
LSS: A system
for production

by John A. Darringer
Daniel Brand
John V. Gerbi
William H. Joyner, Jr.
Louise Trevillyan

logic synthesis

For some time we have been exploring methods
of transforming functional specifications into
hardware implementations that are suitable for
production. The complexity of this task and the
potential value have continued to grow with the
increasing complexity of processor design and
the mounting pressure to shorten machine
design times. This paper describes the evolution
of the Logic Synthesis System from an
experimental tool to a production system for the
synthesis of masterslice chip implementations.
The system was used by one project in IBM
Poughkeepsie to produce 90 percent of its more
than one hundred chip parts. The primary
reasons for this success are the use of local
transformations to simplify logic representations
at several levels of abstraction, and a highly
cooperative effort between logic designers and
synthesis system designers to understand the
logic design process practiced in Poughkeepsie
and to incorporate this knowledge into the
synthesis system.

Introduction
As processor complexity increases and as denser,
higher-performance technologies are developed, the job of
the logic designer becomes more difficult. It is becoming
increasingly important to provide automated tools to

OCopyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

improve designer productivity. Successes to date have been
in the area of physical design, where layout, wiring, and
timing analysis have been largely automated. The next
important area of design automation to improve designer
productivity is to provide a tool which can generate logic
implementations in the desired technology from a designer’s
functional specification.

There has been much research on this problem of logic
synthesis, and the strategies employed fall into three broad
classifications. One approach is to exploit methods of
minimizing logic in a two-level representation [1,2].
Unfortunately, since these algorithms search for minimal
implementations, they require time exponential in the
number of circuits and cannot be used on most actual
designs. In addition, it is not always clear how to transform a
minimum but idealized two-level implementation into an
implementation n-level version that is realizable in an actual
technology, although work continues on this problem [3].

A second approach is to view the problem as one of
assembling large macros. In these design systems, the data
flow of the machine is generated in terms of predesigned or
generated macros, such as multiplexors and ALUs. The
control logic is usually implemented by PLAs, Weinberger
arrays, or ROMs with microcode. Most of the current silicon
compiler work falls into this category [4, 51.

A third strategy is to use transformations to convert a
high-level specification into technology-specific hardware in
a series of small steps. In these systems, the logic is viewed as
a graph of functional components, and transformations are
applied to this graph in an attempt to improve the
implementation.

These categories are not, of course, mutually exclusive.
For example, a system could use the macro method for data
flow and the minimization or transformation approach for
control flow. A more detailed discussion of these approaches
appears in [6,7].

IBM J. RES. DEVELOP. VOL. 28 NO, 5 SEPTEMBER 1984 JOHN A. DARRINGER ET AL.

I Three levels of transformation

An important characteristic of synthesis systems is the
level of the input specification. This ranges from low-level
specifications that are close to the hardware to be
implemented, through register-transfer-level input that
assumes a synchronous model with all memory elements
defined, to very-high-level descriptions that make no
structural decisions about the implementation. The level of
the language has a direct effect on the difficulty of
implementing a synthesis system and on the productivity
gains that can be expected of such a system. If a low-level
language is chosen, it is much easier to generate the logic,
but the system becomes more like a logic entry system. At
the other end of the continuum, the very-high-level
description yields the greatest flexibility and productivity
improvement, but the job of actually generating production-
quality implementations becomes extremely difficult.

For the logic synthesis system discussed in this paper, LSS,
we accept input at the register-transfer level and improve the
logic using local transformations which are applied at several
levels of abstraction. We view the task of synthesis as one of
producing feasible, not necessarily optimal, networks of
technology-specific boxes that satisfy a large number of
constraints. In this context, we must meet specified
requirements of a technology, take advantage of features
provided by the technology, and produce logic with
satisfactory gate counts and path lengths.

