
PSI: A svmbolic by Rolf-Dieter Fiebrich
Yuh-Zen Liao

J

layout system
George Koppelman
Edward Adams

A symbolic layout tool, PSI, is described for use
with IBM circuit technology. Significant features
of PSI are used with multiple circuit
technologies, adaptation to rapid changes of
technology design rules, creation of nested
designs, and extensive designer control over the
spacing process.

Introduction

0 Objectives
Reports of the development of automatic symbolic layout
tools have made evident the potential of such tools to
produce physical designs that are correct by construction
with much smaller expenditure of resources than is required
by more labor-intensive design methods [1-91. Previously
reported symbolic custom layout tools, STICKS [I],
CABBAGE [2] , MULGA [3], and REST [4], have for the
most part utilized spacing rules or element positioning
conventions that are more restrictive than might ultimately
be aimed at for custom design of industrial products;
however, they have shown that such tools can be made
practicable.

Using this previous work as a point of departure, we have
developed a symbolic layout tool for making custom circuit
designs in any of several families of circuit technology used
in IBM. Our main objectives in this development were the
following:

1. The tool should guarantee that a design satisfies all purely

2. It should allow nesting of cells and the easy incorporation

3. It should provide means for the designer to exert some

geometric design rules.

in a cell of cells designed by other tools.

control over the spacing process, e.g., to specify particular
dimensions of the spaced layout, groupings of
components, etc.

technology variants and, for each, should incorporate sets
of design rules complex enough to achieve good
placements of circuits made in each technology.

5. It should provide quick, simple means to incorporate
design rule changes in the tool and to automatically
update a design in response to rules changes.

densities not greatly lower than those realized by a
human layout designer using manual methods.

design integrity in existing design system data base
environments.

8. It should run fast enough to be used in an interactive

4. It should accommodate a number of different circuit

6. It should achieve for designs of typical complexity layout

7. It should capture information needed to audit and ensure

design environment.

Status of implementation
We developed a first-phase prototype of a symbolic layout
system suited to IBM technologies incorporating as many
features as we could implement in about a year. We
subsequently added to these as we gained experience with
the first version of the tool.

Our prototype system, which we call PSI, is generically
similar to STICKS, CABBAGE, and REST. However, it
differs from the versions of predecessor systems with which
we are familiar in many details, most importantly in
providing for the explicit nesting of symbolic cells, in
providing increased designer control of the compaction

@Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 572

ROLF-DIETER FlEBRlCH ET P LL. IBM 1. RES. DEVELOP. VOL. 28 NO, 5 SEPTEMBER 1984

process, and providing the capability to design in any of
several circuit technologies.

our initial goals. In the sections that follow we describe the
state of the PSI prototype and our present perception of
what is necessary in such a system beyond what was
available in earlier STICKS systems for it to be useful in an
industrial design environment.

The system we have at present meets many but not all of

System description
Our system consists of three main program packages. The
interactive graphical editor for entry of designs exists in two
versions, one using the 3277GA terminal attached to an
IBM 308 1, the other using a graphics processor terminal
connected to a minicomputer. The spacer, which runs under
VM/CMS on IBM 3081 equipment, provides means for a
designer to make a compact placement of objects in a single-
cell layout. The maskmaker program, which also runs only
on 308 1 equipment, generates specifications in several GL/I
idioms for the masks to fabricate circuits described by PSI
files.

In PSI a design description is provided as a set of files, a
definition file for each independent cell of the design
together with a number of auxiliary files prepared from
these.

Data representation
A cell definition file consists of a set of one-line records, each
record defining either an object in the cell or some
information about how objects are to be spaced. In the
present implementation a definition file is a text file.

The principal section of this file contains a list of all
objects contained in the prime cell. The objects that may be
specified in a cell description are the following:

cell boundary,
cell terminals,
transistors of several types,
pullup devices,
contacts,
wires,
rectangular shapes on layers,
n-wells, p-wells,
instances of other cells.

Other sections of the file contain information about when
the cell was created and processed, technology and scale
information, boundary descriptions of cells of which
instances are incorporated, specifications of constraints on
object placement, name equivalence information, and
external connectivity information.

STICKS, CABBAGE, and REST, is similar to a circuit
The symbolic representation used in PSI, like those in

IBM J. RES, DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

schematic, so such a schematic can be easily constructed
from a PSI cell definition. However, each PSI cell also
provides the geometrical information needed to define a
physical layout, so that masks to make the circuit can be
generated from the set of definition cells. Thus the PSI cells
can easily accommodate the extraction of information for
use in either logical or physical simulation.

