Constraint solver
for generalized IC
layout

by Peter W. Cook

This paper presents a constraint solver suitable
for use in a general symbolic IC layout system.
The essential features of the constraint solver,
which is intended to place few restrictions on
the source of the constraints to be solved, are
that it accommodate mixed equality and
inequality constraints, that it allow selective
“maximization” of variables, that it proceed with
any number of variables given user-defined
values, and that it fail to produce a solution only
when no solution exists. These features all flow
from the desire to provide a constraint solver
suitable for use in an “open” system, in which
there are no restrictions on the form or order of
the constraints. The algorithm presented meets
these objectives while remaining reasonable in
its use of storage and time. An extension to the
class of constraints acceptable by the constraint
solver is presented; the extension of the system
to this added constraint class has yet to be
done.

Introduction

Within recent years, a number of design-rule-“independent”
layout systems have been developed to facilitate mask
designs for integrated circuits [1-5]. Such systems do not
achieve total independence from design rules, but do achieve
significant independence from design rule values. One way

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
informatton-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

that this can be done is illustrated in Figure 1. Figure 1(a)
shows a “typical” polysilicon gate structure, and a symbolic
“shapes” description: clearly, if values for the various
coordinates (X1, X2, .. .) and mask levels (ROX, POLY,
...)can be determined, the part can be constructed from the
“shapes” description, which remains valid for any (design-
rule-legal) coordinate values. Figure 1(b) shows one method
for expressing the design rules. This figure reflects the fact
that most rules specify a lower bound on the distance
between two edges in the pattern to be created. In Fig. 1(b),
a “design.rules” block provides a list of the relationships
imposed by a given kind of technology; since the values
associated with any particular constraint in this set of rules
are given symbolically, this description also remains valid as
the design rule values are changed. Thus, the description
formed by the “shapes” and “design.rules” blocks is a
general description of the polysilicon gate. An embodiment
of the design rules in a specific technology appears in Fig.
f(c); here, the technology’s design rule values have been
substituted for the symbolic design rules of Fig. 1{b). While
this example is simple, it is clear that the concept generalizes
to complex shapes. A system implementing such a
mechanism for shapes description will allow shapes to be
generated for relatively arbitrary instances of a class of design
rules; specifically, it will allow valid parts to be generated in
the most recent version of such design rules without the need
for manual intervention. Where such a system includes
expressions [such as the last rule relating X6 and X7 in Fig.
1(b)], parts can be parameterized to allow the designer
simple control over device characteristics.

What is needed to make such a system work is a
constraint solver capable of handling the relationships in the
“design.rules” block; while most design rules result in
inequality relationships, some rules result in exact equalities:
this is essential in MOSFET technologies, where the width

581

PETER W. COOK

s

582

i Y8 Ys Y8 Y3
S | e
8 [v [7
o - X0—|
X6 Y7 X8 —— X6 X0
q x3 (T3 | X2 o
, —xs — x5 K
]l T ‘l‘y'z)
T I y IYZ
Iyo Y6 | vo Y6 Im
3| n Yi
Syhi;lPe‘S:;’ : Design.rules; :
i Deﬁm gate X0, YO X2 = X0 + HPR; Y1<Y0 — EXTEND; X2 = X0 + 3
" Polygon poly, X0, ¥0, X5, =, =, Y7, X8, X2> X1+ HMO; 12>710 + HPR: X2 = X142
: =, =, Y4,X0, =, =, Y0, X3 = X2 + HW; Y3=72 + HL; X3 2 X244
- Rectangle via, X2, Y2, X3, ¥3; X4=X3+ HMO; ya=>y3 + HPR; XaELSE
- Rectangle Tox,X6, Y6, X7, ¥8: X5 = X3 + HPR; YS=Y4 + EXTEND;, X5=X3 + 3
Redtangle metal, X1, Y1, X4, ¥5; X6 = X5 + PNS; Y7=Y6 + NW; X6 = X5 150 iy
; Eﬁnd,) X7 = X6 + WMIN; Y4=Y7 + LMIN; X7 = X6+ 8,0}
E il ' X8 = X7 + PGO; Y8=V4 + NW; X8 = X7 +3;
X4 = X1 + MW; X4 = X1+ 5
X7 = X6 + RND(MAX(WMIN (WLR* X7 = X6 + 20;
(LMIN +LBIAS)-WBIAS))):; S
END;

