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A symbolic  layout  tool, PSI, is described for use 
with IBM circuit  technology.  Significant features 
of PSI are  used with  multiple  circuit 
technologies,  adaptation  to  rapid  changes of 
technology  design  rules,  creation of nested 
designs,  and  extensive  designer  control  over  the 
spacing  process. 

Introduction 

0 Objectives 
Reports of the  development of automatic symbolic layout 
tools have made evident the potential  of  such tools  to 
produce physical designs that  are correct by construction 
with much smaller expenditure of  resources than is required 
by more labor-intensive design methods [ 1-91. Previously 
reported  symbolic custom layout  tools, STICKS [I],  
CABBAGE [ 2 ] ,  MULGA [3], and REST [4], have  for the 
most  part utilized spacing  rules or element positioning 
conventions  that  are  more restrictive than might  ultimately 
be  aimed  at for custom design of industrial products; 
however,  they  have  shown that such  tools can be made 
practicable. 

Using this previous  work as a point of departure, we have 
developed  a  symbolic  layout  tool  for making  custom circuit 
designs in  any of several families of circuit  technology used 
in IBM. Our  main objectives in this  development were the 
following: 

1. The tool should  guarantee  that a design satisfies all purely 

2.  It should allow nesting of cells and  the easy incorporation 

3. It should  provide means  for  the designer to exert some 

geometric design rules. 

in  a cell of cells designed by other tools. 

control over the spacing process, e.g., to specify particular 
dimensions of the spaced layout, groupings of 
components, etc. 

technology  variants and,  for each,  should incorporate sets 
of design rules  complex enough  to achieve  good 
placements of  circuits made in  each  technology. 

5. It should  provide quick, simple means  to  incorporate 
design rule  changes  in the tool and  to  automatically 
update a design in response to rules changes. 

densities not greatly lower than those realized by a 
human  layout designer using manual  methods. 

design integrity  in existing design system data base 
environments. 

8. It should run fast enough  to be used in  an interactive 

4. It should accommodate a number of different circuit 

6. It should  achieve  for designs of  typical  complexity layout 

7. It should  capture  information needed to  audit  and  ensure 

design environment. 

Status of implementation 
We developed  a first-phase prototype of a symbolic  layout 
system suited to IBM technologies incorporating as many 
features  as we could  implement in about a year. We 
subsequently added to these  as we gained  experience with 
the first version of the tool. 

Our  prototype system, which we call PSI, is generically 
similar to STICKS, CABBAGE, and REST. However,  it 
differs from  the versions of predecessor systems with which 
we are familiar  in many details,  most importantly  in 
providing  for the explicit nesting of symbolic cells, in 
providing  increased  designer control of the  compaction 
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process, and providing the capability to design in  any of 
several circuit technologies. 

our initial goals. In  the sections that follow we describe the 
state  of the PSI prototype  and our present  perception of 
what is necessary in  such  a system beyond  what was 
available  in  earlier STICKS systems  for it to be useful in an 
industrial design environment. 

The system we have at present  meets many  but  not all of 

System  description 
Our system consists of three main program packages. The 
interactive  graphical editor for entry of designs exists in two 
versions, one using the 3277GA terminal  attached  to  an 
IBM 308 1, the  other using a  graphics  processor terminal 
connected  to a minicomputer.  The spacer, which runs  under 
VM/CMS  on IBM 3081 equipment, provides means for  a 
designer to  make a compact  placement of objects in a single- 
cell layout. The  maskmaker program, which also runs only 
on 308 1 equipment, generates specifications in several GL/I 
idioms for the masks to fabricate  circuits  described by PSI 
files. 

In PSI a design description is provided  as  a set of files, a 
definition file for each independent cell of the design 
together with a number of auxiliary files prepared from 
these. 

Data representation 
A cell definition file consists of a set of  one-line records, each 
record defining  either an object in  the cell or  some 
information  about how objects are  to be spaced. In  the 
present implementation a  definition file is a  text file. 