The PSI programs can deal with multiple technologies,
but they are technology-knowledgeable rather than
technology-independent. They have specialized routines that
embody knowledge of each type of device used in any of the
technologies PSI can accept. A designer user makes entries in
a small personalizing file to specify which technology is to be
used for a particular design. By reading this file the programs
determine which devices can occur in a particular design,
and by reading tables in auxiliary files they determine rules
on device dimensions and object spacings required by the
technology.

for different technologies within its scope.
This simple arrangement gives good flexibility in using PSI

Editor
FSE is an interactive graphical editor for preparing a
symbolic representation of a circuit. Using FSE a designer
sketches a circuit, showing the relative placement of all
circuit components, and may also provide exact physical
dimensions of components or component spacings which he
wishes to specify. FSE has routines that can build any device
used in any of several technology variants, and the designer
need only specify this technology at the outset of a design.
Four technology variants have been dealt with thus far, two
NMOS and two CMOS technologies.

Displaying circuits
FSE displays wires in a nonexpanded form as lines, but
displays a point object in a form which shows its true size.
When a cell is being edited, all its contents are displayed, but
when an instance of a cell is used as a component of another
cell, only an abstract boundary representation is shown. This
representation consists of a bounding box and a set of
terminals, where a terminal is an interval on some side of
the bounding box to which an external connection can be
made.

Editing cells
More than one cell may be edited during a single session.
When reference made to a cell during an editing session
requires information about the contents of a cell, the cell
description is automatically loaded from disk into main
memory. When the designer moves to edit another cell,
status information is preserved on all cells previously edited
during the session, and the editing environment is restored
upon return to a cell previously edited.

ROLF-DIETER FIEBRICH ET AL.

Creating objects
An object is created by positioning the cursor at the desired
position and pressing an appropriate key. In custom design
the dimensions of objects may be varied to accommodate
circuit requirements. PSI assigns default values to the
physical dimensions and orientation of a newly created
device, so the designer can defer entering these data until it
is convenient. Terminals are created automatically when a
wire is drawn to the boundary and automatically deleted if
the wire is deleted.

Instances of cells used as components are created by a
procedure that allows a final position adjustment after the
cell instance is called forth.

Establishing conneclivity of objects
For interconnection purposes FSE, like CABBAGE, treats a
transistor and/or contact as a point object located at a single
point of the coordinate space. No matter what the actual size
of a point object, all connections to it must be made to its
“typical point” rather than to one of its edges. Natural
conventions define which terminal a wire connected to an
object is connected to.

Point objects (transistor, contact, terminal) must be
connected by wires, and connections between objects and
wires are deduced from coordinate values, so a wire and a
point object are considered connected only if they have a
common point on the same layer. Thus the possibility exists
that two objects whose positions were entered by means of a
graphical input device may appear connected without in fact
having exactly the same coordinates.

FSE provides two modes for entering coordinates, which
deal with the problem of establishing connectivity in
different ways. When FSE is in grid mode of entry, any
entered point is forced to lie on a grid of points that covers
the design, with grid spacing such that neighboring grid
points are visibly well separated. So long as all objects
entered lie on the grid, points that seem connected are thus
ensured to be so.

In many cases a design contains objects that are not
ensured to be on the grid, either because the grid spacing has
been changed or because they have been placed by the
spacer. To ensure connectivity of objects or lines added to
the design in such a case, FSE provides an object mode of
editing. When the designer enters a point in object mode, the
coordinates of the point “snap” to those of any object
located within a critical interval of the cursor, this interval
being shown graphically as a box which surrounds the center
of the cursor. Thus, a point object is positioned exactly on a
nearby wire, and a wire is caused to end exactly on a nearby
point object.

Wiring
Every wire must be either strictly horizontal or strictly

574 vertical, but, when one enters the positions of the wire ends

graphically, they are usually not perfectly aligned along a
coordinate axis. In grid mode FSE draws the single wire,
whether horizontal or vertical, that lines up with the initial
point; in object mode FSE puts a jog in the wire if necessary
to ensure that it connects to a point object at its end.

