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This  paper  presents a constraint  solver  suitable 
for  use in a  general  symbolic IC layout  system. 
The essential  features  of  the  constraint  solver, 
which is intended to place  few  restrictions on 
the  source  of  the  constraints  to  be  solved,are 
that it accommodate  mixed  equality  and 
inequality  constraints,  that it allow  selective 
“maximization” of ‘variables,  that it proceed  with 
any  number  of variables  given  user-defined 
values,  and  that it fail to produce  a  solution  only 
when  no  solution  exists.  These  features all flow 
from  the  desire to provide  a  constraint  solver 
suitable  for  use in an “open”  system, in which 
there  are  no restrictions on the  form  or  order  of 
the  constraints. The  algorithm  presented  meets 
these  objectives  while  remaining  reasonable in 
its use of storage  and  time. An extension  to  the 
class of  constraints  acceptable by the  constraint 
solver is presented;  the  extension of the  system 
to this added  constraint class has  yet to be 
done. 

Introduction 
Within recent years, a number of design-rule-“independent” 
layout systems have  been  developed to facilitate mask 
designs for  integrated  circuits [ 1-51. Such systems do  not 
achieve  total independence from design rules, but do achieve 
significant independence  from design rule values. One way 
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that  this  can be done is illustrated  in Figure 1. Figure l(a) 
shows  a  “typical” polysilicon gate structure,  and a  symbolic 
“shapes”  description: clearly, if values for the various 
coordinates (XI,  X2, . . .) and mask levels (ROX, POLY, 
. . .) can be determined,  the part can be constructed from  the 
“shapes”  description, which remains valid for any (design- 
rule-legal) coordinate values. Figure l(b) shows one  method 
for expressing the design rules. This figure reflects the fact 
that most  rules specify a lower bound  on  the distance 
between two edges in  the  pattern  to be created. In Fig. l(b), 
a “design.rules” block provides  a list of the relationships 
imposed by a given kind  of  technology;  since the values 
associated with any particular constraint in this set of rules 
are given symbolically, this description also remains valid as 
the design rule values are changed. Thus,  the description 
formed by the “shapes” and “design.rules” blocks is a 
general description  of the polysilicon gate. An embodiment 
of the design rules in a specific technology appears in Fig. 
1 (c); here, the technology’s design rule values have been 
substituted  for the symbolic design rules of Fig. l(b). While 
this  example is simple,  it is clear that  the concept generalizes 
to complex  shapes. A system implementing such  a 
mechanism  for  shapes  description will allow shapes to be 
generated  for relatively arbitrary instances of a class of design 
rules; specifically, it will allow valid parts to be generated  in 
the most  recent version of such design rules without the need 
for manual intervention.  Where  such  a system includes 
expressions  [such as  the last rule relating X6 w d  X7 in Fig. 
I(b)], parts can be parameterized to allow the designer 
simple control over device characteristics. 

What is  needed to  make such  a system work is a 
constraint solver capable  of handling  the relationships in  the 
“design.rules” block; while most design rules  result  in 
inequality  relationships, some rules  result in exact equalities: 
this is essential in MOSFET technologies, where the width 58 1 
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I (a) General definition of a set of shapes. (b) Constraints for previous shapes. (c) Constraints from previous example in specific technology 

and length  of  device  “channels” determine  the 
transconductance of the device, but  can  occur  in  any 
technology. Thus  the system must,  in solving the  constraint 
problem,  accommodate exact  equalities as well as  the  more 
typical  inequalities. 

A second significant feature of the  constraint solver can be 
seen by examining  the  diagrams  in Figure 2. It is fairly 
typical to program  a constraint solver to set all solved values 
to their lower bound.  In Fig. 2(a) another version of the 
polysilicon gate is shown; Fig. 2(b) displays the result of 
using all minimum values in  this  part: the wire contacting 
the gate  has  become excessively wide. This  can be corrected 
by giving the left edge of the wire the  maximum legal value 
it  can have [Fig. 2(a)]. “Maximum” here  should be taken as 
having  a strictly limited  context: the  “maximized” variable is 
made as large as possible without moving  already 
“minimized” edges. 