The principal  section of this file contains a list of all 
objects contained in the  prime cell. The objects that  may  be 
specified in  a cell description are  the following: 

cell boundary, 
cell terminals, 
transistors of several types, 
pullup devices, 
contacts, 
wires, 
rectangular  shapes on layers, 
n-wells, p-wells, 
instances of other cells. 

Other sections of the file contain  information  about when 
the cell was created and processed, technology and scale 
information,  boundary descriptions of cells of which 
instances are  incorporated, specifications of constraints on 
object  placement, name equivalence information,  and 
external  connectivity information. 

STICKS, CABBAGE, and REST, is similar to a  circuit 
The symbolic  representation used in PSI, like  those  in 
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schematic, so such  a  schematic can be easily constructed 
from a PSI cell definition. However, each PSI cell also 
provides the geometrical information needed to define  a 
physical layout, so that masks to make the circuit can be 
generated  from the set of definition cells. Thus  the PSI cells 
can easily accommodate  the extraction  of information for 
use in either logical or physical simulation. 

The PSI programs can deal with multiple technologies, 
but they are technology-knowledgeable rather  than 
technology-independent.  They  have specialized routines  that 
embody knowledge of each type  of device used in any of the 
technologies PSI can accept. A designer user makes  entries  in 
a  small  personalizing file to specify which technology is to be 
used for a  particular design. By reading this file the programs 
determine which devices can  occur in a  particular design, 
and by reading  tables  in  auxiliary files they  determine rules 
on device dimensions  and object spacings required by the 
technology. 

for different technologies within  its scope. 
This simple arrangement gives good flexibility in using PSI 

Editor 
FSE is an interactive  graphical editor  for preparing  a 
symbolic  representation of a  circuit.  Using FSE a designer 
sketches  a  circuit,  showing the relative placement of all 
circuit components,  and  may also provide  exact physical 
dimensions of components  or  component spacings which he 
wishes to specify. FSE has routines  that can  build any device 
used in  any of several technology  variants, and  the designer 
need only specify this  technology at  the outset  of  a design. 
Four technology  variants  have been dealt with thus far, two 
NMOS and two CMOS technologies. 

Displaying circuits 
FSE displays wires in a nonexpanded form as lines, but 
displays a point object  in  a form which shows  its true size. 
When a cell is being  edited, all its contents  are displayed, but 
when an instance  of  a cell is used as a component of another 
cell, only an abstract boundary representation is shown. This 
representation  consists  of  a bounding box and a set of 
terminals,  where  a terminal is an interval on some side of 
the  bounding box to which an external connection  can be 
made. 

Editing cells 
More  than  one cell may  be edited during a single session. 
When reference made  to a cell during  an editing session 
requires information  about  the  contents of a cell, the cell 
description is automatically  loaded from disk into  main 
memory.  When the designer  moves to edit another cell, 
status  information is preserved on all cells previously edited 
during  the session, and  the editing environment is restored 
upon  return  to a cell previously edited. 
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Creating objects 
An object is created by positioning the cursor at the desired 
position and pressing an appropriate key. In custom design 
the dimensions of objects may  be  varied to accommodate 
circuit requirements. PSI assigns default values to the 
physical dimensions and orientation of a newly created 
device, so the designer can defer entering these data until it 
is convenient. Terminals are created automatically when a 
wire  is drawn to the boundary and automatically deleted if 
the wire  is deleted. 

Instances of cells  used as components are created by a 
procedure that allows a final position adjustment after the 
cell instance is  called forth. 

Establishing conneclivity of objects 
For interconnection purposes FSE,  like  CABBAGE, treats a 
transistor and/or contact as a point object located at a single 
point of the coordinate space. No matter what the actual size 
of a point object, all connections to it must be made to its 
“typical point” rather than  to  one of its edges. Natural 
conventions define  which terminal a wire connected to an 
object is connected to. 

Point objects (transistor, contact, terminal) must be 
connected by wires, and connections between objects and 
wires are deduced from coordinate values, so a wire and a 
point object are considered connected only if they have a 
common point on the same layer. Thus  the possibility  exists 
that two objects whose positions were entered by means of a 
graphical input device  may appear connected without in  fact 
having  exactly the same coordinates. 

