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logic synthesis 

For  some time  we  have  been  exploring  methods 
of  transforming  functional  specifications  into 
hardware  implementations  that  are  suitable  for 
production.  The  complexity of this task  and  the 
potential  value  have  continued to grow  with  the 
increasing  complexity of processor  design  and 
the  mounting  pressure to shorten  machine 
design  times.  This  paper  describes  the  evolution 
of the  Logic  Synthesis  System  from  an 
experimental tool to a  production  system  for  the 
synthesis of masterslice  chip  implementations. 
The  system  was  used  by  one project in IBM 
Poughkeepsie to produce 90 percent of its more 
than  one  hundred  chip  parts.  The  primary 
reasons  for this success  are  the  use of local 
transformations to simplify logic representations 
at  several levels of abstraction,  and  a  highly 
cooperative effort between logic designers  and 
synthesis  system  designers to understand  the 
logic design  process practiced in Poughkeepsie 
and to incorporate  this  knowledge into the 
synthesis  system. 

Introduction 
As processor complexity  increases and  as denser, 
higher-performance  technologies are developed, the  job of 
the logic designer becomes more difficult. It is becoming 
increasingly important  to provide automated tools to 
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improve designer  productivity. Successes to  date have  been 
in the  area of physical design, where layout, wiring, and 
timing analysis have  been largely automated.  The next 
important  area of design automation  to  improve designer 
productivity is to provide  a  tool which can generate logic 
implementations in the desired  technology from a designer’s 
functional specification. 

There  has been much research on this  problem of logic 
synthesis, and  the strategies employed fall into  three  broad 
classifications. One  approach is to exploit methods of 
minimizing logic in a two-level representation [ 1,2]. 
Unfortunately, since  these algorithms search for  minimal 
implementations, they require time exponential  in the 
number of  circuits and  cannot be used on most actual 
designs. In  addition, it is not always clear how to transform a 
minimum  but idealized two-level implementation  into  an 
implementation n-level version that is realizable in  an  actual 
technology, although work continues  on  this problem [3]. 

A second approach is to view the problem as  one of 
assembling large macros. In these design systems, the  data 
flow of the  machine is generated in  terms of predesigned or 
generated  macros,  such  as  multiplexors and ALUs. The 
control logic is usually implemented by PLAs, Weinberger 
arrays, or ROMs with microcode. Most of the  current silicon 
compiler work falls into this category [4, 51. 

A third strategy is to use transformations  to  convert a 
high-level specification into technology-specific hardware  in 
a series of small steps. In these systems, the logic is viewed as 
a  graph of functional  components,  and  transformations  are 
applied to  this graph  in an  attempt  to  improve  the 
implementation. 

These categories are  not, of  course, mutually exclusive. 
For example, a system could use the  macro  method for data 
flow and  the  minimization  or  transformation  approach for 
control flow. A more detailed  discussion  of  these approaches 
appears in [6,7]. 
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I Three levels of transformation 

An important characteristic of synthesis  systems  is the 
level  of the input specification. This ranges from low-level 
specifications that are close to the hardware to be 
implemented, through register-transfer-level input that 
assumes a synchronous model with  all memory elements 
defined, to very-high-level descriptions that make no 
structural decisions about the implementation. The level  of 
the language has a direct effect on the difficulty  of 
implementing a synthesis  system and on the productivity 
gains that can be expected of such a system. If a low-level 
language is chosen, it is much easier to generate the logic, 
but the system  becomes more like a logic entry system. At 
the other end of the continuum, the very-high-level 
description yields the greatest  flexibility and productivity 
improvement, but the job of actually generating production- 
quality implementations becomes  extremely  difficult. 

For the logic  synthesis  system  discussed in this paper, LSS, 
we accept input at the register-transfer  level and improve the 
logic  using  local transformations which are applied at several 
levels  of abstraction. We  view the task of synthesis as one of 
producing  feasible,  not  necessarily optimal, networks of 
technology-specific  boxes that satisfy a large number of 
constraints. In this context, we must meet  specified 
requirements of a technology, take advantage of features 
provided by the technology, and produce logic  with 
satisfactory gate counts and path lengths. 

