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Logic “mapping,” or “transformation,” refers to
the process of converting a logic design from
one form of specification to another. The output
is usually a specific technology implementation
and the input could range from a previous
technology implementation to a high-level
design language. Motivated initially by the
problem of test case generation for new
technologies, a logic transformation system,
known as the Technology Mapping System
(TMS), was developed. This system has focused
on the problem of technology-to-technology
mapping involving gate array or standard cell
logic families. TMS makes use of an
intermediate notation, called GLN, and uses
several forms of “rules” to control the mapping
process. This paper discusses the history and
general operation of TMS, and makes a
comparison of transformations from different
types of sources.

introduction

Logic design is becoming increasingly difficult. There are
more technologies to understand, more circuits per machine,
more circuits per chip, longer manufacturing turnaround
times, shorter development schedules, and more tests for a
limited design force to perform. The resulting problems in
productivity and quality are met with an increasing number
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of logical and physical design automation tools. Relieving
the designer of the detailed implementation decisions is the
job of a logic transformation system, a relatively recent
addition to the DA field. This tool attacks the productivity
problem by either allowing a more efficient source
specification, such as a technology-independent language, or
by directly utilizing a previous, technology-specific,
implementation.

The terms mapping, remapping, transformation, and
synthesis have been used to describe a variety of conversions
of logic designs from one form to another, the target usually
being an implementation in a specific circuit technology.
There are four general types of design specifications that are
relevant:

—

. High-level hardware design languages.

2. Array or truth table specifications such as Programmable
Logic Arrays (PLAs).

3. Technology-independent structures.

4. Technology-dependent structures such as the technology-

specific Basic Design Language for Structure (BDL/S)

used by the IBM Engineering Design System (EDS).

The term synthesis is usually used with type 1, while
remapping is often applied to type 4.

There have been many efforts at logic transformation
reported in the literature [1]. One of the earliest efforts
within IBM was the ALERT system in the late 1960s [2, 3].
This system showed that a logic design could be
automatically generated from a design language, but the
results were not competitive with manual designs. More
recently, the Logic Synthesis System (LSS) was developed
[4-6]. This system has brought design language synthesis of
random logic from a promising idea to a practical reality.
LSS has also been used for the remapping application.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984




Within the IBM Engineering Design System, the Logic
Transformation System (LTS) has been developed to provide
the corporation with a general-purpose transformation
system [7]. A system that is used to automatically generate
two-level logic, such as PLAs, from a high-level design
language is the Interactive Design Language (IDL) system
[8]. In Japan, the LORES system [9] was developed to do
remapping applications, and ANGEL [10, 11] specializes in
design language synthesis. This paper describes a system
called TMS, or the Technology Mapping System, that has
been involved in all four types of transformations, with the
primary emphasis on technology-to-technology conversions

(type 4).

Background

TMS was not started with the usual motivation of designer
productivity; rather, it was intended to support new circuit
technology development. A way was needed to generate
examples and test cases easily. The scale of integration had
reached a point where the generation of design data to
describe a single chip demanded a significant amount of
manpower.

The manual mapping of an existing microprocessor into a
new, denser, 1200-gate circuit technology introduced us to
technology mapping in 1976. We found that the time
required to do a mapping project manually is not much less
than the time required for an entirely new design. The
mechanical generation of technology-dependent BDL/S is a
big job because of the high data volume and the tendency to
introduce errors. Simple transcription mistakes can take a
long time to find or go undetected prior to manufacturing.
We also found that the only true definition of a design is the
implementation data, the original BDL/S. Other
documentation does not cover everything and the original
designers do not remember everything. For example, a
condition that the designer may consider as a “don’t care”
might be tested by a diagnostic program that he was not
even aware existed. Using the design data as the source, a
complete understanding of the logic is not necessary for the
majority of the labor involved.

In view of other similar mapping projects in 1978, the
decision was made to experiment with automating part of
the mapping job. At the time there were no logic
transformation tools available. The original plan was based
on a programmed conversion of each source block to target
blocks on a one-to-one or simple one-to-several basis,
followed by manual modifications. After the initial
objectives were completed, a review of the manual
procedures was started, and over the following years the
programs grew and evolved. Started as a simple aid to
mapping, TMS was expanded to automate the entire
process.