FSE provides two modes for entering coordinates, which 
deal with the problem of establishing connectivity in 
different  ways. When FSE is in grid mode of entry, any 
entered point is  forced to lie on a grid of points that covers 
the design,  with  grid  spacing such that neighboring grid 
points are visibly  well separated. So long as  all objects 
entered lie on the grid, points that seem connected are thus 
ensured to be so. 

In many cases a design contains objects that  are not 
ensured to be on  the grid, either because the grid  spacing  has 
been changed or because they have been placed by the 
spacer. To ensure connectivity of objects or lines added to 
the design in such a case, FSE provides an object mode of 
editing. When the designer enters a point in  object mode, the 
coordinates of the point “snap” to those of any object 
located within a critical interval of the cursor, this interval 
being  shown  graphically as a box  which surrounds  the center 
of the cursor. Thus, a point object is positioned exactly on a 
nearby wire, and a wire  is  caused to end exactly on a nearby 
point object. 

Wiring 
Every  wire must be either strictly horizontal or strictly 

574 vertical, but, when one enters the positions of the wire ends 

graphically, they are usually not perfectly  aligned along a 
coordinate axis.  In  grid mode FSE draws the single  wire, 
whether horizontal or vertical, that lines up with the initial 
point; in object mode FSE puts a jog in the wire  if  necessary 
to ensure that it connects to a point object at its end. 

Workstations 
FSE  is designed to  run  on either a raster color graphics 
system or a storage vector graphics terminal generally 
available in IBM. The vector storage terminal is called the 
3277 Graphics Attachment. It consists of a 3277 text display 
terminal having an attached Tektronix 6 18 high-resolution 
vector  storage tube in a dual-screen configuration, all 
connected via a high-speed connection to the 308 1 host. The 
input device is a joystick. The terminal architecture is such 
that a keystroke may invoke a command and input 
coordinates at the same time if appropriate. 

which an object is implemented is shown by the line type of 
the outline. 

The color graphics workstation is one we assembled from 
an Apollo DOMAIN node having 1 M bytes  of main storage, 
a local disk, and  an attached Lexidata 3400 color graphics 
system. The workstation components are connected via a 
Multibus-compatible high-speed  DMA interface, and the 
workstation communicates with  IBM hosts via an RS232 
connection. The graphics system has a resolution of 880 X 

704 pixels and a refresh rate of 60 Hz noninterlaced, with 
four color planes, one text overlay plane, and a blink plane, 
and provides hardware pan and zoom. For graphics input a 
tablet with a four-button puck is used. 

Both terminal and workstation are used in a dual-screen 
mode, one screen for display and graphical entry, the other 
for textual input  and  output.  The basic  software is such that 
the editor interfaces to  the two are largely compatible. 
However, some functions are provided on  the high- 
performance workstation that are  not provided on  the GA. 
Thus, commands may be given either through key  presses, as 
on the GA, or via a hierarchical graphical menu making use 
of the puck and the puck buttons. As a result it  would be 
straightforward to migrate FSE to a workstation using a 
single-screen display. 

Symbolic objects are displayed in outline; the layer in 

Spacer 
The function of the spacer is to derive a physical layout far 
the design. To perform this function it must read  design  files 
in the external format created by the PSI Editor, construct 
the mask  polygons implied by the symbols, create a graph 
that summarizes the constraints between object positions 
required by spacing design  rules and designer-specified 
constraints, prompt for designer instructions regarding the 
compaction process, and then determine a placement of the 
objects that is tightly packed and design-rule-correct. During 
the compaction process, the spacer stretches or compacts the 
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interconnection  components  as necessary to preserve the 
topology and connectivity of the displaced objects. When the 
spacing operation is complete,  it  creates  a new file in the 
external format describing the  compacted layout. This file 
can now be modified by the  Editor or used by the mask 
maker  to produce  mask  descriptions in  the language GL/I. 

User commands 
The spacer  may be with or without  a  graphics terminal. 
When used with a  graphics terminal it  provides several 
display and  command  functions  that use graphical input.  In 
particular, the designer can direct the program of 
compaction by specifying the sequence and direction of 
compaction steps. 

any  one  compaction  the designer specifies which axis the 
compaction is parallel to  and  the position  toward which it 
should  proceed, which may be toward either side or toward 
an  internal line  (implosive compaction). At least one 
compaction  must be made parallel to each  axis before design 
rule  correctness is ensured. 

