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A device-
independent
graphics
package for CAD
applications

by R. B. Capelli
G. C. Sax

GSSP (Graphics Support Subroutine Package) is
a device-independent two-dimensional graphics
package developed by Engineering Design
Systems (EDS) to support several major
electronic and mechanical computer-aided
design applications within IBM. Graphics
systems supported range from interactive, high-
function, distributed-graphics workstations to
passive graphic-output devices. GSSP provides
many of the functions usually found in other
device-independent graphics packages, with
additional support for hierarchicailly structured
display files and distributed graphics systems.
The major functions provided by GSSP are
described, and an overview of the
implementation is presented to show how issues
such as interactive performance and human
factors are addressed.

Introduction

The Graphics Support Subroutine Package (GSSP) is a
device-independent two-dimensional graphics package
developed by Engineering Design Systems (EDS) for
computer-aided design (CAD) applications within IBM. The
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applications and GSSP execute on IBM System/370, 4300,
303X, and 308X computers. Applications that use GSSP
include integrated circuit layout [1], printed circuit board
wiring [2], schematic entry, and mechanical solid modeling.

The environment that has evolved for most CAD
applications within IBM is based on large time-shared host
computer facilities. Very large designs must be handled, and
centralized data must often be shared by several designers or
application programs.

It is very important to maximize designer productivity.
Fast interactive response time is required, with an objective
of 0.5 seconds or less for most responses. Some applications
are tailored to particular graphics hardware to optimize
human factors. High-performance hardware is justified
despite higher costs if it allows a large enough productivity
gain for users of an application.

It is also important to be able to exploit new graphics
hardware as it becomes available, and to be able to support
lower-cost hardware for some uses. It seems unreasonable
that major new development should be required for each
application to support different graphics hardware devices. A
device-independent graphics package allows development
costs to be minimized since new development to support a
device can benefit many applications. The use of a device-
independent graphics package within an organization also
reduces the need for programmer retraining and encourages
the sharing of graphics software among application
development groups. These and other advantages of a
device-independent graphics package are well known,
encouraging proposals and activities leading towards
industry and international graphics system standards suitable
for a very broad constituency [3, 4].
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Certain characteristics of GSSP are important in
optimizing interactive performance for the time-shared host
environment. These same characteristics also allow potential
conflicts between device independence and interactive
performance to be avoided.

GSSP uses the concept of a segmented, hierarchically
structured display file. Since many CAD applications use a
hierarchical database, this allows straightforward image
generation with nearly one-to-one correspondence between
the structure of the application data and the display file.
Similarly, it allows direct correlation of graphic input, in
terms of the display file, to the application data. The
segmented display file also allows incremental updating of
the image, required to provide fast response.

GSSP uses hardware features, whenever possible, to
provide graphics package functions. However, graphics
package functions are defined by the logical function they
perform, rather than in terms of hardware features. This
allows a function to be emulated in software, if required,
when the necessary hardware features are not available.

Most of the graphics devices used for EDS applications
have local intelligence. In order to provide dynamic visual
feedback for user input in the time-shared host environment,
GSSP exploits this local intelligence with distributed system
functions. Dynamic visual feedback techniques, such as
rubberbanding, dragging, entity verification, and digital
coordinate readouts, improve human factors and increase
user productivity by allowing trial-and-error graphic input
strategies to be avoided.

This paper presents the history of GSSP development, a
summary of the GSSP architecture and the functions it
provides, an overview of the implementation of the device
driver interface, and some issues of device independence
addressed by GSSP.

Development history

GSSP has had two major releases. The first, in use between
1974 and 1982, was implemented to support the IBM 1130-
1653 [5] graphic subsystem developed internally for EDS.
The IBM 1130 was a 16-bit computer with 64K bytes of
storage used as a system controller in this configuration. It
provided the local intelligence required to offload interactive
functions from the time-shared host, allowing several
important dynamic visual feedback techniques to be
provided. The capabilities of this configuration have had a
lasting influence on EDS applications and the development
of GSSP.

Because there was some uncertainty about the hardware it
was to support when the functional specifications for GSSP
were initially being developed, a device-independent
application program interface was a major objective from
the start. A prototype version of GSSP was actually
implemented for the IBM 2250 Model 3 [6] to allow
application program development before the IBM 1130-1653
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I Model of GSSP device-independent graphics system.

hardware became available. Painless transition to the newer
hardware attests to some early success in meeting that
objective.