It wasn’t until a second target technology was considered
that a cohesive methodology emerged which included an
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intermediate notation and a concept of rules. Seventeen
sources and eight targets were added gradually as new
technologies and applications developed. The technologies
include both FET and bipolar circuits of the gate array
(masterslice) or standard cell (masterimage) type, ranging
from 100 to 10 000 equivalent gates per chip. In addition,
several PLAs have been transformed into random logic.

When the ability to map from one technology into
another was established, we became more involved with
product design applications. For new designs a technology-
independent form of design specification called TIF
(Technology-Independent Functions) was developed.
Expressed in BDL/S, TIF is a set of block functions that
includes primitives such as AND and OR, and high-level
functions such as registers, selectors, comparators, decoders,
and user-defined macros. A mix of TIF and target
technology macros is also an option as a source specification.
Designers find TIF relatively easy to work with because there
are no concerns about fan-in or fan-out limits and the same
block set is used for all technologies. A similar concept is the
generic operators used in the EDS/DAYV system [12]. TIF
can be used as a target as well as a source. Often a designer
wants to convert a design from an old technology into a new
one and wants to alter the function slightly. A convenient
way to do this is to first map into TIF, make the design
changes in TIF, and then map into the target technology.
TIF has also been used as an intermediate form during
synthesis from a hardware description language. An initial
structure in TIF is generated from a compiler that reads the
source language.

Overall, TMS is used for five types of applications:

& Product design.

» Feasibility studies.

& Technology comparisons.

« Alternative-technology backup plans.
e Vehicles for design system evaluations.

The technology-independent design of chips for actual
products attracts the most attention from tool developers
and design groups. However, in the role of a technology
support group, the last four items constitute the majority of
applications. Estimating circuit counts in various
technologies is an important capability when considering
future technologies or potential business cases. In the past,
intuitive considerations of circuit efficiency were often
substituted for hard data, and estimates varied widely.
Deciding to use a PLA versus random logic is an example of
a difficult task where logic mapping programs can help [13].

Overview of TMS
To reduce the amount of code required by the various
combinations of sources and targets, the TMS

transformation process is divided into two phases. In the first 547
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General TMS transformation process.

or source phase, the design is transformed into an
intermediate notation called GLN or General Logic
Notation, and the technology-dependent characteristics of
the source technology are removed. In the second or farget
phase, the design is manipulated until the GLN description
matches one-to-one with the target block set. The general
transformation flow is shown in Figure 1.

GLN is a key concept in TMS. Its purpose is to provide a
description of the design that is easy for programs to
manipulate. Since the conversion process manipulates the
GLN until it is one-to-one with the target, all of the target’s
basic functions should be represented in GLN. The functions
include AND, OR, AND-OR, OR-AND, EXCLUSIVE-
OR, parity function, and a variety of latches, clock drivers,
off-chip drivers, and receivers. The LSSD [14] latch
functions include the SRL, L1, L2, and L3 with polarity-
hold, glitchless polarity-hold, and set/reset construction
types. In addition, the GLN blocks must be able to take on
technology characteristics such as high-power and low-power
versions of a function.

There are several aspects to the conversion of a source
design into GLN. In technology-to-technology mapping, the
mapping system must handle a wide variety of notation and
design conventions. Since the purpose of GLN is to have a
standard form for each function, all of the unique
technology or designer representation quirks must be
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removed, while the logic is being translated into the standard
GLN form. All purely physical information is removed and
the notation for model input and output signals is
standardized.

One of the common complications in the source phase is
“dotting,” also known as the “wired-or” function. The
transformation system must cope with a mix of implicit or
explicit representations of dotted nets in addition to multi-
block functions such as “extend ports” on latches. GLN does
not allow multi-source nets, so all configurations that
involve dots must be changed into simple equivalent
functions such as AND or converted into larger macros such
as multi-port latches. As shown later, the GLN restriction on
multi-source nets provides a simplification for programming
and does not preclude their existence in the target design.

All blocks in GLN are dual-rail—both true and
complement signals are available. As a result, there are fewer
blocks for the programs to manage and there is no searching
for an inverter to reach a complementary signal. In the
source transformation phase all inverters are removed except
at primary inputs. Since there are no fan-out limits in GLN,
all repowered signals or duplicated functions are
consolidated into one source for each logical signal.