In this paper, we  give an overview  of LSS and describe our 
experience in applying this approach to an actual technology 
in a production environment. 538 
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An overview of the  Logic  Synthesis  System 
Our approach is to transform logic from the high-level 
specification into a productionquality implementation 
through a sequence of local transformations. Figure 1 shows 
the different  levels  of abstraction at which the 
transformations are applied. The register-transfer  language is 
translated into a network of boxes connected by  signals. 
Initially, this network  consists of ANDs,  ORs,  NOTs, 
memory elements, and larger constructs such as decoders 
and adders, which are replaced eventually by more primitive 
implementations. The primitives change from only  ANDs, 
ORs, and NOTs, to NANDs or NORs, and finally to 
technology-specific elements, by the application of sequences 
of simplification transformations at each  level.  While the 
transformations at the higher  level are relatively independent 
of the eventual technology, it is the job of the technology- 
specific transformations to take advantage of hardware 
features such as “dual-rail’’ primitives with both output 
phases  available, and to ensure that the implementation 
obeys  all  technology and methodology constraints. 

subgraph  of the network  (usually five or fewer  boxes)  with 
another subgraph which  is functionally equivalent but 
simpler according to some measure. Limiting the approach 
to simple  local transformations both assures us that we  will 
be able to handle large  designs without paying a large 
penalty in computer time, and enhances our ability to 
maintain, expand, and understand the functions of the 
system. 

As an example of  how local transformations work, 
consider the logic  network in Figure 2(a). First, a 
transformation would examine boxes Y and 2 and notice 
that the connection of signal e at box Y is not necessary and 
delete it, changing the network to that shown in Figure 2(b). 
Another transformation would then find the double inverters 
X and Y. It would  remove them and reroute signal a to box 
Z ,  leaving the final  logic  shown in Figure 2(c). 

In addition to these pattern-matching transformations, 
there are programs that propagate constants 0 and I through 
boxes, and that merge  boxes performing equivalent 
functions. All transformations use a set of  access functions to 
manipulate a graph composed of boxes interconnected by 
signals.  These  access functions hide the details of the 
underlying data structure from the transformation writer and 
allow  powerful conversions to be developed  very  quickly. 
The technology-independent portions of LSS were 
implemented as part of  IBM’s Engineering  Design  System 
[8].  More detail about the structure of U S  and the specific 
transformations has been  given in [7]. 

The transformations are local in that they  replace a small 

Initial  synthesis  experiments 
The first experiments with the logic  synthesis  system  were 
attempts to produce implementations for chips from the 
IBM  308 1 processor. The chips were  704-gate TTL 
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masterslices, and the existence of the engineers’ 
implementations permitted comparison of designs and a 
study of the differences  between manual designs and those 
produced automatically. The first experiment resulted in a 
synthesized implementation that was  very similar to the 
manual one, and with one percent fewer  cells and 
connections. In  the second experiment the same sequence of 
transformations was applied to a more complex chip, 
resulting in an implementation with  fifteen percent more 
cells and twenty percent more connections than  the manual 
implementation. 

Experiments  with ECL logic 
The experiments with the existing 308 1 chips were  successful 
enough that  there was interest in attempting synthesis for 
other technologies such as an ECL masterslice then in use. 
Here the basic primitive was a single-cell, four-input NOR 
with  positive and negative outputs. Other functions in the 
technology included a two-cell, eight-input NOR, several 
types of latches, drivers, register-driver combinations, and a 
few complex functions. In addition, there is the ability to 
wire together or  “DOT” emitter outputs to get a zero-cell 
OR function. The synthesis transformations and their 
application sequence were adapted to this technology. The 
three levels  of implementation were maintained. The AND/ 
OR transformations remained unchanged; certain 
transformations were  used more heavily than in previous 
experiments. 

Because  ECL  is a NOR-based technology, the NAND 
level became the NOR level. This required a new 
transformation to translate the AND/OR primitives into 
NORs, and a set of NOR simplification transformations. 
The original NOR transformations were identical to the 
NAND programs, with the NANDs converted to NORs. We 
later realized that savings at the NOR level did not 
necessarily translate into savings at the hardware level.  As an 
example of this, saving a one-input NOR at the cost of 
increasing connections or fan-in does not generally produce 
a better hardware implementation when the target 
technology is dual-rail and distinct inverters are not 
required, The technology-independent transformations had 
to be  re-evaluated and their constraints adjusted based on 
the improved ideas of  “goodness.” New technology-specific 
transformations also had to be implemented to take 
advantage of the features of the ECL technology, such as 
dual-rail outputs. 