In this paper, we give an overview of LSS and describe our
experience in applying this approach to an actual technology
in a production environment. 538

JOHN A. I

An overview of the Logic Synthesis System
Our approach is to transform logic from the high-level
specification into a productionquality implementation
through a sequence of local transformations. Figure 1 shows
the different levels of abstraction at which the
transformations are applied. The register-transfer language is
translated into a network of boxes connected by signals.
Initially, this network consists of ANDs, ORs, NOTs,
memory elements, and larger constructs such as decoders
and adders, which are replaced eventually by more primitive
implementations. The primitives change from only ANDs,
ORs, and NOTs, to NANDs or NORs, and finally to
technology-specific elements, by the application of sequences
of simplification transformations at each level. While the
transformations at the higher level are relatively independent
of the eventual technology, it is the job of the technology-
specific transformations to take advantage of hardware
features such as “dual-rail’’ primitives with both output
phases available, and to ensure that the implementation
obeys all technology and methodology constraints.

subgraph of the network (usually five or fewer boxes) with
another subgraph which is functionally equivalent but
simpler according to some measure. Limiting the approach
to simple local transformations both assures us that we will
be able to handle large designs without paying a large
penalty in computer time, and enhances our ability to
maintain, expand, and understand the functions of the
system.

As an example of how local transformations work,
consider the logic network in Figure 2(a). First, a
transformation would examine boxes Y and 2 and notice
that the connection of signal e at box Y is not necessary and
delete it, changing the network to that shown in Figure 2(b).
Another transformation would then find the double inverters
X and Y. It would remove them and reroute signal a to box
Z , leaving the final logic shown in Figure 2(c).

In addition to these pattern-matching transformations,
there are programs that propagate constants 0 and I through
boxes, and that merge boxes performing equivalent
functions. All transformations use a set of access functions to
manipulate a graph composed of boxes interconnected by
signals. These access functions hide the details of the
underlying data structure from the transformation writer and
allow powerful conversions to be developed very quickly.
The technology-independent portions of LSS were
implemented as part of IBM’s Engineering Design System
[8]. More detail about the structure of U S and the specific
transformations has been given in [7].

The transformations are local in that they replace a small

Initial synthesis experiments
The first experiments with the logic synthesis system were
attempts to produce implementations for chips from the
IBM 308 1 processor. The chips were 704-gate TTL

2ARRINGER ET AL. IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

masterslices, and the existence of the engineers’
implementations permitted comparison of designs and a
study of the differences between manual designs and those
produced automatically. The first experiment resulted in a
synthesized implementation that was very similar to the
manual one, and with one percent fewer cells and
connections. In the second experiment the same sequence of
transformations was applied to a more complex chip,
resulting in an implementation with fifteen percent more
cells and twenty percent more connections than the manual
implementation.

Experiments with ECL logic
The experiments with the existing 308 1 chips were successful
enough that there was interest in attempting synthesis for
other technologies such as an ECL masterslice then in use.
Here the basic primitive was a single-cell, four-input NOR
with positive and negative outputs. Other functions in the
technology included a two-cell, eight-input NOR, several
types of latches, drivers, register-driver combinations, and a
few complex functions. In addition, there is the ability to
wire together or “DOT” emitter outputs to get a zero-cell
OR function. The synthesis transformations and their
application sequence were adapted to this technology. The
three levels of implementation were maintained. The AND/
OR transformations remained unchanged; certain
transformations were used more heavily than in previous
experiments.

Because ECL is a NOR-based technology, the NAND
level became the NOR level. This required a new
transformation to translate the AND/OR primitives into
NORs, and a set of NOR simplification transformations.
The original NOR transformations were identical to the
NAND programs, with the NANDs converted to NORs. We
later realized that savings at the NOR level did not
necessarily translate into savings at the hardware level. As an
example of this, saving a one-input NOR at the cost of
increasing connections or fan-in does not generally produce
a better hardware implementation when the target
technology is dual-rail and distinct inverters are not
required, The technology-independent transformations had
to be re-evaluated and their constraints adjusted based on
the improved ideas of “goodness.” New technology-specific
transformations also had to be implemented to take
advantage of the features of the ECL technology, such as
dual-rail outputs.