(@)

| (a) General definition of a set of shapes. (b) Constraints for previous shapes. (c) Constraints from previous example in specific technology.

and length of device “channels” determine the
transconductance of the device, but can occur in any
technology. Thus the system must, in solving the constraint
problem, accommodate exact equalities as well as the more
typical inequalities.

A second significant feature of the constraint solver can be
seen by examining the diagrams in Figure 2. It is fairly
typical to program a constraint solver to set all solved values
to their lower bound. In Fig. 2(a) another version of the
polysilicon gate is shown; Fig. 2(b) displays the result of
using all minimum values in this part: the wire contacting
the gate has become excessively wide. This can be corrected
by giving the left edge of the wire the maximum legal value
it can have [Fig. 2(a)]. “Maximum” here should be taken as
having a strictly limited context: the “maximized” variable is
made as large as possible without moving already
“minimized” edges.

This paper describes in detail the constraint solver that is
in use in a symbolic layout system at the IBM T. J. Watson
Research Center. The constraint solver includes the features
outlined above, and operates with reasonable time and space
requirements,

Basic approach

Generally, inequality constraints may be combined
uniformly into either = or < constraints by using the fact
that the constraints

PETER W. COOK

X, =X, +C,,
X, >‘Y3-Cab’

b=

are equivalent. Thus, all of the inequality constraints in a
problem may be expressed as one type.

Equality constraints can be expressed as a pair of
inequalities: thus,

X, =X, +C,

is identical to the pair
X, =X, +C,,

X, =X, +C,.

This approach can be taken in the constraint solver [6];
however, it leads to an increase in the total number of
constraints, and may “bury” an inconsistent equality
constraint in the inequality constraints as a cyclic problem,
making location of the error somewhat more difficult. The
present approach prevents this by solving the equality
constraints before any inequalities are examined. Itis also
tolerant of any constraint set that can be solved.

The basic concept in the present algorithm is to make
extensive use of relaxation techniques, since they allow
efficient storage of the problem to be solved. Equalities are
handled by treating them as the definition of one unknown
in terms of another; the definition is substituted in all

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

inequality constraints, while retaining the equality
relationship. This leads to a smaller inequality problem, and
also allows early detection of inconsistent equality
constraints.

The constraint solver briefly can be thought of as
operating in several steps. First, the equality constraints are
grouped together, and each equality subgraph is solved in
terms of an arbitrarily selected node of the subgraph.
Second, these solutions are substituted back into the
remaining inequality relationships. Third, these modified
inequalities are solved by a relatively simple relaxation
technique. Fourth, the relative solutions of the equalities are
used to set values of variables earlier substituted out of the
inequality relationships.

Notation

In discussing the constraint solver in detail, we make use of
the fact that systems of constraints have a natural
representation in directed graphs. Each “vertex” of the graph
corresponds to a variable in the constraint problem; each
edge of the graph corresponds to a single constraint. The
graph edge corresponding to a given constraint is placed
between the graph vertices corresponding to the variables in
the constraint; the direction of the edge for a constraint of
the form

X,z X, +Cy
or
X=X, +Cy

is directed “from” the vertex corresponding to X, “to” the
vertex corresponding to X,. Associated with each edge is a
weight (the value of the constraint) and a type (the type of
the constraint).

Within this description, the notation is kept close to that
actually used in the program. Constraints and the resulting
solution are stored in two tables: a vertex table and an edge
table. Besides symbolic name information (which is not
relevant to the algorithm), the vertex table contains the
following:

X(v): the value associated with vertex v.

D(v): a boolean signifying that the value is an external
definition,

RV(v): the “relative” value of vertex v, when involved in
equalities.