Once the transformations and a specific application 
sequence, or scenario, were developed, several experiments 
were run. First, five chips that had  been manually designed 
were synthesized from their register-transfer-level 
specifications. In each case, the synthesized chip met all 
requirements and was within ten percent of the manually 
designed chip in cell count and logic  levels. 

In additional experiments we transformed six  low-level, 
technology-specific  designs from the 308 1 TTL technology 
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I Example of local transformation application. 

into the ECL  technology. In this case, the  input was 
expressed  in terms of the 308 1 technology primitives rather 
than as register-transfer  specifications. There were no 
manual designs in ECL, but the results  were evaluated by 
logic  designers and were pronounced to be acceptable. More 
details on this remapping work are described in [9]. 
Technology remapping presents many problems that are 
interestingly  different from those of pure synthesis and  the 
paper on a technology mapping system [ 101 describes  these 
in detail. 

Large processor  design  environment 
Following the successful demonstration of synthesis for  ECL 
logic, the decision was made to use  LSS in production in 
Poughkeepsie. This would require extensions to the 
prototype system and its integration into  the existing tools of 
the Poughkeepsie  design environment. 

processor groups in Poughkeepsie [ 1 11. The machine is first 
described at the register-transfer  level in the language  BDL/ 
CS [ 121. This specification declares all chip input  and  output 
signals and all on-chip memory elements. The model is 
assumed to be synchronous: For each implicit clock tick, 
outputs and new register  values are defined in terms of 
inputs  and old  register  values. The BDL/CS is simulated to 
ensure that  the desired function has  been  specified. The 
machine is then implemented at the technology  level in 
terms of hardware primitives, called books, that are provided 
by the particular masterslice technology used. This 

Figure 3 shows the design methodology used  by the 
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I Large processor design methodology 

I Automatic logic synthesis. 

implementation is described in the BDL/S language,  which 
gives interconnections among the various books in the 
design. The logic  designer must implement the specified 
function, follow  all  technology and design  rules, ensure that 
all path lengths  meet the specified performance, ensure that 
the implementation is testable, and finally document the 

540 implementation with  logic  diagrams. To verify that the high- 
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and low-level  specifications  agree, a static analysis  system, 
SAS [ 131, is  used to search  for input patterns that will cause 
the two  models to produce different outputs. Once the two 
versions of the design are equivalent, the BDL/S version  is 
processed  by tools that check  technology constraints, provide 
information for  higher  levels  of  packaging,  perform timing 
analysis, and finally produce the placement and wiring of the 
actual masterslice chip. In addition, since  these are large 
processors  with many chip part numbers, there is a chip 
maintenance system to keep track of the status and release 
level  of each of the chips. 

Our goal  was to replace the manual implementation 
process,  reading the same BDL/CS that was simulated and 
producing BDL/S acceptable to all  of the other tools in the 
methodology. The new methodology  is  shown in Figure 4. 

Production use of synthesis 
Whereas the experiments with the prototype system had 
shown that we could automatically generate functionally 
correct  logic that matched manual designs in gate count and 
that passed  physical  design  checks,  we  knew that we  were 
just beginning to understand the details of high-performance 
logic design. There were many more constraints dictated by 
the performance requirements, the technology, and the 
design  methodology  used. 

Integration  into  design  methodology 
In order to be  usable at all, a completely automatic method 
for running synthesis had to be  devised and integrated with 
the other tools. LSS was designed as an interactive system, to 
facilitate experimentation with new transformations and 
their sequencing.  While this is  useful in a research 
environment, it is unrealistic to expect the production user 
to operate the system this way.  We therefore devised 
standard scenarios and a menu-driven system to aid the 
engineer  in  selecting a scenario suitable for  his  needs. 

It  is the job of this menu system not only to select the 
synthesis scenario, but to provide a link to the chip 
development system  which  keeps track of all of the interface 
information about chips. The menu system was  used to 
extract the declarations of the chip I/Os and memory 
elements from a master list that was kept for the entire 
machine, to combine it with the specification of the function 
to be synthesized, and to manage bookkeeping information 
about the chip, such as date and time of the  run, level  of the 
system  used, and problems encountered. 