Once the transformations and a specific application
sequence, or scenario, were developed, several experiments
were run. First, five chips that had been manually designed
were synthesized from their register-transfer-level
specifications. In each case, the synthesized chip met all
requirements and was within ten percent of the manually
designed chip in cell count and logic levels.

In additional experiments we transformed six low-level,
technology-specific designs from the 308 1 TTL technology

IBM J. RES, DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

I Example of local transformation application.

into the ECL technology. In this case, the input was
expressed in terms of the 308 1 technology primitives rather
than as register-transfer specifications. There were no
manual designs in ECL, but the results were evaluated by
logic designers and were pronounced to be acceptable. More
details on this remapping work are described in [9].
Technology remapping presents many problems that are
interestingly different from those of pure synthesis and the
paper on a technology mapping system [101 describes these
in detail.

Large processor design environment
Following the successful demonstration of synthesis for ECL
logic, the decision was made to use LSS in production in
Poughkeepsie. This would require extensions to the
prototype system and its integration into the existing tools of
the Poughkeepsie design environment.

processor groups in Poughkeepsie [1 11. The machine is first
described at the register-transfer level in the language BDL/
CS [121. This specification declares all chip input and output
signals and all on-chip memory elements. The model is
assumed to be synchronous: For each implicit clock tick,
outputs and new register values are defined in terms of
inputs and old register values. The BDL/CS is simulated to
ensure that the desired function has been specified. The
machine is then implemented at the technology level in
terms of hardware primitives, called books, that are provided
by the particular masterslice technology used. This

Figure 3 shows the design methodology used by the

JOHN A. DARRINGER ET AL.

539

I Large processor design methodology

I Automatic logic synthesis.

implementation is described in the BDL/S language, which
gives interconnections among the various books in the
design. The logic designer must implement the specified
function, follow all technology and design rules, ensure that
all path lengths meet the specified performance, ensure that
the implementation is testable, and finally document the

540 implementation with logic diagrams. To verify that the high-

JOHN A. DARRINGER ET AL.

and low-level specifications agree, a static analysis system,
SAS [131, is used to search for input patterns that will cause
the two models to produce different outputs. Once the two
versions of the design are equivalent, the BDL/S version is
processed by tools that check technology constraints, provide
information for higher levels of packaging, perform timing
analysis, and finally produce the placement and wiring of the
actual masterslice chip. In addition, since these are large
processors with many chip part numbers, there is a chip
maintenance system to keep track of the status and release
level of each of the chips.

Our goal was to replace the manual implementation
process, reading the same BDL/CS that was simulated and
producing BDL/S acceptable to all of the other tools in the
methodology. The new methodology is shown in Figure 4.

Production use of synthesis
Whereas the experiments with the prototype system had
shown that we could automatically generate functionally
correct logic that matched manual designs in gate count and
that passed physical design checks, we knew that we were
just beginning to understand the details of high-performance
logic design. There were many more constraints dictated by
the performance requirements, the technology, and the
design methodology used.

Integration into design methodology
In order to be usable at all, a completely automatic method
for running synthesis had to be devised and integrated with
the other tools. LSS was designed as an interactive system, to
facilitate experimentation with new transformations and
their sequencing. While this is useful in a research
environment, it is unrealistic to expect the production user
to operate the system this way. We therefore devised
standard scenarios and a menu-driven system to aid the
engineer in selecting a scenario suitable for his needs.

It is the job of this menu system not only to select the
synthesis scenario, but to provide a link to the chip
development system which keeps track of all of the interface
information about chips. The menu system was used to
extract the declarations of the chip I/Os and memory
elements from a master list that was kept for the entire
machine, to combine it with the specification of the function
to be synthesized, and to manage bookkeeping information
about the chip, such as date and time of the run, level of the
system used, and problems encountered.

