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Logic  “mapping,”  or  “transformation,” refers to 
the  process  of  converting  a  logic  design  from 
one  form  of  specification  to  another. The output 
is  usually  a  specific  technology  implementation 
and  the  input  could  range  from  a  previous 
technology  implementation  to  a  high-level 
design  language.  Motivated  initially  by  the 
problem  of  test case  generation for  new 
technologies,  a  logic  transformation  system, 
known as the  Technology  Mapping  System 
(TMS), was  developed.  This  system  has  focused 
on  the  problem  of  technology-to-technology 
mapping  involving gate array  or  standard  cell 
logic  families. TMS makes  use of an 
intermediate  notation,  called  GLN,  and  uses 
several  forms  of  “rules”  to  control  the  mapping 
process.  This  paper  discusses  the  history  and 
general  operation  of  TMS,  and  makes  a 
comparison  of  transformations  from  different 
types  of  sources. 

Introduction 
Logic  design  is  becoming  increasingly  difficult. There are 
more technologies to understand, more circuits per machine, 
more circuits per chip, longer manufacturing turnaround 
times, shorter development schedules, and more tests for a 
limited design  force to perform. The resulting problems in 
productivity and quality are met with an increasing number 
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of  logical and physical  design automation tools.  Relieving 
the designer of the detailed implementation decisions is the 
job of a  logic transformation system,  a  relatively  recent 
addition to the DA  field. This tool attacks the productivity 
problem by either allowing  a more efficient source 
specification, such as a technology-independent language, or 
by directly  utilizing  a  previous,  technology-specific, 
implementation. 

synthesis have  been  used to describe  a  variety of conversions 
of logic designs from one form to another, the target  usually 
being an implementation in a  specific circuit technology. 
There are four general  types of  design  specifications that are 
relevant: 

The terms mapping, remapping,  transformation, and 

1. High-level hardware design  languages. 
2. Array or truth table  specifications  such as Programmable 

3. Technology-independent structures. 
4. Technology-dependent structures such as the technology- 

specific  Basic  Design  Language  for Structure (BDL/S) 
used  by the IBM Engineering  Design  System  (EDS). 

Logic  Arrays  (PLAs). 

The term synthesis is  usually used with type 1, while 
remapping is often applied to type 4. 

There have  been many efforts at logic transformation 
reported in the literature [ 11. One of the earliest  efforts 
within IBM  was the ALERT system in the late 1960s [2, 31. 
This system  showed that a  logic  design could be 
automatically generated from a  design  language, but the 
results  were not competitive with manual designs. More 
recently, the Logic  Synthesis  System  (LSS)  was  developed 
[4-61. This system has brought design  language  synthesis  of 
random logic from a promising idea to a practical reality. 
LSS has also  been  used  for the remapping application. 
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Within the IBM  Engineering Design System, the Logic 
Transformation System (LTS) has been  developed to provide 
the  corporation with a general-purpose transformation 
system [7]. A system that is used to automatically  generate 
two-level logic, such as PLAs, from a high-level design 
language is the Interactive Design Language (IDL) system 
[8]. In Japan,  the  LORES system [9] was developed to  do 
remapping  applications, and  ANGEL [ 10, 1 I] specializes in 
design language synthesis. This  paper describes a system 
called TMS, or the Technology Mapping System, that has 
been involved in all four types of  transformations, with the 
primary emphasis on technology-to-technology conversions 
(type 4). 

Background 
TMS was not started with the usual motivation of designer 
productivity; rather,  it was intended  to  support new circuit 
technology development. A way was needed to generate 
examples and test cases easily. The scale of  integration had 
reached a point where the generation of design data  to 
describe a single chip  demanded a significant amount of 
manpower. 

new, denser, 1200-gate circuit  technology introduced us to 
technology mapping  in 1976. We found  that  the  time 
required to  do a mapping project  manually is not  much less 
than  the  time required  for an entirely new design. The 
mechanical  generation of technology-dependent  BDL/S  is a 
big job because of the high data  volume  and  the tendency to 
introduce errors. Simple  transcription mistakes can  take a 
long time  to find or go  undetected prior  to manufacturing. 
We also found  that  the only true definition  of a design is the 
implementation  data,  the original BDL/S. Other 
documentation  does  not cover  everything and  the original 
designers do  not  remember everything. For example, a 
condition  that  the designer may consider as a “don’t care” 
might be tested by a diagnostic  program that he was not 
even aware existed. Using the design data as the source, a 
complete  understanding of the logic is not necessary for the 
majority of the  labor involved. 

