
Hardware design H. ofek

and description
languages in IBM

by L. I . Maissel

Hardware design languages (HDLs) allow
computer hardware to be described in sufficient
detail to be simulated and built, such a
description being at a sufficiently high level of
abstraction to make the complete design readily
intelligible to anyone skilled in that language. A
number of HDLs have been developed and are
in use in IBM. To date, no overwhelming case
can be made for choosing any one HDL over the
others. The major trends in HDL are discussed.
Several examples of HDLs are presented in
some detail. VHDL, the yet-to-be released HDL
which is to serve as a front end to the U. S.
Government’s Very High Speed Integrated
Circuits program, is among these.

Introduction
This paper describes IBM activities relative to the
development of hardware design and description languages
(HDLs) and their usage as part of several design automation
systems. The paper is limited to efforts camed out at IBM
laboratories in the United States and it focuses on languages
which have a product history or are of strategic importance.

Digital hardware may be described in a variety of ways. At
one extreme, for example, it could be described as a series of
1/0 patterns (output values that result from a given set of
input stimuli). Such a description would be characterized as
purely functional. At the other extreme, the description

Wopyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

could be the detailed information needed to actually
implement the hardware as an integrated circuit in silicon.
In this case, the description would be characterized as purely
structural. Between these two extremes we can identify a
continuum of description formats that are characterized by a
mix of functional and structural information in varying
proportions.

From a human perspective, a given piece of digital
hardware is first conceived in terms of the function that it
will perform. The process of digital design then consists of
translating this into silicon hardware, usually in a series of
steps. The purpose of hardware design and description
languages is to facilitate this process. Hardware description is
facilitated by enabling structure to be described in a way that
makes the function of that structure easier to perceive.
Hardware design is facilitated by enabling function to be
described in a format that implies a certain amount of
structure. We refer to the level within the functional-to-
structural spectrum in which HDLs fall as the RT (register-
transfer) level of hardware description.

Even if they are considered to be at the same RT level,
two HDLs may differ from one another in a variety of ways.
One way in which they could differ is in the details of the
type of structure that is implied by a given description. In
general, it is possible to implement any design (coded in a
given RT language) in any given technology but, in practice,
the structure that is most easily generated from a description
in a given HDL often favors a specific technology.
Regardless of any such built-in bias, however, it is usually
the goal of the RTL developers to generate a structural
description that is as technology-independent as possible
(even though that is something of a contradiction in terms).

descriptions at the functional and structural level as well as
at the RT level. The functional component tends to
dominate during the early stages of a design but must be
translated to the RT level, or directly to the structural level,

In practice, HDLs allow for the simultaneous inclusion of

L. 1. MAISSEL AND H. OFEK

before the design can be implemented. This translation
requires human intervention. In some cases additional
software that is not part of the HDL may be used to
translate the final structural description produced by the
HDL to final hardware. This process is termed technology
transformation. The combination of RTL-to-structure
translation together with technology transformation is
termed logic synthesis.

design languages were directed more towards structure than
function. In addition, hardware designers have generally
preferred the graphic form of expression rather than the
textual form. An early form of abstraction used in IBM
design was the ALD (Automated Logic Diagram) [I]. This
represented a modest piece of logic (such as a NOR or
NAND gate). Connections between ALDs could be specified
through naming conventions used to identify the input and
output lines on the ALD. ALDs are easy to draw on a simple
(nongraphic) printer, and substantial pieces of logic can be
represented in a booklike format in which ALDs appear on
successive pages, the connections between ALDs being
shown as pointers to the appropriate page(s).

With the advent of alphanumeric interactive terminals,
the need for a textual form equivalent to the ALDs became
apparent and BDL/S (Basic Design Language for Structure)
was defined. A structure described in BDL/S can be
simulated in a simulator called VMS (Variable Mesh
Simulator). Furthermore, as the state of the design
automation art matured, it became apparent that functional
descriptions could effectively be used in conjunction with
BDL/S. Thus the final logic did not have to be designed
down to the gate level before being simulated for the first
time. The language used for functional descriptions in
conjunction with BDL/S is called EPL/S; it is the first of the
IBM languages we describe.