This  paper describes in detail the  constraint solver that is 
in use in a symbolic  layout system at  the IBM T. J. Watson 
Research  Center. The  constraint solver includes the features 
outlined  above, and operates with reasonable time  and space 
requirements. 

Basic  approach 
Generally,  inequality constraints  may be combined 
uniformly into  either 2 or 5 constraints by using the fact 
that  the  constraints 582 
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x, 2 x, - e,, > 

are equivalent. Thus, all of the inequality constraints in  a 
problem may be expressed as one type. 

inequalities: thus, 
Equality constraints  can be expressed as a  pair of 

x, = x, + c,, 
is identical to the pair 

+ > 

x, 5 xa + Cah . 

This  approach  can be taken  in  the  constraint solver [6]; 
however, it  leads to  an increase  in the total number of 
constraints, and may “bury”  an inconsistent  equality 
constraint  in  the inequality constraints  as a cyclic problem, 
making  location of the  error somewhat more difficult. The 
present approach prevents  this by solving the equality 
constraints before any inequalities are examined. It‘is also 
tolerant of any  constraint set that  can be solved. 

The basic concept in  the present  algorithm is to  make 
extensive use of relaxation  techniques,  since  they allow 
efficient storage of the problem to be solved. Equalities are 
handled by treating them as the definition of one  unknown 
in  terms of another;  the definition is substituted  in all 
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inequality  constraints, while retaining the equality 
relationship. This leads to a  smaller  inequality  problem, and 
also allows early  detection  of  inconsistent  equality 
constraints. 

The  constraint solver briefly can be thought of as 
operating in several steps. First, the equality constraints  are 
grouped  together, and each equality  subgraph is solved in 
terms of an arbitrarily selected node of the subgraph. 
Second,  these  solutions  are  substituted back into  the 
remaining inequality  relationships. Third, these modified 
inequalities are solved by a relatively simple  relaxation 
technique. Fourth,  the relative solutions of the equalities are 
used to set values of variables earlier  substituted out of the 
inequality  relationships. 

Notation 
In discussing the  constraint solver in detail, we make use of 
the fact that systems of constraints have  a natural 
representation  in  directed  graphs.  Each  “vertex”  of the graph 
corresponds to a  variable in  the  constraint  problem; each 
edge of the graph  corresponds to a single constraint.  The 
graph edge corresponding to a given constraint is placed 
between the graph vertices corresponding to  the variables in 
the  constraint;  the direction of the edge for a constraint of 
the  form 

x, 2 x, + Cab 

or 

x, I x, + Cab 

is directed “from”  the vertex corresponding to X ,  “to”  the 
vertex corresponding to X,. Associated with each edge is  a 
weight (the value  of the  constraint)  and a  type (the type of 
the constraint). 

Within  this  description, the  notation is kept close to  that 
actually used in  the program. Constraints  and  the resulting 
solution are stored in two tables: a vertex table and  an edge 
table. Besides symbolic name  information (which is not 
relevant to  the algorithm), the vertex table contains  the 
following: 

X(u): the value associated with vertex v.  
D(u):  a  boolean signifying that  the value is an external 
definition. 
R V(v): the “relative” value of vertex v ,  when  involved  in 
equalities. 
R(u): the “representative” of vertex v .  
AL(v): the “assignment level” associated with vertex v.  

The edge table  describes constraints  through  pointers to 
elements in the vertex table. The edge table contains  the 
following: 

T(e):  a pointer to  the  “to” vertex of edge e. 
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I (a) Expected results. (b) “All minimum” results 

CT(e): the type of constraint represented by edge e: 2, 5, =, 
or NULL. 
F(e):  a pointer  to  the  “from” vertex of edge e. 
CV(e): the value associated with edge e. 