Each compaction is parallel to  either  the x or the y axis. In 

Spacing of a nested cell 
When a cell is compacted,  the  boundary is contracted until it 
touches  the objects inside. When a nested design is 
compacted,  the spacer does  not  examine  the objects  inside 
the polygonal boundary of a cell used as an instance  in  a 
larger cell, so a  space is left between the cell boundary  and 
the edge of an external  mask layer that is the  maximum 
value of all the spacing rules observed by that layer in the 
design rules of the process technology. 

Spacing rules 
The spacing  rules  in an IBM technology manual provide  for 
many different spacings between a given pair of layers, 
depending  on which objects the layers are in, so that  the 
designer is free to use especially close spacings  in all cases 
where the fabrication techniques permit. Typically there  are 
100-200 spacing  rules in  an IBM technology manual. 

In developing the spacing  rules  for PSI, we simplified the 
rules  considerably, so that PSI does  not distinguish as  many 
different cases as the full technology rules. Our present rules 
table involves 36 spacing rules for the  NMOS  and 5 1 spacing 
rules for the  CMOS technology. If in future we found  that 
particular  configurations  could be packed much tighter if 
special spacing  rules  applied between pairs of special regions 
other  than those  now recognized, we could incorporate  the 
necessary code and increase the  number of rules. However, 
we expect that PSI will always use simplified spacing rules. 

Technology interface 
Technology  rules regarding the spacings between objects on 
layers for a given technology are recorded  in an external file 
as  a  table  having  rows/columns labeled by the edge types of 
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the shapes that  form  the transistors,  contacts, and 
interconnections, and entries  equal to  the required 
minimum spacings. We have used up  to 5 1 such rules in the 
technologies we have dealt with so far. 

overlap of the shapes that  constitute the devices of a 
technology are  recorded  in another external file. These rules 
are also used by the  editor  and  are enforced either at the 
time a device is created or  at  the  time a  circuit is spaced. We 
have used up  to 39 such  rules in the technologies we have 
dealt with thus far. 

Rules relating to  the  minimum size, enclosure, and 

To specify the technology to be  used in a design, a 
designer enters its name in  a  small  personalizing file. To 
change the values of technology  rules  governing device 
structure  or edge spacings, a technologist changes the entries 
in the technology tables; the changes are  then enforced in the 
next processing of the design description. To change the 
specification of how a device is built out of shapes,  a 
programmer modifies a module of the spacer  code  without 
other effect on  the spacer. Thus  the spacer  as designed is 
readily adaptable  to technology  change. 

Constraints on placemen1 
The designer can specify two different kinds of constraint  on 
object  placements made by the spacer. One kind of 
constraint is afince, as  in Williams' STICKS. A user-plotted 
fence is a contour in the layout that no  symbol element may 
cross during  compaction. By specifying a set of fences the 
designer can  require pieces of the design to remain bunched 
together  through the  compaction process. The  other 
constraint is a requirement  that  the relative positions of a 
specified pair of symbol elements satisfy an equality or 
lower-bound or upper-bound  inequality  condition  on  their 
values. 

Electrical connectivily 
In many cases, the spacing requirements for two mask 
polygons of the  same type are different depending on 
whether or not they are electrically connected. Thus 
connectivity information must be extracted before assigning 
spacing constraints for mask  elements. At present electrical 
connectivity is extracted by a special routine  that will 
eventually be incorporated into  the  editor. 

Each wire, contact,  or cell-terminal is considered  as  a  net 
node, while a  transistor  has  three nodes corresponding to its 
gate, drain,  and source. All nodes  connected so as to have 
the  same potential are assigned to  the  same net, and nets  are 
given distinguishing numbers.  The net tracer uses a fast scan 
line  algorithm to find trees of connection,  then traces the 
nets and assigns the proper net number  to each object in the 
layout. 