R(v): the “representative” of vertex v.

AL(v): the “assignment level” associated with vertex v.

The edge table describes constraints through pointers to
elements in the vertex table. The edge table contains the

following:

T(e): a pointer to the “to” vertex of edge e.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Fo— e ETIT

I (a) Expected results. (b) “All minimum” results.

CT(e): the type of constraint represented by edge e: =, <, =,
or NULL.

F(e): a pointer to the “from” vertex of edge e.

CV{e): the value associated with edge e.

Thus edge e signifies that
X[T(e)] CT(e) X[F(e)] + CV(e),

where CT(e) signifies =, <, or =. (The NULL constraint
type has no interpretation as a relationship, and is used only
temporarily, to signify that the constraint represented by an
edge has been incorporated in the solution, and hence the
edge is no longer needed.) Note that the storage
requirements are linear in the number of vertices and edges.

Algorithm details
The details of the algorithm are now described using the
notation introduced earlier, and by means of an example.

o Phase 1: Process equalities

The first major task of the constraint solver is to locate and
“solve” all equality constraints. Consider the original
constraint graph (G,, Figure 3). A second graph (G,) can be
formed from G, by (conceptually) deleting all inequality
constraints. Figure 4 illustrates the result; in the figure, G,
contains one subgraph (connecting vertices X6 and X7);
generally, several disjoint subgraphs are found in G,. Each

PETER W. COOK

583

584

Sample graph (G,) and its tabular representation. This is the X
graph from the part of Figure 1.

Equality subgraph for graph of Figure 3. Only vertices X6 and X7
are on the subgraph.

disjoint subgraph of G, is termed an equality subgraph.
Assuming that the constraints in an equality subgraph are
consistent, any vertex on such a subgraph may be expressed
in terms of any other vertex on the same subgraph by

X(a)= X(b) + C,, .

More specifically, one vertex on each equality subgraph may
be taken as “representative” of that subgraph; all other
vertices on the subgraph may be expressed in terms of the
representative vertex by

X(w)= X(r) + RV(v),

PETER W. COOK

where r is a pointer to the representative vertex, v is a
pointer to a vertex on the same equality subgraph as r, and
RV gives the value of v relative to r.

This phase of the constraint solver locates all equality
subgraphs, selects a representative vertex for each equality
subgraph, and determines the relative values of all
nonrepresentative vertices on each equality subgraph. It also
reports failure when a set of equality constraints cannot be
satisfied. The operation is as follows.

Step 1. Begin representative search.
A pointer (RULE) is set to zero.

Step 2. Test for “=" constraint.

Here, the solver looks for the next equality constraint. To do
this, it increments the pointer (RULE) by one. After RULE
has been incremented, one of three cases must apply:

a. RULE points beyond the last element in the edge table.
In this case all equality subgraphs have been solved
(relative to their own “representative” vertex), and this
phase is completed.

b. CT(RULE) is not “=".

This edge is not relevant. It is skipped, and the solver
returns to Step 2 above.

¢. CT(RULE)is “=",

The constraint represented by the edge at RULE is an
equality relationship. The solver proceeds to Step 3.

Step 3. Set representative vertex.

The vertex F(RULE) is arbitrarily identified as the
representative vertex for this equality subgraph. (Since the
vertices of the equality subgraph are all linked by equality
relationships, this “arbitrary” representation involves no loss
of generality.) To do this, the following assignments are
made:

REP = F(RULE),

R(REP) =0,

RV(REP) =0,

R[T(RULE)] = REP,
RV[T(RULE)] = CV(RULE).

This completely expresses the equality constraint represented
by the edge at RULE, so that CT(RULE) is set to NULL,
effectively freeing the location in the edge table for later
deletion. The constraint solver now locates all vertices that
are linked to vertex REP by edges representing equality
constraints. This is the equality subgraph associated with the
vertex REP. At the same time, the constraint solver
determines values for these vertices (in terms of the vertex
REP) resulting from the equality constraints. This is done by
a simple relaxation algorithm that examines only the edges
representing equality constraints.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Step 4. Begin pass on this subgraph.
A counter variable (COUNT) is set to 0. A second edge
pointer (NEXT) is set to RULE.