Thus edge e signifies that 

X [ T ( e ) l   C V e )   x [ F ( e ) l  + W e ) ,  

where CT(e) signifies 2, 5, or =. (The NULL constraint 
type  has no  interpretation as  a  relationship, and is used only 
temporarily, to signify that  the  constraint represented by an 
edge has been incorporated  in  the solution, and hence the 
edge is no longer needed.) Note  that  the storage 
requirements  are linear  in the  number of vertices and edges. 

Algorithm details 
The details  of the algorithm are now described using the 
notation  introduced earlier, and by means of an example. 

0 Phase I: Process equalities 
The first major task of the  constraint solver is to locate and 
“solve” all equality  constraints.  Consider  the original 
constraint graph (G,, Figure 3). A second  graph (G,) can be 
formed  from G, by (conceptually)  deleting all inequality 
constraints. Figure 4 illustrates the result; in the figure, G, 
contains  one subgraph  (connecting vertices X6 and X7); 
generally, several disjoint  subgraphs are  found  in G,. Each 
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where r is a pointer  to  the representative vertex, v is a 
pointer  to a vertex on  the  same equality  subgraph as r, and 
R  V gives the value  of v relative to r. 

This phase  of the  constraint solver locates  all  equality 
subgraphs, selects a representative vertex for  each  equality 
subgraph, and  determines  the relative values  of all 
nonrepresentative vertices on each  equality  subgraph. It also 
reports  failure  when a set of  equality constraints  cannot be 
satisfied. The  operation is  as follows. 

Step 1. Begin representative search. 
A pointer (RULE) is set to zero. 

Step 2. Test for “=” constraint. 
Here, the solver  looks for  the next  equality  constraint. To do 
this,  it increments  the  pointer (RULE) by one. After RULE 
has  been incremented,  one of three cases must apply: 

Sample graph (GI)  and its tabular representation. This is the X a. RULE points beyond the last in the edge 
graph from the part of Figure 1. In this case all  equality  subgraphs  have been solved 

(relative to  their  own “representative” vertex), and  this 
phase is completed. 

b. CT(RULE) is not “=”. 
This edge is not relevant. It is skipped, and  the solver 
returns  to  Step 2 above. 

~ - 1  relationships, this  “arbitrary” representation involves no loss 

Equality subgraph for graph of Figure 3 .  Only vertices X6 andX7 
are on the subgraph. 

of  generality.) To  do this, the following assignments are 
made: 

REP = F(RULE), 
R(REP) = 0, 
R  V(REP) = 0, 
R[  T(RULE)] = REP, 
R  V[  T(RULE)] = CV(RULE). 

disjoint  subgraph  of G, is termed  an equality  subgraph. 
Assuming that  the  constraints in an equality  subgraph are 
consistent, any vertex on such a subgraph may be expressed 
in terms of any  other vertex on  the  same subgraph by 

This completely expresses the equality constraint represented 
by the edge at RULE, so that CT(RULE) is set to NULL, 
effectively freeing the location in  the edge table  for  later 
deletion. The  constraint solver now  locates all vertices that 

X ( 0 )  = X(b)  + c,, . are linked to vertex REP by edges representing  equality 

More specifically, one vertex on each  equality  subgraph may 
be taken as “representative”  of that subgraph; all other 
vertices on  the subgraph may be expressed in  terms of the 
representative vertex by 

constraints. This is the equality  subgraph associated with the 
vertex REP. At the  same  time,  the  constraint solver 
determines values  for  these vertices (in terms of the vertex 
REP) resulting from  the equality  constraints. This is done by 
a simple  relaxation  algorithm that  examines only the edges 

X ( u )  = X ( r )  + RV(u) ,  representing  equality  constraints. 584 

PETER W. COOK IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984 



Step 4. Begin pass on this subgraph. 
A counter variable (COUNT) is  set to 0. A second edge 
pointer (NEXT) is set to RULE. 