Historically, at IBM as elsewhere, initial attempts to create

EPLS (Extended Programming Language for
Systems)
EPL/S was defined about 1973. Its purpose was to provide
the engineer with a way to describe functional models of
hardware, allowing for the early modeling and simulation of
such hardware. No process for transformation from EPL/S
to BDL/S was defined, although descriptions written in these
languages may be compared by applying identical stimuli to
both and then checking the corresponding responses for
equivalence.

Language for Systems). Historically, it was an extension of
VMS-PL/S, which is itself an extension of PL/S. PL/S, a
variation of PL/I, is a procedural programming language
which is suitable for writing systems programs. It includes a
macro facility which allows a PL/S programmer to define
new statements. Such new statements are processed by the
PL/S macro compiler and transformed to regular PL/S

EPL/S was defined as an extension of PL/S (Programming

558 programs. EPL/S consists of the entire PL/S language plus a

L. 1. MAISSEL AND H. OFEK

set of additional commands. Thus, when a hardware
designer describes a logic function in EPL/S, it is translated
into PL/S code, which in turn is compiled into machine-
executable code. The executable modules which are created
from EPL/S descriptions are executed under the control of a
simulator. It should be noted that an engineer using EPL/S
must be familiar with PL/S, making the language less
attractive to those engineers who believe that they should not
have to become “programmers.” One convenient feature of
EPL/S is the availability of commands which allow the
model to communicate with the simulator.

EPL/S descriptions are executed under VMS, which is
part of EDS (the Engineering Design System) [2]. VMS was
originally designed to simulate logic network structures
described by BDL/S. In order to allow for EPL/S modules to
be handled by VMS, one needs to specify “structures” which
encapsulate the behavioral descriptions. To that end, a set of
structure commands is defined as part of EPL/S. The two
basic structure commands, which enable a user to break the
description into different types of subsets, are

BLOCK-a group of statements analogous to a procedure,

MINIMOD-a related set of statements within a block.
and

These are used to identify the behavioral description to VMS
by providing it with the function name, and to generate the
internal interfaces needed for the EPL/S model to
communicate with VMS.

A second set of EPL/S commands is defined to aid the
engineer in telling the simulator how to account for the
timing and synchronization involved in executing several
behaviors or sub-behaviors. The three basic timing-related
commands are

WAIT, which suspends execution by a specified number of

SCHED, which schedules a MINIMOD to execute at a

POST, which is used to bypass WAIT and SCHED

time units,

prescribed time, and

commands asynchronously.

The timing commands are used to help the simulator order
the execution of the behavioral elements in the EPL/S
model. They are not describing the actual timing and delay
characteristics of the real logic.

Another set of commands is used to define data and data
attributes, including scope. Examples are

INPUT, which describes input lines to a block,
OUTPUT, which describes output lines from a block, and

0 TABLEOPT, which lists variables to be accessed during
simulation.

Some of these commands are used to create data entities
which are shared by the EPL/S descriptions and other parts

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEFTEMBER 1984

of the system, such as the stimulus description language
which is used to specify test cases for VMS.

In addition to these command types, there are a number
of commands whose purpose is to make the task of writing
code easier for the user. For instance, the BIT statement
enables the user to specify bit manipulation of bit strings
defined in one of the data definition commands. Another
statement of importance is the TRACE statement. It helps
the user to debug the EPL/S model by returning control to
the simulator and by allowing display and modification of
the variables. This feature is vital to interactive simulation.

In summary, EPL/S is a reasonable modeling language.
However, it lacks sufficient hardware description capabilities
to allow for hierarchical hardware documentation and design
support. Its style is readily acceptable to engineers who are
also programmers, but it is not considered an “engineer’s
language.”

it is not a true HDL (as defined above). As the state of the
design automation art matured, however, languages at the
RT level did begin to appear within IBM. Starting around
1970, a number of such languages were developed, most of
them short-lived. Three of them have, however, survived the
test of time. They are all about the same age and each has
been used at several IBM locations. All have had success in
the generation of real hardware. These three languages are
IDL, BDL/CS, and SDL.

Although EPL/S was, and still is, widely used within IBM,

IDL (Interactive Design Language)
IDL was conceived about ten years ago [3]. Its initial
purpose was to facilitate the design of PLAs that embodied
highly complex algorithms, but it is now being used for the
design of random logic as well [4]. IDL is nonprocedural; the
order in which IDL statements are listed is unimportant.
IDL is hierarchical with some limitations. Though entry of
data into IDL may be graphical (flow chart form) or textual,
the great majority of IDL users have preferred to use the
textual form. IDL is implemented in APL, although certain
key routines which are CPU-intensive are coded in 370
assembler.