The major interface between LSS and other tools is
BDL/S. Some information required by other tools was
missing from the synthesized BDL/S, but it could be
supplied by existing programs. However, BDL/S is more
than a language to be read by other programs; it is also used
to generate automated logic diagrams, or ALDs, multi-page
graphical representations of the implementation. Although it
is not important for the function of the logic to produce

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

good diagrams, we were expecting designers to use the
diagrams and to evaluate the synthesized results, so the
readability of the generated diagrams had to be improved.
Since readability is a highly subjective measurement, this is a
task that can never be entirely successful, and it was, in fact,
a constant concern throughout the project. Nevertheless, we
wrote programs and added heuristics to try to minimize page
crossings, to get the logic to flow from beginning to end, and
to group related items on diagram pages in ways that were
familiar to the engineers.

The only existing tool that needed additional information
from synthesis was the static analysis system. In order to
verify the equivalence between the input to and output from
synthesis, it needed to know the correspondence between the
descriptive names used by the designer in the BDL/CS and
the formalized names used in BDL/S. The correspondence
was important not only to SAS, but to the designers who
were evaluating the logic and wanted to have some explicit
relationship between their inputs and the synthesized
outputs. In order to maintain the BDL/CS names, the
transformations were changed to be more careful about
preserving useful names, and a file showing their
correspondence was produced.

Production experience
The first designers began creating BDL/CS specifications and
synthesizing logic using the base system that had been used
in the experiments with a skeletal version of the menu
system described above. Engineers from several groups used
the system, analyzed the generated logic, and reported
unacceptable results to us. This was an arduous task which
should not be undervalued, because it was only with their
cooperation, hard work, and explanations that it was
possible to turn a promising experimental tool into a usable
production system.

Up to this point, only eleven examples in this technology
had been processed by LSS. The system was now expected to
cope with hundreds of chip part numbers, and its results
were being evaluated with respect to more stringent
constraints. As was to be expected, many problems with the
system emerged and we began a period of rapid learning and
improvement.

The difficulties encountered fell into the following four
categories:

I . Testability and the related problems of excessive
connections and cells.

2. Path lengths. Due to the clocking method, it was possible
to have both paths that were too long and paths that were
too short.

3. Incomplete support of the technology. The book set for
the technology was very rich, and it was important for
good cell count, reasonable power consumption, and
acceptable path lengths to use it aggressively.

IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

4. Inadequate chip interface information. Synthesis occurred
at the chip level and no information about the external
environment of the logic was available to it.

In some sense, these are not separate problems. For
example, long paths could be present because of failure to
use the appropriate book or because extra connections
caused us to build a fan-in tree which added levels of logic.
In addition, the lack of appropriate interface information
made it impossible to identify the critical paths. In many
cases, it was necessary to correct all of these problems
simultaneously and at all levels of the synthesis scenario.

Testability and excessive connections
It was important to solve the problem of excessive
connections and redundancies. A connection of a signal is
redundant if the signal can be replaced by a constant without
changing the function of the logic. The question of testability
is related to redundancy. A connection is testable if changing
the value of the signal at that connection causes a change in
the value of at least one output or latch in the logic.
Connections that are redundant are therefore not testable.
Not only were some chips failing to meet the required
testability coverage (98.5 percent), but the extra connections
caused cell counts to exceed those expected by the designers.
These problems were attacked in several ways.

Figure 5 illustrates the NAND/NOR transformations that
were described in [7]. Two of these, NTR4 and NTR7, were
written to remove local redundancy. They look at two-level
patterns for a reconvergent signal, and remove the
redundancy by disconnecting the reconvergent signal.

Also, an existing NOR transformation, NTR6, which
performed local factoring to reduce connections did not
seem to apply as often as it should. From Fig. 5, it appears
to replace two gates with three. But in a dual-rail technology,
no inverter is required and two gates are still used. When the
fan-in limits of the technology are considered, the second
implementation could require fewer cells than the first, since
fan-in is lowered. When the constraints were adjusted at the
NOR level to take this into account, the transformation
applied more frequently, which resulted in fewer cells, fewer
connections, and often less redundancy.