Step 5. Scan for next “=” constraint. 
NEXT is incremented by 1. After this,  as in  Step 1 above, 
one of three  situations is encountered 

a. NEXT points past the  end  of  the edge table. 
All edges have  been examined;  the  constraint solver 
enters  Step 7 below. 

b. CT(NEXT) is not “=”. 
The  constraint represented by the edge at NEXT is not 
relevant; the  constraint solver returns  to  Step 5 above to 
examine  another edge. 

The  constraint represented by edge NEXT may be part of 
the  same equality  subgraph containing RULE, or it may 
be a part  of another equality  subgraph. The solver enters 
Step 6 to  determine this. 

c. CT(NEXT) is ”=”. 

Step 6.  Implement related “=” constraint. 
The  constraint  at NEXT is of type “=”. It may or may  not 
be related to  the subgraph  currently in process, depending 
upon whether or not  either vertex of NEXT is REP or 
represented by REP. When  the vertices T(NEXT) and 
F(NEXT) are  examined,  one of four  conditions arises: 

a.  Neither T(NEXT) nor F(NEXT) are REP or are 
represented by REP. 
In  this case, nothing has yet been encountered  to link a 
vertex of this edge to  the equality  subgraph  being 
processed. This edge is skipped, and  control passes to 
Step 5. 

b. F(NEXT) is REP or represented by REP, T(NEXT) is 
neither. 
In this case, this edge is part  of  the equality  subgraph 
since vertex F(NEXT) is  already  included in  the 
subgraph. T(NEXT) therefore  becomes a part of the 
subgraph, and will be defined in  terms of REP. Thus,  the 
following assignments are made: 

R[T(NEXT)] = REP, 
RV[T(NEXT)] = RV[F(NEXT)] + CV(NEXT), 
COUNT = COUNT + 1, 
CV(NEXT) = NULL, 

where the last step is justified because the  entire  content 
of the  constraint represented by the edge NEXT has  been 
embedded  in R[T(NEXT)] and RV[T(NEXT)]. Control 
is passed to Step 5, to  examine  the next edge. 

c. T(NEXT) is REP or represented by REP, F(NEXT) is 
neither. 
This is the reverse of the  situation  in (b); in  this case, 
F(NEXT) joins  the subgraph because T(NEXT) is 
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already a member of the subgraph. The assignments 

R[F(NEXT)] = REP, 
RV[F(NEXT)] = RV[T(NEXT)] - CV(NEXT), 
COUNT = COUNT + 1, 
CV(NEXT) = NULL 

implement this, and  control passes to  Step 5. 
d. T(NEXT) and F(NEXT) are both REP or represented by 

REP. 
In this case, both vertices T(NEXT) and F(NEXT) are 
already members of the equality  subgraph; both have 
been expressed in terms of the vertex REP. This prior 
solution gives (RV[  T(NEXT)] - RV[T(NEXT)]J as  the 
difference in values of the vertices T(NEXT) and 
F(NEXT). Two  conditions exist: 
1. (RV[T(NEXT)] - RV[F(NEXT)]} = CV(NEXT). 

The  constraint represented by the edge at NEXT is 
redundant. Therefore CT(NEXT) is set to NULL for 
subsequent  deletion, and  control passes to Step 5. 

The  constraint represented by the edge at NEXT is 
inconsistent with other equality constraints  on this 
subgraph. The problem  has no solution. The 
constraint solver, after a suitable message, terminates. 

2. {RV[T(NEXT)] - RV[F(NEXT)]) # CV(NEXT). 

Step 7 .  Check for modijications. 
When NEXT has reached the  bottom of the edge table,  this 
step  checks  for any modifications. There  are  two cases: 

a. COUNT > 0. 
At least one vertex has been added  to  the equality 
subgraph  associated with vertex REP. Because this added 
vertex may  also be used in equality  constraints,  it is 
necessary to scan the edge list from RULE + 1 once 
again.  Therefore, the  constraint solver passes to  Step 4 to 
begin another scan. 

The equality  subgraph  associated with vertex REP is now 
complete.  However, there  may be other equality 
subgraphs, and these could include a constraint 
represented by any edge after RULE. Therefore the 
constraint solver returns  to  Step 2. 

b. COUNT = 0. 

