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Mixed-level simulation  techniques are widely 
used  in VLSl designs for  verification  and  test 
evaluation.  In  this  paper  we  indicate  how  to 
perform  mixed-level  simulation  on  structured 
MOS designs  using  the  Yorktown  Simulation 
Engine (YSE),  a  hardware simulator  developed 
at IBM. On  the  YSE,  simulation can be done at 
the  functional, gate, and  transistor  levels.  The 
design  specification  used  by  the  YSE  is  well 
suited for mixed-level  simulation,  particularly 
with  regard  to  interfacing  the  different  levels. 
We  apply  our  techniques  to  an  nMOS  design  to 
show  the  important features of  our  approach. 

Introduction 
Advances in silicon  technology  have  led to chip designs 
consisting of hundreds of thousands of devices on a  single 
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chip. Typically,  these chips have  relatively few probe points 
compared to the number of  devices they contain, thereby 
complicating debugging and testing.  Moreover, the 
manufacturing costs of such complex  designs are high. These 
factors  have led to extensive  software modeling prior to 
hardware manufacture. Software  models are used to analyze 
the design in ways not possible or practical with actual chips 
or hardware (e.g., TTL) models. 

Many design techniques use simulation to exercise the 
circuits for some specific  purpose. The two most common 
applications are in design  verification and fault simulation. 
In the former, the design  is simulated to verify that it 
performs a correct function, while in the latter 
manufacturing test  cases are evaluated for  effectiveness in 
detecting assumed physical  defects. 

The design  methodology  strongly  influences the kind of 
modeling and simulation employed.  Most VU1 chips are 
designed  using  a structured, topdown approach. The chip is 
partitioned into a  set of macros,  each  of  which can be 
modeled independently and  at different  levels  of  complexity. 
Three levels  of complexity are commonly used: the 
functional or behavioral,  Boolean or logical, and transistor 
or device  level.  If the simulation uses one modeling  level  for 
all  of  a  design  it  is  said to be  flat, or single-level.  In  a  mixed- 
level approach, different parts of the design are specified at 
different  levels. 
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Depending on  the size  of the design and the modeling 
techniques employed, the computer resources  used during 
simulation can be astronomical. In order to reduce the large 
expense of simulation, specially architected computers have 
been  developed  for  high-speed simulation [ 1-51. These 
hardware simulators have the capability to simulate large 
designs at very  high speeds. For example, a fully  configured 
Yorktown Simulation Engine (YSE) can simulate more than 
two million logic gates at more than three billion  gates  per 
second [2]. 

We indicate in this paper how a hardware simulation 
engine can be applied to custom MOS  designs. As a specific 
example, we consider the use of the YSE. First, we describe 
the structured design approach and how simulation is  used 
for  verification and test  coverage evaluation. Next we outline 
how the YSE models are created for different design  levels 
and how the different levels are interfaced. Finally, we 
describe a sample nMOS  design  which illustrates these 
techniques. 

Simulation  and  custom MOS structured  design 
In the early  phases  of a design, each macro might be 
modeled using a high-level behavioral description of 
relatively  low complexity and detail but high functional 
content. As the design  progresses,  different  pieces are 
designed at the Boolean  level,  using  logic  gates  which are 
readily and efficiently implemented with a given technology, 
such as NAND and NOR (see Figure 1). Ultimately, the 
circuits in each  logic  gate are described at the transistor level, 
sized, and implemented. This top-down method allows 
attention  to be focused on local design considerations, but 
always in the context of the global environment. 

The functional level  describes the macro in terms of 
objects which are close to the chip’s architecture. A common 
representation expresses the function of a macro as 
interconnected storage elements, called  registers (or latches). 
Information is transferred between different registers on 
specific control conditions. The structure of this level is often 
influenced by specific  technology considerations, but the 
specification  itself is usually independent of technology. 

A Boolean representation expands the functional objects 
into the logical expressions which implement the latches and 
the transfers defined in the functional level. Technology- 
dependent parameters, such as propagation delays, are often 
included. 

The transistor level  gives the implementation of the 
macro’s function in terms of the actual devices  used on chip. 
The transistor level is closest to the actual artwork used  for 
chip fabrication and as a consequence requires specific 
technology-dependent information. 

Certain MOS circuits require careful modeling for a 
correct Boolean  specification  because  of the special 
characteristics of MOS technology, i.e., the bidirectionality 
of the MOS transistor and  the sharing of charge between 
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I Logic gates for nMOS and CMOS: The NOR, NAND, and NOT 
logic gates (top) are three common circuits used in  both nMOS 
(middle) and CMOS (bottom). 

nodes that are effectively isolated from external current 
sources. 