There are five parts to the target phase of the conversion
process:

. Off-chip driver/receiver assignment.

. Combinational logic transformations.
. Latch transformations.

. Fan-in/fan-out repowering.

. Conversion of GLN to the target.

N b W -

Off-chip driver and receiver assignment involves either
adding new blocks or maintaining existing ones. Most
technology-to-technology mapping involves a merging of
several smaller chips into a single, denser chip. In this case,
the original driver and receiver functions of each chip are
converted to GLN-equivalent functions and new drivers and
receivers are placed at the new input and output pins of the
merged design.

Combinational logic transforms reduce cell count or
connection count, or improve delay. Without them,
technology mapping would simply include block-to-block
translations which would leave unnecessary and trivial logic
in the new design. Removing the obvious types of circuit
overhead, such as double inversions, is the initial goal of the
logic reduction. As the number or sophistication of these
programs is increased, mapping very dissimilar technologies
becomes realistic. The programs look at small logic functions
and transform them into configurations that will be more
efficient in the target technology. A designer would do these
types of changes by inspection; they would typically be
implemented without writing out the Boolean equations or
applying any classical minimization. The term local
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transformations has been used to describe this type of logic
reduction technique [S].

Although the reduction programs can be run
independently and in different sequences, there can be
interactions between them. One transformation may put the
logic into a configuration which will make a following
transformation more effective. In addition, the
transformations may be iterative. They will be repeated
several times in a row, and run at different times within the
same transformation job.

Latch transformations are generally alterations of the form
of a latch to make it one-to-one compatible with something
that exists in the target technology. TMS does not alter the
number of latches in the design. Some transforms are done
to reduce cell count or improve delay, but there is not much
that can be done to alter the cell count that is attributed to
each latch. Changing the number of data ports is an example
of a latch transformation. Since technologies vary in their
abilities to support multi-port latches, the transformation
system must be able to read in multi-port latches and output
single-port latches. Latches are reduced to the minimum
number of ports in the source phase, and if multi-port
latches are available in the target, they will be created or
recreated in the target phase. Increasing the number of ports
improves the path delay into the latch but also increases the
loading on the clock signals. The inversion of a latch is a
transformation that can save extra cells by reducing the
number of surrounding inverters, as shown in Figure 2.
Other latch transforms include splitting SRLs into
component L1 and L2 latches and the inverse transform of
combining L1s and L2s to form SRLs. Clock drivers that are
typically used by bipolar technologies must be added or
deleted and the latch input signal polarities must be adjusted
to match the target requirements.

During fan-in repowering, new blocks are added to reduce
the fan-in of each block to the limits accepted by the target
technology. The fan-out repowering phase is similar, but
more involved. Fan-out violations are fixed by increasing the
power level of blocks or by adding blocks in parallel or
series. Fan-out repowering also converts dual-rail outputs to
single-rail if required by the target technology.

Rules and programs
The need for a structured approach became evident after
working with a second target technology. A bug in a
program that dealt with the first technology would be likely
to reappear in the corresponding program for the second
technology. This duplication of basic functions in programs
for each technology created a maintenance problem, and it
made the addition of new target technologies very time-
consuming,.

The classical solution for program maintenance in IBM
design systems is a rules-driven approach. Conceptually,
rules can refer to any structured way of modifying the
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Example of a latch inversion transformation: D = data input to SRL;
N =inverter.

function of a program. The form of a rule can be as simple
as column-oriented data, or as complicated as a special
source language that is compiled to become part of a
program. No matter what format is used, a rule is
distinguished by being easier to modify, and is usually more
restricted in function, than a more general program. Ideally,
the additions and changes to the mapping system should be
focused on the rules rather than the programs. Our effort to
create rules was successful in that most of the programs in
TMS can be used to map to any of the target technologies.
However, the concept of rules in TMS does not have the
same rigor that is usually associated with rules in the IBM
Engineering Design System (EDS).

TMS rules take four different forms:

Action parameters.

Tables.

® Macros (block transformation rules).
“Twist” rules.