In view of other similar mapping projects in 1978, the 
decision was made  to  experiment with automating part of 
the  mapping  job. At the  time  there were no logic 
transformation  tools available. The original  plan was based 
on a programmed conversion  of  each  source block to target 
blocks on a one-to-one or simple one-to-several basis, 
followed by manual modifications. After the initial 
objectives were completed, a review of the  manual 
procedures was started, and over the following years the 
programs grew and evolved. Started  as a simple aid  to 
mapping, TMS was expanded to  automate  the  entire 
process. 

that a cohesive methodology  emerged which included an 

The  manual  mapping of an existing microprocessor into a 

It wasn’t until a second  target  technology was considered 
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intermediate  notation  and a concept  of rules. Seventeen 
sources and eight targets were added gradually as new 
technologies and applications  developed. The technologies 
include both FET  and bipolar  circuits  of the gate array 
(masterslice) or standard cell (masterimage)  type, ranging 
from 100 to 10 000 equivalent  gates  per  chip. In addition, 
several PLAs have  been transformed  into  random logic. 

When the ability to  map from one technology into 
another was established, we became more involved with 
product design applications. For new designs a technology- 
independent  form of design specification called TIF 
(Technology-Independent Functions) was developed. 
Expressed in BDL/S, TIF is a set of block functions  that 
includes  primitives  such  as AND  and OR, and high-level 
functions such  as registers, selectors, comparators, decoders, 
and user-defined macros. A mix  of TIF  and target 
technology macros is also an  option as a source specification. 
Designers find TIF relatively easy to work with because there 
are  no  concerns  about fan-in or fan-out  limits and  the Same 
block set is used for all technologies. A similar  concept is the 
generic operators used in  the  EDS/DAV system [ 121. TIF 
can be used as a target as well as a source.  Often a designer 
wants to  convert a design from  an old  technology into a new 
one  and wants to  alter  the  function slightly. A convenient 
way to  do  this is to first map  into  TIF,  make  the design 
changes in  TIF,  and  then  map  into  the target technology. 
TIF has also been used as  an  intermediate  form  during 
synthesis from a hardware  description language. An initial 
structure  in  TIF is generated from a compiler  that reads the 
source language. 

Overall, TMS is used for five types  of  applications: 

Product design. 
Feasibility studies. 
Technology  comparisons. 
Alternative-technology backup plans. 

Vehicles for design system evaluations. 

The technology-independent design of chips for actual 
products  attracts  the most attention  from tool  developers 
and design groups.  However, in  the role of a technology 
support  group,  the last four  items  constitute  the majority of 
applications.  Estimating  circuit counts  in various 
technologies is an  important capability  when  considering 
future technologies or potential business cases. In  the past, 
intuitive  considerations  of  circuit efficiency were often 
substituted  for hard  data,  and estimates varied widely. 
Deciding to use a PLA versus random logic is an example  of 
a difficult task  where logic mapping programs can help [ 131. 

Overview of TMS 
To reduce the  amount of code  required by the various 
combinations of  sources and targets, the  TMS 
transformation process is divided into  two phases. In  the first 

J .  L. GlLKlNSON ET AL. 



I General TMS transformation process 

or source phase, the design  is transformed into  an 
intermediate notation called GLN or General Logic 
Notation, and  the technology-dependent characteristics of 
the source technology are removed. In the second or target 
phase, the design is manipulated until the GLN description 
matches one-to-one with the target block  set. The general 
transformation flow is shown in Figure 1. 

description of the design that is easy  for programs to 
manipulate. Since the conversion process manipulates the 
GLN until it is one-to-one with the target, all  of the target’s 
basic functions should be represented in GLN.  The functions 
include AND, OR, AND-OR, OR-AND, EXCLUSIVE- 
OR, parity function, and a variety  of latches, clock drivers, 
off-chip drivers, and receivers. The LSSD [ 141 latch 
functions include  the SRL, L 1, L2, and L3 with polarity- 
hold, glitchless polarity-hold, and set/reset construction 
types. In addition, the  GLN blocks must be able to take on 
technology characteristics such as high-power and low-power 
versions of a function. 

There are several aspects to the conversion of a source 
design into  GLN.  In technology-to-technology mapping, the 
mapping system must handle a wide  variety  of notation and 
design conventions. Since the purpose of GLN is to have a 
standard form for each function, all of the unique 

GLN is a key concept in TMS. Its purpose is to provide a 

548 technology or designer representation quirks must be 

removed, while the logic is being translated into the standard 
GLN form. All purely physical information is removed and 
the notation for model input and  output signals is 
standardized. 

One of the  common complications in the source phase is 
“dotting,” also known as the “wired-or” function. The 
transformation system must cope with a mix  of implicit or 
explicit representations of dotted nets in addition to multi- 
block functions such as “extend ports” on latches. GLN does 
not allow multi-source nets, so all configurations that 
involve dots must be changed into simple equivalent 
functions such as AND or converted into larger macros such 
as multi-port latches. As shown later, the GLN restriction on 
multi-source nets provides a simplification for programming 
and does not preclude their existence in the target design. 

complement signals are available. As a result, there are fewer 
blocks  for the programs to manage and there is no searching 
for an inverter to reach a complementary signal.  In the 
source transformation phase all inverters are removed except 
at primary inputs. Since there are no fan-out limits in GLN, 
all  repowered  signals or duplicated functions are 
consolidated into  one source for  each  logical  signal. 