Building the constraint graph 
To place the objects in the layout the spacer solves a 
minimization problem on a weighted directed  graph.  Symbol 
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elements  are mapped to  the nodes and spacing constraints  to 
the weighted edges of  a  directed  graph. Then a  longest-path 
search algorithm is used to find new locations  of the 
elements such that  the overall width of the layout  in the 
compaction direction is minimized. 

We describe the process for x-axis compaction of  a 
constraint graph G: Objects are moved by expansion/ 
contraction of  interconnections. Each node in G corresponds 
to a group of objects which must move  together. Each edge 
in G represents the spacing constraint between two  groups. 
A group is formed by linking point objects and vertical wires 
which are physically connected  on a common  center line. 
Each cell instance, each vertical fence, and each boundary 
(right and left) of the  prime cell is also considered  a  group. 

After groups are  mapped  to  the nodes  in G, the spacer 
program assigns a  spacing constraint  to each edge in G by 
examining all of the rules/constraints constraining  the pair of 
groups corresponding to  that edge. A constraint  may be of 
lower-bound, upper-bound, or equality  type.  A  lower-bound 
constraint is expressed as  a positive weight on a right- 
directed edge of G; an  upper-bound  constraint is expressed 
as a negative weight on a left-directed edge; an equality 
constraint is expressed as  an upper-bound/lower-bound  pair. 

To build the graph for the layout the spacer determines 
what are  the  dominating  constraints for  each edge, 
considering  both the user-specified constraints  on selected 
pairs of symbols, and  constraints deriving from  the 
technology rules. 

In principle, the  number of edges in the graph is 
proportional  to  the  square of the  number of layout elements, 
but  the  number of edges that actually come  into play in 
compaction is more nearly proportional  to  the  number of 
elements for a large layout. That is because the distance 
within which spacing  rules affect edges is similar  in 
magnitude  to  the  minimum line  width  of  mask  elements, so 
that most  pairs of groups are  automatically kept  far  enough 
apart because of the presence of  groups lying between them. 

Since the  time  and  memory required to execute the 
compaction algorithm depend mainly on  the  number of 
edges in the  constraint graph, it is important when  building 
the graph to  eliminate edges whose spacing requirements  are 
satisfied automatically. This is done by the design-rule 
analyzer routine, which makes use of the concept  of updated 
layer-shells. 

There is a shell for  each layer and a shell for fences. For 
compaction  to  the left, a shell is defined as the set of vertical 
edge segments on  the right-side boundary of the  union of all 
mask polygons of that layer that have  already  been 
examined. Initially, all the shells are  empty, except the fence 
shell which contains  the left boundary of the  prime cell. As 
the analyzer successively examines  groups  from left to right, 
it determines  the  minimum spacing requirement between 
each group  and  other groups on its left and  updates  the 

576 shells. 

As the analyzer examines a given group, it  translates the 
elements in  a group  to  the  actual mask polygons, forms  the 
left and right boundaries of every layer on  the  group, 
compares  the edges in  the shell to  the vertical edges on  the 
left boundary of the  group, finds  for  each  pair of edges 
having  overlapped  projections the correct  spacing  value 
required, and, finally by examining all spacing constraints 
affecting the edges of the  group,  obtains a  spacing 
requirement between the  group  and  the shell. In  determining 
the  constraints between two edges, the analyzer  notes 
whether the corresponding  layers  belong to  the  same  net  and 
are allowed to merge. 

After all left edges of  a group have  been  checked, the 
design-rule analyzer updates  the shells by adding  to each 
shell the  appropriate vertical edges on  the right boundaries of 
the  group, clipping out  the shell edges of the  same type, and 
merging the  remaining shell edges to  form new shells. The 
constraint graph is complete when  each group has  been 
examined  and each necessary edge weight determined. 

Symbol placement 
A  graph-theoretic  algorithm  is used to find a placement 
satisfying the  constraints of G and having minimum overall 
width in  the  compaction direction.  Since  mixed constraints 
are allowed, G can  be cyclic, so the straightforward critical- 
path  algorithm used in CABBAGE [ 2 ]  cannot be used here. 