As a simple example, consider the nMOS multiplexer 
circuit shown in Figure 2. The logical  expression 
( X  A A )  V ( Y  A B )  is not accurate, since conditions where 
X = Y can result in potential ambiguities: 

The output when X = Y = 1 depends on  the relative 
conductances of the transistor (the less  resistive path 
dominates). 
The case X = Y = 0 decouples the output from the 
external sources, resulting in a memory state which 
depends on the previous history of the circuit. 

Problems with such circuits often result  in restricting their 
use to the interior of macros and/or strict design  rules to 
ensure that ambiguities do not occur (Le., to ensure that 
X -= Y in the above example). 
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I nMOS multiplexer circuit: The nMOS multiplexer circuit shown in 
(a) does not  have the logical representation shown in (b) unless it 
can be guaranteed that X -= Y. 

Continuous and discrete simulation 
The accuracy required of simulation has to be balanced by 
its cost, which  is  usually  measured in terms of CPU time and 
memory requirements. For example, detailed  electrical 
circuit simulation [6, 71, using parameters estimated from 
actual wafer dimensions, is required to accurately predict 
transistor characteristics, such as switching  speed and power 
consumption. While  highly accurate, the cost of circuit 
simulation is so high that it  becomes impractical for more 
than a few hundred transistors at one time. 

Circuit simulation provides a continuous prediction, e.g., 
a waveform, of the response of the design.  Gate-level 
simulation, on the other hand, approximates the response of 
the design  by discrete quantities. By definition, gate 
simulation is  less accurate than circuit simulation, but is 566 
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much more efficient. Functional-level simulation is even 
more  efficient, as many logical  gates can be combined into 
latches and control lines.  Because  of this efficiency/accuracy 
tradeoff, simulation at the functional and Boolean  level  is 
not often used to determine how  fast a particular transistor 
or logic gate switches. Instead, a unit delay discrete 
simulation is usually employed to ensure that the design 
performs correctly under a wide  variety  of input patterns 
and control sequences. 

Mixed-level simulation 
Mixed-level simulation combining the functional and 
Boolean  levels  is commonly used in chip designs,  while it is 
less common to see a mixture of these  with the transistor- 
level simulation. The reason for this is the similarity  between 
internal representations used  by the simulator for both the 
functional and Boolean  levels,  which  allows  for a 
straightforward interface between  these  two  levels. On the 
other hand, the representations and algorithms used  for 
circuit simulation are substantially more sophisticated. The 
key to mixing  transistor-level simulation with the Boolean/ 
functional simulation is to either make the functional/ 
Boolean simulation continuous or make the circuit 
simulation discrete. We use the second alternative, since the 
discrete simulation is inherently faster and more suited to 
the YSE architecture. 

A discrete simulation for MOS transistor networks can be 
achieved by replacing the transistors by switches [8 ,9 ] .  
While not applicable to all transistor circuits (such as 
operational amplifiers),  switch-level simulation (SLS) 
correctly  predicts the behavior of digital circuits commonly 
used for logic  chips.  Because SLS is a discrete simulation, its 
interface with the functional/Boolean level  is 
straightforward, yet it maintains a close correspondence to 
the actual circuits. 

For design  methodologies that do not use a technique like 
SLS, the only way to connect the functional simulation with 
the transistor-level simulation is by mapping the transistor 
network into a set of Boolean equations. This is 
straightforward  when the transistor network was obtained 
from a corresponding Boolean  level, but is  often  artificial 
when the Boolean equations are derived from the transistor 
network  itself. 

Simulation for design verification 
Simulation is  used  for  design  verification to ensure that the 
design has the correct, i.e., intended, function. First, the 
design  is  described at the functional level for each macro and 
simulated. Next, macros are designed  physically and mixed- 
level simulation is run using a lower-level description for 
each macro. 

With SLS it is in fact  possible to avoid building the 
Boolean  specification and work  directly  with the transistor- 
level description for many macros.  In addition, since the 
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transistor description used in SLS either can come from the 
designer or can be extracted directly from the mask artwork 
using standard device recognition programs, SLS can also  be 
used to verify (by simulation) the physical  design  of 
complete macros. 