The second release of GSSP in early 1982 was heavily
influenced by the ACM/SIGGRAPH Graphics Standards
Planning Committee (GSPC) proposal for a device-
independent Core Graphics System [3]. It was desired to
allow applications using GSSP to take advantage of new
hardware as it became available, and to take advantage of
potential hardware functions that the first release of GSSP
did not consider. There were strong similarities between
some features of the GSPC Core proposal and the first
release of GSSP, so the GSPC Core proposal was a natural
model to extend GSSP for functions it did not previously
provide.

While the first release of GSSP did provide a device-
independent application program interface, its
implementation was entirely specific to the IBM 1130-1653
graphic subsystem. The second release of GSSP modularizes
the implementation into a device-independent component
common to all devices, and into specific device driver
modules for each supported device. Figure 1 illustrates the
relationship between the device-independent component and
the device drivers.

Device drivers have been developed for several IBM and
vendor graphic systems representing several different display
technologies and different levels of hardware function. A
device driver for the IBM 1130-1653 graphic subsystem, a
directed-beam refresh display, provides compatibility to the
first release of GSSP. Device drivers have been developed for
the IBM 3250 [7] directed-beam refresh display, the IBM
3277 Graphic Attachment [8] using a direct-view storage
tube monitor, the IBM 5080 [9] raster display workstation,
and microprogrammed vendor directed-beam refresh display
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Hardware configurations of interactive graphics systems supported
by GSSP.

and raster display systems attached to the IBM Series/1 [10]
minicomputer using internally developed interfaces [11].
Figure 2 summarizes the hardware configurations of these
interactive systems. GSSP device drivers also have been or
are being developed for several pen, printer, and electrostatic
plotters.

GSSP architecture
Graphics applications invoke all GSSP functions using a
subroutine call mechanism. GSSP subroutines use standard
OS/VS linkage conventions allowing graphics applications to
be written using a number of high-level languages.

The application programmer’s model of GSSP is built on
the following important concepts:

o The virtual device represents the ideal device supported by
GSSP. The virtual device is mapped onto a physical device
to optimally exploit hardware capabilities.

e View surfaces represent devices or workstations. There is a
one-to-one correspondence between a view surface and a
GSSP device driver. More than one view surface may be
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used concurrently by an application, although graphic
input can be obtained from only one primary view surface.

o A segmented, structured display file is maintained by each
GSSP device driver. The display file maintained by a
device driver may be the actual graphic-order list executed
by hardware, or it may be a pseudo-display file that is
interpreted by the device driver software.

e Logical input devices are device-independent models of
idealized physical graphic-input devices. Graphic
applications request input in terms of logical input devices,
and GSSP device drivers use available physical devices to
obtain the requested input.

o Distributed system functions allow capabilities of
intelligent graphics workstations to be exploited. The
graphic application can request that dynamic visual
feedback of certain user input be provided. This
immediate feedback is possible only if functions to provide
it are implemented at the workstation, rather than on a
time-shared mainframe host.

The subroutine calls in GSSP may be divided into five
major groups: control functions, graphic-output functions,
structured display file functions, graphic-input functions, and
distributed system functions.

e Control

Control functions initialize and terminate GSSP, define
characteristics of the virtual device, initialize, control, and
terminate view surfaces, and provide error handling,.

Initialization and termination

The subroutines that make up the device-independent
component of GSSP are link-edited into a single reentrant,
refreshable load module, and accessed using a transfer
vector. This allows a single copy of the GSSP load module to
be shared in virtual storage by all users on the host system,
tending to reduce operating system paging. The application
must initialize GSSP before invoking any other GSSP
subroutine. During initialization, the transfer vector is
initialized, control blocks and tables are allocated and
initialized to set various defaults, and the primary view
surface is initialized. When an application invokes the GSSP
termination routine, all system resources allocated for GSSP
are released.

Virtual device characteristics

The default virtual device has a display area with a square
aspect ratio and is described by a default Cartesian
coordinate system. The application can change this
definition of the virtual device by specifying a different
aspect ratio and any convenient Cartesian coordinate
system. Each device driver maps the virtual device onto a
physical device to maintain the specified aspect ratio and to
use the largest possible display area.
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View surfaces

When a view surface is initialized, the corresponding device
driver is loaded into storage and invoked so that it can be
initialized. The device driver allocates and initializes its
control blocks, tables, and display file. All resources allocated
for a view surface are released when a view surface is
terminated.