“__»

Step 5. Scan for next constraint.
NEXT is incremented by 1. After this, as in Step 1 above,
one of three situations is encountered:

a. NEXT points past the end of the edge table.
All edges have been examined; the constraint solver
enters Step 7 below.

b. CT(NEXT) is not “=".
The constraint represented by the edge at NEXT is not
relevant; the constraint solver returns to Step 5 above to
examine another edge.

¢. CT(NEXT)is “=".
The constraint represented by edge NEXT may be part of
the same equality subgraph containing RULE, or it may
be a part of another equality subgraph. The solver enters
Step 6 to determine this.

Step 6. Implement related “=" constraint.

The constraint at NEXT is of type “=", It may or may not
be related to the subgraph currently in process, depending
upon whether or not either vertex of NEXT is REP or
represented by REP. When the vertices T(NEXT) and
F(NEXT) are examined, one of four conditions arises:

a. Neither T(NEXT) nor F(NEXT) are REP or are
represented by REP.
In this case, nothing has yet been encountered to link a
vertex of this edge to the equality subgraph being
processed. This edge is skipped, and control passes to
Step 5.

b. F(NEXT) is REP or represented by REP, T(NEXT) is
neither.
In this case, this edge is part of the equality subgraph
since vertex F(NEXT) is already included in the
subgraph. T(NEXT) therefore becomes a part of the
subgraph, and will be defined in terms of REP. Thus, the
following assignments are made:

R[{T(NEXT)] = REP,

RVIT(NEXT)) = RV[F(NEXT)] + CV(NEXT),
COUNT = COUNT + 1,

CV(NEXT) = NULL,

where the last step is justified because the entire content
of the constraint represented by the edge NEXT has been
embedded in R[T(NEXT)} and RV[T(NEXT)]. Control
is passed to Step 5, to examine the next edge.

¢. T(NEXT)is REP or represented by REP, F(NEXT) is
neither.
This is the reverse of the situation in (b); in this case,
F(NEXT) joins the subgraph because T(NEXT) is

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

already a member of the subgraph. The assignments

R[F(NEXT)] = REP,

RVI[F(NEXT)] = RV[T(NEXT)] — CV(NEXT),
COUNT = COUNT + 1,
CV(NEXT)= NULL

implement this, and control passes to Step 5.

d. T(NEXT) and F(NEXT) are both REP or represented by

REP.

In this case, both vertices T(NEXT) and F(NEXT) are

already members of the equality subgraph; both have

been expressed in terms of the vertex REP. This prior
solution gives {RV{TINEXT)] — RV[T(NEXT)]} as the
difference in values of the vertices T(NVEXT) and

F(NEXT). Two conditions exist:

1. {RV[T(NEXT)] — RV[F(NEXT)]} = CV(NEXT).
The constraint represented by the edge at NEXT is
redundant. Therefore CT(NEXT) is set to NULL for
subsequent deletion, and control passes to Step 5.

2. {RV[T(NEXT)] — RVIF(NEXT))} # CV(NEXT).
The constraint represented by the edge at NEXT is
inconsistent with other equality constraints on this
subgraph. The problem has no solution. The

constraint solver, after a suitable message, terminates.

Step 7. Check for modifications.
When NEXT has reached the bottom of the edge table, this
step checks for any modifications. There are two cases:

a. COUNT > 0.
At least one vertex has been added to the equality

subgraph associated with vertex REP. Because this added

vertex may also be used in equality constraints, it is
necessary to scan the edge list from RULFE + 1 once

again. Therefore, the constraint solver passes to Step 4 to

begin another scan.
b. COUNT = 0.

The equality subgraph associated with vertex REP is now

complete. However, there may be other equality
subgraphs, and these could include a constraint
represented by any edge after RULE. Therefore the
constraint solver returns to Step 2.

