
Hardware  design H. ofek 

and  description 
languages  in IBM 

by L. I .  Maissel 

Hardware  design  languages  (HDLs)  allow 
computer hardware to be described  in sufficient 
detail  to  be simulated  and  built,  such a 
description  being at a sufficiently  high level of 
abstraction  to make the  complete  design  readily 
intelligible  to  anyone  skilled  in  that  language. A 
number  of  HDLs have  been  developed and are 
in  use  in IBM. To date, no  overwhelming case 
can be made  for  choosing  any  one  HDL  over  the 
others.  The  major  trends  in  HDL are discussed. 
Several  examples of  HDLs are presented  in 
some  detail.  VHDL,  the yet-to-be released HDL 
which is to  serve as a front  end  to  the U. S. 
Government’s  Very  High Speed  Integrated 
Circuits  program,  is  among  these. 

Introduction 
This paper describes IBM activities  relative to the 
development of hardware design and description languages 
(HDLs) and their usage as part of several  design automation 
systems. The paper is limited to efforts camed out at IBM 
laboratories in the United States and it  focuses on languages 
which  have a product history or are of strategic importance. 

Digital hardware may  be described in a variety of  ways.  At 
one extreme, for example, it could be  described as a series of 
1/0 patterns (output values that result  from a given  set  of 
input stimuli). Such a description would be characterized as 
purely functional. At the other extreme, the description 
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could be the detailed information needed to actually 
implement the hardware as an integrated circuit in silicon. 
In this case, the description would be characterized as purely 
structural. Between  these  two extremes we can identify a 
continuum of description formats that are characterized by a 
mix  of functional and structural information in varying 
proportions. 

From a human perspective, a given  piece  of digital 
hardware  is  first  conceived in terms of the function that it 
will perform. The process of digital  design then consists of 
translating this into silicon  hardware,  usually in a series  of 
steps. The purpose of hardware  design and description 
languages is to facilitate this process. Hardware description is 
facilitated by enabling structure to be described in a way that 
makes the function of that structure easier to perceive. 
Hardware  design  is  facilitated  by enabling function to be 
described in a format that implies a certain amount of 
structure. We  refer to the level within the functional-to- 
structural spectrum in which HDLs fall  as the RT (register- 
transfer) level  of hardware description. 

Even  if  they are considered to be at the same RT level, 
two HDLs may  differ from one another in a variety of  ways. 
One way  in which  they  could  differ  is in the details of the 
type of structure that is implied by a given description. In 
general, it is  possible to implement any design (coded in a 
given RT language) in any given  technology but, in practice, 
the structure that is  most  easily  generated from a description 
in a given HDL often  favors a specific  technology. 
Regardless of any such built-in bias,  however,  it is usually 
the goal  of the RTL developers to generate a structural 
description that is as technology-independent as possible 
(even though that is something of a contradiction in terms). 

descriptions at the functional and structural level as well as 
at the RT level. The functional component tends to 
dominate during the early  stages  of a design but must be 
translated to the RT level, or directly to the structural level, 

In  practice, HDLs allow  for the simultaneous inclusion of 
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before the design can be implemented. This translation 
requires human intervention. In some cases additional 
software that is not part of the HDL may  be  used to 
translate the final structural description produced by the 
HDL to final hardware. This process  is termed technology 
transformation. The combination of RTL-to-structure 
translation together with technology transformation is 
termed logic synthesis. 

design  languages  were directed more towards structure than 
function. In addition, hardware designers  have  generally 
preferred the graphic form of  expression rather than  the 
textual form. An  early form of abstraction used in IBM 
design  was the ALD (Automated Logic Diagram) [I].  This 
represented a modest piece  of  logic (such as a NOR or 
NAND gate). Connections between  ALDs could be  specified 
through naming conventions used to identify the  input and 
output lines on the ALD.  ALDs are easy to draw on a simple 
(nongraphic) printer, and substantial pieces  of  logic can be 
represented in a booklike format in which  ALDs appear on 
successive  pages, the connections between  ALDs  being 
shown as pointers to the appropriate page(s). 