The major interface between LSS and other tools is 
BDL/S. Some information required by other tools was 
missing  from the synthesized BDL/S, but it could  be 
supplied by existing  programs.  However, BDL/S is more 
than a language to be read by other programs; it is  also  used 
to generate automated logic diagrams, or ALDs, multi-page 
graphical representations of the implementation. Although it 
is not important for the function of the logic to produce 
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good  diagrams, we  were expecting  designers to use the 
diagrams and to evaluate the synthesized  results, so the 
readability  of the generated diagrams had to be improved. 
Since  readability  is a highly  subjective measurement, this is a 
task that can  never be entirely  successful, and it was, in fact, 
a constant concern throughout the project.  Nevertheless, we 
wrote programs and added heuristics to try to minimize page 
crossings, to get the logic to flow from  beginning to end, and 
to group related items on diagram pages in ways that were 
familiar to the engineers. 

The only  existing tool that needed additional information 
from  synthesis was the static analysis  system. In order to 
verify the equivalence between the input to and  output from 
synthesis,  it  needed to know the correspondence between the 
descriptive names used by the designer in the BDL/CS and 
the formalized names used in BDL/S. The correspondence 
was important not only to SAS, but to the designers  who 
were evaluating the logic and wanted to have some explicit 
relationship between their inputs  and the synthesized 
outputs. In order to maintain the BDL/CS names, the 
transformations were  changed to be  more  careful about 
preserving  useful names, and a file showing their 
correspondence was produced. 

Production  experience 
The first  designers  began creating BDL/CS  specifications and 
synthesizing  logic  using the base  system that had been  used 
in the experiments with a skeletal  version  of the menu 
system  described  above.  Engineers  from  several groups used 
the system,  analyzed the generated  logic, and reported 
unacceptable results to us. This was an arduous task  which 
should not be undervalued, because it was only with their 
cooperation, hard work, and explanations that it was 
possible to turn a promising experimental tool into a usable 
production system. 

Up  to this point, only eleven  examples in this technology 
had  been  processed by  LSS. The system was  now expected to 
cope with hundreds of chip part numbers, and its results 
were  being evaluated with  respect to more stringent 
constraints. As was to be  expected, many problems with the 
system  emerged and we  began a period of rapid learning and 
improvement. 

The difficulties encountered fell into the following four 
categories: 

I .  Testability and the related problems of  excessive 
connections and cells. 

2. Path lengths. Due to the clocking method, it was  possible 
to have both paths that were too long and paths that were 
too short. 

3. Incomplete support of the technology. The book  set  for 
the technology was  very rich, and it was important for 
good  cell count, reasonable  power consumption, and 
acceptable path lengths to use it aggressively. 
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4. Inadequate chip interface information. Synthesis  occurred 
at the chip level and no information about the external 
environment of the logic  was  available to it. 

In some sense,  these are not separate problems.  For 
example, long paths could be present  because of failure to 
use the appropriate book or because  extra connections 
caused us to build a fan-in  tree  which added levels  of  logic. 
In addition, the lack  of appropriate interface information 
made  it  impossible to identify the critical paths. In many 
cases, it was  necessary to correct all  of these problems 
simultaneously and at all  levels  of the synthesis  scenario. 

Testability and  excessive  connections 
It was important to solve the problem of  excessive 
connections and redundancies. A connection of a signal  is 
redundant if the signal  can  be  replaced by a constant without 
changing the function of the logic. The question of testability 
is related to redundancy. A connection is testable if changing 
the value of the signal at that connection causes a change in 
the value of at least one output or latch in the logic. 
Connections that are redundant are therefore not testable. 
Not  only were some chips  failing to meet the required 
testability  coverage (98.5 percent), but the extra connections 
caused  cell counts to exceed those expected by the designers. 
These problems were attacked in  several  ways. 

Figure 5 illustrates the NAND/NOR transformations that 
were described in [7].  Two of these, NTR4 and NTR7, were 
written to remove  local redundancy. They  look at two-level 
patterns for a reconvergent  signal, and remove the 
redundancy by disconnecting the reconvergent  signal. 

Also, an existing  NOR transformation, NTR6, which 
performed  local  factoring to reduce connections did not 
seem to apply as often as it should. From Fig. 5, it appears 
to replace  two  gates  with three. But  in a dual-rail technology, 
no inverter is required and two  gates are still  used.  When the 
fan-in limits of the technology are considered, the second 
implementation could require fewer  cells than the first,  since 
fan-in is lowered.  When the constraints were adjusted at the 
NOR level to take this into account, the transformation 
applied more frequently, which  resulted  in  fewer  cells, fewer 
connections, and often  less redundancy. 