Workstations
FSE is designed to run on either a raster color graphics
system or a storage vector graphics terminal generally
available in IBM. The vector storage terminal is called the
3277 Graphics Attachment. It consists of a 3277 text display
terminal having an attached Tektronix 6 18 high-resolution
vector storage tube in a dual-screen configuration, all
connected via a high-speed connection to the 308 1 host. The
input device is a joystick. The terminal architecture is such
that a keystroke may invoke a command and input
coordinates at the same time if appropriate.

which an object is implemented is shown by the line type of
the outline.

The color graphics workstation is one we assembled from
an Apollo DOMAIN node having 1 M bytes of main storage,
a local disk, and an attached Lexidata 3400 color graphics
system. The workstation components are connected via a
Multibus-compatible high-speed DMA interface, and the
workstation communicates with IBM hosts via an RS232
connection. The graphics system has a resolution of 880 X

704 pixels and a refresh rate of 60 Hz noninterlaced, with
four color planes, one text overlay plane, and a blink plane,
and provides hardware pan and zoom. For graphics input a
tablet with a four-button puck is used.

Both terminal and workstation are used in a dual-screen
mode, one screen for display and graphical entry, the other
for textual input and output. The basic software is such that
the editor interfaces to the two are largely compatible.
However, some functions are provided on the high-
performance workstation that are not provided on the GA.
Thus, commands may be given either through key presses, as
on the GA, or via a hierarchical graphical menu making use
of the puck and the puck buttons. As a result it would be
straightforward to migrate FSE to a workstation using a
single-screen display.

Symbolic objects are displayed in outline; the layer in

Spacer
The function of the spacer is to derive a physical layout far
the design. To perform this function it must read design files
in the external format created by the PSI Editor, construct
the mask polygons implied by the symbols, create a graph
that summarizes the constraints between object positions
required by spacing design rules and designer-specified
constraints, prompt for designer instructions regarding the
compaction process, and then determine a placement of the
objects that is tightly packed and design-rule-correct. During
the compaction process, the spacer stretches or compacts the

ROLF-DIETER FlEBRICH ET AL. IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

interconnection components as necessary to preserve the
topology and connectivity of the displaced objects. When the
spacing operation is complete, it creates a new file in the
external format describing the compacted layout. This file
can now be modified by the Editor or used by the mask
maker to produce mask descriptions in the language GL/I.

User commands
The spacer may be with or without a graphics terminal.
When used with a graphics terminal it provides several
display and command functions that use graphical input. In
particular, the designer can direct the program of
compaction by specifying the sequence and direction of
compaction steps.

any one compaction the designer specifies which axis the
compaction is parallel to and the position toward which it
should proceed, which may be toward either side or toward
an internal line (implosive compaction). At least one
compaction must be made parallel to each axis before design
rule correctness is ensured.

Each compaction is parallel to either the x or the y axis. In

Spacing of a nested cell
When a cell is compacted, the boundary is contracted until it
touches the objects inside. When a nested design is
compacted, the spacer does not examine the objects inside
the polygonal boundary of a cell used as an instance in a
larger cell, so a space is left between the cell boundary and
the edge of an external mask layer that is the maximum
value of all the spacing rules observed by that layer in the
design rules of the process technology.

Spacing rules
The spacing rules in an IBM technology manual provide for
many different spacings between a given pair of layers,
depending on which objects the layers are in, so that the
designer is free to use especially close spacings in all cases
where the fabrication techniques permit. Typically there are
100-200 spacing rules in an IBM technology manual.

In developing the spacing rules for PSI, we simplified the
rules considerably, so that PSI does not distinguish as many
different cases as the full technology rules. Our present rules
table involves 36 spacing rules for the NMOS and 5 1 spacing
rules for the CMOS technology. If in future we found that
particular configurations could be packed much tighter if
special spacing rules applied between pairs of special regions
other than those now recognized, we could incorporate the
necessary code and increase the number of rules. However,
we expect that PSI will always use simplified spacing rules.

Technology interface
Technology rules regarding the spacings between objects on
layers for a given technology are recorded in an external file
as a table having rows/columns labeled by the edge types of

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

the shapes that form the transistors, contacts, and
interconnections, and entries equal to the required
minimum spacings. We have used up to 5 1 such rules in the
technologies we have dealt with so far.

overlap of the shapes that constitute the devices of a
technology are recorded in another external file. These rules
are also used by the editor and are enforced either at the
time a device is created or at the time a circuit is spaced. We
have used up to 39 such rules in the technologies we have
dealt with thus far.