With the advent of alphanumeric interactive terminals, 
the need  for a textual form equivalent to  the ALDs became 
apparent and BDL/S (Basic  Design  Language for Structure) 
was defined. A structure described in BDL/S can be 
simulated in a simulator called  VMS (Variable Mesh 
Simulator). Furthermore, as the state of the design 
automation  art matured, it became apparent that functional 
descriptions could effectively  be  used in conjunction with 
BDL/S. Thus  the final  logic did not have to be  designed 
down to  the gate  level  before being simulated for the first 
time. The language  used  for functional descriptions in 
conjunction with BDL/S is called EPL/S; it is the first of the 
IBM  languages we describe. 

Historically, at IBM  as  elsewhere, initial attempts to create 

EPLS (Extended  Programming  Language  for 
Systems) 
EPL/S was  defined about 1973. Its purpose was to provide 
the engineer with a way to describe functional models of 
hardware, allowing for the early modeling and simulation of 
such hardware. No process for transformation from EPL/S 
to BDL/S  was defined, although descriptions written in these 
languages  may be compared by applying identical stimuli to 
both and then checking the corresponding responses  for 
equivalence. 

Language  for  Systems). Historically, it was an extension of 
VMS-PL/S,  which  is  itself an extension of PL/S. PL/S, a 
variation of PL/I, is a procedural programming language 
which  is suitable for writing systems  programs. It includes a 
macro facility  which  allows a PL/S programmer to define 
new statements. Such new statements are processed by the 
PL/S macro compiler and transformed to regular PL/S 

EPL/S was  defined as an extension of PL/S (Programming 

558 programs. EPL/S consists of the entire PL/S language plus a 

L. 1. MAISSEL AND H. OFEK 

set  of additional commands. Thus, when a hardware 
designer  describes a logic function in EPL/S, it is translated 
into PL/S code, which in turn is compiled into machine- 
executable code. The executable modules which are created 
from EPL/S descriptions are executed under the control of a 
simulator. It should be noted that an engineer using EPL/S 
must be familiar with PL/S, making the language  less 
attractive to those engineers who believe that they should not 
have to become “programmers.” One convenient feature of 
EPL/S is the availability of commands which  allow the 
model to  communicate with the simulator. 

EPL/S descriptions are executed under VMS,  which  is 
part of  EDS (the Engineering Design System) [2]. VMS  was 
originally  designed to simulate logic network structures 
described by BDL/S. In order to allow  for EPL/S modules to 
be handled by  VMS, one needs to specify “structures” which 
encapsulate the behavioral descriptions. To that end, a set  of 
structure commands is  defined as part of EPL/S. The two 
basic structure commands, which enable a user to break the 
description into different types of subsets, are 

BLOCK-a group of statements analogous to a procedure, 

MINIMOD-a related set  of statements within a block. 
and 

These are used to identify the behavioral description to VMS 
by providing it  with the function name, and to generate the 
internal interfaces needed for the EPL/S model to 
communicate with  VMS. 

A second set  of EPL/S commands is  defined to aid the 
engineer in telling the simulator how to account for the 
timing and synchronization involved in executing several 
behaviors or sub-behaviors. The three basic timing-related 
commands are 

WAIT,  which suspends execution by a specified number of 

SCHED, which  schedules a MINIMOD to execute at a 

POST,  which  is  used to bypass WAIT and SCHED 

time units, 

prescribed time, and 

commands asynchronously. 

The timing commands  are used to help the simulator order 
the execution of the behavioral elements in the EPL/S 
model. They are not describing the actual timing and delay 
characteristics of the real  logic. 

Another set  of commands is used to define data and data 
attributes, including scope. Examples are 

INPUT, which  describes input lines to a block, 
OUTPUT, which  describes output lines from a block, and 

0 TABLEOPT, which  lists  variables to be  accessed during 
simulation. 

Some of these commands are used to create data entities 
which are shared by the EPL/S descriptions and other parts 
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of the system,  such  as the  stimulus description  language 
which is used to specify test cases for VMS. 

In  addition  to these command types, there  are a number 
of commands whose purpose is to  make  the task of writing 
code  easier  for the user. For instance, the BIT statement 
enables the user to specify bit manipulation of bit  strings 
defined in one of the  data definition commands.  Another 
statement of importance is the  TRACE  statement. It helps 
the user to  debug  the EPL/S model by returning  control  to 
the  simulator  and by allowing display and modification of 
the variables. This feature is vital to interactive  simulation. 