Phase 1 is completed only when the pointer RULE has

reached the end of the edge table. At that point, all equality

subgraphs have been located, and each subgraph has been
associated with one of its vertices (the “representative”
vertex). In addition, all vertices of each subgraph’have been
solved in terms of the representative vertex. This is
equivalent to solving each equality subgraph under the
assumption that the representative vertex has value 0. In

general, of course, the representative vertex will not be 0, but

as the inequalities cause vertices of an equality subgraph to
move, all vertices of a given subgraph must move by the

PETER W. COOK

585

586

Partial vertex table after subgraph solution. X7 is now defined in
terms of X6 (X7=X6+20). The table also indicates that X0 has
been defined to be zero.

same amount; thus RV(v) gives the value of vertex v relative
to the value of vertex R(v) [providing R(v) > 0]. The
problem is now as illustrated in Figure 5.

e Phase 2: Substitution

Because all vertices on an equality subgraph are known in
terms of the representative vertex associated with that
subgraph, it is possible to substitute the representative vertex
in all edges representing inequality constraints. The
substitution phase accomplishes this. Suppose, for example,
we have a given inequality (e),

T(e) CT(e) F(e) CV(e),
and also suppose that as a result of Phase 1 we have
R[F(e)] =j>0;

that is to say, X[F(e)] = X(j) + RV[F(e)],; in this case the
constraint is modified by the assignments

CW(e) = CV(e) + RV[F(e)],
F(e) = R[F(e)}.

The actual substitution takes place by scanning the edge
table just once. For a typical edge (e), R[F(e)] and R[T(e)]
are examined. Two cases are considered:

a. R[F(e)]=0and R[T(e)] = 0.
Neither vertex F(e) nor T(e) is a part of any equality
subgraph. There is no substitution to perform on this
edge.
b. R[F(e)] =j>0,or R[T(e)] = k> 0.
At least one vertex of edge ¢ is a member of an equality
subgraph. The following assignments are therefore made:
1. If R[F(e) =j >0, set
CV(e) = CV(e) + RV[F(e)],
F(e)=.

PETER W. COOK

2. IfR[T(e)] = k>0, set
CV(e) = CV(e) — RV[T(e)],
T(e) = k.

An unsolvable problem can arise when the substitution
results in 7(e) = F(e). In this case, the constraint
represented by edge e reduces to

0= CVe),
or
0= CV(e),

depending on CT{(e). In this case, the constraint solver
checks for consistency. If the edge e represents an
iconsistent inequality constraint, it is reported to the user,
and the program terminates. If the edge e represents a
consistent inequality constraint, then CT(e) is set to NULL;
the constraint is always satisfied by the equality subgraph.

In the example problem, the inequality graph is now as in
Figure 6; the equality relationships remain stored in RV and
R.

o Phase 3. Initialize for inequalities

At this point, the entire problem has been reduced to a set of
inequality constraints and the equality subgraphs, now
reduced to expressing all vertices in terms of each subgraph’s
representative vertex. The constraint solver must now attack
the inequality problem. This it does by another relaxation
algorithm, similar to that used for the equality subgraph
solution. Prior to this, the solver must initialize various
elements. These include externally supplied definitions, and
the “assignment level” counter used in trapping cyclic
constraint graphs. This initialization proceeds as follows:

Step 1. Set direct definitions.
A scan is made of all vertices. For each vertex v, the flag
D(v) is examined. The following two cases exist:

a. D(v)is F.
No value has been assigned to X(v) either externally (by
the user) or internally (by a previous pass of the solver).
In this case, set AL(v) = —1.

b. D(v)is T.
The value of X(v) is a known value, either by external
definition, or as the result of a previous pass of the solver.
In this case, set AL(v) = 0. If R(v) =j > 0, then this
defined value must propagate to all other vertices on the
same equality subgraph. This propagation is done at this
point, with a check for consistency at each vertex.

Step 2: Propagate definitions.