Certain chips,  however, continued to have redundancy 
problems and it was clear that more global  strategies  were 
needed. A factoring  program was written to collect  global 
information about all  high-fan-in  boxes or high-fan-out 
signals and apply  heuristics to decide on the best  groups of 
signals to factor. This program improved our results but 
problems remained. 

The most  significant  progress in solving this problem was 
REDUND, a nonlocal redundancy detection program [ 141. 
REDUND uses a method similar to those used for  test 
generation to find connections which are not testable  for 
stuck at 0 or 1. It forms the conditions for  testing the 

, 
/ 

JOHN A.  DARRINGER ET AL. 



I Example NOR/NAND transformations. 

corresponding fault and checks  for contradictions; when one 
is found, it  replaces the connection with 0 or 1, as 
appropriate. The general constant propagation program  is 
then used to simplify the logic.  Although it is not guaranteed 
to detect all redundancies, REDUND has proven thorough 
enough to allow  all chips encountered to date to meet the 
98.5-percent  testability requirement when  allowed to run to 
completion. Since  it  may require a relatively  large amount of 
CPU time, REDUND was initially only run on chips  with 
known  testability  problems. In  all but pathological  cases, 
however,  it  has  proved to be a reasonable performer, and it 
is  now  used on all chips. 

Path lengths 
For a chip implementation to be usable, the path lengths 
must be acceptable. The technology  provides  shift  register 
latches (SRLs), which  consist of separate latch and trigger 
storage elements, each  with a different  clock. The clocks are 
overlapped in such a way that the latch inputs remain 
enabled  for a time after new data have  been launched from 
trigger outputs. If register-to-register paths are too short, new 
data can be made available a cycle too soon. If the register- 
to-register paths are too long, data are not available  when 

542 needed. 
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The technology  provides  delay  books, or pads, that can be 
used to lengthen short paths. Care must be taken in using 
delay books since  they  use  valuable  cells and can create a 
long path when inserted. The first pad-inserting 
transformation determined path lengths in levels  of  logic and 
added pads to short paths in such a way that no long paths 
were created. It was sometimes necessary to split a path into 
a long and a short component so the short could be padded. 
This implementation of short-path correction was 
inadequate because too many pads  were added. There were 
several attempts to implement pad-sharing and pad- 
optimization programs, but we  were not totally successful in 
correcting short paths. 

The first attempt to correct long-path problems was done 
at a technology-independent level. It was  observed that some 
of the NOR transformations tended to save  cells  by 
increasing the depth of  logic,  while others tended to increase 
cells  by decreasing depth. By manipulating the application 
and sequences of such transformations, three scenarios  were 
developed: one which produced the smallest  cell count, a 
second  which produced the smallest  logic depth, and a third 
which  was a compromise between the two. The defect of this 
multi-scenario strategy  is that a typical chip has a mixture of 
long and acceptable paths and there was no reasonable way 
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of  using the scenarios to get minimum cells on acceptable 
paths and minimum depth on long paths. Since we  were 
synthesizing a single chip without knowledge  of its 
environment, it was not always  possible to identify the 
critical paths. 

declarations, to allow  off-chip  delays  for primary inputs  and 
outputs to be  specified in terms of  levels  of  logic. The cycle 
time was also  given in logic  levels, and a unit delay  model of 
logic  was  used. Programs at the NOR level  were  used to 
decrease the levels  of NORs to within the given constraints, 
at the expense of adding more NOR boxes to the 
implementation. 

availability of complex  books in the technology,  it was 
difficult to predict the depth of  logic at the hardware level 
from the depth at the NOR level. It was often the case that 
an apparent shortening of a path at the NOR level had no 
effect at the hardware level except to add cells. This led to 
path-directed transformations at the hardware level  which 
forced DOTS by duplicating logic and which  reordered 
fan-in and fan-out trees with path length in mind. 

None of these approaches to timing solved  all  of the 
problems. In the final  system, some manual editing of the 
synthesized  logic  was  necessary in order to correct short 
paths efficiently. 

This resulted in modifications to the BDL/CS 

However, due to the presence of dual-rail outputs and the 

0 Enhanced  support for the  technology 
As mentioned earlier, it was  necessary to make effective  use 
of  all the primitives provided by a technology to produce 
acceptable  logic. One of the important items was the 
introduction of emitter dots. In this technology, emitter 
outputs can be  wired or dotted together to perform an OR 
function. This is  faster than a book OR and uses no cells.  It 
is not as general as the OR book, since the DOT inputs 
cannot have other fan-out and  cannot have  sources such as 
latches or primary inputs, which  have hidden fan-out. 