Certain chips, however, continued to have redundancy
problems and it was clear that more global strategies were
needed. A factoring program was written to collect global
information about all high-fan-in boxes or high-fan-out
signals and apply heuristics to decide on the best groups of
signals to factor. This program improved our results but
problems remained.

The most significant progress in solving this problem was
REDUND, a nonlocal redundancy detection program [141.
REDUND uses a method similar to those used for test
generation to find connections which are not testable for
stuck at 0 or 1. It forms the conditions for testing the

,
/

JOHN A. DARRINGER ET AL.

I Example NOR/NAND transformations.

corresponding fault and checks for contradictions; when one
is found, it replaces the connection with 0 or 1, as
appropriate. The general constant propagation program is
then used to simplify the logic. Although it is not guaranteed
to detect all redundancies, REDUND has proven thorough
enough to allow all chips encountered to date to meet the
98.5-percent testability requirement when allowed to run to
completion. Since it may require a relatively large amount of
CPU time, REDUND was initially only run on chips with
known testability problems. In all but pathological cases,
however, it has proved to be a reasonable performer, and it
is now used on all chips.

Path lengths
For a chip implementation to be usable, the path lengths
must be acceptable. The technology provides shift register
latches (SRLs), which consist of separate latch and trigger
storage elements, each with a different clock. The clocks are
overlapped in such a way that the latch inputs remain
enabled for a time after new data have been launched from
trigger outputs. If register-to-register paths are too short, new
data can be made available a cycle too soon. If the register-
to-register paths are too long, data are not available when

542 needed.

JOHN A. DARRINGER ET AL

The technology provides delay books, or pads, that can be
used to lengthen short paths. Care must be taken in using
delay books since they use valuable cells and can create a
long path when inserted. The first pad-inserting
transformation determined path lengths in levels of logic and
added pads to short paths in such a way that no long paths
were created. It was sometimes necessary to split a path into
a long and a short component so the short could be padded.
This implementation of short-path correction was
inadequate because too many pads were added. There were
several attempts to implement pad-sharing and pad-
optimization programs, but we were not totally successful in
correcting short paths.

The first attempt to correct long-path problems was done
at a technology-independent level. It was observed that some
of the NOR transformations tended to save cells by
increasing the depth of logic, while others tended to increase
cells by decreasing depth. By manipulating the application
and sequences of such transformations, three scenarios were
developed: one which produced the smallest cell count, a
second which produced the smallest logic depth, and a third
which was a compromise between the two. The defect of this
multi-scenario strategy is that a typical chip has a mixture of
long and acceptable paths and there was no reasonable way

IBM I. RES. DEVELOP. VOL. 28 NO, 5 SEPTEMBER 1984

of using the scenarios to get minimum cells on acceptable
paths and minimum depth on long paths. Since we were
synthesizing a single chip without knowledge of its
environment, it was not always possible to identify the
critical paths.

declarations, to allow off-chip delays for primary inputs and
outputs to be specified in terms of levels of logic. The cycle
time was also given in logic levels, and a unit delay model of
logic was used. Programs at the NOR level were used to
decrease the levels of NORs to within the given constraints,
at the expense of adding more NOR boxes to the
implementation.

availability of complex books in the technology, it was
difficult to predict the depth of logic at the hardware level
from the depth at the NOR level. It was often the case that
an apparent shortening of a path at the NOR level had no
effect at the hardware level except to add cells. This led to
path-directed transformations at the hardware level which
forced DOTS by duplicating logic and which reordered
fan-in and fan-out trees with path length in mind.

None of these approaches to timing solved all of the
problems. In the final system, some manual editing of the
synthesized logic was necessary in order to correct short
paths efficiently.