In  summary, EPL/S is a reasonable  modeling language. 
However,  it  lacks sufficient hardware  description  capabilities 
to allow for hierarchical  hardware documentation  and design 
support. Its style is readily acceptable to engineers who  are 
also programmers, but  it is not considered an “engineer’s 
language.” 

it is not a true  HDL (as defined above). As the state of the 
design automation  art  matured, however, languages at  the 
RT level did begin to  appear within IBM. Starting around 
1970, a number of  such languages were developed,  most  of 
them short-lived. Three of them have, however, survived the 
test of time. They are all about  the  same age and each  has 
been used at several IBM  locations. All have had success in 
the generation of real hardware.  These three languages are 
IDL, BDL/CS, and SDL. 

Although  EPL/S was, and still is, widely used within IBM, 

IDL (Interactive  Design  Language) 
IDL was conceived about  ten years ago [3]. Its  initial 
purpose was to facilitate the design of PLAs that  embodied 
highly complex algorithms, but it is now being used for the 
design of random logic as well [4]. IDL is nonprocedural;  the 
order  in which IDL  statements  are listed is unimportant. 
IDL is  hierarchical  with some limitations. Though  entry of 
data  into  IDL  may be graphical (flow chart  form) or textual, 
the great majority of IDL users have preferred to use the 
textual form.  IDL is implemented  in APL, although certain 
key routines which are CPU-intensive are coded in 370 
assembler. 

IDL is  particularly well suited  for  self-documentation. If 
they  choose, users can,  in effect, create a syntax which makes 
their  code look  like standard English (or any  other language). 
IDL is used for design as well as description,  since it 
generates two-level logic from  the high-level description. 
Multi-level logic can also be generated; the  format  that has 
been adopted is that of a series of two-level “boxes” 
connected by signals. 

Design verification under  IDL is achieved via simulation; 
three  simulators  are available. Two of  these are of the zero- 
delay type  and  are  intended for single boxes. The  third is a 
multi-box simulator  in which the boxes have specific internal 
delay times, clock rates, etc., associated  with them. All three 
simulators accept four possible input values-zero, one, 
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unknown,  and high impedance.  Additional design tools 
associated with IDL,  although  not formally part of the 
language, include  minimization  (number of product  terms 
and  number of feedbacks), partitioning, merging, and logical 
equivalence  checking (between two pieces of two-level logic). 

descriptions, although  structure is usually used to indicate 
connectivity between pieces of logic whose structure was 
synthesized by the system from a behavioral  description. 

Some of the key features and  constructs of IDL  are  as 
follows: Sequence control is achieved through  the use of 
labels; every IDL  statement  that is not a declaration must be 
associated with a label. No restriction is placed on how 
many labels may be active at a given time. If two  or  more 
labels are simultaneously  active, simulation  treats  them as 
parallel processes. Multiple  simultaneous assignment is 
permitted  and is treated as the OR of the  individual 
assignments. The general action  statement  in  IDL is IF 
THEN ELSE. Input  conditions  can be quite complex and 
many complex functions  such  as relational  operators, 
incrementers,  etc. are built in, Le., synthesized for the user. 
Output  statements  can also be more complicated than 
merely assigning values to  outputs. They can, for  example, 
imply complicated control  actions such as register transfers, 
memory accesses, etc. 

IDL allows blocks  of two-level logic to be represented  in 
IDL code as  truth tables. Since the logic that is synthesized 
from  IDL code is two-level logic, a given IDL design can 
itself be used as a truth  table within a larger design. This 
form of  hierarchical  representation can be used to  as  many 
levels as  desired, but  during  simulation  the hierarchy  is first 
flattened to  the lowest level. Alternatively the user  may 
temporarily  represent a truth table  as a truth  function. 
Under these  circumstances, the  table is simulated  (as a 
function) directly and  the hierarchy is not flattened. 

Functional descriptions  (APL  programs) that  do  not 
represent truth tables are also permitted within  IDL.  These 
are directly  executed during simulation. Subroutines  are also 
available. These are blocks  of IDL code that  are executed 
more  than  once  in  the course  of running  an  IDL program. 
They are  automatically linked to  ensure  return  to  the correct 
state  after  execution. Subroutines offer a “busy-protect” 
feature so that  competing processes may or may  not share 
the  same  subroutine simultaneously, depending  on  the user’s 
choice. 