The basic tool for identifying  possible DOTS is a program 
that runs  at the NOR level. It is similar to the factoring 
program in that it gathers information about all of the logic 
and then picks out candidates for DOTs from combinations 
of signals  which  have identical sink boxes.  After this is done, 
it  is up to the technology-dependent transformations to 
decide  whether the candidate should actually be made into a 
DOT. 

Care must  also be taken in the introduction of DOTs. 
Introduction of DOTS puts constraints on the 
transformations subsequently applied, because  they cannot 
add fan-out to dotted signals, create cascaded DOTs, or 
replicate DOTS to fix fan-out violations. DOTS can also be 
used to lower fan-in of NORs, converting them from  two- 
cell books to one-cell  books. 

Other technology-specific transformations look  for 
opportunities to use special books with  complex functions to 

save  space, time, or power. The ECL  masterslice  technology 
contains many special-function  books that must be 
effectively  utilized to approach the quality of a manual 
design.  These  books produce product-of-sums, XOR, 
XNOR, and other complex functions. 

A technology-dependent transformation was written to 
find  multi-level patterns of NORs that could be  replaced 
with  these  special  books. This program, initially  fairly small 
when supporting only the product-of-sum  books, required 
special extensions for  each additional type and eventually 
became quite large. The XOR function was particularly 
difficult to detect, as a great number of structural 
permutations produce these -AB and A - B functions. 
Designers  also had divergent opinions on when particular 
types should be used, and on the usage  of some output pins. 
The conclusion was that this approach was  moderately 
successful in its results, but cumbersome to implement. 

Occasionally we over-used a feature provided by the 
technology. For example, it is  possible to use the output of 
an off-chip driver within the chip. We at first  assumed that 
these outputs were  free and used them freely. Later we 
learned that the loading of these pins slowed the external 
outputs somewhat, made  physical  design more difficult, and 
could introduce timing problems because  these outputs were 
slower than equivalent internal NORs. It  was  necessary to 
take these  disadvantages into consideration and reformulate 
the constraints on the program that used  such outputs. 

Technology considerations also  forced a reexamination of 
the order of application of transformations. For example, 
common-term elimination, unless  restricted, cannot be done 
after fan-out correction, because  it  can introduce fan-out 
violations. Other interactions between transformations 
turned out to be more subtle. For example, one technology- 
specific transformation links the registers together in a scan 
ring. This appears to be an operation separable from the rest 
of the synthesis, but care must be taken to avoid creating 
fan-out violations.  Similarly, adding clock  signals to the 
multiple inputs of a register can cause a fan-in violation. 

technology was  in the area of  off-chip drivers and receivers. 
The technology  provides  several  varieties of these, but the 
one to be chosen depends on information not available to 
synthesis,  such as the amount  and type of fan-out or wire 
lengths on the higher-level  packaging. The declaration of 
primary inputs and outputs was expanded to allow the 
designer to provide this information. The technology- 
dependent transformations then used this information to 
generate the correct book  types. 

One area where  synthesis could not  fully  use the 

Chip interface  information 
In addition to the cases mentioned earlier, there were two 
other situations that required information about the external 
environment of the chip being  synthesized.  When 
resynthesizing a chip after its BDL/S  has  been  used in the 543 
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design  of a larger module, it is  necessary to ensure that the 
I/Os correspond to the same physical pins as they did in the 
first run. Since  synthesis had no memory of what it had done 
before,  it was  necessary to feed  back this information for 
subsequent runs. Also, information about register  clocking 
has to be associated  with the latch declarations. This is 
necessary in order to distribute the clocks  correctly and to 
compute accurately required times in path correction 
transformations. Such information is  kept in the chip library 
system, and it is extracted by the menu system for each run. 

Production  synthesis  results 
Fortunately we  were able to solve  most  of the problems that 
arose in the refinement of LSS for production synthesis. The 
system  was  useful enough that many designers tried it and 
shared their experiences  with  us.  Most  users found that they 
could complete a first-pass  design much more quickly than 
with manual design methods. In addition, they could 
perform timing analysis earlier, find their major problems, 
modify their specifications, and quickly generate a new 
implementation. This freedom to make sweeping  changes 
allows a new approach to solving timing problems:  They can 
be corrected by  high-level  changes rather than low-level path 
tuning. One project was able to use LSS for 90 percent of 
their more than 100 chip designs. This cut their initial design 
time in half. 