This resulted in modifications to the BDL/CS

However, due to the presence of dual-rail outputs and the

0 Enhanced support for the technology
As mentioned earlier, it was necessary to make effective use
of all the primitives provided by a technology to produce
acceptable logic. One of the important items was the
introduction of emitter dots. In this technology, emitter
outputs can be wired or dotted together to perform an OR
function. This is faster than a book OR and uses no cells. It
is not as general as the OR book, since the DOT inputs
cannot have other fan-out and cannot have sources such as
latches or primary inputs, which have hidden fan-out.

The basic tool for identifying possible DOTS is a program
that runs at the NOR level. It is similar to the factoring
program in that it gathers information about all of the logic
and then picks out candidates for DOTs from combinations
of signals which have identical sink boxes. After this is done,
it is up to the technology-dependent transformations to
decide whether the candidate should actually be made into a
DOT.

Care must also be taken in the introduction of DOTs.
Introduction of DOTS puts constraints on the
transformations subsequently applied, because they cannot
add fan-out to dotted signals, create cascaded DOTs, or
replicate DOTS to fix fan-out violations. DOTS can also be
used to lower fan-in of NORs, converting them from two-
cell books to one-cell books.

Other technology-specific transformations look for
opportunities to use special books with complex functions to

save space, time, or power. The ECL masterslice technology
contains many special-function books that must be
effectively utilized to approach the quality of a manual
design. These books produce product-of-sums, XOR,
XNOR, and other complex functions.

A technology-dependent transformation was written to
find multi-level patterns of NORs that could be replaced
with these special books. This program, initially fairly small
when supporting only the product-of-sum books, required
special extensions for each additional type and eventually
became quite large. The XOR function was particularly
difficult to detect, as a great number of structural
permutations produce these -AB and A - B functions.
Designers also had divergent opinions on when particular
types should be used, and on the usage of some output pins.
The conclusion was that this approach was moderately
successful in its results, but cumbersome to implement.

Occasionally we over-used a feature provided by the
technology. For example, it is possible to use the output of
an off-chip driver within the chip. We at first assumed that
these outputs were free and used them freely. Later we
learned that the loading of these pins slowed the external
outputs somewhat, made physical design more difficult, and
could introduce timing problems because these outputs were
slower than equivalent internal NORs. It was necessary to
take these disadvantages into consideration and reformulate
the constraints on the program that used such outputs.

Technology considerations also forced a reexamination of
the order of application of transformations. For example,
common-term elimination, unless restricted, cannot be done
after fan-out correction, because it can introduce fan-out
violations. Other interactions between transformations
turned out to be more subtle. For example, one technology-
specific transformation links the registers together in a scan
ring. This appears to be an operation separable from the rest
of the synthesis, but care must be taken to avoid creating
fan-out violations. Similarly, adding clock signals to the
multiple inputs of a register can cause a fan-in violation.

technology was in the area of off-chip drivers and receivers.
The technology provides several varieties of these, but the
one to be chosen depends on information not available to
synthesis, such as the amount and type of fan-out or wire
lengths on the higher-level packaging. The declaration of
primary inputs and outputs was expanded to allow the
designer to provide this information. The technology-
dependent transformations then used this information to
generate the correct book types.

One area where synthesis could not fully use the

Chip interface information
In addition to the cases mentioned earlier, there were two
other situations that required information about the external
environment of the chip being synthesized. When
resynthesizing a chip after its BDL/S has been used in the 543

LL. IBM I. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984 JOHN A. DARRINGER ET A

design of a larger module, it is necessary to ensure that the
I/Os correspond to the same physical pins as they did in the
first run. Since synthesis had no memory of what it had done
before, it was necessary to feed back this information for
subsequent runs. Also, information about register clocking
has to be associated with the latch declarations. This is
necessary in order to distribute the clocks correctly and to
compute accurately required times in path correction
transformations. Such information is kept in the chip library
system, and it is extracted by the menu system for each run.