IDL is suitable  for both  structural  and behavioral 

A useful feature  of IDL is the ability to represent a 
particular action  as a sequence  of actions  taking place over 
several cycles and  then synthesize  this  as an  action executed 
in a single cycle. A refinement of this  feature is the 
mechanism which allows IDL  to be used for multi-level 
logic. In  IDL, multiple pieces of two-level logic that  are  in 
series can  be described  as a single piece of two-level logic 
connected by “zero-delay’’ feedbacks. These  behave like 
multi-level logic during  simulation  and also convey 559 
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information to existing programs within IBM (but outside 
IDL) for the synthesis of optimal multi-level  logic  [5]. 

IDL‘s strongest features are its self-documenting abilities 
and its suitability for highly sequential designs that embody 
complex algorithms, particularly those in which many 
parallel  processes are occurring. It is  weakest  when applied to 
designs  whose optimization depends on very  close attention 
to the details of the ultimate physical embodiment. 

IDL is routinely used  for problems of the order of  10 000 
random logic  gates and has been  used  successfully  for 
designs of at least 40 000 random logic  gates [6, 71.  At this 
time four chips that have  gone  all the way through 
manufacturing (and ended up in products) have  been 
designed by IDL. This is in addition to many other designs 
that “died” before  reaching  final manufacturing. 

IDL has found limited use outside IBM,  e.g., at M.I.T.  [8]. 

2. The general action statement in BDL/CS  is IF  THEN 

3. Multiple simultaneous assignments are allowed and are 

4. Functional descriptions, written in PL/S, are allowed. 
5 .  Parallelism during processing is correctly simulated to 

faithfully duplicate the action of the hardware. 
6.  Various  facility  types are supported to allow the designer 

to define the action he  desires without explicit coding in 
the model. Some facility  types are set dominant, reset 
dominant, signal, one-cycle, bit array, and byte array. 

7.  Two- or four-value simulation is supported. The four 
possible  values are zero, one, uninitialized, and unknown. 

ELSE. 

treated as the OR of the individual assignments. 

The strongest points of BDL/CS are as follows: 

BDL/CS (Basic Design Language for Cycle 
Simulation) 
BDL/CS  was  conceived in 197 1 by an engineering group in 
Poughkeepsie  [9]. The language was enhanced in 1978 to be 
used  with the newly  developed EFS (Experimental 
Functional Simulator) rather than the VMS simulator [ 101. 

1. It  is practical for models representing up to 1 000  000 
random logic  gates. 

2. It is technology-independent, allowing the designer to 
evaluate algorithms prior to implementing them in 
BDL/S. 

3. It is self-documenting in terms of flowcharts. 

A hardware simulator is currently in development which 
uses BDL/CS as its input language [ 1 11. BDL/CS  is  used as 
an input for a static analysis  system to verify the equivalence 
of two  logical  models, one in BDL/CS and one in BDL/S 
[ 121. BDL/CS  is  also  used as an input for a technology- 
dependent logic  synthesis  process [ 131. 

BDL/CS  was  initially  designed as a flowchart  language 
with a one-to-one correspondence between the flowchart and 
the code generated for the model. Graphic entry, in the form 
of flowcharts,  is  available, or BDL/CS  may be created as 
text. BDL/CS  is well suited for self-documentation, with the 
designer  using the flowcharts as his master high-level 
document. 

The emphasis is on behavior rather than structure. BDL/ 
CS is  designed for cycle simulation with no provision for 
simulating delays  within a cycle. A timing analysis  system  is 
used to determine delays within the logic [ 121.  BDL/CS is a 
nonprocedural language,  allowing statements to be  placed in 
any order. Algorithms can be  fragmented without explicit 
connections between the various parts. Currently, BDL/CS is 
nonhierarchical, although there are plans to accommodate 
some form of  hierarchy in the language and simulator. 

The compiler is implemented mostly in PL/I with a few 
modules in PL/S. The simulator is implemented totally in 
PL/S  with some imbedded System/370 assembler for 
performance. 

follows: 

1. The order in which statements are executed is determined 
by means of automatic signal ordering to ensure that no 

Some of the key features and constructs of  BDL/CS are as 

560 signal  is  used  before it is  properly  generated. 