We developed  a new longest-path-search algorithm  for 
cyclic graphs [IO] that finds, e.g., in a leftward compaction, 
the lowest possible coordinate of  each node  in G consistent 
with the  constraints of G. The algorithm does  not  in general 
find the layout with the  minimum possible chip area. 
However,  it  quickly  finds a fairly compact layout, which 
may be good enough  to use or may be made so by manual 
modification by the designer, whereas an algorithm to find 
the layout  of  absolute minimum  area would be so slow as  to 
be impractical for a design of even moderate complexity. 

By reversing the direction of all the edges in G, the  same 
algorithm can  compact  the mask elements  to  the right 
boundary of the  prime cell. For  an implosive compaction, 
two compactions  must  be  done,  one  to  the right and  one  to 
the left; and since nodes corresponding to  the  groups  on  one 
side  of the  compaction  center  may  interact with those on  the 
other side, the designer must indicate which side is to be 
compacted first toward the  compaction  center. 

Performance  considerations 
In developing the spacing  algorithm we considered  speed of 
compaction  important,  but secondary to accuracy and 
function, so long  as the spacer  would be fast enough  to 
compact  the largest cell we needed to deal with in a few 
minutes. Adequate speed was ensured by designing all the 
critical algorithms to  run  in  time  proportional  to N(ln N). 

Probably the largest single cell one would want  to  make 
with a  tool  of this  sort would  have  of the  order 500- 1000 
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devices. To test the speed of compaction of PSI we have run 
several circuits through  the spacer with several cells of 
typical size. One was a personalized PLA we got from Steve 
Posluszny. For  this circuit, which has 50 transistors and a 
total of 240 objects, the total compaction  time was 0.89 
CPU seconds on a 308 1 .  We also compacted a  layout of a 
tally circuit which we got  from R. Montoye;  this circuit  had 
480  transistors and a  total of 2200 objects, and required nine 
CPU seconds. In addition we have compacted a number of 
circuits of various sizes prepared for us by Carol Gura  and 
Marianna Clark. We found  that  the  running  time was 
approximately  linear  in the  number of transistors. The high- 
speed memory required to  compact larger circuits is about 
two megabytes. We estimate that with this much memory 
the spacer  can compact a  circuit with 1000 transistors. 

As  we add  further features to PSI, we may complicate the 
work of the spacer and  thus slow it down somewhat. Even 
so, we project that when in future we move PSI onto a fast 
workstation, the spacer will still be fast enough to be used as 
an interactive  tool. 

PSI maskmaker 
The task of the  maskmaker is to prepare from a  symbolic 
description  of  a design a specification in the language GL/I 
of the masks needed to fabricate  a  circuit embodying  the 
design. The  standard  GL/I representation accommodates 
nested cell descriptions but requires that  the  complete 
description of the design be in  a single file. On  the  other 
hand, in the PSI representation  descriptions  of nested cells 
are  in  separate files. To build the  GL/I description  of  a 
nested PSI design, one  must first make a GL/I description 
for each  individual cell, next  assemble  these  descriptions into 
a single nested description  of the whole design, and finally 
do  any postprocessing needed to  adapt  to  the  notational 
conventions of the designer and  to  adjust  the ideal mask 
shapes  for the biases of  the  fabrication process. 

The PSI maskmaker creates the GL/I descriptions of 
individual cells and  combines these into a single cell 
describing the nested design. It accommodates a  certain 
amount of technology-dependent and user-idiosyncratic level 
naming by  use at mask-writing time of user-provided tables 
for  translating level names. This permits,  for  example, 
combining several symbolic levels into  the  same physical 
mask level and  the use of a variety of different naming 
conventions. It provides means  to  attach logical attribute 
information  to particular  shapes for later  transfer to 
physical-to-logical checking  tools or  other final audit 
requirements.  However,  it does  not perform postprocessing 
functions  that  are specific to  any fabrication process; these 
functions must be done using other IBM design tools. 

Discussion 
In developing PSI  we have adhered  to  the simple style of the 
early prototype symbolic  layout  tools as  much as  seemed 

practicable.  However,  as we worked with potential users of 
the system, who  have assisted us  in debugging and 
evaluation, we have decided that  some features of PSI would 
need to be more complex. The present version of PSI meets 
many but not all of our original goals, so that  further work 
on PSI  is seen as necessary. 