All blocks in GLN are dual-rail-both true  and 

There are five parts to the target phase  of the conversion 
process: 

1. Off-chip driver/receiver assignment. 
2. Combinational logic transformations. 
3. Latch transformations. 
4. Fan-in/fan-out repowering. 
5. Conversion of GLN to the target. 

Off-chip driver and receiver assignment involves either 
adding new blocks or maintaining existing  ones.  Most 
technology-to-technology mapping involves a merging  of 
several smaller chips into a single, denser chip. In this case, 
the original driver and receiver functions of  each chip are 
converted to GLN-equivalent functions and new drivers and 
receivers are placed at  the new input and output pins of the 
merged  design. 

Combinational logic transforms reduce cell count or 
connection count, or improve delay. Without them, 
technology mapping would simply include block-to-block 
translations which  would  leave  unnecessary and trivial logic 
in the new design. Removing the obvious types of circuit 
overhead, such as double inversions, is the initial goal  of the 
logic reduction. As the number or sophistication of these 
programs is increased, mapping very dissimilar technologies 
becomes realistic. The programs look at small logic functions 
and transform them into configurations that will  be more 
efficient  in the target technology. A designer  would do these 
types  of changes by inspection; they would  typically be 
implemented without writing out the Boolean equations or 
applying any classical minimization. The term local 
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transformations has been used to describe this type  of logic 
reduction technique [ 5 ] .  

independently  and  in different sequences, there  can be 
interactions between them.  One  transformation  may  put  the 
logic into a configuration which will make a following 
transformation  more effective. In  addition,  the 
transformations  may be iterative. They will be repeated 
several times  in a row, and  run  at different times within the 
same  transformation  job. 

of a latch to  make it  one-to-one compatible with something 
that exists in the target technology. TMS  does  not alter the 
number of latches in  the design. Some  transforms  are  done 
to reduce cell count or improve delay, but  there is not  much 
that  can be done  to alter the cell count  that is attributed  to 
each  latch.  Changing the  number of data ports is an example 
of a latch transformation. Since  technologies vary in their 
abilities to  support multi-port latches, the  transformation 
system must be able to read in multi-port  latches and  output 
single-port latches. Latches are reduced to  the  minimum 
number of ports  in  the source phase, and if multi-port 
latches are available in  the target,  they will be created or 
recreated in the target phase. Increasing the  number of ports 
improves  the  path delay into  the latch but also increases the 
loading on  the clock signals. The inversion of a latch is a 
transformation  that  can save extra cells by reducing the 
number of surrounding inverters,  as’shown in Figure 2. 
Other latch transforms include  splitting SRLs into 
component L 1 and L2 latches and  the inverse  transform of 
combining L1 s and L2s to  form SRLs. Clock drivers that  are 
typically used by bipolar  technologies must be added or 
deleted and  the latch input signal polarities must be adjusted 
to  match  the target  requirements. 

During fan-in repowering, new  blocks are  added  to reduce 
the fan-in  of  each  block to  the limits  accepted by the target 
technology. The fan-out  repowering  phase is similar, but 
more involved. Fan-out violations are fixed by increasing  the 
power level of  blocks or by adding blocks in parallel or 
series. Fan-out repowering  also converts dual-rail outputs  to 
single-rail if required by the target technology. 

Although the reduction programs  can be run 

Latch transformations  are generally alterations of the form 

Rules and programs 
The need  for a structured  approach became  evident  after 
working with a second target technology. A bug  in a 
program that dealt  with the first technology  would be likely 
to reappear in  the corresponding  program  for the second 
technology. This  duplication of basic functions  in programs 
for  each  technology  created a maintenance problem, and  it 
made  the  addition of new target  technologies very time- 
consuming. 

design systems  is a rules-driven approach. Conceptually, 
rules can refer to  any  structured way of  modifying the 

The classical solution for  program maintenance  in IBM 

I Example of a latch  inversion  transformation: D = data input to SRL; 
N = inverter. 

function of a program. The  form of a rule  can be as  simple 
as  column-oriented data, or as complicated as a special 
source  language that is compiled to become part of a 
program. No matter what format is used, a rule is 
distinguished by being  easier to modify, and is usually more 
restricted in  function,  than a more general program. Ideally, 
the  additions  and changes to  the  mapping system should be 
focused on  the rules rather  than  the programs. Our effort to 
create  rules was successful in that most  of the programs in 
TMS  can  be used to  map  to  any of the target technologies. 
However, the  concept of  rules in  TMS  does  not have the 
same rigor that is usually associated with rules  in the IBM 
Engineering Design System (EDS). 