The weakest points of BDL/CS are as follows: 

1. It does not currently support phased  clocking. 
2. It does not currently support hierarchical designs. 
3. It  is  difficult to simulate asynchronous logic. 
4. It  is  of limited value for describing  complex sequential 

logic. 

The principal use of BDL/CS  has  been in the large-processor 
area, such as the 308X, although projects much smaller in 
scope have  begun to use it also. 

SDL (System Design Language) 
SDL is a technology-independent, register-transfer-level, 
hardware design and documentation language.  It  is 
nonhierarchical, alphanumeric, list-oriented (nongraphic), 
and free-format. It was  conceived in 197 1 at IBM Rochester. 
John Reed  developed the language syntax and Bill 
Steingrandt developed the first simulator. Some of the early 
work on SDL was  influenced  by DDL (Digital Design 
Language) [ 151. SDL  is implemented with  PL/S and System/ 
370  assembler  code. 

SDL  is  used  by  logic  designers to describe hardware that 
will  be synthesized into VLSI chips [ 161. It is  also  useful for 
creating simulation models of existing functions and for 
limited microcode debug of existing  systems.  SDL  may  be 
used to describe  logic  from a structural point of  view 
(counters, arithmetic logic units, dati flows, macros,  etc.), 
from a behavioral point of  view (sequences,  procedures, 
control flows, operations, etc.), or a combination of both. 
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SDL consists of hardware declarations called  FACILITYs 
and hardware processes  called OPERATIONs and 
AUTOMATONs.  FACILITYs are explicit hardware 
elements and include INPUT, OUTPUT, OPERATOR 
(combinational logic), REGISTER, STORAGE (arrays), 
MACRO (custom logic structures), DELAY (timing control), 
TIMER (oscillators), and INTERFACE (temporary 
structural connections). OPERATIONs and 
AUTOMATONs describe the interactions between  hardware 
elements, and each OPERATION and AUTOMATON 
operates in parallel  with  all other OPERATIONs and 
AUTOMATONs. 

Within OPERATIONs and AUTOMATONs, IF ELSE, 
DECODE  (select), and DO END statements are used  for 
decision  making. Data are assigned to REGISTER, 
STORAGE, DELAY, and INTERFACE  facilities by means 
of transfer statements (load, set,  reset, and connect), and 
references  may  be made to other FACILITYs or groups of 
FACILITYs imbedded in logical  expressions. 

subtract (twos complement), ones complement, parity, 
concatenate, binary addition, gate, equal, less than, and 
greater than. They are used in OPERATORS, 
OPERATIONs, and AUTOMATONs to generate logic 
expressions or comparisons of any desired  complexity. 

OPERATIONs describe events which are not sequentially 
related to other events. During simulation all the events 
defined within an OPERATION execute simultaneously. An 
OPERATION might be  used to describe  what happens 
during “power-on  reset.” 

AUTOMATONs describe events which are sequentially 
related to other events. An unlimited number of STATEs 
may be defined for each AUTOMATON. Each  STATE has 
a set of user-defined events and all events in a STATE 
execute simultaneously. During simulation only one STATE 
of an AUTOMATON is active at a time and control is 
passed  between the STATEs of the AUTOMATON by the 
userdefined events. An AUTOMATON might be  used to 
describe  what happens during the “instruction fetch” 
sequence. 

statements. These statements allow the user to print 
information about activities  within the model.  In addition, 
trace information regarding  model  activity  may be dumped 
to the facility and operate trace files. 

synthesis  methodology [ 161. Simulation of SDL models is 
done using EDS. SDL models, either alone or as part of a 
larger group of  VMS-compatible  behaviors  (VMS-PL/S, 
EPL/S,  BDL/S, etc.) are simulated by executing  user-written 
control statements under control of the EDS  VMS 
simulator. 

SDL has twelve  logical  operators:  AND, OR, XOR, binary 

For debug,  SDL  provides the DUMP, EXIT, and EVENT 

SDL is an integral part of a larger  design,  verification, and 

Topological analysis of an SDL model may be done using 
the SDL-PRIME  analysis routines [ 161. These routines 
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provide  cross-referencing information, combinational logic 
equation listings, LSSD scan path information, design data 
flow information, and design control flow information. 