Rules relating to the minimum size, enclosure, and

To specify the technology to be used in a design, a
designer enters its name in a small personalizing file. To
change the values of technology rules governing device
structure or edge spacings, a technologist changes the entries
in the technology tables; the changes are then enforced in the
next processing of the design description. To change the
specification of how a device is built out of shapes, a
programmer modifies a module of the spacer code without
other effect on the spacer. Thus the spacer as designed is
readily adaptable to technology change.

Constraints on placemen1
The designer can specify two different kinds of constraint on
object placements made by the spacer. One kind of
constraint is afince, as in Williams' STICKS. A user-plotted
fence is a contour in the layout that no symbol element may
cross during compaction. By specifying a set of fences the
designer can require pieces of the design to remain bunched
together through the compaction process. The other
constraint is a requirement that the relative positions of a
specified pair of symbol elements satisfy an equality or
lower-bound or upper-bound inequality condition on their
values.

Electrical connectivily
In many cases, the spacing requirements for two mask
polygons of the same type are different depending on
whether or not they are electrically connected. Thus
connectivity information must be extracted before assigning
spacing constraints for mask elements. At present electrical
connectivity is extracted by a special routine that will
eventually be incorporated into the editor.

Each wire, contact, or cell-terminal is considered as a net
node, while a transistor has three nodes corresponding to its
gate, drain, and source. All nodes connected so as to have
the same potential are assigned to the same net, and nets are
given distinguishing numbers. The net tracer uses a fast scan
line algorithm to find trees of connection, then traces the
nets and assigns the proper net number to each object in the
layout.

Building the constraint graph
To place the objects in the layout the spacer solves a
minimization problem on a weighted directed graph. Symbol

ROLF-DIETER FIEBRICH ET AL.

elements are mapped to the nodes and spacing constraints to
the weighted edges of a directed graph. Then a longest-path
search algorithm is used to find new locations of the
elements such that the overall width of the layout in the
compaction direction is minimized.

We describe the process for x-axis compaction of a
constraint graph G: Objects are moved by expansion/
contraction of interconnections. Each node in G corresponds
to a group of objects which must move together. Each edge
in G represents the spacing constraint between two groups.
A group is formed by linking point objects and vertical wires
which are physically connected on a common center line.
Each cell instance, each vertical fence, and each boundary
(right and left) of the prime cell is also considered a group.

After groups are mapped to the nodes in G, the spacer
program assigns a spacing constraint to each edge in G by
examining all of the rules/constraints constraining the pair of
groups corresponding to that edge. A constraint may be of
lower-bound, upper-bound, or equality type. A lower-bound
constraint is expressed as a positive weight on a right-
directed edge of G; an upper-bound constraint is expressed
as a negative weight on a left-directed edge; an equality
constraint is expressed as an upper-bound/lower-bound pair.

To build the graph for the layout the spacer determines
what are the dominating constraints for each edge,
considering both the user-specified constraints on selected
pairs of symbols, and constraints deriving from the
technology rules.

In principle, the number of edges in the graph is
proportional to the square of the number of layout elements,
but the number of edges that actually come into play in
compaction is more nearly proportional to the number of
elements for a large layout. That is because the distance
within which spacing rules affect edges is similar in
magnitude to the minimum line width of mask elements, so
that most pairs of groups are automatically kept far enough
apart because of the presence of groups lying between them.

Since the time and memory required to execute the
compaction algorithm depend mainly on the number of
edges in the constraint graph, it is important when building
the graph to eliminate edges whose spacing requirements are
satisfied automatically. This is done by the design-rule
analyzer routine, which makes use of the concept of updated
layer-shells.

There is a shell for each layer and a shell for fences. For
compaction to the left, a shell is defined as the set of vertical
edge segments on the right-side boundary of the union of all
mask polygons of that layer that have already been
examined. Initially, all the shells are empty, except the fence
shell which contains the left boundary of the prime cell. As
the analyzer successively examines groups from left to right,
it determines the minimum spacing requirement between
each group and other groups on its left and updates the

576 shells.

As the analyzer examines a given group, it translates the
elements in a group to the actual mask polygons, forms the
left and right boundaries of every layer on the group,
compares the edges in the shell to the vertical edges on the
left boundary of the group, finds for each pair of edges
having overlapped projections the correct spacing value
required, and, finally by examining all spacing constraints
affecting the edges of the group, obtains a spacing
requirement between the group and the shell. In determining
the constraints between two edges, the analyzer notes
whether the corresponding layers belong to the same net and
are allowed to merge.