TMS rules take  four different forms: 

Action  parameters. 
Tables. 
Macros  (block transformation rules). 
“Twist” rules. 

Action parameters have several uses. They  are used to 
control  the  mode of a program or establish criteria for some 
type of action to  take place. For example, the primary goal 
of an action could be  the reduction  of cells, connections, or 
delay, as selected by the choice  of  parameters. In  addition, 
parameters  may be used to  control global values of 
technology  constraints,  such  as fan-in or fan-out limits  when 
they are  not specified in a table. These are considered to be 
rules because they  can be a way of providing  target 
technology information  to a program. 

distinguished by block type  and/or pin type. For example, 
the limits used in  the final fan-in and fan-out  repowering 

The tables contain  the detailed information  that  must be 
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I Example of parallel reduction 

transforms are contained in tables. Data within the table 
refer  directly to the GLN blocks and not to the target 
technology  blocks,  which means that the rules coder must 
know the final GLN-to-target transformation when  he  writes 
the rules. 

Macros are used to expand a single  block into multiple 
blocks.  For example, a parity function block  may be 
expanded into a tree of EXCLUSIVE-ORs. These macros 
are implemented as BTRs  (Block Transformation Rules), 
which are a rule  type  used  by  EDS. 

This set of rules  guides  block-to-block and pin-to-pin 
transformations and is  used to call up a macro (BTR) 
expansion. Primarily, this type of rule is  used to control the 
conversion to and from GLN. Twist  rules are the only  rules 
that undergo a compiling process; they are read by a 
preprocessing  program and converted into PL/I subroutines. 
The rule  syntax  is  designed to make it the easiest of  all the 
rules to deal with, giving the coder an easy  way to test the 
details of a block. Today, most  of the additions and/or 
changes to TMS are made in twist  rules rather than in the 

The “twist” rule is the glue that keeps the system together. 

550 other rule formats or the programs themselves. 
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In addition to the rules  used  in the mapping process, there 
is a separate set  of  rules  used in the verification  process. To 
validate the functional equivalence of the transformations, 
the EDS Static Analysis  System  (SAS) [ 151 is  used. The 
purpose of the TMS validation rules is to provide SAS  with a 
common equivalent logic  model  for  latches. Unlike 
combinational logic, latches of equivalent function can have 
construction differences that make a Boolean comparison 
difficult. For combinational logic the normal simulation 
rules are used to generate the equivalent logic expansion. 
The use of  SAS is  vital to maintaining the productivity and 
quality of the mapping tool. 

Controlling  the  transformation  process 
Each  pair  of  source and target  technologies requires a 
strategy that includes decisions on what to expand into 
lower-level GLN blocks and what to leave alone. Making 
these  decisions requires an understanding of the reduction 
steps that will be most  effective in the transformation. For 
example, TMS cannot convert a tree of EXCLUSIVE-ORs 
or NANDs into a parity function block. Therefore, if the 
source and target  have similar parity functions as single 
blocks, the parity function block  will not be expanded into 
another form. If it is to be expanded, there may be more 
than one alternative to consider. For a parity function, the 
best implementation in the target  may be EXCLUSIVE- 
ORs, NANDs forming EXCLUSIVE-OR functions, three 
input NANDs, or some other special configuration of target 
technology  blocks. There is  also the decision of  where in the 
job sequence to do the expansion. If the expanded  blocks 
can undergo some logic reduction, the expansion is done 
early;  otherwise it is  left to the final transformation step. 

levels  of control mechanisms. First, the basic  framework  is 
set by the choice of “twist” rules and macro expansions. 
Second, the manipulation of the GLN is controlled by the 
selection and order of the actions. Third, the individual 
actions are controlled by the rules and parameters. Because 
all of the logic reduction is done in GLN, the rules must 
provide  essential  target  technology data in terms of the GLN 
blocks. The purpose of the GLN is to give the programs an 
easy  form to manipulate but not to preclude transformations 
that have technology-dependent criteria. Programs used  for 
logic reduction have  varying  degrees  of control or technology 
data input, but can be divided into three general  categories: 

The overall  conversion  strategy  is implemented with three 

Programs without control. 
Programs with control. 
Programs with control and scoring. 

Programs without control are completely  technology- 
independent, running the same way every time. An example 
of this type of action is  parallel reduction, as shown in 
Figure 3. The nature of these algorithms is such that they 
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always have a desirable effect. Other reduction  programs are 
not  as simple,  requiring additional  controls  to help  guide the 
algorithm. 