Fault simulation 
The goal  of fault simulation is to evaluate a set  of  test  cases 
to be  used during manufacturing. In fault simulation, a fault 
model is  used to approximate the effect  of certain 
manufacturing defects. These defects,  called faults, are 
introduced into  the software model of the design; the faulted 
model is then simulated and  the results compared to the 
good machine simulation results. If the two models produce 
different outputs, the fault is said to be  covered by the test 
patterns used during the simulation. 

Fault simulation requires a description of the circuit 
which can be correlated with  real  devices. For gate-level 
descriptions which are good structural representations of the 
actual circuits, such as NAND gates, the determination of 
which nodes in the model to fault and how to fault them is 
straightforward. 

For those MOS circuits which are difficult to model using 
. Boolean  expressions, the identification of faults is also 

difficult. In SLS,  however, the description is  close to the 
actual structure of the design, and thus fault identification is 
easier. Therefore, SLS allows accurate coverage estimates of 
test  cases  for  these  difficult  MOS circuits. 

Model building for the YSE 
We  begin  by outlining some properties of the YSE 
architecture [ 1, 2, IO]. The basic  design  of the YSE is 
oriented toward high-speed  4-valued  logic simulation at the 
gate  level, e.g., 0, 1, unknown, and tri-state. The YSE  itself 
(see Figure 3) consists of a collection of identical logic 
processors (LPs) along with an interprocessor switch.  Each 
LP executes its own program, but in lock-step fashion, using 
the switch for interprocessor data communication. 

A YSE instruction can accommodate four 2-bit-wide 
inputs  and produces one 2-bit output, according to a user- 
programmable truth table. In addition, all inputs  and the 
output may be further modified by using de Morgan fields, 
which indicate a user-programmed transformation to be 
applied to the appropriate value before its usage (when 
input) or storage (when output). For example, inputs and/or 
the output can be inverted, set to a constant, etc. 

Using the YSE as the target machine for algorithm 
execution makes it necessary to serialize the simulation 
process,  i.e., avoid the use  of conditionals. Also, iterations 
which  have to be carried out a variable number of times 
(depending on current external input) have to be avoided as 
much as possible. The reason for this is the high overhead 
incurred by these operations when running on  the YSE (for 
more details see [ I ,  2, IO]). 

U 

I YSE architecture: The YSE consists of a set of logic processors, 
connected through an interprocessor switch, and linked to a host 
machine. 

Simulation on the YSE  is thus conceptually similar to 
software-compiled code simulation. In order to simulate on 
the YSE, a design must be translated into a special YSE 
assembly  language,  which  is then compiled into  the 
appropriate machine code, linked, loaded, and then 
simulated on  the YSE (see Figure 4). 

Functional and logical model building 
Functional and Boolean model building on  the YSE are very 
similar. YSE functional model building uses logic synthesis 
techniques [ I O ]  to obtain a Boolean equivalent description 
from a suitable register transfer level (RTL) language. YSE 
Boolean model building uses the macro facility of the YSE 
compiler, whereby multiple input-output logic  gates can be 
expanded into equivalent sets of four-input, one-output logic 
gates. These reduced logic  gates are then mapped on YSE 
instructions, as the YSE functions (i.e., operation codes) are 
fully programmable. 

Arrays 
While it is  possible to simulate arrays (ROM  and RAM) at 
the device or gate  levels,  for many applications this amount 
of detail is not necessary. The YSE has  special  assist 
hardware (see Fig. 3) which  allows  it to simulate large arrays. 
Special  software  allows us to specify arrays at the functional 
level; the declarations are then converted into the 
appropriate instructions for the hardware. 

Transistor model building 
We model transistors on  the YSE using a switch-level model. 
Details of our approach have been described  elsewhere [9 ] ,  
so only a summary is presented here. 567 
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I YSE model generation: Designs to  be run on the YSE are described 
in a YSE assembly language file, which is  then compiled,  linked, 
loaded, and simulated. 

I YSE SLS algorithm:  The SLS algorithm for the YSE consists of a 
node update phase and a transistor update phase. 

568 
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Switch-level model 
In the switch-level  model [8], a circuit is a network of nodes 
interconnected by transistors (switches).  Nodes are either 
external (i.e., inputs, Vdd, Gnd) or internal (all  others). 
External nodes are not affected  by the circuits they drive; 
internal nodes  have an associated capacitance, reflecting the 
charge-sharing property of  MOS circuits. 

bidirectional switches  in one of three possible  states: open, 
closed or unknown, depending on the transistor’s gate value. 
The source and drain terminals of a transistor interact in a 
manner which depends on the transistor’s state and 
conductance. This interaction also depends on the strength 
of the signals  present on each  node. For example, driven 
nodes dominate those with stored charge, and signals 
through enhancement devices are usually  stronger than those 
through depletions. 