After all left edges of a group have been checked, the
design-rule analyzer updates the shells by adding to each
shell the appropriate vertical edges on the right boundaries of
the group, clipping out the shell edges of the same type, and
merging the remaining shell edges to form new shells. The
constraint graph is complete when each group has been
examined and each necessary edge weight determined.

Symbol placement
A graph-theoretic algorithm is used to find a placement
satisfying the constraints of G and having minimum overall
width in the compaction direction. Since mixed constraints
are allowed, G can be cyclic, so the straightforward critical-
path algorithm used in CABBAGE [2] cannot be used here.

We developed a new longest-path-search algorithm for
cyclic graphs [IO] that finds, e.g., in a leftward compaction,
the lowest possible coordinate of each node in G consistent
with the constraints of G. The algorithm does not in general
find the layout with the minimum possible chip area.
However, it quickly finds a fairly compact layout, which
may be good enough to use or may be made so by manual
modification by the designer, whereas an algorithm to find
the layout of absolute minimum area would be so slow as to
be impractical for a design of even moderate complexity.

By reversing the direction of all the edges in G, the same
algorithm can compact the mask elements to the right
boundary of the prime cell. For an implosive compaction,
two compactions must be done, one to the right and one to
the left; and since nodes corresponding to the groups on one
side of the compaction center may interact with those on the
other side, the designer must indicate which side is to be
compacted first toward the compaction center.

Performance considerations
In developing the spacing algorithm we considered speed of
compaction important, but secondary to accuracy and
function, so long as the spacer would be fast enough to
compact the largest cell we needed to deal with in a few
minutes. Adequate speed was ensured by designing all the
critical algorithms to run in time proportional to N(ln N).

Probably the largest single cell one would want to make
with a tool of this sort would have of the order 500- 1000

ROLF-DIETER FlEBRlCH ET AL. IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

devices. To test the speed of compaction of PSI we have run
several circuits through the spacer with several cells of
typical size. One was a personalized PLA we got from Steve
Posluszny. For this circuit, which has 50 transistors and a
total of 240 objects, the total compaction time was 0.89
CPU seconds on a 308 1 . We also compacted a layout of a
tally circuit which we got from R. Montoye; this circuit had
480 transistors and a total of 2200 objects, and required nine
CPU seconds. In addition we have compacted a number of
circuits of various sizes prepared for us by Carol Gura and
Marianna Clark. We found that the running time was
approximately linear in the number of transistors. The high-
speed memory required to compact larger circuits is about
two megabytes. We estimate that with this much memory
the spacer can compact a circuit with 1000 transistors.

As we add further features to PSI, we may complicate the
work of the spacer and thus slow it down somewhat. Even
so, we project that when in future we move PSI onto a fast
workstation, the spacer will still be fast enough to be used as
an interactive tool.

PSI maskmaker
The task of the maskmaker is to prepare from a symbolic
description of a design a specification in the language GL/I
of the masks needed to fabricate a circuit embodying the
design. The standard GL/I representation accommodates
nested cell descriptions but requires that the complete
description of the design be in a single file. On the other
hand, in the PSI representation descriptions of nested cells
are in separate files. To build the GL/I description of a
nested PSI design, one must first make a GL/I description
for each individual cell, next assemble these descriptions into
a single nested description of the whole design, and finally
do any postprocessing needed to adapt to the notational
conventions of the designer and to adjust the ideal mask
shapes for the biases of the fabrication process.

The PSI maskmaker creates the GL/I descriptions of
individual cells and combines these into a single cell
describing the nested design. It accommodates a certain
amount of technology-dependent and user-idiosyncratic level
naming by use at mask-writing time of user-provided tables
for translating level names. This permits, for example,
combining several symbolic levels into the same physical
mask level and the use of a variety of different naming
conventions. It provides means to attach logical attribute
information to particular shapes for later transfer to
physical-to-logical checking tools or other final audit
requirements. However, it does not perform postprocessing
functions that are specific to any fabrication process; these
functions must be done using other IBM design tools.

Discussion
In developing PSI we have adhered to the simple style of the
early prototype symbolic layout tools as much as seemed

practicable. However, as we worked with potential users of
the system, who have assisted us in debugging and
evaluation, we have decided that some features of PSI would
need to be more complex. The present version of PSI meets
many but not all of our original goals, so that further work
on PSI is seen as necessary.