At the end of Step 1, most definitions of values have been
made and entered into X(v), D(v), and AL(v). However, it is
possible that a definition has been made to the representative

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

vertex of some equality subgraph; Step | will not detect this.
Step 2 propagates definitions from any representative

vertices to all members of the represented equality subgraph.

This is done by examining all vertices and specifically
looking at R(v). Two cases apply:

a. R(v)=0.
This vertex is not a member of any subgraph. It is
skipped.

b. Rv)=j>0.
Vertex v is a member of the equality subgraph

represented by vertex j. If AL(j) = —1, this representative
vertex has no value, and vertex v is skipped. If AL(j) = 0,

then vertex j has a value, and, according to the equality
subgraph, X{v) = X(j) + RV(v). Following a test for

consistency (since vertex v may also be defined) this value

is given to vertex v, and AL(v) is set to 0.

Step 3. Rewrite constraints.

For simplicity in the rest of the algorithm, the rest of the
constraints are now all rewritten to be of the “=” form. This
is simply done by examining each edge e. If CT(e) signifies
<, then the constraint is rewritten by transposing F(e) and
T(e), negating CV(e), and setting CT(e) to signify “=".

At the end of Phase 3, the effects of all definitions have
been entered into the vertex table, and propagated (where
needed) through any equality subgraphs. At this point, the
constraint solver begins to operate on the inequality
constraints.

o Phase 4: Inequality solution

The constraint solver is now ready to attack the inequality
problem. This it does by another relaxation algorithm,
similar to that used for the equality subgraph solution. In
doing this, the solver operates in two “directions.” In the
“forward” direction, lower bound values propagate from
F(e) to T(e); in the “reverse” direction, upper bound values
propagate from 7T'(¢) to F(e). Either of these processes can
involve unterminated loops if inconsistent constraints are

contained within the graph. Therefore, an “assignment level”

is maintained to intercept these effectively cyclic constraint
problems. The details for the “forward” direction follow.

Step 1. Initialize.

A counter (COUNT) is set to 0. Then a pass is made
through all constraints in the edge table. Edge e represents a
constraint implying that

X[T(e)] = X[F(e)] + CVe).

The values of AL[F(e)] and AL[T(¢)] are examined, with
specific action depending on those values. Specifically, four
cases are considered:

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Constraint graph after subgraph solution and substitution. Con-
straint types (CT) in parentheses have become NULL; the former
type is shown. Constraint 7 is now redundant. Constraint 10 is now
contained in the vertex table (Fig. 4).

. AL[T(e)] = —1 and AL[F(e)] = —1.

So far, nothing has given a value to either vertex in this
constraint: it is skipped.

. AL[T(e)] = —1 and AL[F(e)] = 0.

No lower bound has been given to 7(e), but a lower
bound is known for F(e). The effect of the constraint is to
propagate the value of F(e) to T(e), with a suitable
increment. Specifically, set

X[T(e)] = X[F(e)] + CVe),

AL[T(e})] = AL[F(e)] + 1,
COUNT = COUNT + 1.

. AL[T(e)] = 0 and AL[F(e)] = =0.

This constraint terminates in a defined vertex. X[F(e)]
has a lower bound (or defined value), and X[7(¢)] has a
defined value. Neither can change if the constraint is not
satisfied; therefore a test is made to see that the X[T(e)] is
compatible with the constraint and the minimum value
of X[F(e)): if so, no action is taken. If not, the error is
reported, and the algorithm terminates.

. AL[T(e)] = 0 and AL[F(e)] = 0.

In this case, both vertices F(e) and T(e) have lower
bounds. Since for “forward” propagation lower bounds
can only be increased, if constraint e is not currently
satisfied, it can only be satisfied by increasing X[T(e)].

PETER W. COOK

587

588

Graph after completion of first “forward” pass. Note that X1 has not
been assigned any value. The “reverse” pass will give this vertex
the value 1.

Thus, if X[T(e)] = X[F(e)] + CV(e), no action takes
place, as the constraint r is satisfied by the present values.
If the constraint is not satisfied, the same assignments are
made as in (b) above.