The application may direct graphic output to specific view
surfaces by “selecting” and “de-selecting” view surfaces as it
segments display files into logical buffers (described in more
detail later).

Error handling

Errors can occur because of incorrect programming, such as
passing invalid parameters to GSSP subroutines or invoking
GSSP subroutines in an invalid sequence. Environmental
errors, such as display file buffer overflow or I/O errors, can
also occur.

Flexibility is provided by a number of error-handling
mechanisms. First, each GSSP function sets a return code
indicating any error that was encountered. GSSP also allows
the application to obtain a report of the most recent error, if
any, that has occurred. Finally, an application exit routine
can also be specified to be invoked by GSSP when an error is
encountered. The application exit routine can analyze the
error and, if desired, attempt to recover.

e Graphic output
GSSP provides functions to create two-dimensional graphic-
output primitives, to set static attributes affecting graphic
output, to specify a window and viewport for a viewing
transformation, and to specify image and modeling
transformations.

Graphic-output primitives go through a “pipeline” of
coordinate processing steps before being displayed. Figure 3
summarizes the viewing pipeline supported by GSSP.

Output primitives

Lines, polylines, points, characters, circles, arcs, and areas
are the basic forms of graphic output in GSSP. Areas are
defined by one or more closed shapes composed of line,
polyline, circle, or arc primitives. Filled areas can contain
holes and islands.

Output primitives are defined with respect to a current
position. The current position establishes the starting
coordinate position at which graphic output is generated; it
is subsequently updated to reflect the final coordinate
position defined by the graphic output. Coordinate data
associated with output primitives may be specified as
absolute positions or as relative vector components that
modify the current position.

Static attributes
Static attributes are set modally and affect the appearance of
subsequent graphic output. GSSP supports linestyle,

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Integer or fipating-point
world coordinate: system data
Clip 10 win

{optional)

Image and
modeling
transforms

I

Clip to screen
viewport

l

Display

I Viewing pipeline supported by GSSP.

linewidth, intensity, color, fill pattern, character font,
character size, character spacing, and text precision static
attributes.

Static attributes are meant to take advantage of specific
hardware features. If this is not possible for a given view
surface, the device driver may emulate the graphic attribute
with software, may substitute another static attribute (e.g.,
intensity for linewidth), or may completely ignore the static
attribute (e.g., color on a monochrome view surface).
Functions are provided to determine the static attributes
supported by hardware so that applications may select static
attributes to optimize human factors.

Color is supported using the concept of a color look-up
table. Colors in the look-up table may be defined using three
common color models [12]: the RGB (red, green, blue) color
cube, the HSV (hue, saturation, value) single cone, and the
HLS (hue, lightness, saturation) double cone. The
application can select a color for subsequent graphic output
by specifying the look-up table index static attribute. A
convention has been adopted for raster display system device
drivers that pixel data are ORed into the frame buffer to
generate an image, rather than having new pixel data simply
replace data previously stored. (This may be considered a
default in the future, should GSSP be enhanced to allow
explicit specification of other modes of operation in updating

R. B. CAPELLI AND G. C. SAX

515




516

Display file segmented into a linked list of logical buffers.

a raster frame buffer.) For multi-layer images typical of
electronic physical-layout design applications, a powerful
technique is to assign bit-significant color indexes for data
representing a layer. This allows a variety of useful
interactive effects, such as transparency and dynamic layer
priorities, to be obtained for a color raster display using the
look-up table [13]. The color of all graphic output generated
with a given look-up table index may be changed by simply
defining a new color in the corresponding color look-up
table entry.

Applications may specify character font, size, spacing, and
text precision for character primitives. Text precision allows
application programmers to specify the tradeoff between
efficiency and exactness in generating characters. String
precision allows a hardware character generator to be used
on a string-by-string basis for maximum efficiency. Character
font, size, spacing, and orientation are approximated as
closely as possible. Character precision allows a hardware
character generator to be used on a character-by-character
basis. Characters are spaced exactly as specified. Character
font, size, and orientation are approximated as closely as
possible. Stroke precision requires that characters be
generated with the specified font, size, spacing, and
orientation, even if this means that each character must be
stroked out with line segments.