Action parameters have several uses. They are used to
control the mode of a program or establish criteria for some
type of action to take place. For example, the primary goal
of an action could be the reduction of cells, connections, or
delay, as selected by the choice of parameters. In addition,
parameters may be used to control global values of
technology constraints, such as fan-in or fan-out limits when
they are not specified in a table. These are considered to be
rules because they can be a way of providing target
technology information to a program.

The tables contain the detailed information that must be
distinguished by block type and/or pin type. For example,
the limits used in the final fan-in and fan-out repowering
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| Example of parallel reduction.

transforms are contained in tables. Data within the table
refer directly to the GLN blocks and not to the target
technology blocks, which means that the rules coder must
know the final GLN-to-target transformation when he writes
the rules.

Macros are used to expand a single block into multiple
blocks. For example, a parity function block may be
expanded into a tree of EXCLUSIVE-ORs. These macros
are implemented as BTRs (Block Transformation Rules),
which are a rule type used by EDS.

The “twist” rule is the glue that keeps the system together.
This set of rules guides block-to-block and pin-to-pin
transformations and is used to call up a macro (BTR)
expansion. Primarily, this type of rule is used to control the
conversion to and from GLN. Twist rules are the only rules
that undergo a compiling process; they are read by a
preprocessing program and converted into PL/I subroutines.
The rule syntax is designed to make it the easiest of all the
rules to deal with, giving the coder an easy way to test the
details of a block. Today, most of the additions and/or
changes to TMS are made in twist rules rather than in the
other rule formats or the programs themselves.
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In addition to the rules used in the mapping process, there
is a separate set of rules used in the verification process. To
validate the functional equivalence of the transformations,
the EDS Static Analysis System (SAS) [15] is used. The
purpose of the TMS validation rules is to provide SAS with a
common equivalent logic model for latches. Unlike
combinational logic, latches of equivalent function can have
construction differences that make a Boolean comparison
difficult. For combinational logic the normal simulation
rules are used to generate the equivalent logic expansion.
The use of SAS is vital to maintaining the productivity and
quality of the mapping tool.

Controlling the transformation process
Each pair of source and target technologies requires a
strategy that includes decisions on what to expand into
lower-level GLN blocks and what to leave alone. Making
these decisions requires an understanding of the reduction
steps that will be most effective in the transformation. For
example, TMS cannot convert a tree of EXCLUSIVE-ORs
or NAND:s into a parity function block. Therefore, if the
source and target have similar parity functions as single
blocks, the parity function block will not be expanded into
another form. If it is to be expanded, there may be more
than one alternative to consider. For a parity function, the
best implementation in the target may be EXCLUSIVE-
ORs, NAND:s forming EXCLUSIVE-OR functions, three
input NANDs, or some other special configuration of target
technology blocks. There is also the decision of where in the
job sequence to do the expansion. If the expanded blocks
can undergo some logic reduction, the expansion is done
early; otherwise it is left to the final transformation step.
The overall conversion strategy is implemented with three
levels of control mechanisms. First, the basic framework is
set by the choice of “twist” rules and macro expansions.
Second, the manipulation of the GLN is controlled by the
selection and order of the actions. Third, the individual
actions are controlled by the rules and parameters. Because
all of the logic reduction is done in GLN, the rules must
provide essential target technology data in terms of the GLN
blocks. The purpose of the GLN is to give the programs an
easy form to manipulate but not to preclude transformations
that have technology-dependent criteria. Programs used for
logic reduction have varying degrees of control or technology
data input, but can be divided into three general categories:

e Programs without control.
¢ Programs with control.
e Programs with control and scoring.

Programs without control are completely technology-
independent, running the same way every time. An example
of this type of action is parallel reduction, as shown in
Figure 3. The nature of these algorithms is such that they
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always have a desirable effect. Other reduction programs are
not as simple, requiring additional controls to help guide the
algorithm.