IDL is particularly well suited for self-documentation. If
they choose, users can, in effect, create a syntax which makes
their code look like standard English (or any other language).
IDL is used for design as well as description, since it
generates two-level logic from the high-level description.
Multi-level logic can also be generated; the format that has
been adopted is that of a series of two-level “boxes”
connected by signals.

Design verification under IDL is achieved via simulation;
three simulators are available. Two of these are of the zero-
delay type and are intended for single boxes. The third is a
multi-box simulator in which the boxes have specific internal
delay times, clock rates, etc., associated with them. All three
simulators accept four possible input values-zero, one,

IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

unknown, and high impedance. Additional design tools
associated with IDL, although not formally part of the
language, include minimization (number of product terms
and number of feedbacks), partitioning, merging, and logical
equivalence checking (between two pieces of two-level logic).

descriptions, although structure is usually used to indicate
connectivity between pieces of logic whose structure was
synthesized by the system from a behavioral description.

Some of the key features and constructs of IDL are as
follows: Sequence control is achieved through the use of
labels; every IDL statement that is not a declaration must be
associated with a label. No restriction is placed on how
many labels may be active at a given time. If two or more
labels are simultaneously active, simulation treats them as
parallel processes. Multiple simultaneous assignment is
permitted and is treated as the OR of the individual
assignments. The general action statement in IDL is IF
THEN ELSE. Input conditions can be quite complex and
many complex functions such as relational operators,
incrementers, etc. are built in, Le., synthesized for the user.
Output statements can also be more complicated than
merely assigning values to outputs. They can, for example,
imply complicated control actions such as register transfers,
memory accesses, etc.

IDL allows blocks of two-level logic to be represented in
IDL code as truth tables. Since the logic that is synthesized
from IDL code is two-level logic, a given IDL design can
itself be used as a truth table within a larger design. This
form of hierarchical representation can be used to as many
levels as desired, but during simulation the hierarchy is first
flattened to the lowest level. Alternatively the user may
temporarily represent a truth table as a truth function.
Under these circumstances, the table is simulated (as a
function) directly and the hierarchy is not flattened.

Functional descriptions (APL programs) that do not
represent truth tables are also permitted within IDL. These
are directly executed during simulation. Subroutines are also
available. These are blocks of IDL code that are executed
more than once in the course of running an IDL program.
They are automatically linked to ensure return to the correct
state after execution. Subroutines offer a “busy-protect”
feature so that competing processes may or may not share
the same subroutine simultaneously, depending on the user’s
choice.

IDL is suitable for both structural and behavioral

A useful feature of IDL is the ability to represent a
particular action as a sequence of actions taking place over
several cycles and then synthesize this as an action executed
in a single cycle. A refinement of this feature is the
mechanism which allows IDL to be used for multi-level
logic. In IDL, multiple pieces of two-level logic that are in
series can be described as a single piece of two-level logic
connected by “zero-delay’’ feedbacks. These behave like
multi-level logic during simulation and also convey 559

L. 1. MAISSEL AND H. OFEK

information to existing programs within IBM (but outside
IDL) for the synthesis of optimal multi-level logic [5].

IDL‘s strongest features are its self-documenting abilities
and its suitability for highly sequential designs that embody
complex algorithms, particularly those in which many
parallel processes are occurring. It is weakest when applied to
designs whose optimization depends on very close attention
to the details of the ultimate physical embodiment.

IDL is routinely used for problems of the order of 10 000
random logic gates and has been used successfully for
designs of at least 40 000 random logic gates [6, 71. At this
time four chips that have gone all the way through
manufacturing (and ended up in products) have been
designed by IDL. This is in addition to many other designs
that “died” before reaching final manufacturing.

IDL has found limited use outside IBM, e.g., at M.I.T. [8].

2. The general action statement in BDL/CS is IF THEN

3. Multiple simultaneous assignments are allowed and are

4. Functional descriptions, written in PL/S, are allowed.
5 . Parallelism during processing is correctly simulated to

faithfully duplicate the action of the hardware.
6. Various facility types are supported to allow the designer

to define the action he desires without explicit coding in
the model. Some facility types are set dominant, reset
dominant, signal, one-cycle, bit array, and byte array.