Phase 1 is completed  only when the  pointer RULE has 
reached the  end of the edge table. At that  point, all equality 
subgraphs  have been located, and each subgraph  has been 
associated with one of  its vertices (the  “representative” 
vertex). In  addition, all vertices of each subgraph’have been 
solved in terms of the representative vertex. This is 
equivalent to solving  each  equality  subgraph under  the 
assumption  that  the representative vertex has value 0. In 
general,  of  course, the representative vertex will not be 0, but 
as  the inequalities  cause vertices of an equality  subgraph to 
move, all vertices of a given subgraph must  move by the 
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2. If R[  T(e)]  = k > 0, set 
CV(e) = CV(e) - RV[T(e)] ,  
T(e)  = k .  

586 

I Partial  vertex  table  after  subgraph  solution. X 7  is now  defined  in 
terms of X 6   ( X 7   = X 6  + 20). The table also indicates  that X 0  has 
been  defined  to  be  zero. 

same  amount;  thus RV(v) gives the value of vertex v relative 
to  the value of vertex R(v)  [providing R(v )  > 01. The 
problem is now  as illustrated  in Figure 5. 

0 Phase 2: Substitution 
Because all vertices on an equality  subgraph are  known  in 
terms of the representative vertex associated with that 
subgraph,  it is possible to  substitute  the representative vertex 
in all edges representing  inequality  constraints. The 
substitution  phase  accomplishes this. Suppose,  for  example, 
we have  a given inequality (e),  

T ( e )   C V e )  F(e)  C V e ) ,  

and also suppose that as  a result of  Phase 1 we have 

R[F(e)] = j > 0; 

that is to say, X[F(e)] = X ( j )  + RV[F(e)]; in this case the 
constraint is modified by the assignments 

CV(e) = CV(e) + RV[F(e)],  

F(e) = R[F(e)].  

The actual  substitution takes place by scanning the edge 
table just  once. For a typical edge (e),   R[F(e)] and R[T(e)]  
are  examined.  Two cases are considered: 

a. R[F(e)] = 0 and R[T(e)]  = 0. 
Neither vertex F(e) nor T(e)  is a  part of any equality 
subgraph. There is no  substitution  to perform on this 
edge. 

At least one vertex of edge e is a member of an equality 
subgraph. The following assignments are therefore  made: 
1. If R[F(e) = j > 0, set 

b. R[F(e)] = j > 0, or R[T(e)]  = k > 0. 

CV(e) = CV(e) + RV[F(e)],  
F(e) = j .  

An unsolvable  problem can arise when the substitution 
results in T(e)  = F(e). In this case, the  constraint 
represented by edge e reduces to 

0 2 CV(e), 

or 

0 I CV(e), 

depending  on CT(e). In  this case, the  constraint solver 
checks for consistency. If the edge e represents an 
inconsistent  inequality constraint, it is reported to  the user, 
and  the program  terminates. If the edge e represents  a 
consistent  inequality constraint,  then CT(e) is set to NULL; 
the  constraint is always satisfied by the equality  subgraph. 

In the example  problem, the inequality  graph is now as in 
Figure 6;  the equality  relationships remain stored in R V and 
R. 

Phase 3: Initialize for inequalities 
At this point,  the  entire problem  has  been  reduced to a set of 
inequality constraints  and  the equality  subgraphs,  now 
reduced to expressing all vertices in  terms of  each subgraph’s 
representative vertex. The  constraint solver must now attack 
the inequality problem.  This it does by another relaxation 
algorithm,  similar to  that used for the equality  subgraph 
solution.  Prior to this, the solver must initialize  various 
elements. These  include externally  supplied  definitions, and 
the “assignment level” counter used in trapping cyclic 
constraint graphs. This initialization  proceeds  as follows: 

Step 1. Set  direct dejnitions. 
A scan is made of all vertices. For each vertex v ,  the flag 
D ( v )  is examined.  The following two cases exist: 

a. D ( v )  is F. 
No value has been assigned to X ( v )  either  externally (by 
the user) or internally (by a  previous pass of the solver). 
In this case, set A L ( v )  = - 1. 