After  modifying external inputs, the circuit undergoes 
changes until it  finally  reaches a steady state (if  it  does not 
oscillate).  In order to simulate this process  (see Figure 5), we 
perform a series of two-phased iterations [9]. The first  phase 
of an iteration is the so-called transistor update process (or 
T-phase), and the second  phase  consists of the node- 
updating procedure (or N-phase). 

During the T-phase, the current state (0, 1, X )  of each 
node connected to a transistor gate  is  used to determine the 
transistor’s state. For n-type enhancement devices, a gate 
value of 0 opens the switch  (i.e., the transistor is not 
conducting), while a 1 value  closes the switch (for a p-type 
device, a gate  value  of 1 opens the switch and a value of 0 
closes it). For the case  where the gate node is in an X state, 
we set both source and drain nodes of the transistor to  an X 
state. This approach is  pessimistic  since Xs propagate 
through the simulated network further than they  would in 
the actual circuit. Nevertheless, this has proven very  effective 
in uncovering mistakes during design  verification. More 
sophisticated approaches to the X state are also  possible. 

remain constant for the complete iteration, even  if the 
appropriate nodes do change states. 

according to the following  principles: 

The transistors in this model are considered to be 

Once determined during the T-phase, the transistor states 

After the T-phase is completed, the N-phase  is  executed, 

Changes in external inputs induce a dynamic partitioning 
of the network into sets of nodes  which are connected 
through conducting transistors. These sets should attain 
common states in the process of bringing the entire 
network to a steady state (if the circuit does not oscillate). 
Our approach is to reach common states for  every  set of 
nodes in a manner which  is independent of the current 
transistor settings. To do so, we perform (fixed)  pairwise 
interactions between nodes which share a transistor. 
The convergence of all  nodes to common set states may 
require several  passes through the network  (i.e.,  repeated 
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interactions between adjacent nodes), depending on the 
network topology and the  input pattern. 
The above iterations must be repeated for circuits 
containing feedbacks and/or transistors with  gates 
controlled by internal nodes, until a steady state is 
obtained. 

From physical design to YSE transistor simulation 
Figure 6 shows the various steps that are necessary to 
generate the YSE instructions for SLS.  We require a flat 
nodal description of the transistors and a list  of the primary 
inputs. Some physical information about  the transistors is 
also used, such as their types (enhancement or depletion) 
and the type  of their camers  (p or n). The description can 
come either from physical layout or a hierarchical network 
definition [6] .  In the first  case, the transistor network is 
extracted from the shapes, while in the second case  it is 
obtained by denesting. 

SLS algorithms for computing the node states require 
certain structure analysis to be performed on  the network. 
The analysis is done to enhance the efficiency  of code 
generation and simulation itself. There are essentially three 
phases: 

1. The first phase partitions the network into components 
called groups. Groups  are directed in the sense  of a logic 
gate, such as an AND gate, in that  it has  well-defined 
inputs and outputs. A switch, by definition, does not 
cross a group boundary because  of its bidirectional 
nature. 

with  respect to many objective functions, such as 
reducing the  number of global  feedbacks, is NP-hard. We 
employ a heuristic based on the use  of an immediate 
dominator list  for  each group to reduce, in a game-like 
fashion, the  number of global feedbacks. 

3. The last  phase imposes an orientation on each transistor, 
i.e., a direction for propagating information in each  pass, 
and assigns an ordering for the transistors in each group. 
As  was the case for global ordering, optimally ordering 
and orienting transistors to minimize the number of 
iterations are NP-hard problems. Our ordering and 
orientation heuristic is  described in detail in [ 1 11. 

2.  The next phase orders the groups. Optimizing this order 

Level interfacing 
Up  to now  we have  discussed only the model building for 
single-level  models.  As  discussed in the section on mixed- 
level simulation, one often wants to simulate parts of a 
design on different  levels. This introduces the problem of 
how to interface these different parts. For the three different 
levels that we have discussed so far, the interfacing requires 
some care. 

We interface the different  levels  by  using correspondence 
of net names, which ensures the equivalence of  values  across 
the level boundaries. This causes no problems when 
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I SLS processing steps: The NODES file is generated from the nodal 
description of the network by a participatingischeduling algorithm. 

interfacing the functional and logical  levels,  because both use 
the same bit-encoding scheme for logical  values. On the 
YSE, the same approach works for the interface between a 
switch-level  block and a Boolean or functional-level block, 
because the SLS encoding uses one YSE data word  for the 
logical  value and a different data word for the strength of the 
signal. 

