension of the continued LST, 
called a port family. A port family consists of a set of  LSTs 
which  belong to no net, which  provide continuity among all 
the LSTs in the set, and which  may  be  assigned to any net  as 
part of the wiring for that net. These properties are used in 
the concept of a wirethrough. 

Some circuit macros may  have some available  wiring 
paths inside. One way to use these paths is to create a 
fractured shadow shape for the macro and allow the router 
to lay the wire [Figure 7(a)l. This approach has two main 
disadvantages: The creation of disjoint shadows is not easy, 
and the available free path must fall on the wiring  grid. 

An alternative approach uses the port family in a form 
called a wirethrough. During macro creation, real wire  is 
placed in the free path. This wire connects to LSTs  (with no 
netname) which are placed on the macro boundary. A line 
on another special, nonmanufacturable level  is  used to 
connect the LSTs. The model builder traps this construct 
and models it as a port family. The router uses this prepared 
path through the macro when  it  wires nets [Figure 7(b)]. The 
port  family  becomes the property of the net  which uses it. 

Iterative mode 
If the router cannot find a path for an LST,  it attempts to 
find a path by allowing the new  wire to cross (short circuit) 
other wires at very  high cost. If a path is  now found, any 
crossed nets are deleted from the model, but the deleted data 
are saved for a while.  After the deletions, the router finds a 
new path for the new  wire, taking advantage of the 
additional free  space  provided  by the deleted wires. (The 
path found by allowing shorts is not necessarily  used, 
because  it  may  have too much “wrong-way’’  wire. The 
additional path search  helps maximize the number of  useful 
wiring channels by limiting “wrong-way’’ wiring.) 

Once the new  wire  is placed, the saved data from the 
deleted nets are checked  against the new  wire.  Wherever a 
crossing (short) would occur, a “super dot” is created and 
assigned to the new  wire. Super dots prohibit other wires 
from  ever  crossing the point which  they protect. They 
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I (a) Without feedthroughs, the router connects all like-named LSTs 
together. (b) Alternate LST specified by feedthrough. (c) Using 
internal macro continuity to help wire a net. 

prevent  loops from occurring by forcing  subsequent wires to 
take  alternate paths. 

Those  portions of nets which are  not crossed may qualify 
for  being replaced intact  into  the model,  without  further 
path  searching. After these “put-backs’’ are  determined  and 
placed, wiring continues. Alternate paths for the deleted 
wires are  found before new wires are  attempted. 

Probes and ghosts 
When the  router fails to find a path for an LST, it can flag 
that LST  as  a  “fail” and ignore  it during  the rest of the  run. 
The user has no way of  knowing how much of the path the 
router could  complete. This  approach would have dire 
consequences if the fails had to be manually  imbedded. 
However, the  router  can be run in  a mode which does 
provide the necessary information. 

IBM J.  RES, DEVELOP. VOL. 28 NO. 5 SEFTEMBER 1984 

I (a) Wiring space through a macro specified by fractured shadow. 
(b) Wiring space through a macro specified by wirethroughs. The 
router assumes internal continuity. 

When  a fail would occur,  the  router tries to wire the path 
by permitting shorts  to occur-at high cost to maximize the 
length of path  taken in legal material (the  “probe”  portion) 
and  minimize  the length of path  causing shorts  (the “ghost” 
portion). “Probe”  and “ghost”  segments are placed on 
different layers than “real”  segments so they  can be easily 
identified (this strategy is especially vivid on color  graphics 
systems). 
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only  a  small portion of the probe-ghost path is ghost 
material. It has  been found  that  the users can merely “stitch” 
the probe  segments  together to  complete  the  path, with 
minimal  impact  on  surrounding wires. 

Postprocessing methods 
The purely geometric router results must be transferred back 
into physical constructs  to be useful. The postprocessors 
provide  technology-dependent ways to achieve this. 

Like materials can be made  to overlap at wire-to-wire; 
wire-to-LST, and wire-to-via junctions.  The  amount of 
overlap  in different layers at different kinds of junctions is 
programmable. Such overlap  rules are required  in some 
technologies to allow  for  a  margin  of error in  mask 
preparation. 

Adjacency rules between via shapes and wires, or between 
vias, can be satisfied by the design of vias which are 
appropriate for given situations [ 12, 131. A  postprocessor can 
select the correct via and  the  orientation for it. 

Figure 8 shows some  router results from a three-wiring- 

rendered  as large dots to make  them visible. Figure 9 depicts 
the result  of postprocessing the  data of Fig. 8. Note  the 
material  overlaps at  rotations of contacts  and vias (Figure 
10). 

The postprocessors are built from a standard  subroutine 
library. Via selection and  orientation is table-driven.  Each 
postprocessor has its own set of via tables. 