An example of how the strategy, rules, and programs
interrelate is the problem of forming the AND-OR function
(or its dual, the OR-AND). Implementations of AND-OR
functions vary widely among technologies, often involving a
wired-or or dotting configuration. One way of dealing with
this technology capability is to convert the source to the
target technology, followed by applying special technology-
dependent programs which could find the AND-OR
function or utilize the dotting capability of the target. Initial
attempts were along those lines of thought. We found that
the algorithm to find an AND-OR function was basically the
same, regardless of the target technology. The primary
variables were the dimensions of the AND-OR block (fan-in,
fan-out, number of ANDs) and the form of the target
technology implementation

The solution to the AND-OR formation problem was to
create a program that created AND-OR blocks from
configurations of GLN blocks. The program operation is
guided by action parameters which set the maximum
dimensions that the AND-OR blocks can take, based on
limitations in the target technology. The AND-OR block is
another GLN primitive, so nothing is lost as far as being able
to do further manipulation on this block. The fan-in and
fan-out programs always see this function as a single block
since GLN does not aliow multi-source nets. At the time of
final transformation, the AND-OR block is converted to its
final form. If that final form involves a dotted net, a macro
is used to expand the AND-OR into its proper multi-block
representation.

The AND-OR function is an example of a block that is
treated differently than the parity function in the overall
mapping strategy. In the source phase the original AND-OR
(or OR-AND) blocks ar: usually expanded into lower-level
functions whether or not the target has similar blocks
available. The reason is that the AND-OR formation
program generally does as good a job or better of finding the
AND-OR functions than the original designer.

Only the “common term” reduction program deals with a
“scoring” function in a general way. This action identifies
common inputs in a swappable pin group and creates a new
block whose inputs are the common signals, as shown in
Figure 4. The general steps in the common-term process
could apply to any local transform algorithm:

1. Find candidates for the local transform.

2. Evaluate the net change that would result if the transform
were actually completed. This change is computed as the
“score.” In the case of TMS, we use two scores: 1) cells
(or circuits) and 2) connections.

3. Examine the input criteria. Input parameters are used to
specify limits on the cell and connection scores that are
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I Example of common-term reduction.

considered satisfactory. All candidates that do not meet
the input criteria are thrown out.

. Rank the acceptable candidates in descending order by
score.

. Select the candidates one at a time until no more
transforms can be done. The entire list may not be used
because one candidate may share some blocks with other
candidates. In one pass of the reduction cycle, a block
cannot be altered twice. After completion of all the
changes that can be made in one pass, the whole process
is repeated on the altered design. This process continues
until no more candidates exist.

S

wn

The score is a projection of the change in final cost function
created by the transform in the target technology. The word
target is emphasized because the decisions that are to be
made are very technology-dependent. Since the GLN design
description is not one-to-one with target technology at the
time the program is run, the score must be based on more
than a simple block count. The changes in GLN must be
translated to projected changes that will occur after fan-in,
fan-out repowering and final transformation. The required
technology-dependent data come from a rule in the form of
a table. This rule indicates the limits on fan-in and fan-out,
and the cell and connection counts for each block.

J. L. GILKINSON ET AL.
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There are eight subtotals that make up the total score:

Cells Connections
Base count X1 Y1
Inverter penalty X2 Y2
Fan-out penalty X3 Y3
Fan-in penalty X4 Y4
Totals X Y

The “base” is a score based on the target technology assum-
ing that both polarities are available and that there are no
fan-in or fan-out limits. The inverter penalty refers to addi-
tional circuits required because the target does not always
have both polarities available. For example, a noninverting
AND function takes an additional circuit in a pure NAND
technology. Similarly, the fan-in and fan-out penalties mea-
sure the circuits required to abide by the finite technology
limits. These penalties are particularly important in com-
mon-term reduction because the actual reduction is only in
these penalty counts. The base cell count increases because
the transformation adds an AND block.

Operational characteristics

The transformation process is a series of steps that are
controlled by the person setting up the job and by the rules
information. Even though there is a general set of process
phases and rules, job setup requires familiarity with TMS,
and the source and target technologies. The tool is complex
enough that we do not burden the individual designers with
the task of learning how it works. Normally the job does not
depend on the design itself unless the chip is very full or
there is a special requirement involved. In addition to setting
up the job according to the designer’s requirements, the
TMS support person generally runs the job and reviews the
results. Sometimes reruns are executed by the designer. A
key element in achieving a quality mapping is good
communication with the designers so that all assumptions,
limitations, and special requirements are established early.