An example of how the strategy, rules, and programs 
interrelate  is the problem  of forming  the  AND-OR  function 
(or its dual,  the OR-AND). Implementations of AND-OR 
functions vary widely among technologies, often  involving  a 
wired-or or  dotting configuration. One way of dealing with 
this technology  capability is to  convert  the source to  the 
target  technology, followed by applying special technology- 
dependent programs which could find the  AND-OR 
function  or utilize the  dotting capability of the target.  Initial 
attempts were along  those  lines  of thought. We found  that 
the algorithm to find an  AND-OR  function was basically the 
same, regardless of the target technology. The  primary 
variables were the  dimensions of the  AND-OR block  (fan-in, 
fan-out, number of  ANDs) and  the  form of the target 
technology implementation 

create a program that created AND-OR blocks from 
configurations  of GLN blocks. The program operation is 
guided by action  parameters which set the  maximum 
dimensions  that  the  AND-OR blocks can take, based on 
limitations  in  the target  technology. The  AND-OR block is 
another  GLN primitive, so nothing is lost as  far  as being able 
to  do  further  manipulation  on  this block. The fan-in and 
fan-out  programs  always see this  function  as a single block 
since GLN  does  not allow multi-source nets. At the  time of 
final transformation,  the  AND-OR block is converted to its 
final form. If that final form  involves  a dotted  net, a macro 
is used to  expand  the  AND-OR  into its proper multi-block 
representation. 

The AND-OR function is an example  of  a block that is 
treated differently than  the parity function  in  the overall 
mapping strategy. In  the source  phase the original AND-OR 
(or  OR-AND) blocks ar>: usually expanded  into lower-level 
functions whether or  not  the target  has  similar  blocks 
available. The reason  is that  the  AND-OR  formation 
program generally does as  good  a job  or  better of finding the 
AND-OR  functions  than  the original designer. 

Only the  “common  term” reduction  program  deals with a 
“scoring” function in  a general way. This  action identifies 
common  inputs  in a  swappable  pin group  and creates  a new 
block whose inputs  are  the  common signals, as shown  in 
Figure 4. The general steps in  the  common-term process 
could  apply to  any local transform  algorithm: 

The solution to  the  AND-OR  formation problem was to 

1. Find  candidates for the local transform. 
2.  Evaluate the  net change that would  result if the transform 

were actually  completed. This change is computed as the 
“score.” In  the case of TMS, we use two scores: 1)  cells 
(or circuits) and 2) connections. 

3. Examine  the  input criteria. Input  parameters  are used to 
specify limits on  the cell and  connection scores that  are 
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I Example of common-term  reduction 

considered satisfactory. All candidates  that  do  not meet 
the  input criteria are  thrown  out. 

4. Rank  the acceptable candidates in  descending order by 

5 .  Select the  candidates  one  at a time until no  more 
score. 

transforms  can be done.  The  entire list may  not be used 
because one  candidate  may  share  some blocks with other 
candidates. In  one pass of the reduction cycle, a  block 
cannot be altered twice. After completion of all the 
changes that  can be made in one pass, the whole process 
is repeated on  the altered design. This process continues 
until  no  more  candidates exist. 

The score is a  projection of the change  in final cost function 
created by the  transform  in  the target technology. The word 
target is emphasized because the decisions that  are  to be 
made  are very technology-dependent.  Since the  GLN design 
description is not one-to-one with target technology at  the 
time  the program is run,  the score must be based on  more 
than a  simple  block count.  The changes  in GLN  must be 
translated to projected  changes that will occur after  fan-in, 
fan-out  repowering and final transformation.  The required 
technology-dependent data  come  from a  rule  in the  form of 
a  table. This rule  indicates the limits on fan-in and fan-out, 
and  the cell and  connection  counts for  each  block. 
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There are eight subtotals that make up the total score: 

Cells Connections 
Base count x1 Y l  
Inverter penalty x 2  Y2 
Fan-out  penalty x 3  Y3 
Fan-in  penalty x 4  Y4 

Totals X Y 

The “base” is a score  based on  the target technology assum- 
ing that both polarities are available and that there are no 
fan-in or fan-out limits. The inverter penalty refers to addi- 
tional circuits required because the target does not always 
have both polarities available. For example, a noninverting 
AND function takes an additional circuit in a pure NAND 
technology. Similarly, the fan-in and fan-out penalties mea- 
sure the circuits required to abide by the finite technology 
limits. These penalties are particularly important in com- 
mon-term reduction because the actual reduction is only in 
these penalty counts. The base  cell count increases because 
the transformation adds an AND block. 