At each time a new value is set, AL[T(¢)] is tested. If AL
exceeds either the total number of unknowns or the total
number of constraints in the problem, a cyclic situation
exists, and the algorithm stops, reporting a cycle, and
displaying all vertices and their current assignment level, to
provide the user a preliminary indication of the location of
the cycle.

o Phase 5: Forward slacks

When a pass of the algorithm takes place which ends with
COUNT = 0, there are no = constraints that have not
already been satistied. All lower bounds for all vertices
having AL > 0 are at their minimum legal value. As shown
in Fig. 2, setting the value of a vertex to its lower bound may
result in design-rule-legal but mnappropriate shapes. Some
vertices must be allowed 1o be set to their maximum value.
In doing this, the constraint solver uses a limited concept of
“maximum”: a “*maximized” vertex will have its value
increased only to the point where further increases would
require the increase of a nonmaximized vertex value. In
other words, “maximize” is equivalent to the removal of
slack.

PETER W. COOK

The computation of slack is similar to the basic
propagation algorithm given above. Slack is computed for a
given vertex v only if three conditions are met:

a. vertex v 1s to be maximized,

b. AL(v) > 0 (vertex v has not yet been permanently fixed
but has a lower bound), and

c. there exists an edge ¢ with F(e) = v and AL[T(e)] = 0.

The last condition prevents the unlimited increase of an
otherwise unbounded vertex, such as X8 in the example.

At the end of Phase 5, any vertices v which have been
assigned a value [4L(v) > 0] are treated as defined: AL(v) is
set to 0, and D(v) is set to T. For the example problem this
is illustrated in Figure 7.

o, Phase 6. Reverse propagation

One of the desired properties of the constraint solver is that
it impose no particular restrictions on the form of the
constraint graph. This can lead to considerable
complications. Consider the graph of Fig. 3. In this graph,
there is no single vertex from which one can reach all other
vertices by traversing the edges in their forward direction. If
there were, and if it were assumed that the node was to be
initially defined to have value 0, the simple forward
propagation/slack propagation described above would be a
complete algorithm: on terminating (without an error), all
vertices would be assigned values consistent with the design
rules in the graph, and consistent with the “maximize”
concept also described above. It is possible to argue that if
the constraints are generated by a program, they can be
given this property; it is not possible to ensure that the
property is maintained after any manual modification of the
constraint graph. To allow for this, the constraint solver next
repeats the propagate/slack phase. However, this time the
direction of propagation is reversed: upper bound
information propagates from vertex 7(e) to vertex F(e), and
the slack step determines minimum values of vertices. The
details follow from the “forward” phases above, and are not
repeated.

After the reverse propagation, a test is again made to see if
any changes were made in the entire step. If so, the solver
returns to Phase 4, to begin more forward propagation.
While this alternation between forward and reverse
propagation steps is complex, it results in solutions that are
in good agreement with designers’ expectations regardless of
the vertex (or vertices) used as starting points. In fact, the
code is not as complex as might be expected, since most of it
is shared between the forward and reverse cases.

o Phase 7: Back substitution

Once all inequalities have been solved, it remains for the
nonrepresentative members of equality subgraphs to be
evaluated. This is now simple, since each such vertex carries
a pointer to the appropriate representative vertex, and a

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

value relative to that vertex. If the representative vertex has
become defined (as a result of relaxation algorithm above),
all vertices that it represents are defined.

& Phase 8: Clean-up

At this point, all that remains is to remove any constraints
that have become irrelevant. Since a vertex is never altered
after it has been marked as defined, all that must be done in
clean-up is to delete those constraints that refer to two
defined vertices. This is done, and completes the solution
algorithm.