Logic  synthesis  of an SDL  model occurs in two  steps. 
First, the SDL-PRIME  synthesis routine converts the SDL 
model to technology-independent BDL/S [ 161. Then EDS 
LTS  (Logic Transformation System) converts the TI BDL/S 
to technology-dependent (TD) BDL/S [ 5 ] .  The TI and TD 
BDL/S created by these programs may  be  used as input to 
any EDS-supported  program (Static Analysis  System,  LSSD 
Design Rules Check, Timing Analysis,  VMS,  etc.). 

The strengths of SDL lie  in its descriptive  flexibility, its 
ability to model concurrent processes, the state concept 
embodied in the AUTOMATON concept, and its capacity 
to model  logic  designs  of  large  size (in one design, 40 000 
random logic  gates  were  modeled  along  with 128K bytes of 
storage). 

specification capabilities and its inability to communicate 
with other behaviors or programs  except through INPUT 
and  OUTPUT statements. 

The weaknesses  of  SDL include its poor timing 

VHDL  (VHSIC  Hardware  Design  and  Description 
Language) 
VHDL is a language  whose  most important characteristic at 
this point in time is that it represents the future [ 171. While 
it has not  yet  been  released, it could pervade the entire 
industry, since it represents more current thinking in the 
area of HDLs, ;.e., the state of the art. 

The U.S. Department of  Defense (DoD) is funding the 
development of VHDL. The work  will result  in a DoD 
standard hardware description language, an analyzer/ 
compiler, and a VHDL mixed-mode simulator. The 
scheduled completion date is December 1, 1985. Contractors 
will then be required to describe their VLSI designs  (design 
specification or completed design) in the standard VHDL. 
The new language  has implications for the development of 
design tools and for the way designers approach new designs 
or use existing  ones. 

design  capability that allows the designer to describe, 
evaluate, and utilize  design alternatives. The key conceptual 
element within VHDL is the design entity. It  is composed of 
a unique interface description and a design  body. The 
interface description represents the intended external 
interface of the hardware being  designed. As design 
progresses, the interface description will  be  refined to match 
the real hardware exactly. Within the design  body, the 
designer  may  describe one or more design alternatives, called 
variants, for the desired  hardware. 

described in terms of function, RT level, or pure structure. 
&her user data relative to a design  may  also  be conceptually 
held  within a variant. Functional descriptions are to be 

The language organization will provide a hierarchical 

Within  each variant, several  design  aspects  may  be 
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written in a subset of the Ada  language. The RT-level  aspect 
allows the designer to describe a hardware design in a 
nonprocedural language  where the structure may be depicted 
as a combination of structural statements and Boolean 
conditions for the execution of those statements. 

In addition, the language will provide “assignment” 
constructs. The underlying conceptual model is that all 
conditions are evaluated, in parallel, at “interesting” points 
of time. Interesting points of time are determined on  the 
basis  of transactions (implicit handshake), events (explicit 
handshake), and periodicity (implied clock). All statements 
that have conditions that evaluate to “true” will  be executed 
in parallel. Conditions may be labeled, the label  values  being 
evaluated as part of the condition, thus allowing the designer 
to create any desired sequence of concurrent or parallel 
operations. 

Through the use of the condition, action, and effect parts 
of the function statement, the designer can easily separate 
control flow from data flow. This approach is much used  by 
designers today as a means of comprehending and 
partitioning a complex function to be designed. Since the 
RT level in VHDL implies a structure, tools could be 
developed to create a graphic picture of the implied 

used  by different designers employing various 
methodologies. 

Concluding  remarks 
As part of the development of HDLs, many languages  have 
been proposed; only a few have survived. The reasons for 
their survival are often as dependent on factors such as the 
persuasiveness  of their developers, the timing of their release, 
etc., as upon technical merit. As a consequence, none of the 
HDLs currently in widespread  use in hardware manufacture 
can be regarded  as the last word. In almost all cases, their 
language definitions have been informal, and extension of 
these  languages to support innovations in the design 
automation  art (such as mixed-mode simulation, for 
example) is  difficult if not impossible. Furthermore, the 
existing  languages tend to be specialized,  each  having 
evolved inside a relatively small part of the design 
community. 

designers, that promises to be readily extensible in the 
future, and that has  been  designed in a formal manner, 
would be highly desirable. VHDL may  have  these properties. 

Thus, a language that can be used  by a broad spectrum of 

structure. 
An explicit structural description represents the 
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