Propagation of  signal strengths between the functional/ 
Boolean  level and the transistor level does require some 
special consideration. Even the propagation of the signal 
value itself  across such an interface depends on the strength 
of the sending and receiving  signals. Consequently, we have 
to include some information about  the strength of those nets 
that  are  outputs of a Boolean or functional block and are 
connected to the source or a drain of a transistor. 

Example 
The methodology presented above has been  exercised on a 
small example: a 4-bit  slice  of a Manchester carry chain 
ALU (adapted from [ 121). The circuits are shown in Figure 
7, for a bit slice and part of the carry chain. Each  bit  slice 
has  two data inputs, which are controlled by select  lines, and 
contains three universal logic function blocks. Two of these 
blocks determine the kill and propagate bits for the carry of 
each bit, while the third block is used to obtain the result. 
The function to be performed by the ALU is selected by 
supplying the appropriate controls to the kill, propagate, and 
result logic function blocks. 
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I ALU circuit: A single bit slice of the ALU (adapted from [Ill). 
~~ 

I Block diagram of the embedded ALU 

In our example, the ALU  is embedded in a larger  piece  of 
logic that contains two  ROMs, a RAM, and some control 
logic  (see Figure 8). The ROMs hold input vectors and 
corresponding control vectors  for the ALU. The control 
vectors  exercise the ALU  by having it calculate several 
functions with  different inputs. 

~~~ 

I Control logic: The run protocol for the ALU model. 

The arrays and control logic are described  first at the  RTL 
level. From this RTL description, a set of  YSE instructions is 
obtained using a logic  synthesis  program. This set  of YSE 
instructions is then merged  with those that model the ALU 
itself at the switch  level. The strength of the input vectors 
and control vectors  is assumed to be higher than the strength 
of any signal in the ALU,  while the strength of the output 
signals from the ALU  is assumed to be  higher than that in 
the output RAM.  In this way, there is a clear flow  of 
information from the input ROMs, through the ALU to the 
output RAM. 

The simulation protocol proceeds as indicated in Figure 9. 
First the precharge  signal  is  set high and the select lines low, 
then the YSE instructions are executed to simulate the 
precharge  phase.  Next, the inputs and the control bits are 
read in from the ROM, the precharge  signal is set  low, and 
the YSE instructions are again  executed to simulate the 
actual computation phase.  Finally, the resulting outputs are 
stored on the RAM. 

The ALU proper contains 192 transistors and uses 900 
YSE instructions. The two ROMs and  the RAM are each 
1024 by  16-bit word  arrays. The read-write control logic 
needs 45 YSE instructions and the array address decode and 
enable logic  takes I3 1 YSE instructions. Because  of the 
precharge  phase, the full set of YSE instructions has to be 
executed  twice for each functional cycle. The resulting 
simulation time per functional cycle  is 0.2 milliseconds. 

of many cycles on the ALU.  However, its structure is rather 
general and is a good example of mixed-mode simulation. In 
fact, the ALU could not have  been simulated on a higher 
level than the switch  level without extensive virtual logic. 
Also, the control section could not have  been as 
conveniently specified on a level  lower than the functional, 
without a great  increase in the number of  YSE instructions. 

The model  described  here was intended for  fast simulation 
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Summary 
We have indicated how the Yorktown Simulation Engine 
(YSE) can be  used to perform mixed-level simulation on 
structured MOS custom designs. On the YSE,  we can mix 
descriptions at the functional, Boolean, and transistor levels 
in the simulation. A variety of tools are used to support this 
simulation, including circuit extraction and analysis 
programs, compilers for the production of  YSE code, and 
monitors to interface with the user during simulation. 

The motivation for  modeling  designs at three different 
specification  levels  is quite clear. On the one hand, the size 
of VLSI designs makes their detailed  circuit-level simulation 
prohibitive; on the other hand, their complexity  requires as 
much detailed simulation as possible, in order to reduce 
manufacturing costs  because of  design  mistakes.  Mixing 
levels  allows simulation of parts of the design in detail, while 
keeping the environment (i.e., the other parts of the design) 
realistic but less detailed. 

YSE model building at the different  levels and their 
linkage into executable code  have  been  described. Particular 
emphasis was  given to the switch-level  model.  Finally, an 
example was shown to illustrate the capabilities of the 
mixed-level approach. 
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