The value  of X ( v )  is a known value, either by external 
definition, or as  the result of a  previous pass of the solver. 
In this case, set AL(v)  = 0. If R(v)  = j > 0, then  this 
defined value must propagate to all other vertices on  the 
same equality  subgraph. This propagation is done  at this 
point, with a  check  for  consistency at each vertex. 

b. D ( v )  is T. 

Step 2: Propagate  definitions. 
At the  end of Step 1, most  definitions  of values have been 
made  and  entered  into X ( v ) ,  D(v) ,  and AL(v ) .  However, it is 
possible that a  definition has been made  to  the representative 
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vertex of some equality  subgraph; Step 1 will not detect this. 
Step 2 propagates  definitions  from any representative 
vertices to all members of the represented  equality  subgraph. 
This is done by examining all vertices and specifically 
looking at R(v) .  Two cases apply: 

a. R ( v )  = 0. 
This vertex is not a member of any subgraph. It is 
skipped. 

Vertex v is a member of the equality  subgraph 
represented by vertex J. If AL(J)  = - 1, this representative 
vertex has no value, and vertex v is  skipped. If A&) = 0, 
then vertex J has a value, and, according to  the equality 
subgraph, X ( v )  = X(; )  + RV(u). Following a test for 
consistency  (since vertex v may also be defined)  this  value 
is given to vertex V ,  and A L ( u )  is  set to 0. 

b. R ( u )  = j > 0. 

Step 3. Rewrite constraints. e - .  
For simplicity  in the rest of the algorithm, the rest of the 
constraints  are now all rewritten to be of the ‘‘2’’ form.  This 

Constraint  graph  after  subgraph  solution  and  substitution.  Con- 
straint  types (CT) in parentheses have become NULL; the  former 

is simply done by examining each edge e. If CT(e) signifies type is shown.  Constraint 7 is now  redundant.  Constraint 10 is now 
I, then  the  constraint is rewritten by transposing F(e) and contained in the  vertex  table (Fig. 4). 

T(e), negating CP’(e), and setting CT(e) to signify “2”. 
At the  end of Phase 3, the effects of all definitions have 

been entered into  the vertex table, and propagated  (where 
needed)  through any equality  subgraphs. At this  point,  the 
constraint solver begins to  operate  on  the inequality 
constraints. 

Phase 4: hequality solution 
The  constraint solver is now ready to  attack  the inequality 
problem.  This it does by another relaxation  algorithm, 
similar to  that used for the equality  subgraph  solution. In 
doing this, the solver operates in two  “directions.” In  the 
“forward” direction, lower bound values  propagate  from 
F(e)  to T(e); in the “reverse” direction, upper  bound values 
propagate from T(e)  to F(e).  Either  of  these processes can 
involve unterminated loops if inconsistent constraints  are 
contained within the graph.  Therefore, an “assignment level” 
is maintained  to intercept  these effectively cyclic constraint 
problems. The details for  the “forward”  direction follow. 

Step I. Initialize. 
A counter (COUNT) is set to 0. Then a pass is made 
through all constraints in the edge table. Edge e represents  a 
constraint implying that 

X[T(e)]  2 X[F(e)] + CV(e). 

The values of AL[F(e)]  and AL[T(e)]  are  examined, with 
specific action  depending  on those values. Specifically, four 
cases are considered: 

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984 

a. AL[T(e) ]  = - I  andAL[F(e)] = -1. 
So far, nothing has given a value to either vertex in  this 
constraint:  it is skipped. 

b. AL[T(e)]  = - 1  and  AL[F(e)] 2 0. 
No lower bound has been given to T(e),  but a lower 
bound is known for F(e). The effect of the  constraint is to 
propagate the value of F ( e )  to T(e),  with a  suitable 
increment. Specifically, set 