The viewing transformation

An application can modally specify a window in an arbitrary
Cartesian world coordinate system and a viewport in the
virtual device coordinate system. Subsequent graphic output
defined in the world coordinate system will be optionally
clipped to the window and mapped to the viewport on the
view surface. The application can specify the data format for
the world coordinate system so that coordinate data can be
defined as halfword or fullword integers or floating point
numbers.
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Image and modeling transformations

GSSP functions allow two-dimensional image and modeling
transformations to be specified as matrices, to be
concatenated into composite transformations, and to be
saved and restored using a stack. Using these functions, an
application can straightforwardly generate an image from a
transformed, hierarchical data structure. The display file can
also be updated incrementally to change a previously defined
transform matrix, thus causing all graphic output affected by
the transform to be changed. Ideally, these functions take
advantage of hardware matrix transformation capabilities.
GSSP also allows applications to take advantage of hardware
capabilities to clip to arbitrary screen viewports.

o Structured display files

CAD applications require the ability to manipulate groups of
objects as a unit (e.g., a schematic design or an options
menu), to manipulate individual objects within a group (e.g.,
schematic symbols or menu items), and to select a specific
object or group of objects as input to an application
program. Required, too, is an easy and efficient means to
define and replicate common objects (e.g., transistor
symbols).

GSSP supports a segmented and hierarchically structured
display file that satisfies these requirements. Logical buffers,
entities, subpictures, and instances are constructs that
segment and structure the display file. These constructs allow
the display file to mimic the structure of a nested application
database so that an application may efficiently and
straightforwardly create an image from the database and
process graphic input. When names are assigned to these
constructs, they may later be referenced to incrementally
update the display file, allowing applications to easily
modify, replicate, and delete objects and groups of objects.

Logical buffers

Logical buffers are the highest level of segmentation in the
display file. All graphic data must be generated in a logical
buffer. Within a logical buffer, graphic data may be
generated with or without further structuring. Figure 4 shows
how the display file is conceptually segmented into a linked
list of logical buffers.

Logical buffers are generally used to group objects with
similar global characteristics. For example, one logical buffer
may contain a schematic design, while another logical buffer
contains a menu of options for modifying the schematic
design. Applications may use logical buffers to modularize
the display file to correspond to the modularization of the
application program.

When a logical buffer is created, it is defined only for view
surfaces currently “selected.” Consequently, only these view
surfaces reflect the graphic data in the logical buffer. Each
logical buffer may be referenced independently after it has
been created so that it may be made visible, made invisible,

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984




saved, restored, or deleted without affecting other logical
buffers.

Global aspects of graphic data generation, such as a
current position, a complete set of static attributes (including
defaults), and a viewing transformation (window, viewport,
coordinate data format, and clipping status switch), are
associated separately with each logical buffer. Any one
logical buffer can be designated the “active” buffer. Graphic
data are always added to the current active buffer, using the
status and attributes maintained for that logical buffer.

Entities

Entities provide the next level of hierarchical structuring
within a logical buffer, allowing applications to manipulate
local aspects of graphic output such as visibility and
positioning. Graphic data generated within an entity can be
referenced and modified as a unit, without affecting other
graphic data in the logical buffer.

An entity is defined by specifying the beginning and end
of a sequence of graphic data. An application can later
delete, copy, rename, or reposition the entity, or modify
dynamic attributes of the entity.

Only graphic output generated as part of an entity can be
detected by a pick device. The name of the selected entity is
returned for a pick event. Entities can also be structured to
include an “action list” to provide handling of a pick event
without direct application intervention (described in more
detail later).

The following dynamic attributes of an entity can be
modified:

o Visibility—entities may be made visible or invisible.

e Detectability—entities may be made detectable or
nondetectable. An entity that is visible and detectable can
be selected by a pick device.

o Verifiability—entities may be made verifiable or
nonverifiable. An entity that is visible, detectable, and
verifiable will provide visual feedback (changed color or
intensity level, blinking, etc.) while the pick device is
pointing at that entity. When the pick device is not

pointing at the entity, the entity returns to its normal state.

This feedback is provided without application
intervention. Entity verification is practical only if
supported by hardware.

o Highlighting-—entities may be highlighted or
nonhighlighted. Highlighting is some visual effect (changed
color or intensity level, blinking, etc.) that causes the
graphic output in the entity to be easily distinguished from
graphic output that is not highlighted. Unlike verification,
highlighting does not depend on the use of the pick device.