7. Two- or four-value simulation is supported. The four
possible values are zero, one, uninitialized, and unknown.

ELSE.

treated as the OR of the individual assignments.

The strongest points of BDL/CS are as follows:

BDL/CS (Basic Design Language for Cycle
Simulation)
BDL/CS was conceived in 197 1 by an engineering group in
Poughkeepsie [9]. The language was enhanced in 1978 to be
used with the newly developed EFS (Experimental
Functional Simulator) rather than the VMS simulator [101.

1. It is practical for models representing up to 1 000 000
random logic gates.

2. It is technology-independent, allowing the designer to
evaluate algorithms prior to implementing them in
BDL/S.

3. It is self-documenting in terms of flowcharts.

A hardware simulator is currently in development which
uses BDL/CS as its input language [1 11. BDL/CS is used as
an input for a static analysis system to verify the equivalence
of two logical models, one in BDL/CS and one in BDL/S
[121. BDL/CS is also used as an input for a technology-
dependent logic synthesis process [131.

BDL/CS was initially designed as a flowchart language
with a one-to-one correspondence between the flowchart and
the code generated for the model. Graphic entry, in the form
of flowcharts, is available, or BDL/CS may be created as
text. BDL/CS is well suited for self-documentation, with the
designer using the flowcharts as his master high-level
document.

The emphasis is on behavior rather than structure. BDL/
CS is designed for cycle simulation with no provision for
simulating delays within a cycle. A timing analysis system is
used to determine delays within the logic [121. BDL/CS is a
nonprocedural language, allowing statements to be placed in
any order. Algorithms can be fragmented without explicit
connections between the various parts. Currently, BDL/CS is
nonhierarchical, although there are plans to accommodate
some form of hierarchy in the language and simulator.

The compiler is implemented mostly in PL/I with a few
modules in PL/S. The simulator is implemented totally in
PL/S with some imbedded System/370 assembler for
performance.

follows:

1. The order in which statements are executed is determined
by means of automatic signal ordering to ensure that no

Some of the key features and constructs of BDL/CS are as

560 signal is used before it is properly generated.

The weakest points of BDL/CS are as follows:

1. It does not currently support phased clocking.
2. It does not currently support hierarchical designs.
3. It is difficult to simulate asynchronous logic.
4. It is of limited value for describing complex sequential

logic.

The principal use of BDL/CS has been in the large-processor
area, such as the 308X, although projects much smaller in
scope have begun to use it also.

SDL (System Design Language)
SDL is a technology-independent, register-transfer-level,
hardware design and documentation language. It is
nonhierarchical, alphanumeric, list-oriented (nongraphic),
and free-format. It was conceived in 197 1 at IBM Rochester.
John Reed developed the language syntax and Bill
Steingrandt developed the first simulator. Some of the early
work on SDL was influenced by DDL (Digital Design
Language) [151. SDL is implemented with PL/S and System/
370 assembler code.

SDL is used by logic designers to describe hardware that
will be synthesized into VLSI chips [161. It is also useful for
creating simulation models of existing functions and for
limited microcode debug of existing systems. SDL may be
used to describe logic from a structural point of view
(counters, arithmetic logic units, dati flows, macros, etc.),
from a behavioral point of view (sequences, procedures,
control flows, operations, etc.), or a combination of both.

L. 1. MAISSEL AND H. OFEK IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

SDL consists of hardware declarations called FACILITYs
and hardware processes called OPERATIONs and
AUTOMATONs. FACILITYs are explicit hardware
elements and include INPUT, OUTPUT, OPERATOR
(combinational logic), REGISTER, STORAGE (arrays),
MACRO (custom logic structures), DELAY (timing control),
TIMER (oscillators), and INTERFACE (temporary
structural connections). OPERATIONs and
AUTOMATONs describe the interactions between hardware
elements, and each OPERATION and AUTOMATON
operates in parallel with all other OPERATIONs and
AUTOMATONs.

Within OPERATIONs and AUTOMATONs, IF ELSE,
DECODE (select), and DO END statements are used for
decision making. Data are assigned to REGISTER,
STORAGE, DELAY, and INTERFACE facilities by means
of transfer statements (load, set, reset, and connect), and
references may be made to other FACILITYs or groups of
FACILITYs imbedded in logical expressions.

subtract (twos complement), ones complement, parity,
concatenate, binary addition, gate, equal, less than, and
greater than. They are used in OPERATORS,
OPERATIONs, and AUTOMATONs to generate logic
expressions or comparisons of any desired complexity.