Operational  characteristics 
The transformation process is a series  of steps that  are 
controlled by the person setting up the job  and by the rules 
information. Even though there is a general set  of  process 
phases and rules, job setup requires familiarity with TMS, 
and the source and target  technologies. The tool is complex 
enough that we do not burden the individual designers  with 
the task  of learning how  it  works. Normally the job does not 
depend on the design  itself  unless the  chip is  very full or 
there is a special requirement involved. In addition to setting 
up the job according to the designer’s requirements, the 
TMS support person  generally runs the job  and reviews the 
results. Sometimes reruns are executed by the designer. A 
key element in achieving a quality mapping is  good 
communication with the designers so that all assumptions, 
limitations, and special requirements are established early. 

coded in PL/I and there is one main TMS procedure that is 
controlled by action statements and control variables. All 
macro expansions are done with a standard EDS procedure, 
so a typical run is a mix  of TMS and EDS job steps. 
Generally, the JCL refers to the actions desired, but the 
detailed parameters and rules datasets are selected by a 
default-setting program which examines the technology 
name and action name. All parameters and rules can be 
overidden to customize a run. 

TMS does not have an underlying database or special 
program interface to use  when writing transforms in the 
same way that LSS [5] or LTS [7] does. Writing new 
transforms in TMS is not particularly easy, at least  for tasks 
that  are beyond the scope  of the twist and macro rules. TMS 
is characterized by having a relatively small set  of  versatile 
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TMS is run strictly as a background job.  The programs are 
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Because  we have to deal with many technologies, there is a 
strong motivation to reduce or eliminate the writing  of 
special transformations for  each technology. Keeping the 
design  in GLN as long as possible during the transformation 
has  helped  generalize the individual actions. All eight target 
technologies, so far, share the same transforms, but are 
supported by different rules and different action sequences. 
To go beyond what has been done with TMS, however, it is 
clear that more technology-dependent transformations are 
required and more underlying program support for the 
creation of  new transformations would be desirable. 

One analysis feature that was added to TMS was a 
statistics program that can estimate a final circuit count even 
when the design is described in GLN.  This program aids the 
analysis of intermediate results. The effect  of the logic 
reduction is more evident when the statistics are taken at 
different  places during the  run. Estimates of the circuits 
required for inversions and for fan-in and fan-out 
repowering are made following the same general method 
described for scoring in the common-term reduction action. 
In addition to taking intermediate statistics, the  GLN model 
can be saved in the form of BDL/S for inspection or further 
analysis. 

Limitations of TMS 
TMS provides a mechanical translation from one logic 
design structure to another. However, the general  technology 
mapping problem has many aspects, only one of which  is 
generating a mechanically accurate design.  It is important to 
understand those areas that  are not accounted for in the 
conversion process  used  by  TMS: 

Non-LSSD to LSSD conversion. Although this type of 
transformation has often been requested, changing the 
latch and clocking structure to meet LSSD requirements 
would  be  beyond the scope of TMS. The source must be 
an LSSD  design. 
Partitioning. The  input and target I/Os remain unchanged. 
Partitioning must be done before or after conversion. 
Delay. The logic reduction steps can be oriented toward 
improving delay, but a final analysis to ensure timing 
integrity is a separate problem. In addition, the original 
design must not rely on  minimum circuit delay to obtain 
the proper function other  than in simple latch clock 
drivers.  An example of unmappable logic is a clock 
generator which controls spacing and pulse  width  with 
circuit delays. 

Also, the rules and programs of TMS have efficiency 
implications. Some target technology properties that can 
reduce conversion efficiency are 

Macro-oriented, or higher-function, blocks. 
Blocks  with multiple-function outputs. 
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A large  mix of primitive functions. 

Reactions to these properties are difficult to incorporate 
into general  logic reduction programs. In general, TMS is 
best at “macro-to-micro’’ conversions, where the source 
design is described  with  blocks that are at the same or a 
higher functional level than the target block set. There are 
some actions that  do form  higher function blocks, such as 
AND-OR formation, but a general micro-to-macro 
transform would be difficult to make rules-driven, and has 
not been attempted in TMS. More complex and technology- 
specific transformations are an option, but these programs 
can have less return on investment than the ones that can 
apply to several target technologies. In TMS, we have  chosen 
not to implement several transformations because they did 
not apply to multiple technologies.  Clearly, this is a business 
decision and not a scientific one. 

To get an idea  of the relative  value of certain technology 
blocks,  it  is  beneficial to map out of and back into  the same 
technology.  Larger macros or special  blocks are expanded 
into equivalent GLN functions and undergo the logic 
reduction that is available. Analyzing the resulting  design 
versus the source design indicates the penalty of not having 
more transforms. The source  design must be manually 
generated and hopefully representative of an efficient  design. 

Comparison of types of transformations 
Although the primary function of TMS has  been to  do 
technology-to-technology mapping, it  has  been  used in 
conversions from all four types of source descriptions that 
were mentioned in the introduction: 

Hardware design  languages. 
PLAs. 
Technology-independent structures. 
Technology-dependent structures. 