TMS is run strictly as a background job. The programs are
coded in PL/I and there is one main TMS procedure that is
controlled by action statements and control variables. All
macro expansions are done with a standard EDS procedure,
so a typical run is a mix of TMS and EDS job steps.
Generally, the JCL refers to the actions desired, but the
detailed parameters and rules datasets are selected by a
default-setting program which examines the technology
name and action name. All parameters and rules can be
overidden to customize a run.

TMS does not have an underlying database or special
program interface to use when writing transforms in the
same way that LSS [5] or LTS [7] does. Writing new
transforms in TMS is not particularly easy, at least for tasks
that are beyond the scope of the twist and macro rules. TMS
is characterized by having a relatively small set of versatile
transforms that are controlled by rules or action parameters.
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Because we have to deal with many technologies, there is a
strong motivation to reduce or eliminate the writing of
special transformations for each technology. Keeping the
design in GLN as long as possible during the transformation
has helped generalize the individual actions. All eight target
technologies, so far, share the same transforms, but are
supported by different rules and different action sequences.
To go beyond what has been done with TMS, however, it is
clear that more technology-dependent transformations are
required and more underlying program support for the
creation of new transformations would be desirable.

One analysis feature that was added to TMS was a
statistics program that can estimate a final circuit count even
when the design is described in GLN. This program aids the
analysis of intermediate results. The effect of the logic
reduction is more evident when the statistics are taken at
different places during the run. Estimates of the circuits
required for inversions and for fan-in and fan-out
repowering are made following the same general method
described for scoring in the common-term reduction action.
In addition to taking intermediate statistics, the GLN model
can be saved in the form of BDL/S for inspection or further
analysis.

Limitations of TMS

TMS provides a mechanical translation from one logic
design structure to another. However, the general technology
mapping problem has many aspects, only one of which is
generating a mechanically accurate design. It is important to
understand those areas that are not accounted for in the
conversion process used by TMS:

e Non-LSSD to LSSD conversion. Although this type of
transformation has often been requested, changing the
latch and clocking structure to meet LSSD requirements
would be beyond the scope of TMS. The source must be
an LSSD design.

o Partitioning. The input and target I/Os remain unchanged.

Partitioning must be done before or after conversion.

Delay. The logic reduction steps can be oriented toward

improving delay, but a final analysis to ensure timing

integrity is a separate problem. In addition, the original
design must not rely on minimum circuit delay to obtain
the proper function other than in simple latch clock
drivers. An example of unmappable logic is a clock
generator which controls spacing and pulse width with
circuit delays.

Also, the rules and programs of TMS have efficiency
implications. Some target technology properties that can
reduce conversion efficiency are

e Macro-oriented, or higher-function, blocks.
e Blocks with multiple-function outputs.
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e A large mix of primitive functions.

Reactions to these properties are difficult to incorporate
into general logic reduction programs. In general, TMS is
best at “macro-to-micro” conversions, where the source
design is described with blocks that are at the same or a
higher functional level than the target block set. There are
some actions that do form higher function blocks, such as
AND-OR formation, but a general micro-to-macro
transform would be difficult to make rules-driven, and has
not been attempted in TMS. More complex and technology-
specific transformations are an option, but these programs
can have less return on investment than the ones that can
apply to several target technologies. In TMS, we have chosen
not to implement several transformations because they did
not apply to multiple technologies. Clearly, this is a business
decision and not a scientific one.

To get an idea of the relative value of certain technology
blocks, it is beneficial to map out of and back into the same
technology. Larger macros or special blocks are expanded
into equivalent GLN functions and undergo the logic
reduction that is available. Analyzing the resulting design
versus the source design indicates the penalty of not having
more transforms. The source design must be manually
generated and hopefully representative of an efficient design.

Comparison of types of transformations
Although the primary function of TMS has been to do
technology-to-technology mapping, it has been used in
conversions from all four types of source descriptions that
were mentioned in the introduction:

¢ Hardware design languages.

e PLAs.

¢ Technology-independent structures.
e Technology-dependent structures.