X[T(e)l = X[F(e)l + C V e ) ,  
AL[i“(e)] = AL[F(e)] + 1, 
COUNT = COUNT + 1. 

c. AL[T(e)] = 0 and AL[F(e)] = 20. 
This constraint  terminates in  a defined vertex. X[F(e)] 
has  a lower bound (or defined value), and  X[T(e)] has  a 
defined value. Neither can change if the  constraint is not 
satisfied; therefore  a test is made  to see that  the X [  T(e)] is 
compatible with the  constraint  and  the  minimum value 
of X[F(e)] :  if so, no action is taken. If not,  the error is 
reported, and  the algorithm terminates. 

In this case, both vertices F(e)  and T(e)  have lower 
bounds. Since  for  “forward”  propagation lower bounds 
can only be increased, if constraint e is not currently 
satisfied, it can  only be satisfied by increasing X[ T(e)].  

d. AL[T(e)]  z 0 and  AL[F(e)] 2 0. 
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I Graph after completion of first “forward’ pass. Note that X1 has not 
been assigned any value. The “reverse” pass will give this vertex 
the value 1. 

Thus,  ifX[T(e)] 2 X [ F ( e ) ]  + CV(P),  no  action  takes 
place, as the  constraint r is satisfied by the present values. 
If the  constraint is not satisfied, the  same assignments are 
made  as in (b) above. 

At each time a new value is set, AL[T(e) ]  is tested. IfAL 
exceeds either the total number of unknowns or the total 
number of constraints in the problem,  a cyclic situation 
exists, and  the algorithm  stops,  reporting  a cycle, and 
displaying all vertices and their current assignment level, to 
provide the user a  preliminary  indication of the location  of 
the cycle. 

/’hasp S. Fornard . hc~X- . s  
When  a pass of the algorithm  takes place which ends with 
COUNT = 0. there  are no 2 constraints  that have not 
already been satistied. All lower bounds for all vertices 
having A L  > 0 are at  their minimum legal value. As shown 
In Fig. 2, setting  the value o f a  vertex to its lower bound  may 
rcsult in design-rule-legal but inappropriate shapes. Some 
vertices must be allowed to be set to their maximum value. 
In doing this, the  constraint solver uses a  limited concept of 
“maximum”: a “maximized” vertex will have its value 
increased only to  the point where further increases  would 
require the increase o f a  nonmaximized vertex value. In 
other words, “maximize” is equivalent to  the removal  of 
slack. 588 
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The  computation of slack is similar to  the basic 
propagation  algorithm given above. Slack is computed for a 
given vertex u only if three  conditions  are  met: 

a. vertex u is to be maximized, 
b. AL(u)  > 0 (vertex u has  not yet been permanently fixed 

but has  a  lower bound),  and 
c. there exists an edge e with F ( e )  = u and AL[T(e)]  2 0. 

The last condition prevents the  unlimited increase  of an 
otherwise unbounded vertex, such as X8 in  the example. 

At the  end of  Phase 5, any vertices u which have  been 
assigned a  value [AL(u) > 01 are  treated  as defined: AL(u)  is 
set to 0, and D(u) is set to T. For the  example problem this 
is illustrated in Figure 7. 

Phase 6: Reverse  propagation 
One of the desired  properties  of the  constraint solver is that 
it impose no  particular restrictions on  the  form of the 
constraint  graph.  This  can lead to considerable 
complications.  Consider the graph of Fig. 3. In  this  graph, 
there is no single vertex from which one  can reach  all other 
vertices by traversing the edges in  their forward  direction. If 
there were, and if it were assumed that  the  node was to be 
initially  defined to have value 0, the simple  forward 
propagation/slack  propagation described above would be a 
complete algorithm: on  terminating  (without  an error), all 
vertices would be assigned values  consistent with the design 
rules in  the graph, and consistent with the “maximize” 
concept  also  described  above. It is possible to argue that if 
the  constraints  are generated by a program, they can be 
given this property;  it  is not possible to  ensure  that  the 
property  is maintained after any  manual modification  of the 
constraint graph. To allow for this, the  constraint solver next 
repeats the propagate/slack phase. However, this  time  the 
direction  of  propagation is reversed: upper  bound 
information propagates from vertex T ( e )  to vertex F(e) ,  and 
the slack step  determines  minimum values  of vertices. The 
details follow from  the “forward” phases above, and  are  not 
repeated. 