We discuss next our  current ideas about  the relative 
importance of various system features  in  a  symbolic  layout 
tool like PSI. We do this by reviewing features of PSI 
introduced  to meet the needs of the designers we worked 
with and discussing other features not yet implemented  that 
we believe are  important  to provide. As of this writing PSI 
has not had the extensive designer use needed to justify our 
choices of design features or to  quantify  the quality of design 
that PSI can produce, so the evaluations made  thus far are 
based mainly on  our impressions  from designer use in  a 
limited number of test cases. 

Placement of contacts 
The simple STICK representation  in which symbolic  objects 
are connected by lines does  not provide any  natural way to 
connect  to a wire at a point off center.  However, off-center 
connections  are useful in many circuit  configurations. In PSI 
we provide the capability to construct  such connections via a 
special point object called a connection strip. This object is 
essentially a flange that  may be attached to a  transistor or 
line and provides it with a visible dimension  along which 
contacts  can be placed. 

The  optimal shape and position of a  buried contact  are 
sensitive to  the configuration of wires coming  into it. PSI 
does  some  optimization of the  dimensions  and shape of a 
buried contact,  but uses simplified spacing rules  for 
placement.  Since  a  buried contact uses a  rather large area,  it 
may be worthwhile  in future  to refine the procedure  for 
constructing and placing these  contacts. 

Technology rules 
We require  not only  that PSI be usable with a number of 
related circuit  technology  variants,  but also that it provide 
means  to rapidly update a design to reflect recent  changes  in 
the design rules of a given circuit technology. By localizing 
technology-specific data in  tables accessed at  run  time  and 
localizing code that is specific to a  technology or device in its 
own  module,  where it can be readily located and changed 
when necessary, we arrange  that changes of rules can be 
made effective very quickly. This  permits PSI to correct  a 
spacing error immediately and  to correct any  dimension  that 
would be below a  required minimum. However, PSI cannot 
make coordinated changes to  ensure  that such conditions as 
electrical load matching  or  operating  point  are  maintained. 

The design rules for the circuit technologies we deal with 
provide for many different spacing rules between layers, 
depending  on  just what  objects the layers are  in, so that a 
designer can  make  the best possible placements  of  circuit 577 
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elements. In order  to simplify the task of the spacer we have 
defined for PSI a set of design rules that  are simpler than  the 
complete technology rules. although  more complex than, 
e.g., the Mead/Conway rules. We have no principle on 
which to  determine whlch specialized design rules to keep: 
We simply selected what looked to be the cases where the 
most area was at stake and devised special rules to deal with 
them. We intend  to  add more rules if  we find circuit 
configurations for which new rules  would  provide significant 
area savings. However. we judge  that  there  are  some 
technology rules that  do  not seem to be worth incorporating 
in PSI when we consider the cost of checking out  that they 
are correctly dealt with in every situation. 

An important special case of the  point  just discussed arises 
where two neighboring  shapes are  at  the  same potential. Two 
shapes  on  the same layer and  at the same potential can often 
be merged and a good area saving realized. PSI currently 
performs  such merges by initially suspending the 
requirement for a minimum spacing between the shapes, 
and then later checking  whether  a merge actually  occurred 
and enforcing minimum spacing rules where  it did not. 

However, we found that if  we make merges that  are 
maximally aggressive. we may adversely affect the result of a 
subsequent compaction in the  orthogonal  direction. We are 
in the process of developing  a merge procedure that gives a 
better trade-off between area squeezed out along the axis of 
compaction  and  the potential to squeeze out  area  in  the 
orthogonal  direction. 

l l i~wrch?s 
To be able to call cells as components of other cells makes  a 
symbolic layout tool  more  broadly useful. However, the 
capability to nest cells, especially cells described  in  separate 
files. creates the following problems to be solved and 
capabilities to be provided that are not present  when one 
deals with single-level cells: 

1. PSI implements  compaction  at a single level of 
description: i.e.. it treats every embedded cell instance  as 
a rigid object. I f  one wishes to reshape  a nested cell 
during  compaction,  one must de-nest it. It may be 
awkward to properly compact  some designs under  this 
limitation, but we thmk 11 would overcomplicate PSI to 
incorporate the capability to  do multi-level spacing in  the 
present notational  framework. This is one of a number of 
subtle  questions that require more study. 

