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Using a
hardware
simulation
engine for
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structured
designs
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Mixed-level simulation techniques are widely
used in VLSI designs for verification and test
evaluation. In this paper we indicate how to
perform mixed-level simulation on structured
MOS designs using the Yorktown Simulation
Engine (YSE), a hardware simulator developed
at IBM. On the YSE, simulation can be done at
the functional, gate, and transistor levels. The
design specification used by the YSE is well
suited for mixed-level simulation, particularly
with regard to interfacing the different levels.
We apply our techniques to an nMOS design to
show the important features of our approach.

introduction
Advances in silicon technology have led to chip designs
consisting of hundreds of thousands of devices on a single
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chip. Typically, these chips have relatively few probe points
compared to the number of devices they contain, thereby
complicating debugging and testing. Moreover, the
manufacturing costs of such complex designs are high. These
factors have led to extensive software modeling prior to
hardware manufacture. Software models are used to analyze
the design in ways not possible or practical with actual chips
or hardware (e.g., TTL) models.

Many design techniques use simulation to exercise the
circuits for some specific purpose. The two most common
applications are in design verification and fault simulation.
In the former, the design is simulated to verify that it
performs a correct function, while in the latter
manufacturing test cases are evaluated for effectiveness in
detecting assumed physical defects.

The design methodology strongly influences the kind of
modeling and simulation employed. Most VLSI chips are
designed using a structured, top-down approach. The chip is
partitioned into a set of macros, each of which can be
modeled independently and at different levels of complexity.
Three levels of complexity are commonly used: the
functional or behavioral, Boolean or logical, and transistor
or device level. If the simulation uses one modeling level for
all of a design it is said to be flat, or single-level. In a mixed-
level approach, different parts of the design are specified at
different levels.
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Depending on the size of the design and the modeling
techniques employed, the computer resources used during
simulation can be astronomical. In order to reduce the large
expense of simulation, specially architected computers have
been developed for high-speed simulation [1-5]. These
hardware simulators have the capability to simulate large
designs at very high speeds. For example, a fully configured
Yorktown Simulation Engine (YSE) can simulate more than
two million logic gates at more than three billion gates per
second [2].

We indicate in this paper how a hardware simulation
engine can be applied to custom MOS designs. As a specific
example, we consider the use of the YSE. First, we describe
the structured design approach and how simulation is used
for verification and test coverage evaluation. Next we outline
how the YSE models are created for different design levels
and how the different levels are interfaced. Finally, we
describe a sample nMOS design which illustrates these
techniques.

Simulation and custom MOS structured design
In the early phases of a design, each macro might be
modeled using a high-level behavioral description of
relatively low complexity and detail but high functional
content. As the design progresses, different pieces are
designed at the Boolean level, using logic gates which are
readily and efficiently implemented with a given technology,
such as NAND and NOR (see Figure 1). Ultimately, the
circuits in each logic gate are described at the transistor level,
sized, and implemented. This top-down method allows
attention to be focused on local design considerations, but
always in the context of the global environment.

The functional level describes the macro in terms of
objects which are close to the chip’s architecture. A common
representation expresses the function of a macro as
interconnected storage elements, called registers (or latches).
Information is transferred between different registers on
specific control conditions. The structure of this level is often
influenced by specific technology considerations, but the
specification itself is usually independent of technology.

A Boolean representation expands the functional objects
into the logical expressions which implement the latches and
the transfers defined in the functional level. Technology-
dependent parameters, such as propagation delays, are often
included.

The transistor level gives the implementation of the
macro’s function in terms of the actual devices used on chip.
The transistor level is closest to the actual artwork used for
chip fabrication and as a consequence requires specific
technology-dependent information.

Certain MOS circuits require careful modeling for a
correct Boolean specification because of the special
characteristics of MOS technology, i.e., the bidirectionality
of the MOS transistor and the sharing of charge between
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Logic gates for nMOS and CMOS: The NOR, NAND, and NOT
logic gates (top) are three common circuits used in both nMOS
(middle) and CMOS (bottom).

nodes that are effectively isolated from external current
sources.