In the type  of transformations being addressed, the source 
description always contains explicit information on  the 
memory elements, or latches, and how they are logically 
clocked. The transformation maintains  the basic latch and 
clocking structure throughout the process, providing a legal 
and efficient implementation in a target technology. The 
mechanics of doing each  type  of transformation are similar 
but each  has its own characteristics. In the following 
paragraphs these transformations are discussed and 
compared. It is important  to realize that  the advantages and 
disadvantages pointed out apply only to the mapping process 
itself and do not indicate which source is better from an 
overall  design methodology point of  view. 

The conversion from hardware design  languages  generally 
represents the greatest change in form and requires the most 
robust transformation system. A behavioral description is 
changed into a structural description by using a small set of 
functions. In the first step, a simple initial structure, without 
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logic reduction, is created by a language compiler. This 
approach follows a general  set  of  process steps established by 
the LSS system [4]. Two characteristics of this structure are a 
relatively  large number of  blocks, and  the existence of 
constants one and zero. The constants are removed by 
propagating them through the logic, and the mapping 
proceeds in the same way as technology-to-technology 
mapping. TMS has  been  used to complete the 
transformation after the removal of constants. 

Managing the delay aspects of the design can be difficult 
in any transformation, but using a design  language as the 
source appears to aggravate the problem to some extent. The 
initial structure is usually made without regard to depth of 
logic, and the designer’s coding techniques may  force the 
mapping system to deal with speeding up an initially slow 
design. A problem that appears to be somewhat unique to 
the hardware design  languages is that of testability. In the 
LSS system, which has dealt extensively  with 
transformations from languages, there are sophisticated 
programs that directly attack untestable faults in the target 
design [ 161. These faults are most often put into the design 
unknowingly by the designer. Our experience with TMS 
indicates that  the  other design forms are less susceptible to 
untestable faults. In coping with either delay or testability 
problems, the establishment of  designer coding practices 
and/or the addition of  special transformations may be 
required. The LSS system has demonstrated that these 
problems can be managed successfully [ 171. 

The PLA source designs  allow the transformation system 
to deal with initial structures that always look similar. In the 
case  of TMS, the initial structure is the equivalent logic 
model that is also used for test pattern generation. This 
structure is characterized by a high connection to block ratio 
and a depth of  logic that is relatively  shallow.  Because the 
initial logic depth is controlled, the PLA source 
transformation is the easiest to control with  regard to delay. 
Most of the logic reduction is done by the factoring or 
common-term reduction programs which  were mentioned 
earlier. This type of program can have problems with job 
run  time  on PLAs  with  high connection counts because 
there are so many candidates to consider. An  efficient 
implementation of the factoring algorithms and ways  of 
limiting the candidates can be important considerations. The 
reason the  TMS version of common-term reduction has 
scoring,  rules, and several control parameters is that it was 
developed  while transforming PLAs. 

technology-independent structures that have been manually 
generated. The input blocks are relatively  high-level, so the 
design can be efficiently expanded into  GLN blocks, and all 
problems with source technology notation such as dotting 
are eliminated. Conceptually, there could be the same 
problems of initial logic depth and testability observed  with 
the design  languages, but we have not experienced them. 

The easiest  of  all  of the sources to deal  with are 
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One problem that we have  observed deals with “no 
concern” conditions. For example, a multiplexor can be 
implemented in different ways depending on the state in 
which the multiplexor is shut off, or in which  no data inputs 
are selected.  If the designer is not concerned about what that 
state is,  it  may be possible to choose a more efficient 
implementation relative to one that is  Boolean equivalent 
with the multiplexor in the initial design. So far, we  have  left 
it to the designer to make an efficient  choice in his source 
design.  However,  in simple configurations it would be 
possible to find states that could not logically occur, and 
change the implementation accordingly. This problem  is 
more  often encountered in technology-independent 
designs  where the designer  would tend to use noninverting 
blocks, compared to the technologies  which  favor inverting 
blocks. 

Technology-to-technology mapping has both advantages 
and disadvantages  when compared with the other three types 
of conversions. The advantage is that the source design tends 
to be  efficient  from a delay and logic reduction point of 
view.  If the block  sets  for the source and target  technologies 
are similar, a reasonable  target  design can be generated  with 
a few transforms. As  was mentioned earlier, a problem that 
is unique to this type of transformation is handling the 
myriad of technology and designer notations for similar 
functions. Another problem is that the input design  is often 
constructed from  low-level  blocks,  such as pure NANDs, but 
the target  offers  higher-level functions. When there is no 
TMS transform that can find the higher-level function, the 
resulting implementation will  be  less  efficient than desired or 
the designer will make some changes manually. The 
ubiquitous parity function is the best example of a complex 
target function. 