2. PSI presently compacts a nested design using a maximum 
design rule condition.  This rule results in very poor  area 
utilization for a design that has many small cells nested in 
it. In the next version of PSI the spacer will have 
information about  the interior of an  embedded cell 
instance so that it can use the space adjacent to  the cell 
more efficiently. 

3. It is often the case that  one wishes to  abut two cells that 578 

ROLF-DIETER I 

are  compacted separately. At present there is no way for 
PSI to  ensure  that when  these cells are  abutted  the design 
rules will be satisfied. The next version of PSI will permit 
the designer to tell the spacer that  abutment of the two 
cells is planned  and provide  it information  about  the 
other cell needed so that it can  ensure satisfaction of the 
design rules. 

4. Designers need to  attach  names  to terminals, nets, and 
sometimes devices; and in the case of net names it is 
necessary that  the  same  name be associated to every node 
on  the net at all levels of  hierarchy. PSI presently allows 
one  to assign a name  to  an object and it captures  the 
minimum  information needed to propagate names 
through the net.  However, some new program may be 
needed to propagate names  through a  hierarchy  in  a fully 
satisfactory manner. 

5.  It is important  to be able to  incorporate  into a cell being 
designed at  the symbolic level an instance  of  a cell for 
which only a physical description  is  available and  to deal 
with the  incorporated cell efficiently in  compaction.  This 
capability too is planned for our next version of PSI. 

Jogs 
Psi provides the capability to insert into a  symbolic design 
pseudo-objects that tell the spacer  where the designer  wants 
to put  a  jog  in  a single line  to achieve  a more  compact 
placement. This may  prove to provide insufficient flexibility: 
Where one wants  jogs  in  multiple parallel lines jogged, a 
more complicated implementation would be convenient. We 
need more design experience to  determine whether  multi- 
line  jogs are necessary. 

Non-grid-based editing 
Placement of all objects on a  coarse coordinate grid can 
result in  a  substantial waste of area  where  customized device 
sizes are being used, so PSI has no such  restriction on its 
placements. Thus, given our decision to  compact  at  only  one 
hierarchical level at a time, it is necessary to provide the 
object mode  to  edit devices. This might not be a 
requirement in other systems. 

Control of compaction 
Moqt svmbolic  layout systems provide the designer a means 
to specify constraints  on  the placements the spacer makes, 
e.g., that a cell be of exactly a  certain  width, that its 
terminals have  a specified separation, that certain 
components be in  a  particular  configuration, etc. We have 
incorporated or plan to  incorporate most of the capabilities 
of  this sort that we know of. We have implemented or are  in 
the process of implementing  the following constraint 
Capabilities: 

I .  Designer specifies constraints of equality or inequality 
between pairs of objects,  including cell boundary objects. 
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Designer defines fences to cause  subsets  of cell 
components  to be kept  in  a close group  during 
compaction (as  in J. Williams’ STICKS). 
Designer specifies a  program  of compaction, specifying as 
individual  steps  a dimension of compaction, X or Y, the 
side from which compaction should  proceed, and  the line 
toward which compaction should  proceed, either a cell 
boundary or an interior  line. 
System captures a compaction sequence and  can  rerun it 
in batch mode  (to  be implemented). 
Designer specifies that a cell is to be compacted so that if 
it is abutted  to a specified cell, no spacing errors occur 
(discussed above). 

Parameterized cells 
The power of a  symbolic system would be greatly increased 
if one could  define  a generic cell, some of whose dimensions 
are  parameters  that  are only specified when an instance of it 
is created, and  could assign values to these parameters by 
means of a  program that processes the design. We 
considered implementing such a capability, but decided that 
it  would make PSI too complex, given the system framework 
as  now defined. We have  defined  a  limited type of 
parameterization  capability that seemed feasible in our 
system framework, but have not as yet decided to  implement 
it. 
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