As a simple example, consider the nMOS multiplexer
circuit shown in Figure 2. The logical expression
(X A 4) V (Y A B) is not accurate, since conditions where
X = Y can result in potential ambiguities:

e The output when X = Y = 1 depends on the relative
conductances of the transistor (the less resistive path
dominates).

o The case X = Y = 0 decouples the output from the
external sources, resulting in a memory state which
depends on the previous history of the circuit.

Problems with such circuits often result in restricting their
use to the interior of macros and/or strict design rules to
ensure that ambiguities do not occur (i.e., to ensure that
X —= Y in the above example).
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nMOS multiplexer circuit: The nMOS multiplexer circuit shown in
(a) does not have the logical representation shown in (b) unless it
can be guaranteed that X —=Y.

o Continuous and discrete simulation
The accuracy required of simulation has to be balanced by
its cost, which is usually measured in terms of CPU time and
memory requirements. For example, detailed electrical
circuit simulation [6, 7], using parameters estimated from
actual wafer dimensions, is required to accurately predict
transistor characteristics, such as switching speed and power
consumption. While highly accurate, the cost of circuit
simulation is so high that it becomes impractical for more
than a few hundred transistors at one time.

Circuit simulation provides a continuous prediction, e.g.,
a waveform, of the response of the design. Gate-level
simulation, on the other hand, approximates the response of
the design by discrete quantities. By definition, gate
simulation is less accurate than circuit simulation, but is
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much more efficient. Functional-level simulation is even
more efficient, as many logical gates can be combined into
latches and control lines. Because of this efficiency/accuracy
tradeoff, simulation at the functional and Boolean level is
not often used to determine how fast a particular transistor
or logic gate switches. Instead, a unit delay discrete
simulation is usually employed to ensure that the design
performs correctly under a wide variety of input patterns
and control sequences.

o Mixed-level simulation

Mixed-level simulation combining the functional and
Boolean levels is commonly used in chip designs, while it is
less common to see a mixture of these with the transistor-
level simulation. The reason for this is the similarity between
internal representations used by the simulator for both the
functional and Boolean levels, which allows for a
straightforward interface between these two levels. On the
other hand, the representations and algorithms used for
circuit simulation are substantially more sophisticated. The
key to mixing transistor-level simulation with the Boolean/
functional simulation is to either make the functional/
Boolean simulation continuous or make the circuit
simulation discrete. We use the second alternative, since the
discrete simulation is inherently faster and more suited to
the YSE architecture.

A discrete simulation for MOS transistor networks can be
achieved by replacing the transistors by switches [8, 9].
While not applicable to all transistor circuits (such as
operational amplifiers), switch-level simulation (SLS)
correctly predicts the behavior of digital circuits commonly
used for logic chips. Because SLS is a discrete simulation, its
interface with the functional/Boolean level is
straightforward, yet it maintains a close correspondence to
the actual circuits.

For design methodologies that do not use a technique like
SLS, the only way to connect the functional simulation with
the transistor-level simulation is by mapping the transistor
network into a set of Boolean equations. This is
straightforward when the transistor network was obtained
from a corresponding Boolean level, but is often artificial
when the Boolean equations are derived from the transistor
network itself.

e Simulation for design verification
Simulation is used for design verification to ensure that the
design has the correct, i.e., intended, function. First, the
design is described at the functional level for each macro and
simulated. Next, macros are designed physically and mixed-
level simulation is run using a lower-level description for
each macro.

With SLS it is in fact possible to avoid building the
Boolean specification and work directly with the transistor-
level description for many macros. In addition, since the
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transistor description used in SLS either can come from the
designer or can be extracted directly from the mask artwork
using standard device recognition programs, SLS can also be
used to verify (by simulation) the physical design of
complete macros.

o Fault simulation

The goal of fault simulation is to evaluate a set of test cases
to be used during manufacturing. In fault simulation, a fault
model is used to approximate the effect of certain
manufacturing defects. These defects, called faults, are
introduced into the software model of the design; the faulted
model is then simulated and the results compared to the
good machine simulation results. If the two models produce
different outputs, the fault is said to be covered by the test
patterns used during the simulation.