OPERATIONs describe events which are not sequentially
related to other events. During simulation all the events
defined within an OPERATION execute simultaneously. An
OPERATION might be used to describe what happens
during “power-on reset.”

AUTOMATONs describe events which are sequentially
related to other events. An unlimited number of STATEs
may be defined for each AUTOMATON. Each STATE has
a set of user-defined events and all events in a STATE
execute simultaneously. During simulation only one STATE
of an AUTOMATON is active at a time and control is
passed between the STATEs of the AUTOMATON by the
userdefined events. An AUTOMATON might be used to
describe what happens during the “instruction fetch”
sequence.

statements. These statements allow the user to print
information about activities within the model. In addition,
trace information regarding model activity may be dumped
to the facility and operate trace files.

synthesis methodology [161. Simulation of SDL models is
done using EDS. SDL models, either alone or as part of a
larger group of VMS-compatible behaviors (VMS-PL/S,
EPL/S, BDL/S, etc.) are simulated by executing user-written
control statements under control of the EDS VMS
simulator.

SDL has twelve logical operators: AND, OR, XOR, binary

For debug, SDL provides the DUMP, EXIT, and EVENT

SDL is an integral part of a larger design, verification, and

Topological analysis of an SDL model may be done using
the SDL-PRIME analysis routines [161. These routines

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

provide cross-referencing information, combinational logic
equation listings, LSSD scan path information, design data
flow information, and design control flow information.

Logic synthesis of an SDL model occurs in two steps.
First, the SDL-PRIME synthesis routine converts the SDL
model to technology-independent BDL/S [161. Then EDS
LTS (Logic Transformation System) converts the TI BDL/S
to technology-dependent (TD) BDL/S [5] . The TI and TD
BDL/S created by these programs may be used as input to
any EDS-supported program (Static Analysis System, LSSD
Design Rules Check, Timing Analysis, VMS, etc.).

The strengths of SDL lie in its descriptive flexibility, its
ability to model concurrent processes, the state concept
embodied in the AUTOMATON concept, and its capacity
to model logic designs of large size (in one design, 40 000
random logic gates were modeled along with 128K bytes of
storage).

specification capabilities and its inability to communicate
with other behaviors or programs except through INPUT
and OUTPUT statements.

The weaknesses of SDL include its poor timing

VHDL (VHSIC Hardware Design and Description
Language)
VHDL is a language whose most important characteristic at
this point in time is that it represents the future [171. While
it has not yet been released, it could pervade the entire
industry, since it represents more current thinking in the
area of HDLs, ;.e., the state of the art.

The U.S. Department of Defense (DoD) is funding the
development of VHDL. The work will result in a DoD
standard hardware description language, an analyzer/
compiler, and a VHDL mixed-mode simulator. The
scheduled completion date is December 1, 1985. Contractors
will then be required to describe their VLSI designs (design
specification or completed design) in the standard VHDL.
The new language has implications for the development of
design tools and for the way designers approach new designs
or use existing ones.

design capability that allows the designer to describe,
evaluate, and utilize design alternatives. The key conceptual
element within VHDL is the design entity. It is composed of
a unique interface description and a design body. The
interface description represents the intended external
interface of the hardware being designed. As design
progresses, the interface description will be refined to match
the real hardware exactly. Within the design body, the
designer may describe one or more design alternatives, called
variants, for the desired hardware.

described in terms of function, RT level, or pure structure.
&her user data relative to a design may also be conceptually
held within a variant. Functional descriptions are to be

The language organization will provide a hierarchical

Within each variant, several design aspects may be

L. 1. MAISSEL AND H. OFEK

written in a subset of the Ada language. The RT-level aspect
allows the designer to describe a hardware design in a
nonprocedural language where the structure may be depicted
as a combination of structural statements and Boolean
conditions for the execution of those statements.

In addition, the language will provide “assignment”
constructs. The underlying conceptual model is that all
conditions are evaluated, in parallel, at “interesting” points
of time. Interesting points of time are determined on the
basis of transactions (implicit handshake), events (explicit
handshake), and periodicity (implied clock). All statements
that have conditions that evaluate to “true” will be executed
in parallel. Conditions may be labeled, the label values being
evaluated as part of the condition, thus allowing the designer
to create any desired sequence of concurrent or parallel
operations.