We discuss next our current ideas about the relative
importance of various system features in a symbolic layout
tool like PSI. We do this by reviewing features of PSI
introduced to meet the needs of the designers we worked
with and discussing other features not yet implemented that
we believe are important to provide. As of this writing PSI
has not had the extensive designer use needed to justify our
choices of design features or to quantify the quality of design
that PSI can produce, so the evaluations made thus far are
based mainly on our impressions from designer use in a
limited number of test cases.

Placement of contacts
The simple STICK representation in which symbolic objects
are connected by lines does not provide any natural way to
connect to a wire at a point off center. However, off-center
connections are useful in many circuit configurations. In PSI
we provide the capability to construct such connections via a
special point object called a connection strip. This object is
essentially a flange that may be attached to a transistor or
line and provides it with a visible dimension along which
contacts can be placed.

The optimal shape and position of a buried contact are
sensitive to the configuration of wires coming into it. PSI
does some optimization of the dimensions and shape of a
buried contact, but uses simplified spacing rules for
placement. Since a buried contact uses a rather large area, it
may be worthwhile in future to refine the procedure for
constructing and placing these contacts.

Technology rules
We require not only that PSI be usable with a number of
related circuit technology variants, but also that it provide
means to rapidly update a design to reflect recent changes in
the design rules of a given circuit technology. By localizing
technology-specific data in tables accessed at run time and
localizing code that is specific to a technology or device in its
own module, where it can be readily located and changed
when necessary, we arrange that changes of rules can be
made effective very quickly. This permits PSI to correct a
spacing error immediately and to correct any dimension that
would be below a required minimum. However, PSI cannot
make coordinated changes to ensure that such conditions as
electrical load matching or operating point are maintained.

The design rules for the circuit technologies we deal with
provide for many different spacing rules between layers,
depending on just what objects the layers are in, so that a
designer can make the best possible placements of circuit 577

ROLF-DIETER FIEBRICH ET AL. IBM J . RES. I 3EVELOP. VOL. 28 NO. 5 SEPTEMBER I 984

elements. In order to simplify the task of the spacer we have
defined for PSI a set of design rules that are simpler than the
complete technology rules. although more complex than,
e.g., the Mead/Conway rules. We have no principle on
which to determine whlch specialized design rules to keep:
We simply selected what looked to be the cases where the
most area was at stake and devised special rules to deal with
them. We intend to add more rules if we find circuit
configurations for which new rules would provide significant
area savings. However. we judge that there are some
technology rules that do not seem to be worth incorporating
in PSI when we consider the cost of checking out that they
are correctly dealt with in every situation.

An important special case of the point just discussed arises
where two neighboring shapes are at the same potential. Two
shapes on the same layer and at the same potential can often
be merged and a good area saving realized. PSI currently
performs such merges by initially suspending the
requirement for a minimum spacing between the shapes,
and then later checking whether a merge actually occurred
and enforcing minimum spacing rules where it did not.

However, we found that if we make merges that are
maximally aggressive. we may adversely affect the result of a
subsequent compaction in the orthogonal direction. We are
in the process of developing a merge procedure that gives a
better trade-off between area squeezed out along the axis of
compaction and the potential to squeeze out area in the
orthogonal direction.

l l i~wrch?s
To be able to call cells as components of other cells makes a
symbolic layout tool more broadly useful. However, the
capability to nest cells, especially cells described in separate
files. creates the following problems to be solved and
capabilities to be provided that are not present when one
deals with single-level cells:

1. PSI implements compaction at a single level of
description: i.e.. it treats every embedded cell instance as
a rigid object. I f one wishes to reshape a nested cell
during compaction, one must de-nest it. It may be
awkward to properly compact some designs under this
limitation, but we thmk 11 would overcomplicate PSI to
incorporate the capability to do multi-level spacing in the
present notational framework. This is one of a number of
subtle questions that require more study.

2. PSI presently compacts a nested design using a maximum
design rule condition. This rule results in very poor area
utilization for a design that has many small cells nested in
it. In the next version of PSI the spacer will have
information about the interior of an embedded cell
instance so that it can use the space adjacent to the cell
more efficiently.

3. It is often the case that one wishes to abut two cells that 578

ROLF-DIETER I

are compacted separately. At present there is no way for
PSI to ensure that when these cells are abutted the design
rules will be satisfied. The next version of PSI will permit
the designer to tell the spacer that abutment of the two
cells is planned and provide it information about the
other cell needed so that it can ensure satisfaction of the
design rules.