Fault simulation requires a description of the circuit
which can be correlated with real devices. For gate-level
descriptions which are good structural representations of the
actual circuits, such as NAND gates, the determination of
which nodes in the model to fault and how to fault them is
straightforward.

For those MOS circuits which are difficult to model using
- Boolean expressions, the identification of faults is also
difficult. In SLS, however, the description is close to the
actual structure of the design, and thus fault identification is
easier. Therefore, SLS allows accurate coverage estimates of
test cases for these difficult MOS circuits.

Model building for the YSE

We begin by outlining some properties of the YSE
architecture [1, 2, 10]. The basic design of the YSE is
oriented toward high-speed 4-valued logic simulation at the
gate level, e.g., 0, 1, unknown, and tri-state. The YSE itself
(see Figure 3) consists of a collection of identical logic
processors (LPs) along with an interprocessor switch. Each
LP executes its own program, but in lock-step fashion, using
the switch for interprocessor data communication.

A YSE instruction can accommodate four 2-bit-wide
inputs and produces one 2-bit output, according to a user-
programmable truth table. In addition, all inputs and the
output may be further modified by using de Morgan fields,
which indicate a user-programmed transformation to be
applied to the appropriate value before its usage (when
input) or storage (when output). For example, inputs and/or
the output can be inverted, set to a constant, etc.

Using the YSE as the target machine for algorithm
execution makes it necessary to serialize the simulation
process, 1.e., avoid the use of conditionals. Also, iterations
which have to be carried out a variable number of times
(depending on current external input) have to be avoided as
much as possible. The reason for this is the high overhead
incurred by these operations when running on the YSE (for
more details see [1, 2, 10]).
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YSE architecture: The YSE consists of a set of logic processors,
connected through an interprocessor switch, and linked to a host
machine.

Simulation on the YSE is thus conceptually similar to
software-compiled code simulation. In order to simulate on
the YSE, a design must be translated into a special YSE
assembly language, which is then compiled into the
appropriate machine code, linked, loaded, and then
simulated on the YSE (see Figure 4).

o Functional and logical model building

Functional and Boolean model building on the YSE are very
similar, YSE functional model building uses logic synthesis
techniques [10] to obtain a Boolean equivalent description
from a suitable register transfer level (RTL) language. YSE
Boolean model building uses the macro facility of the YSE
compiler, whereby multiple input-output logic gates can be
expanded into equivalent sets of four-input, one-output logic
gates. These reduced logic gates are then mapped on YSE
instructions, as the YSE functions (i.e., operation codes) are
fully programmable.

o Arrays

While it is possible to simulate arrays (ROM and RAM) at
the device or gate levels, for many applications this amount
of detail is not necessary. The YSE has special assist
hardware (see Fig. 3) which allows it to simulate large arrays.
Special software allows us to specify arrays at the functional
level; the declarations are then converted into the
appropriate instructions for the hardware.

o Transistor model building

We model transistors on the YSE using a switch-level model.
Details of our approach have been described elsewhere [9],
so only a summary is presented here.
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YSE model generation: Designs to be run on the YSE are described
in a YSE assembly language file, which is then compiled, linked,
loaded, and simulated.

YSE SLS algorithm: The SLS algorithm for the YSE consists of a
node update phase and a transistor update phase.
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Switch-level model

In the switch-level model [8], a circuit is a network of nodes
interconnected by transistors (switches). Nodes are either
external (i.e., inputs, V,,, Gnd) or internal (all others).
External nodes are not affected by the circuits théy drive;
internal nodes have an associated capacitance, reflecting the
charge-sharing property of MOS circuits.

The transistors in this model are considered to be
bidirectional switches in one of three possible states: open,
closed or unknown, depending on the transistor’s gate value.
The source and drain terminals of a transistor interact in a
manner which depends on the transistor’s state and
conductance. This interaction also depends on the strength
of the signals present on each node. For example, driven
nodes dominate those with stored charge, and signals
through enhancement devices are usually stronger than those
through depletions.