Through the use of the condition, action, and effect parts
of the function statement, the designer can easily separate
control flow from data flow. This approach is much used by
designers today as a means of comprehending and
partitioning a complex function to be designed. Since the
RT level in VHDL implies a structure, tools could be
developed to create a graphic picture of the implied

used by different designers employing various
methodologies.

Concluding remarks
As part of the development of HDLs, many languages have
been proposed; only a few have survived. The reasons for
their survival are often as dependent on factors such as the
persuasiveness of their developers, the timing of their release,
etc., as upon technical merit. As a consequence, none of the
HDLs currently in widespread use in hardware manufacture
can be regarded as the last word. In almost all cases, their
language definitions have been informal, and extension of
these languages to support innovations in the design
automation art (such as mixed-mode simulation, for
example) is difficult if not impossible. Furthermore, the
existing languages tend to be specialized, each having
evolved inside a relatively small part of the design
community.

designers, that promises to be readily extensible in the
future, and that has been designed in a formal manner,
would be highly desirable. VHDL may have these properties.

Thus, a language that can be used by a broad spectrum of

structure.
An explicit structural description represents the

Acknowledgments

interconnection of design entities. It is key to the hierarchical encouragement in the writing of this paper and for many
nature of VHDL design descriptions. Design entities may be stimulating discussions. The section on BDL,CS was written
decomposed into subfunctions, giving rise to a hierarchy of
design entities. The structural description implies the
hierarchy. A hierarchy of design entities may take the form section on VHDL. We thank the u.s. Department of

times throughout the hierarchy.
A simulation model may be created, in the simplest case,

by selecting a design entity and choosing the desired design
alternative from that design entity. If structural description is Murley, and T, M. spence, “Solid L ~ @ ~ Automation,”
chosen, a model tree may be created by looking at the IBM J. Res. Develop. 8, No. 2, 127-140 (March 1964).
structure within the chosen design entity and at 2. P. W. Case, M. Correia, W. Gianopulos, W. R. Heller, H. Of&

each lower-level design entity that is part of the structure.
T. C. Raymond, R. L. Simek, and C. B. Stieglitz, “Design
Automation in IBM,” IBM J. Res. Develop. 25, NO. 5,63 1-646

The authors would like to thank H. Fleisher for his general

by R. L. Price, the section on SDL was written by L. F.
Saunders, and R. Waxman and A. D. Savkar wrote the

Of a flaph, since a given design entity may be used many Defense for giving us permission to publish the latter.

References
1 . P. W. Case, H. H. Graff, L. E. Griffith, A. R. Leclerq, w . B.

This process continues until all the design entities in lower-
level structures for which functional- or RT-level
descriptions exist have been chosen. The model tree is then
“flattened,” keeping only the structure of connected
behaviors and the root node (the topmost design entity with
the chosen design alternative).

A library capability will be provided so that frequently
used design abstractions written in Ada may be accessed by a
designer not wishing to write his own. This will allow
experimentation with newly created design function in the
context of a surrounding abstract functional environment.

to, the design of VHSIC class components (10K to lOOK
equivalent logic gates per chip). The designer will use the
VHDL design system to specify designs, to create new design

562 entities, and to utilize existing design entities. VHDL may be

The primary use of VHDL is intended for, but not limited

(September 198 I).
3. L. I. Maissel and D. L. Ostapko, “Interactive Design Language:

A Unified Approach to Hardware Simulation, Synthesis, and
Documentation,” Proceedings of the 19th Design Automation
Conference, Las Vegas, NV, 1982, pp. 193-201.

4. Leon Maissel and Raymond L. Phoenix, “IDL (Interactive
Design Language) Features and Philosophy,” Proceedings of the
IEEE International Conference on Computer Design, Port
Chester, N Y , 1983, pp. 667-669.

the 20th Design Automation Conference, Miami Beach, FL,
5. J. B. Bendas, “Design Through Transformation,” Proceedings of

1983, pp. 253-256.
6. K. R. Woodruff and P. S. Balasubramanian, “TopDown Design

Using IDL,” Proceedings of the IEEE International Conference
on Computer Design, Port Chester, N Y , 1983, pp. 670-673.