4. Designers need to attach names to terminals, nets, and
sometimes devices; and in the case of net names it is
necessary that the same name be associated to every node
on the net at all levels of hierarchy. PSI presently allows
one to assign a name to an object and it captures the
minimum information needed to propagate names
through the net. However, some new program may be
needed to propagate names through a hierarchy in a fully
satisfactory manner.

5. It is important to be able to incorporate into a cell being
designed at the symbolic level an instance of a cell for
which only a physical description is available and to deal
with the incorporated cell efficiently in compaction. This
capability too is planned for our next version of PSI.

Jogs
Psi provides the capability to insert into a symbolic design
pseudo-objects that tell the spacer where the designer wants
to put a jog in a single line to achieve a more compact
placement. This may prove to provide insufficient flexibility:
Where one wants jogs in multiple parallel lines jogged, a
more complicated implementation would be convenient. We
need more design experience to determine whether multi-
line jogs are necessary.

Non-grid-based editing
Placement of all objects on a coarse coordinate grid can
result in a substantial waste of area where customized device
sizes are being used, so PSI has no such restriction on its
placements. Thus, given our decision to compact at only one
hierarchical level at a time, it is necessary to provide the
object mode to edit devices. This might not be a
requirement in other systems.

Control of compaction
Moqt svmbolic layout systems provide the designer a means
to specify constraints on the placements the spacer makes,
e.g., that a cell be of exactly a certain width, that its
terminals have a specified separation, that certain
components be in a particular configuration, etc. We have
incorporated or plan to incorporate most of the capabilities
of this sort that we know of. We have implemented or are in
the process of implementing the following constraint
Capabilities:

I . Designer specifies constraints of equality or inequality
between pairs of objects, including cell boundary objects.

3EBRICH E ST A .L IBM J . RES. DEVELOP, VOL. 28 NO. 5 SEPTEMBER 1984

Designer defines fences to cause subsets of cell
components to be kept in a close group during
compaction (as in J. Williams’ STICKS).
Designer specifies a program of compaction, specifying as
individual steps a dimension of compaction, X or Y, the
side from which compaction should proceed, and the line
toward which compaction should proceed, either a cell
boundary or an interior line.
System captures a compaction sequence and can rerun it
in batch mode (to be implemented).
Designer specifies that a cell is to be compacted so that if
it is abutted to a specified cell, no spacing errors occur
(discussed above).

Parameterized cells
The power of a symbolic system would be greatly increased
if one could define a generic cell, some of whose dimensions
are parameters that are only specified when an instance of it
is created, and could assign values to these parameters by
means of a program that processes the design. We
considered implementing such a capability, but decided that
it would make PSI too complex, given the system framework
as now defined. We have defined a limited type of
parameterization capability that seemed feasible in our
system framework, but have not as yet decided to implement
it.

Acknowledgments
We wish to express our appreciation to a number of people
in IBM who have helped us in various ways with the
development of PSI: C. Wong for discussions of algorithms,
B. Greene, B. Steinman, S. Posluszny, and D. Cummings for
discussions of system implementation considerations, and C.
Gura, J. Beckwirth, M. Clark, and R. Lembach for their help
in system test and evaluation.

References
1. J. D. Williams, “STICKS-A New Approach to LSI Design,”

Master’s Thesis, Massachusetts Institute of Technology,
Cambridge, MA, June 1977.

Circuits,” ERL Memo VCBIERL M79/80, University of
California, Berkeley, December 1979.

3. N. Weste, “Virtual Grid Symbolic Layout,” Proceedings of the
18th Design Automution Conference, June I98 I , pp. 225-233.

4. R. C. Mosteller, “REST: A Leaf Cell Design System,” VLSI’8 I ,
J. P. Gray, Editor, Academic Press, Inc., New York, 1981, pp.
163- 172.

5 . M. W. Bales, “Layout Rule Spacing of Symbolic Integrated
Circuit Artwork,” Master’s Thesis, University of California,
Berkeley, May 1982.

6. K. H. Keller, A. R. Newton, and S. Ellis, “A Symbolic Design
System for Integrated Circuits,” Proceedings of the 19th Design
Automation Conference, June 1982, pp. 460-466.

7. R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G.
Vijayan, “ALI: A Procedural Language to describe VLSI
Layouts,” Proceedings of the 19th Design Automation
Conference, June 1982, pp. 467-474.