After modifying external inputs, the circuit undergoes
changes until it finally reaches a steady state (if it does not
oscillate). In order to simulate this process (see Figure 5), we
perform a series of two-phased iterations [9]. The first phase
of an iteration is the so-called transistor update process (or
T-phase), and the second phase consists of the node-
updating procedure (or N-phase).

During the T-phase, the current state (0, 1, X) of each
node connected to a transistor gate is used to determine the
transistor’s state. For n-type enhancement devices, a gate
value of 0 opens the switch (i.e., the transistor is not
conducting), while a 1 value closes the switch (for a p-type
device, a gate value of 1 opens the switch and a value of 0
closes it). For the case where the gate node is in an X state,
we set both source and drain nodes of the transistor to an X
state. This approach is pessimistic since Xs propagate
through the simulated network further than they would in
the actual circuit. Nevertheless, this has proven very effective
in uncovering mistakes during design verification. More
sophisticated approaches to the X state are also possible.

Once determined during the T-phase, the transistor states
remain constant for the complete iteration, even if the
appropriate nodes do change states.

After the T-phase is completed, the N-phase is executed,
according to the following principles:

e Changes in external inputs induce a dynamic partitioning
of the network into sets of nodes which are connected
through conducting transistors. These sets should attain
common states in the process of bringing the entire
network to a steady state (if the circuit does not oscillate).
Our approach is to reach common states for every set of
nodes in a manner which is independent of the current
transistor settings. To do so, we perform (fixed) pairwise
interactions between nodes which share a transistor.
¢ The convergence of all nodes to common set states may
require several passes through the network (i.e., repeated
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interactions between adjacent nodes), depending on the
network topology and the input pattern.

o The above iterations must be repeated for circuits
containing feedbacks and/or transistors with gates
controlled by internal nodes, until a steady state is
obtained.

From physical design to YSE transistor simulation

Figure 6 shows the various steps that are necessary to
generate the YSE instructions for SLS. We require a flat
nodal description of the transistors and a list of the primary
inputs. Some physical information about the transistors is
also used, such as their types (enhancement or depletion)
and the type of their carriers (p or n). The description can
come either from physical layout or a hierarchical network
definition [6]. In the first case, the transistor network is
extracted from the shapes, while in the second case it is
obtained by denesting.

SLS algorithms for computing the node states require
certain structure analysis to be performed on the network.
The analysis is done to enhance the efficiency of code
generation and simulation itself. There are essentially three
phases:

1. The first phase partitions the network into components
called groups. Groups are directed in the sense of a logic
gate, such as an AND gate, in that it has well-defined
inputs and outputs. A switch, by definition, does not
cross a group boundary because of its bidirectional
nature.

2. The next phase orders the groups. Optimizing this order
with respect to many objective functions, such as
reducing the number of global feedbacks, is NP-hard. We
employ a heuristic based on the use of an immediate
dominator list for each group to reduce, in a game-like
fashion, the number of global feedbacks.

3. The last phase imposes an orientation on each transistor,
i.e., a direction for propagating information in each pass,
and assigns an ordering for the transistors in each group.
As was the case for global ordering, optimally ordering
and orienting transistors to minimize the number of
iterations are NP-hard problems. Our ordering and
orientation heuristic is described in detail in [11].

e Level interfacing
Up to now we have discussed only the model building for
single-level models. As discussed in the section on mixed-
level simulation, one often wants to simulate parts of a
design on different levels. This introduces the problem of
how to interface these different parts. For the three different
levels that we have discussed so far, the interfacing requires
some care.

We interface the different levels by using correspondence
of net names, which ensures the equivalence of values across
the level boundaries. This causes no problems when
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SLS processing steps: The NODES file is generated from the nodal
description of the network by a participating/scheduling algorithm.

interfacing the functional and logical levels, because both use
the same bit-encoding scheme for logical values. On the
YSE, the same approach works for the interface between a
switch-level block and a Boolean or functional-level block,
because the SLS encoding uses one YSE data word for the
logical value and a different data word for the strength of the
signal.