In the type of transformations being addressed, the source
description always contains explicit information on the
memory elements, or latches, and how they are logically
clocked. The transformation maintains the basic latch and
clocking structure throughout the process, providing a legal
and efficient implementation in a target technology. The
mechanics of doing each type of transformation are similar
but each has its own characteristics. In the following
paragraphs these transformations are discussed and
compared. It is important to realize that the advantages and
disadvantages pointed out apply only to the mapping process
itself and do not indicate which source is better from an
overall design methodology point of view.

The conversion from hardware design languages generally
represents the greatest change in form and requires the most
robust transformation system. A behavioral description is
changed into a structural description by using a small set of
functions. In the first step, a simple initial structure, without
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logic reduction, is created by a language compiler. This
approach follows a general set of process steps established by
the LSS system [4]. Two characteristics of this structure are a
relatively large number of blocks, and the existence of
constants one and zero. The constants are removed by
propagating them through the logic, and the mapping
proceeds in the same way as technology-to-technology
mapping. TMS has been used to complete the
transformation after the removal of constants.

Managing the delay aspects of the design can be difficult
in any transformation, but using a design language as the
source appears to aggravate the problem to some extent. The
initial structure is usually made without regard to depth of
logic, and the designer’s coding techniques may force the
mapping system to deal with speeding up an initially slow
design. A problem that appears to be somewhat unique to
the hardware design languages is that of testability. In the
LSS system, which has dealt extensively with
transformations from languages, there are sophisticated
programs that directly attack untestable faults in the target
design [16]. These faults are most often put into the design
unknowingly by the designer. Our experience with TMS
indicates that the other design forms are less susceptible to
untestable faults. In coping with either delay or testability
problems, the establishment of designer coding practices
and/or the addition of special transformations may be
required. The LSS system has demonstrated that these
problems can be managed successfully [17].

The PLA source designs allow the transformation system
to deal with initial structures that always look similar. In the
case of TMS, the initial structure is the equivalent logic
model that is also used for test pattern generation. This
structure is characterized by a high connection to block ratio
and a depth of logic that is relatively shallow. Because the
initial logic depth is controlied, the PLLA source
transformation is the easiest to control with regard to delay.
Most of the logic reduction is done by the factoring or
common-term reduction programs which were mentioned
earlier. This type of program can have problems with job
run time on PLAs with high connection counts because
there are so many candidates to consider. An efficient
implementation of the factoring algorithms and ways of
limiting the candidates can be important considerations. The
reason the TMS version of common-term reduction has
scoring, rules, and several control parameters is that it was
developed while transforming PLAs.

The easiest of all of the sources to deal with are
technology-independent structures that have been manually
generated. The input blocks are relatively high-level, so the
design can be efficiently expanded into GLN blocks, and all
problems with source technology notation such as dotting
are eliminated. Conceptually, there could be the same
problems of initial logic depth and testability observed with

the design languages, but we have not experienced them. 553
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One problem that we have observed deals with “no
concern” conditions. For example, a multiplexor can be
implemented in different ways depending on the state in
which the multiplexor is shut off, or in which no data inputs
are selected. If the designer is not concerned about what that
state is, it may be possible to choose a more efficient
implementation relative to one that is Boolean equivalent
with the multiplexor in the initial design. So far, we have left
it to the designer to make an efficient choice in his source
design. However, in simple configurations it would be
possible to find states that could not logically occur, and
change the implementation accordingly. This problem is
more often encountered in technology-independent
designs where the designer would tend to use noninverting
blocks, compared to the technologies which favor inverting
blocks.

Technology-to-technology mapping has both advantages
and disadvantages when compared with the other three types
of conversions. The advantage is that the source design tends
to be efficient from a delay and logic reduction point of
view. If the block sets for the source and target technologies
are similar, a reasonable target design can be generated with
a few transforms. As was mentioned earlier, a problem that
is unique to this type of transformation is handling the
myriad of technology and designer notations for similar
functions. Another problem is that the input design is often
constructed from low-level blocks, such as pure NANDs, but
the target offers higher-level functions. When there is no
TMS transform that can find the higher-level function, the
resulting implementation will be less efficient than desired or
the designer will make some changes manually. The
ubiquitous parity function is the best example of a complex
target function.