any changes were made  in  the  entire step. If so, the solver 
returns  to Phase 4, to begin more forward  propagation. 
While this  alternation between forward and reverse 
propagation  steps is complex,  it  results  in solutions  that  are 
in  good  agreement with designers’ expectations regardless of 
the vertex (or vertices) used as starting  points. In fact, the 
code is not  as  complex  as might be expected,  since most of  it 
is  shared between the forward and reverse cases. 

After the reverse propagation,  a  test  is  again made  to see if 

Phase 7: Back substitution 
Once all inequalities  have been solved, it remains for the 
nonrepresentative members of  equality  subgraphs to  be 
evaluated. This is now  simple,  since  each  such vertex cames 
a pointer  to  the  appropriate representative vertex, and a 
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value relative to that vertex. If the representative vertex  has 
become  defined (as a result  of relaxation algorithm above), 
all  vertices that it represents are defined. 

Phase 8: Clean-up 
At this point, all that remains is to remove any constraints 
that have  become irrelevant. Since a vertex is never altered 
after it  has  been marked as defined, all that must be done in 
clean-up is to delete those constraints that refer to two 
defined  vertices. This is done, and completes the solution 
algorithm. 

Summary  and  conclusions 
This paper has presented the details of a constraint solver 
used to solve a general class  of  mixed inequality/equality 
constraint relationships for use in a general  design-rule- 
independent mask generation system. The algorithm handles 
any such problem (within its table sizes) and, where 
constraints are specified  in ambiguous ways,  results in 
solutions that generally  agree  with  designers’ expectations. 
The algorithm is  efficient in its  use  of  storage. Written in 
FORTRAN-IV, it requires 10  bytes  of  storage per constraint, 
and 26 bytes  of storage per  vertex.  It is also reasonably fast; 
typical moderately large problems, with their solution times, 
appear in Table 1. For these problems, which include part or 
all  of a real chip design, there are 3.5-4 constraints per 
unknown; running time is reasonably well  given  by 

t = 30. I3 X NY2 (microseconds), 

where Nu is the number of unknowns in the problem; quite 
large problems are not unreasonable. (The largest problem in 
the table performs the complete design  of a memory chip.) 
Solutions, in addition to meeting constraints, also generally 
agree  with  designers’ expectations. The algorithm has  been in 
use in a design-rule-independent layout system  for 
approximately two years, and has  been found highly  effective 
in the creation of macros suitable for IC design. The 
principal weakness  in the constraint solver is the restricted 
class of constraints that it can accommodate. This class  is 
clearly  useful, since it covers all cases required by typical 
design  rules.  However, the addition of a 3-variable  class of 
constraint of the form 

x, + x, = 2 x x, 
would be a significant extension since it  specifies that X ,  and 
X ,  are  to be symmetrical about X,. Such symmetry would be 
very  useful in designing  electrically balanced circuits (such as 
sense amplifiers), where  electrical balance is  usually  achieved 
by providing geometrical symmetry. However, the added 
class of Constraint  is  significantly more complex than  the 
simpler constraints already accommodated by the constraint 
solver, particularly if X , ,  X,, and X ,  are allowed to be 
members of any other constraint without restriction. The 
possibility  of adding this class  of constraint is under 
exploration. 

Table 1 3081 Running  time. 

Problem 
(CPU s) 

Time 

N” Nu N e  

I154 I029 3690 0.82 
I554 I426 5265 I .34 
2535 2407 8955 2.81 

18344 18162 69878 56.14 

N,  = Total venlces in graph. 
Nu = Venices corresponding to unknowns 
Ne = Total edges (constraints) in graph. 
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