Other projects  were not as successful. They had more 
difficulty  meeting their timing constraints and cell count 
limits.  Interestingly, many of the specifications that LSS 
finds  difficult are for  highly  regular  designs, such as shifters 
and arithmetic units. There are chips that designers handle 
very  well and seem to require global planning. In other cases 
the designer was able to produde a more efficient 
implementation because  he could take advantage of 
information not available to the synthesis  system, such as 
“don’t-care” conditions. We are optimistic that progress  will 
continue to be made and  that eventually U S  will be able to 
produce acceptable implementations for all but the most 
pathological  specifications. 

Summary  and  future  work 
This paper has described the development of a system that is 
capable of automatically transforming functional 
specifications into production-quality masterslice 
implementations. The system has been  used to produce 90 
percent of the parts for a large (over 100 chips)  high- 
performance project in Poughkeepsie. The primary reasons 
for this success are the use  of  local transformations to 
simplify  logic representations at several  levels  of abstraction, 
and a highly cooperative effort  between  logic  designers and 
synthesis  system  designers to understand the logic  design 
process  practiced in Poughkeepsie and to incorporate this 
knowledge into the transformations. 

The fact that almost all  of the transformations are local 
544 and have linear run times allows  us to apply these 

techniques to much larger  chips. Further, the structuring of 
the synthesis  process as a sequence  of simple transformations 
provides a great  deal of flexibility in dealing  with new and 
different  technologies. 

The experiences  discussed above have pointed out some 
deficiencies and limitations with the current LSS. We are 
continuing to explore new methods for improving the ability 
to meet path length constraints and exploit  complex  books. 
Further, now that a path has  been demonstrated from a 
register-transfer-level description to production-quality 
hardware, there is much more interest in higher-level 
synthesis transformations. 

Acknowledgments 
Throughout this paper we have  stressed the importance of 
the participation of many experienced  designers in the 
formulation of synthesis techniques. In addition, we would 
like to acknowledge the valuable contributions of Len 
Berman and A1 Kashner. 

References 
1 .  M.  A.  Breuer, Ed., Design Automation of Digital Systems, 

2. D. L. Dietmeyer, Logic Design of Digital Systems, Allyn  and 

3. R.  Brayton  and C.  McMullen,  “The  Decomposition  and 

Prentice-Hall, Inc., Englewood  Cliffs,  NJ, 1972. 

Bacon,  Boston,  1978. 

Factorization of Boolean  Functions,” Proceedings,  International 
Symposium on Circuits and Systems, April  1982,  pp. 58-63. 

4. D. Johannsen,  “Bristle  Blocks:  A  Silicon  Compiler,” Proceedings 
of the 16th Design Automation Conference, June  1979,  pp. 3 10- 
313. 

Compilation,” COMPUTER 16, No. 12, 74-82  (December 
1983). 

6. D. E. Thomas,  C. Y. Hitchcock 111, T. J. Kowalski, J. V. Raja,, 
and  R.  Walker, “Automatic Data  Path Synthesis,” COMPUTER 
16, No. 12, 59-73  (December  1983). 

7. John A.  Daninger, William H. Joyner,  Jr.,  C.  Leonard  Berman, 
and  Louise  Trevillyan,  “Logic  Synthesis  Through Local 
Transformations,” IBM J. Res. Develop. 25, No. 4, 272-280 
(July  198  1). 

8. J. B.  Bendas,  “Design  through  Transformation,” Proceedings  of 
the 20th Design Automation Conference, June  1983,  pp.  253- 
256. 

9. J. A.  Daninger, W. H. Joyner, L. Berman,  and L. Trevillyan, 
”Experiments  in  Logic  Synthesis,” Proceedings of the IEEE 
International  Conference on Circuits and Computers, Port 
Chester, N Y ,  1980,  pp.  234-237. 

“Automated  Technology  Mapping,“ ZBM J. Res. Develop. 28, 
No. 5, 546-556 (1984, this  issue). 

Design  Considerations  and  Design Process,” IBM J. Res. 
Develop. 26, No. 1 ,  12-21  (January  1982). 