Router results: wires are lines without width, and vias are  points. level problem. The ‘Ontact and via locations have been 
/ 

Some results 
Since 1979, KWIRE has  been successfully used on 17 chips 
at IBM Kingston, and several more company-wide.  These 
chips range from small  designs to  custom bipolar [6] and 
FET microprocessors  using both IBM and  vendor 
technologies. 

Statistics from eight custom  chip designs are presented in 
Table 2. They  appear  in chronological  order, and span three 
versions of KWIRE. 

The first three  chips were bipolar components with two 
metal layers available  for wiring. Analysis of  these results led 
to large performance  improvements.  The  number of weight 
region types was increased from  one region type per wiring 

e - ’  level to  four region types  per design. User-selectable via 
adjacency  rules were implemented. 

Postprocessor output: all materials have the correct width and over- The next two designs  took KWIRE  into a new realm: 
lap. Via cells have been selected and correctly rotated. FET, single-metal chips. The  four weight regions just 

i developed were of immediate use. The first complex 
postprocessor was built.  Model-building  utilities were created 
to  handle  situations such as those  shown  earlier  in Figs. 2 
and 3. The results from these designs suggested 

The probe-ghost paths  are used as a  guide in  the  manual  improvements  in  the  iteration strategy, performance 
imbedding process. Such use drastically cuts  down  imbed enhancements,  the restricted search box,  probe and ghost 
time because the person doing  the  imbedding  has a path  to wiring for imbed assist, and  implementation of four weight 

610 follow and  does  not have to laboriously find one. Usually, region types per wiring level. 
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The next design, an  FET processor of over 2 1 000 circuits, 
utilized all the features  of KWIRE  at  that time. Table 2 only 
shows  statistics  for the global wiring of  this chip;  many of the 
macros themselves were wired with KWIRE.  Continued 
LSTs were implemented for this  chip. This design was done 
at IBM Boca Raton. 

The last two chips were processed with the latest version 
of KWIRE. “Soft”  feedthroughs and costs-per-net were 
implemented  for these chips. 

To summarize, user experiences with each design 
suggested improvements in KWIRE,  KWIRE utilities, and 
the way the  KWIRE system is applied to a problem. 

Associated tools 
A 3277 Graphics  Attachment [ 1 I] program which can 
display the  router  output  and most of the  input  and model 
files is part of the  KWIRE tool box and is heavily slanted 
towards KWIRE  and its users. It provides typical graphics 
viewing functions  and special functions related to  KWIRE 
(e.g., a weight regionalization mode  and super-dot viewing). 

KWIRE  runs  both interactively and in  batch  mode. The 
interactive mode is supported by a  comprehensive set of 
menus.  The  commonly used utilities and  model 
modification  programs are included on  the menus. The 
KWIRE  router has its own  interactive environment  and a 
large set of wiring commands. On-line help menus  can be 
called upon when the  router is run interactively. 

Batch  execution is supported by rules files and preset 
procedures which are created  for  each chip design. The user 
need only  remember  the  name of the  appropriate rules set to 
run a complete  KWIRE  job.  This has  become the preferred 
technique. 

The  KWIRE  router  has  an interactive debugging mode 
which is used by the program authors  during debugging and 
new feature verification. The debugger has  been  a great help 
in  tracking  down  program errors which users have found  in 
KWIRE. 

I Overlay of Figs. 8 and 9. 

Conclusions 
KWIRE’s success has  demonstrated  that  the removal  of 
technology and methodology constraints from  a wire router 
is a  good strategy when multiple technologies and 
methodologies must be accommodated. When 
enhancements  are required in  the  router, they  represent 
general concepts (e.g., port families) which benefit not only 
their  requestor, but also subsequent users. This spreads the 
development cost of general router features  over many users. 

As technology  advances, new tools will take KWIRE’s 
place. Presently,  hierarchical  tools  built around a  central 
database are being studied. The ideas of user 

Table 2 Statistics for eight chips wired  with KWIRE. Circuit counts assume 3.5 devices per circuit. 

Chip Levels Metals Circuits Circuii Nets LSTs Fails Imbed 

( W  (days) 
area time 

Bipolar  processor 
component 

Bipolar  processor 
component 

Bipolar  processor 
component 

FET processor 
FET data channel 
FET processor 
FET display  driver 
FET communications 

adapter 

4100 

3975 

4025 

6772 
5659 

21428 
5000 
8473 

40 

40 

40 

43 
40 
57 
40 
47 

1383 

1147 

1141 

816 
97 1 

IO00 
1315 
2034 

3689 

3095 

3003 

2558 
2878 
39 I O  
2150 
6521 

27 

19 

0 

46 
26 
0 
0 
0 

14 

3 

0 

14 
7 
0 
0 
0 

IBM J .  RES, DEVELOP, VOL. 28 NO. 5 SEPTEMBER 1984 P. C. ELMENDORF 



reconfigurability and removal  of dependencies-KWIRE’s 
toolbox approach-will become an  important feature of 
these new tools. 
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