Production synthesis results
Fortunately we were able to solve most of the problems that
arose in the refinement of LSS for production synthesis. The
system was useful enough that many designers tried it and
shared their experiences with us. Most users found that they
could complete a first-pass design much more quickly than
with manual design methods. In addition, they could
perform timing analysis earlier, find their major problems,
modify their specifications, and quickly generate a new
implementation. This freedom to make sweeping changes
allows a new approach to solving timing problems: They can
be corrected by high-level changes rather than low-level path
tuning. One project was able to use LSS for 90 percent of
their more than 100 chip designs. This cut their initial design
time in half.

Other projects were not as successful. They had more
difficulty meeting their timing constraints and cell count
limits. Interestingly, many of the specifications that LSS
finds difficult are for highly regular designs, such as shifters
and arithmetic units. There are chips that designers handle
very well and seem to require global planning. In other cases
the designer was able to produde a more efficient
implementation because he could take advantage of
information not available to the synthesis system, such as
“don’t-care” conditions. We are optimistic that progress will
continue to be made and that eventually U S will be able to
produce acceptable implementations for all but the most
pathological specifications.

Summary and future work
This paper has described the development of a system that is
capable of automatically transforming functional
specifications into production-quality masterslice
implementations. The system has been used to produce 90
percent of the parts for a large (over 100 chips) high-
performance project in Poughkeepsie. The primary reasons
for this success are the use of local transformations to
simplify logic representations at several levels of abstraction,
and a highly cooperative effort between logic designers and
synthesis system designers to understand the logic design
process practiced in Poughkeepsie and to incorporate this
knowledge into the transformations.

The fact that almost all of the transformations are local
544 and have linear run times allows us to apply these

techniques to much larger chips. Further, the structuring of
the synthesis process as a sequence of simple transformations
provides a great deal of flexibility in dealing with new and
different technologies.

The experiences discussed above have pointed out some
deficiencies and limitations with the current LSS. We are
continuing to explore new methods for improving the ability
to meet path length constraints and exploit complex books.
Further, now that a path has been demonstrated from a
register-transfer-level description to production-quality
hardware, there is much more interest in higher-level
synthesis transformations.

Acknowledgments
Throughout this paper we have stressed the importance of
the participation of many experienced designers in the
formulation of synthesis techniques. In addition, we would
like to acknowledge the valuable contributions of Len
Berman and A1 Kashner.

References
1 . M. A. Breuer, Ed., Design Automation of Digital Systems,

2. D. L. Dietmeyer, Logic Design of Digital Systems, Allyn and

3. R. Brayton and C. McMullen, “The Decomposition and

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972.

Bacon, Boston, 1978.

Factorization of Boolean Functions,” Proceedings, International
Symposium on Circuits and Systems, April 1982, pp. 58-63.

4. D. Johannsen, “Bristle Blocks: A Silicon Compiler,” Proceedings
of the 16th Design Automation Conference, June 1979, pp. 3 10-
313.

Compilation,” COMPUTER 16, No. 12, 74-82 (December
1983).

6. D. E. Thomas, C. Y. Hitchcock 111, T. J. Kowalski, J. V. Raja,,
and R. Walker, “Automatic Data Path Synthesis,” COMPUTER
16, No. 12, 59-73 (December 1983).

7. John A. Daninger, William H. Joyner, Jr., C. Leonard Berman,
and Louise Trevillyan, “Logic Synthesis Through Local
Transformations,” IBM J. Res. Develop. 25, No. 4, 272-280
(July 198 1).

8. J. B. Bendas, “Design through Transformation,” Proceedings of
the 20th Design Automation Conference, June 1983, pp. 253-
256.

9. J. A. Daninger, W. H. Joyner, L. Berman, and L. Trevillyan,
”Experiments in Logic Synthesis,” Proceedings of the IEEE
International Conference on Circuits and Computers, Port
Chester, N Y , 1980, pp. 234-237.

“Automated Technology Mapping,“ ZBM J. Res. Develop. 28,
No. 5, 546-556 (1984, this issue).

Design Considerations and Design Process,” IBM J. Res.
Develop. 26, No. 1 , 12-21 (January 1982).