Summary and conclusions

This paper has presented the details of a constraint solver
used to solve a general class of mixed inequality/equality
constraint relationships for use in a general design-rule-
independent mask generation system. The algorithm handles
any such problem (within its table sizes) and, where
constraints are specified in ambiguous ways, results in
solutions that generally agree with designers’ expectations.
The algorithm is efficient in its use of storage. Written in
FORTRAN-IV, it requires 10 bytes of storage per constraint,
and 26 bytes of storage per vertex. It is also reasonably fast;
typical moderately large problems, with their solution times,
appear in Table 1. For these problems, which include part or
all of a real chip design, there are 3.5-4 constraints per
unknown; running time is reasonably well given by

t=30.13 % N"l'm (microseconds),

where N, is the number of unknowns in the problem; quite
large problems are not unreasonable. (The largest problem in
the table performs the complete design of a memory chip.)
Solutions, in addition to meeting constraints, also generally
agree with designers’ expectations. The algorithm has been in
use in a design-rule-independent layout system for
approximately two years, and has been found highly effective
in the creation of macros suitable for IC design. The
principal weakness in the constraint solver is the restricted
class of constraints that it can accommodate. This class is
clearly useful, since it covers all cases required by typical
design rules. However, the addition of a 3-variable class of
constraint of the form

X+ X, =2x%JX,

would be a significant extension since it specifies that X, and
X, are to be symmetrical about .X,. Such symmetry would be
very useful in designing electrically balanced circuits (such as
sense amplifiers), where electrical balance is usually achieved
by providing geometrical symmetry. However, the added
class of constraint is significantly more complex than the
simpler constraints already accommodated by the constraint
solver, particularly if X, X,, and X, are allowed to be
members of any other constraint without restriction. The
possibility of adding this class of constraint is under
exploration.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Table 1 308! Running time.

Problem Time
(CPU s)
NV Nu NC
1154 1029 3690 0.82
1554 1426 5265 1.34
2535 2407 8955 2.81
18344 18162 69878 56.14

N, = Total vertices in graph.
N, = Vertices corresponding to unknowns.
N, = Total edges (constraints) in graph.

References
1. M.-Y. Hsueh and D. O. Pederson, “Computer Aided Layout of
LSI Circuit Building Blocks,” Proceedings of the 1979

International Symposium on Circuits and Systems, July 1979, pp.

474-477.

2. A. E. Dunlop, “SLIM—The Translation of Symbolic Layout into
Mask Data,” Proceedings of the 17th Design Automation
Conference, June 1980, pp. 595-602.

3. N. Weste, “Virtual Grid Symbolic Layout,” Proceedings of the
18th Design Automation Conference, June 1981, pp. 225-233.

4. K. H. Keller, A. R. Newton, and S. Ellis, “A Symbolic Design
System for Integrated Circuits,” Proceedings of the 19th Design
Automation Conference, June 1982, pp. 460-466.

5. R. Lipton, S. North, R. Sedgewick, J. Valdes, and G. Vijayan,
“ALI: A Procedural Language to Describe VLSI Layouts,”
Proceedings of the 19th Design Automation Conference, June
1982, pp. 467-475.

6. L.-Z. Liao and C. K. Wong, “An Algorithm to Compact a VLSI
Symbolic Layout with Mixed Constraints,” Proceedings of the
20th Design Automation Conference, June 1983, pp. 107-112.

Received December 18, 1983, revised April 25, 1984

Peter W. Cook /BM Research Division, P.O. Box 218, Yorktown
Heights, New York 10598. Dr. Cook attended the University of
Cincinnati, Ohio, receiving the B.S. degree in electrical engineering
in 1962, and Carnegie-Mellon University, Pittsburgh, Pennsylvania,
where he received his M.S. and Ph.D. in electrical engineering in
1968 and 1971. Following graduation from Cincinnati, he was a
member of the staff of the Laboratory of Technical Development of
the National Heart Institute at the National Institutes of Health in
Bethesda, Maryland, where he developed instrumentation for
cardiovascular system research. In late 1965, Dr. Cook joined the
IBM Thomas J. Watson Research Center. His activities at IBM have
centered on aspects of MOSFET LSI/VLSI design, including mask
generation, circuit design, and design tools. He is currently manager
of the VLSI logic group at the Research Center.

PETER W. COOK

589