Propagation of signal strengths between the functional/
Boolean level and the transistor level does require some
special consideration. Even the propagation of the signal
value itself across such an interface depends on the strength
of the sending and receiving signals. Consequently, we have
to include some information about the strength of those nets
that are outputs of a Boolean or functional block and are
connected to the source or a drain of a transistor.

Example

The methodology presented above has been exercised on a
small example: a 4-bit slice of a Manchester carry chain
ALU (adapted from [12]). The circuits are shown in Figure
7, for a bit slice and part of the carry chain. Each bit slice
has two data inputs, which are controlled by select lines, and
contains three universal logic function blocks. Two of these
blocks determine the kill and propagate bits for the carry of
each bit, while the third block is used to obtain the result.
The function to be performed by the ALU is selected by
supplying the appropriate controls to the kill, propagate, and
result logic function blocks.
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| ALU circuit: A single bit slice of the ALU (adapted from [11]).

l Control logic

AN—

| Block diagram of the embedded ALU.

In our example, the ALU is embedded in a larger piece of
logic that contains two ROMs, a RAM, and some control
logic (see Figure 8). The ROMs hold input vectors and
corresponding control vectors for the ALU. The control
vectors exercise the ALU by having it calculate several
functions with different inputs.
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I Control logic: The run protocol for the ALU model.

The arrays and control logic are described first at the RTL
level. From this RTL description, a set of YSE instructions is
obtained using a logic synthesis program. This set of YSE
instructions is then merged with those that model the ALU
itself at the switch level. The strength of the input vectors
and control vectors is assumed to be higher than the strength
of any signal in the ALU, while the strength of the output
signals from the ALU is assumed to be higher than that in
the output RAM. In this way, there is a clear flow of
information from the input ROMs, through the ALU to the
output RAM.

The simulation protocol proceeds as indicated in Figure 9.
First the precharge signal is set high and the select lines low,
then the YSE instructions are executed to simulate the
precharge phase. Next, the inputs and the control bits are
read in from the ROM, the precharge signal is set low, and
the YSE instructions are again executed to simulate the
actual computation phase. Finally, the resulting outputs are
stored on the RAM.

The ALU proper contains 192 transistors and uses 900
YSE instructions. The two ROMs and the RAM are each
1024 by 16-bit word arrays. The read-write control logic
needs 45 YSE instructions and the array address decode and
enable logic takes 131 YSE instructions. Because of the
precharge phase, the full set of YSE instructions has to be
executed twice for each functional cycle. The resulting
simulation time per functional cycle is 0.2 milliseconds.

The model described here was intended for fast simulation
of many cycles on the ALU. However, its structure is rather
general and is a good example of mixed-mode simulation. In
fact, the ALU could not have been simulated on a higher
level than the switch level without extensive virtual logic.
Also, the control section could not have been as
conveniently specified on a level lower than the functional,
without a great increase in the number of YSE instructions.
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Summary

We have indicated how the Yorktown Simulation Engine
(YSE) can be used to perform mixed-level simulation on
structured MOS custom designs. On the YSE, we can mix
descriptions at the functional, Boolean, and transistor levels
in the simulation. A variety of tools are used to support this
simulation, including circuit extraction and analysis
programs, compilers for the production of YSE code, and
monitors to interface with the user during simulation.

The motivation for modeling designs at three different
specification levels is quite clear. On the one hand, the size
of VLSI designs makes their detailed circuit-level simulation
prohibitive; on the other hand, their complexity requires as
much detailed simulation as possible, in order to reduce
manufacturing costs because of design mistakes. Mixing
levels allows simulation of parts of the design in detail, while
keeping the environment (i.e., the other parts of the design)
realistic but less detailed.

YSE model building at the different levels and their
linkage into executable code have been described. Particular
emphasis was given to the switch-level model. Finally, an
example was shown to illustrate the capabilities of the
mixed-level approach.
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