12. G. L. Parasch and R. L. Price, “Development and Application
of a Designer Oriented Cyclic Simulator,” Proceedings of the
Thirteenth Design Automation Conference, San Francisco, CA,

5. J. R. Southard, “MacPitts: An Approach to Silicon

10. J. L. Gilkinson, S. D. Lewis, B. B. Winter, and A. Hekmatpour,

1 1 . R. N. Gustafson and F. J. Sparacio, “IBM 308 1 Processor Unit:

1976, pp. 48-53.
13. G. L. Smith, R. J. Bahnsen, and H. Halliwell, “Boolean

Comparison of Hardware and Flowcharts,” IBM J. Res.
Develop. 26, No. 1, 106-1 16 (January 1982).

Synthesis,” IEEE Trans. Computers C-32, No. 10, 947-952
(October 1983).

14. Daniel Brand, “Redundancy and Don’t Cares in Logic

Received March IO, 1984; revised April 30, I984

JOHN A. DARRINGER ET AL. IBM 1. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Daniel Brand IBM Research Division, P.O. Box 218, Yorktown
Heights, New York 10598. Dr. Brand has been a research staff
member at the IBM Thomas J. Watson Research Center since 1976.
He is currently working on a project which is investigating a system
for automatically synthesizing technology-specific chip
implementations from register-transfer-level descriptions. His
previous work was in the areas of program verification and
automatic theorem proving. Dr. Brand received the Ph.D. from the
University of Toronto, Canada, and is a member of the Association
for Computing Machinery.

John A. Darringer IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Damnger received his
Ph.D. from Camegie-Mellon University, Pittsburgh, Pennsylvania,
in 1969. From 1969 to 1972, he was a design automation consultant
to the large-computer division of Philips in Holland. In 1972 he
joined IBM at the Thomas J. Watson Research Center, where he
worked on program specification and verification. He started the
Logic Synthesis project in 1979 to take a new look at the problem of
automatic hardware generation. Dr. Daninger is a member of the
Association for Computing Machinery, Eta Kappa Nu, the Institute
of Electrical and Electronics Engineers, and Tau Beta Pi.

John V. Gerbi IBM Data Systems Division, P.O. Box 390,
Poughkeepsie, New York 12602. Mr. Gerbi is a senior programmer
in design tools development in the Poughkeepsie laboratory. He
received the B.S. in electrical engineering from Union College,
Schenectady, New York, and is pursuing graduate studies at
Syracuse University in computer and information science. He has,
since joining IBM in 1965, been involved with communications and
database systems and, more recently, with mechanical and logical
design tools. Mr. Gerbi has received DSD Division and IBM
Outstanding Technical Achievement Awards for his work in
automatic logic synthesis.

William H. Joyner, Jr. IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Joyner has been a research
staff member at the IBM Thomas J. Watson Research Center since
1973. He is currently manager of a project which is investigating a
system for automatically synthesizing technology-specific chip
implementations from register-transfer-level descriptions. His
previous work was in the areas of program verification and
automatic theorem proving. He received the B.S. from the
University of Virginia, Charlottesville, and the Ph.D. in applied
mathematics from Harvard University, Cambridge, Massachusetts.
Dr. Joyner is a member of the Association for Computing
Machinery and Tau Beta Pi.

Louise Trevillyan IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Ms. Trevillyan has been a
research staff member at the IBM Thomas J. Watson Research
Center since 1978. Her current work involves the investigation of a
system for automatically synthesizing technology-specific chip
implementations from register-transfer-level descriptions. She joined
IBM at Data Processing S e M c e s , San Francisco, California, in 1974,
moving to the IBM Thomas J. Watson Research Center in 1977. Ms.
Trevillyan received a B.A. in mathematics in 1968, and M.A.
degrees in mathematics and computer sciences in 1970, all from the
University of Michigan, Ann Arbor.

IBM J. RES, DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

545

JOHN A. DARRINGER ET AL.