There can be problems with the handling of latches in
technology-to-technology mapping. Although some latch
transformations take place, the basic latch implementation
remains constant, including the number of clocks and
master resets. Since each technology has a finite latch
offering, it is not always possible to find a target latch that is
compatible with the latch used in the source. In this
circumstance, the recourse is redesign of the source or
manual changes after the transformation is complete. In
addition to basic latch types, there are electrical
characteristics to consider, such as latch speed and
“glitching” properties. The reason that this problem surfaces
in technology-to-technology mapping is that the latch
requirements must be gleaned from a previous
implementation instead of an original specification.
Although the situation varies depending on the design
philosophy of the product group, designers often tend to use
everything the technology offers, which can aggravate the
compatibility problems. With new designs and technology-
independent sources, the designer can control his latch
selection with the target in mind.
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Human factors

A problem common to all forms of logic transformation is
the human factors of the target design. No matter how much
the transformation system does to improve the readability of
the output and maintain a reference between key source and
target landmarks, the end product will still not look familiar
to the designer. Reactions have varied among designers, but
we generally receive much more feedback on the human
factors than on the efficiency of the mappings. As expected,
the greater the change in form during the process, the greater
the human factors problems. The logic that was originally
specified as a PLA or in a design language is the most
difficult to handle. In particular, the conversions from PLAs
lack meaningful internal signal names, although the basic
structure of the AND array, OR array, and bit-partitioning
logic is usually still identifiable.

The obvious answer to human factors problems is to
remove the need for the designer to deal with the detailed
implementation. However, that is not always easy to do and
in the case of technology-to-technology mapping it is not
appropriate. Ideally, logic transformation fits only into a top-
down methodology, but in practice it can fill more than one
role. In some cases the transformation system can be used to
keep the designer at a higher level of description and, in
other cases, it becomes a sophisticated data entry tool. To be
successful, the designer and the tool developers must meet
each other halfway, to deal with the problem of human
factors.

Looking to the future

There are two general areas for future work in logic

transformation. The first is advancing the tools and

techniques of the process itself. The second is establishing

logic transformation as a normal part of logic design.
Some of the potential improvements in the tools and

techniques are the following:

o More capacity for the efficient transformation of larger
chips.

« More complete usage of complex target technology block
sets which include larger macros and a mixed set of
primitive functions.

e Better delay control for more technologies and for more
complex clocking schemes.

e More generality in the transformation process to reduce
the amount of technology-dependent code that is required.

e More sources, such as additional and more complex
hardware description languages.

o More sophistication in the synthesis process, including
alteration of the number of latches.

e More control over the generation of testability problems.

Initially, our biggest concern was the circuit efficiency of
the target designs. Although there have been few cases where
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designs have been done both manually and by TMS, the
general reaction by the designers is that the output is
competitive with manual design. There are always more
transforms that can be added, particularly with certain target
technologies or sources, but the general methodology and the
use of local transforms have been proven to be effective. In
addition, more quantitative comparisons have been done
with the LSS system [5] which also establish the effectiveness
of a local transformation approach.

Clearly, circuit efficiency and comparisons with manual
designs are important, but our experience has shown that
these are only parts of the total picture. Success must be
based on user acceptance, which includes many aspects. The
stability and availability of the tools, the size and skill of the
support groups, the management of the human factors
elements, the ability to deal with designs at different levels of
description, the communication of limitations and
assumptions among the people involved, are just some of the
things that contribute to the whole job. Great strides have
been made in the last few years and logic transformation
tools are no longer in a purely experimental role. But the
challenges will remain for years to come, for both the tool
developers and the tool users and supporters, to increase the
effectiveness and acceptance of logic transformation as the
link between the logic designer and the technology.

Summary

TMS is characterized by a two-phase conversion process and
an intermediate notation called GLN. The mapping process
manipulates the GLN design until it is one-to-one with the
target block set. The system relies on a set of rules in several
forms that are used to control the process and provide target
technology characteristics to the GLN form of the design. A
key aspect of TMS that is shared with other systems, in
particular LSS [4-6] and LTS [7], is a reliance on local
transformations to produce an efficient design.

Automated logic generation of gate array or standard cell
designs has progressed from experimentation to practical
application in the last six years. Several systems of programs
now exist to do the job from various types of design
specifications. TMS has focused on the job of technology-to-
technology mapping, which has proven to be useful both for
product designs and for technology development.
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