2. M. Y. Hsueh, “Symbolic Layout and Compaction of Integrated

8. R. K. Montoye and P. W. Cook, “Automatically Generated
Area, Power, and Delay Optimized ALUs,” Digest of Technical
Papers, IEEE International Solid-State Circuits Conference,
February 1983, p. 132.

9. W. L. Schiele, “Improved Compaction by Minimized Length of
Wires,” Proceedings of the 20th Design Automation Conference,
June 1983, pp. 121-127.

IO. Y. Z. Liao and C. K. Wong, “An Algorithm to Compact a VLSI
Layout with Mixed Constraints,” IEEE Trans. Computer-Aided
Design CAD-2,62-69 (April 1983).

Received February I , 1983; revised April 26, I984

Edward Adams IBM Research Division, Yorktown Heights, New
York 10598. Dr. Adams received the B.S. in chemistry from
Southwestern University at Memphis, Tennessee, in 1943, and the
MS. in physics (1 947) and Ph.D. in theoretical physics (1950) from
the University of Wisconsin at Madison. Dr. A d a m is manager of
VLSI symbolic layout tools in the Computer Science Department.
He joined IBM in 1959, and has served twice on the staff of the
Director of Research and as research director of engineering science,
research director of systems and applications, and research director
of computer-aided instruction. He has served on the faculty of the
University of Chicago, in the Department of Physics and in the
Fermi Institute, and has been a member of the Physics Department
of Chicago Midway Laboratories. He served as research manager in
solid state physics and semiconductors at the Westinghouse Research
Laboratories, as visiting faculty at the Carnegie Institute of
Technology, Pittsburgh, Pennsylvania, in physics, the State
University of New York at Stony Brook in physics and engineering,
at the City University of New York Graduate Center, New York, in
educational psychology, and at the California Institute of
Technology, Pasadena, in computer science. Dr. Adams is an
original Atomic Energy Commission Fellow, 1948-1950, and a
Fellow of the American Physical Society. He is a member of the
Association for Development of Computer-based Instruction
Systems, the Institute for Electrical and Electronics Engineers, and
the International Federation for Information Processing.

Rolf-Dieter Fiebrich Thinking Machines Corp., 577 Beaver
Street, Wallham, Massachusetts 02154. Dr. Fiebrich received his
B.S. in electrical engineering (1973) and his Ph.D. in computer
science (1977) at the Technical University of Munich, Federal
Republic of Germany. He served as Assistant Professor of Computer
Science at Ludwig-Maxmilian University, Munich, from 1973 to
1979 and as manager of data communications for the Leibniz
Computing Center of the Bavarian Academy of Science, Munich,
from 1978 to 1979. From 1979 to 1983 he was a Research staff
member at the IBM Thomas J. Watson Research Ce‘nter, Yorktown
Heights, New York, working with software engineering and the
development of symbolic layout tools.

George KoPPelman IBM Research Division, P.O. BOX 218,
Yorktown Heights. New York 10598. Mr. Koppelman is a Research
staff member in the Computer Sciences Department at the IBM 579

LL. IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984 ROLF-DIETER FlEBRlCH ET P

Thomas J. Watson Research Center. He received his B.S. degree
from the University of Chicago, Illinois, in 196 1. He joined IBM at
the Watson Research Center in 1965 and has worked in pattern
recognition, graphics, and interactive document scanning and, from
198 I to 1983, as a member of the VLSI design tools area in
Josephson development, working on circuit simulation, design
automation tools for master image logic chips, and in the
microprocessor design group.

Yuh-Zen ha0 ECAD, Inc., 3255 Scott Boulevard, Santa Clara,
California 95051. Dr. Liao received the B.S. (1971) and MS. (1973)
degrees in electronic engineering from the National Chiao Tung
University, Taiwan, China, and the Ph.D. degree in electrical
engineering (1980) from the University of California, Berkeley. From
1980 to 1982, he was a senior staff engineer at the Link Flight
Simulation Division, Singer Company, where he developed
algorithms for removing aliasing effects in computer-generated
moving images. From 1982 to 1984, Dr. Liao was a Research staff
member at the IBM Thomas J. Watson Research Center working on
an automatic compactor for VLSI symbolic layout, with research
interests including image processing, computer graphics, and
computer-aided design of VLSI layout.

580

ROLF-DIETER FIEBRICH ET AL. IBM J. RES. I 3EVELOP. VOL. 28 NO. 5 SEPTEMBER I 984