Implementations of a Microprocessor from a Single High Level
Design,” Proceedings of the IEEE International Conference on
Computer Design, Port Chester, N Y , 1983, pp. 674-617.

8. Steven K. Heller and Arvind, “Design of a Memory Controller
for the MIT Tagged Token Data Flow Machine,” Proceedings of

7. Mark W. Brown and M. Jay Kimmel, “Multiple

L. 1. MAISSEL AND H. OFEK IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

the IEEE International Conference on Computer Design, Port
Chester, N Y , 1983, pp. 678-682.

9. G. J. Parasch and R. L. Price, "Development and Application of
a Designer Oriented Cyclic Simulator," Proceedings of the 13th
Design Automation Conference, San Francisco, CA, 1976, pp.

10. L. N. Dunn, "IBM's Engineering Design System Support for
VLSI Design and Verification," IEEE Design & Test of
Computers 1, No. I , 30-40 (February 1984).

11. G. L. Pfister, "The Yorktown Simulation Engine," Proceeding of
the 19th Design Automation Conference, Las Vegas, N V , 1982,

48-53.

pp. 5 1-54.
12. M. Monachino, "Design Verification System for Large-Scale LSI

Designs," IBM J. Res. Develop. 26, No. 1, 89-99 (January
1982).

13. J. A. Daninger and W. H. Joyner, "A New Look at Logic
Synthesis," Proceedings of the 17th Design Automation
Confernce, Minneapolis, MN, 1980, pp. 543-549.

14. R. Hitchcock, G. Smith, and D. D. Cheng, "Timing Analysis of
Computer Hardware," IBM J. Res. Develop. 26, No. 1, 100- 105
(January 1982).

15. J. R. Duley and D. L. Dietmeyer, "A Digital System Language
(DDL)," IEEE Trans. Computers C-17, 850-861 (1968).

16. L. F. Saunders, "An Approach to VLSI Logic Design,"
Electronic Design Automation (EDA '84), Electronics Division of
the Institution of Electrical Engineers of Great Britain,
Conkrence Publication 232, March 26-30, 1984, pp. 33-34.

17. Contract No. F33615-83-C-1003, U. S. Air Force Wright
Aeronautical Laboratories, Avionics Laboratory VHSIC
Program Office, Air Force Systems Command, Wright-Patterson
Air Force Base, OH 45433. Work being performed by
Intermetrics, Inc. (prime contractor), IBM Corporation, and
Texas Instruments, Inc. (subcontractors).

Received February 13, 1984; revised April 30, 1984

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Leon 1. Maissel IBM Data Systems Division, P.O. Box 390,
Poughkeepsie, New York 12602. Dr. Maissel is a senior technical
staff member in the office of IBM Fellow Harold Fleisher. He
received his Ph.D. in physics from the University of London,
England, in 1955. He joined IBM in 1960. For ten years he was
active in the area of thin films. In 1970, his interests changed to
computer systems, in particular hardware design and description
languages. He has served on the editoral boards of several journals,
currently including the IEEE Design and Test Magazine. Dr.
Maissel is a Fellow of the Institute of Electrical and Electronics
Engineers.

Hillel Ofek Silval-Lisco, Menlo Park, California 94025. Since the
beginning of 1984 Mr. Ofek has been Senior Vice President of
Research and Development at Silval-Lisco. Prior to that, he had
joined IBM in 1965 in the Systems Development Division, where he
designed special hardware for NASA and experimental logic for
prototype digital machines. He also did work in the area of
reconfigurable systems. In 1969, Mr. Ofek joined the engineering
design system, where he worked on logic partitioning, test
generation, and Boolean analysis. From 1973 to 1976, he worked at
the Thomas J. Watson Research Center, where he participated in
design automation research addressing the topics of analysis and
symbolic simulation techniques for hardware design verification, and
the definition of the language for computer design (LCD). In 1976
Mr. Ofek returned to the engineering design system, where he was
responsible for advanced development work in design verification,
hardware description languages, and design transformation aids. In
1983, he joined the Corporate Technical Committee in Armonk,
New York. Mr. Ofek received his B.Sc. in electrical engineering from
the Technion (Israel Institute of Technology) in 1963 and his M.E.
in electrical engineering from New York University in 1965. He is
the recipient of a First-Level IBM Invention Award. Mr. Ofek is a
member of the Institute of Electrical and Electronics Engineers.

563

L. 1. MAISSEL AND H. OFEK