There can be problems with the handling of latches in 
technology-to-technology mapping. Although some latch 
transformations take place, the basic latch implementation 
remains constant, including the number of clocks and 
master resets.  Since  each  technology has a finite latch 
offering, it is not always  possible to find a target latch that is 
compatible with the latch  used in the source.  In this 
circumstance, the recourse  is  redesign of the source or 
manual changes  after the transformation is complete. In 
addition to basic  latch  types, there are electrical 
characteristics to consider, such as latch  speed and 
“@itching” properties. The reason that this problem  surfaces 
in  technology-to-technology mapping is that the latch 
requirements must be  gleaned from a previous 
implementation instead of an original  specification. 
Although the situation varies depending on the design 
philosophy of the product group, designers often tend to use 
everything the technology  offers,  which can aggravate the 
compatibility problems.  With new designs and technology- 
independent sources, the designer can control his latch 
selection  with the target in mind. 554 
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Human factors 
A problem common to all forms of  logic transformation is 
the human factors of the target  design. No matter how much 
the transformation system  does to improve the readability of 
the output  and maintain a reference  between  key source and 
target landmarks, the end product will still not look familiar 
to the designer. Reactions have  varied among designers, but 
we generally  receive much more feedback on the human 
factors than on the efficiency  of the mappings. As expected, 
the greater the change in form during the process, the greater 
the human factors problems. The logic that was originally 
specified as a PLA or in a design  language  is the most 
difficult to handle. In particular, the conversions from  PLAs 
lack  meaningful internal signal names, although the basic 
structure of the AND array, OR array, and bit-partitioning 
logic  is  usually  still  identifiable. 

The obvious answer to human factors problems is to 
remove the need  for the designer to deal  with the detailed 
implementation. However, that is not always  easy to  do and 
in the case  of  technology-to-technology mapping it  is not 
appropriate. Ideally,  logic transformation fits  only into a t o p  
down  methodology, but in practice it can fill more than one 
role.  In some cases the transformation system can be used to 
keep the designer at a higher  level  of description and,  in 
other cases, it becomes a sophisticated data entry tool. To be 
successful, the designer and the tool developers  must meet 
each other halfway, to deal  with the problem of human 
factors. 

Looking to  the  future 
There are two  general areas for future work in logic 
transformation. The first  is advancing the tools and 
techniques of the process  itself. The second  is  establishing 
logic transformation as a normal part of  logic  design. 

Some of the potential improvements in the tools and 
techniques are the following: 

More capacity for the efficient transformation of larger 

More complete usage  of complex  target  technology  block 
chips. 

sets  which include larger macros and a mixed  set of 
primitive functions. 

complex  clocking  schemes. 

the amount of technologydependent code that is required. 

hardware description languages. 

alteration of the number of latches. 

0 Better  delay control for more technologies and for more 

More  generality  in the transformation process to reduce 

0 More  sources, such as additional and more complex 

More sophistication in the synthesis  process, including 

0 More control over the generation of testability problems. 

Initially, our biggest concern was the circuit efficiency  of 
the target  designs.  Although there have  been  few cases where 
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designs  have  been done both manually and by TMS, the 
general  reaction by the designers is that the output is 
competitive with manual design. There are always more 
transforms that can be added, particularly  with certain target 
technologies or sources, but the general  methodology and the 
use of local transforms have  been  proven to be effective.  In 
addition, more quantitative comparisons have  been done 
with the LSS system (51 which  also  establish the effectiveness 
of a local transformation approach. 

Clearly, circuit efficiency and comparisons with manual 
designs are important, but our experience has shown that 
these are only parts of the total picture. Success must be 
based on user acceptance, which includes many aspects. The 
stability and availability of the tools, the size and skill of the 
support groups, the management of the human factors 
elements, the ability to deal  with  designs at different  levels  of 
description, the communication of limitations and 
assumptions among the people  involved, are just some of the 
things that contribute to the whole job. Great strides have 
been made in  the last few years and logic transformation 
tools are no longer in a purely experimental role.  But the 
challenges will remain for  years to come, for both the tool 
developers and the tool users and supporters, to increase the 
effectiveness and acceptance of 1ogic.transformation as the 
link between the logic  designer and the technology. 

Summary 
TMS is  characterized by a two-phase  conversion  process and 
an intermediate notation called GLN. The mapping process 
manipulates the GLN design until it is one-to-one  with the 
target  block  set. The system  relies on a set  of  rules in several 
forms that are used to control the process and provide  target 
technology characteristics to the GLN form of the design. A 
key aspect of TMS that is shared with other systems, in 
particular LSS [4-61 and LTS [7], is a reliance on local 
transformations to produce an efficient  design. 

Automated logic generation of gate array or standard cell 
designs  has  progressed  from experimentation to practical 
application in the last six  years.  Several  systems  of  programs 
now  exist to  do the job from various types of  design 
specifications. TMS has focused on the job of technology-to- 
technology mapping, which has proven to be useful both for 
product designs and for technology development. 
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