12. G.  L. Parasch  and R. L. Price, “Development  and  Application 
of a  Designer  Oriented  Cyclic  Simulator,” Proceedings of the 
Thirteenth Design Automation Conference, San  Francisco,  CA, 

5. J. R. Southard,  “MacPitts:  An  Approach to Silicon 

10. J. L. Gilkinson, S. D. Lewis,  B.  B.  Winter,  and  A.  Hekmatpour, 

1 1 .  R. N. Gustafson  and  F. J. Sparacio,  “IBM  308 1 Processor Unit: 

1976,  pp. 48-53. 
13. G. L. Smith,  R. J. Bahnsen,  and H.  Halliwell,  “Boolean 

Comparison of Hardware  and  Flowcharts,” IBM J. Res. 
Develop. 26, No. 1, 106-1  16  (January  1982). 

Synthesis,” IEEE Trans. Computers C-32, No. 10, 947-952 
(October  1983). 

14.  Daniel  Brand,  “Redundancy  and  Don’t  Cares  in  Logic 

Received  March IO, 1984; revised April 30, I984 

JOHN A.  DARRINGER ET AL. IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984 



Daniel  Brand IBM Research Division, P.O. Box 218, Yorktown 
Heights, New  York 10598. Dr.  Brand has been a research  staff 
member at the IBM Thomas J. Watson  Research Center since 1976. 
He  is currently working on a project  which  is  investigating a system 
for automatically synthesizing  technology-specific chip 
implementations from register-transfer-level descriptions. His 
previous work  was in the areas of program verification and 
automatic theorem proving. Dr. Brand  received the Ph.D. from the 
University of Toronto, Canada, and is a member of the Association 
for Computing Machinery. 

John A. Darringer IBM Research Division, P.O. Box 218, 
Yorktown Heights, New  York 10598. Dr. Damnger received  his 
Ph.D. from Camegie-Mellon  University, Pittsburgh, Pennsylvania, 
in 1969. From 1969 to 1972, he  was a design automation consultant 
to the large-computer division  of Philips in Holland. In 1972 he 
joined IBM at the  Thomas J. Watson Research Center, where  he 
worked on program specification and verification. He started the 
Logic  Synthesis project in 1979 to take a new look at the problem  of 
automatic hardware generation. Dr. Daninger is a member of the 
Association  for Computing Machinery, Eta Kappa Nu, the Institute 
of  Electrical and Electronics Engineers, and Tau Beta Pi. 

John V. Gerbi IBM Data Systems Division, P.O. Box 390, 
Poughkeepsie,  New York 12602. Mr. Gerbi is a senior programmer 
in design  tools development in the Poughkeepsie laboratory. He 
received the B.S. in electrical engineering from Union College, 
Schenectady, New York, and is pursuing graduate studies at 
Syracuse University in computer and information science.  He  has, 
since joining IBM in 1965, been  involved  with communications and 
database systems and, more recently,  with mechanical and logical 
design  tools. Mr. Gerbi has received DSD Division and IBM 
Outstanding Technical Achievement  Awards  for  his  work in 
automatic logic  synthesis. 

William H. Joyner, Jr. IBM Research Division, P.O. Box 218, 
Yorktown Heights, New York 10598. Dr. Joyner has been a research 
staff member at the IBM Thomas J. Watson  Research Center since 
1973. He is currently manager of a project which  is  investigating a 
system  for automatically synthesizing  technology-specific chip 
implementations from register-transfer-level descriptions. His 
previous  work was in the areas of  program  verification and 
automatic theorem proving.  He  received the B.S. from the 
University of  Virginia, Charlottesville, and  the Ph.D. in applied 
mathematics from Harvard University, Cambridge, Massachusetts. 
Dr. Joyner is a member of the Association  for Computing 
Machinery and  Tau Beta  Pi. 

Louise  Trevillyan IBM Research Division, P.O. Box 218, 
Yorktown Heights, New  York 10598. Ms.  Trevillyan has been a 
research  staff member at the IBM Thomas J.  Watson  Research 
Center since 1978. Her current work  involves the investigation of a 
system for automatically synthesizing  technology-specific chip 
implementations from register-transfer-level descriptions. She joined 
IBM at Data Processing S e M c e s ,  San Francisco, California, in 1974, 
moving to the IBM Thomas J. Watson Research Center in 1977. Ms. 
Trevillyan  received a B.A. in mathematics in 1968, and M.A. 
degrees in mathematics and computer sciences in 1970, all  from the 
University of Michigan, Ann Arbor. 

IBM J. RES, DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984 

545 

JOHN A. DARRINGER ET AL. 