Subpictures and subpicture instances
Subpictures can be used to define objects hierarchically in
the display file. A subpicture instance invokes a specified
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Subpictures and instances allow a hierarchical display file to be
built.

subpicture at a specified position. Instances allow copies of
an object defined by a subpicture to be easily replicated.
Individual subpicture instances may be referenced to change
the subpicture invoked by the instance, to alter the instance
position, or to make the instance visible or invisible. Ideally,
subpictures and instances are implemented by GSSP device
drivers using hardware graphic-order subroutine functions.

The sequential generation of graphic data in the active
logical buffer is suspended when a subpicture is started, and
is continued when the subpicture is ended. A subpicture is
defined in its own local Cartesian coordinate system.
Graphic data generated in a subpicture have no relationship
to graphic data generated outside of the subpicture until it is
invoked by a subpicture instance.

Graphic output in a subpicture inherits the static
attributes in effect for each instance of the subpicture, unless
static attributes are explicitly set within the subpicture. Any
changes to the current position and static attributes in the
subpicture, however, do not affect graphic output generated
following a subpicture instance.

Subpictures may instance other subpictures to build
nested tree structures, as illustrated by Figure 5. Such
hierarchical structures are often instanced within entities.
When a pick event occurs, GSSP can return a trace of the
tree structure in a selected entity to assist an application in
correlating the selected primitive to the application database.

R. B. CAPELLI AND G. C. SAX
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e Graphic input

GSSP provides functions to control logical graphic-input
devices and obtain graphic input. These functions support
operator interaction with the primary view surface only. No
graphic input is available to an application if the primary
view surface does not support operator interaction, as in the
case of a plotter.

Logical input devices

Five logical classes of graphic-input devices are supported by
GSSP: picks, buttons, locators, keyboards, and valuators.
Logical input devices can be modally enabled and disabled.
When a logical input device is enabled, the device driver for
the primary view surface uses any combination of physical
input devices and software that will emulate the logical input
device and obtain corresponding input.

Picks A logical pick device returns the name of a selected
entity. The model for the ideal pick device supported by
GSSP is a lightpen with a tipswitch. A detectable entity may
be selected while the pick device points at it by closing the
(possibly emulated) tipswitch to generate a pick event.
When the hardware can support it, a pick device can
cause a detectable, verifiable entity to be dynamically
verified. This dynamic visual feedback is accomplished by
changing the intensity or color or otherwise distinguishing
the entity while the pick device is pointed at the entity with
the tipswitch open. This feedback not only indicates whether
the pick device is pointing at the intended entity, but also
allows the user of a graphics application to determine which
entities can be selected and how data are meaningfully
grouped in entities. Entity verification greatly enhances
human factors for EDS graphics applications, where entities
naturally describe circuit elements, wiring nets, etc.

Locators A logical locator device returns a coordinate
position. Ideally, a visible echo known as the “tracking
symbol” is displayed at the current locator position, which
may be initialized by the application. The locator position is
continuously updated to track any movement of the locator
device. The final locator position may be determined
following an event. Among physical devices used by GSSP
device drivers to provide a logical locator device are
lightpens, joysticks, and tablets.

GSSP maintains a locator window in an application world
coordinate system and a locator viewport in the virtual
device coordinate system, allowing an application to obtain
or set the locator position in the world coordinate system.
Using distributed system support functions, which are
described later, GSSP provides a number of options for
additional support of the locator. The locator position can be
constrained to the locator viewport, and to horizontal,
vertical, or diagonal directions. Various crosshairs can be
attached to the locator position. Bump buttons can be
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defined to allow the locator position to be moved in what
can even be subpixel increments. Dynamic digital readout of
locator position information in the world coordinate system
can be requested.

Buttons The model for logical buttons supported by GSSP
is a lighted program function keyboard. Enabled logical
buttons cause an event when they are used. The button
number reported for the event can be interpreted by the
application as a choice among application-dependent
commands. GSSP allows lights or other prompting
mechanisms to be set independently of the enabled buttons.
Since EDS graphics applications often group buttons in
iconic patterns, GSSP provides functions to map logical
button numbers to physical button configurations.

Keyboards  Alphanumeric text is entered using a keyboard.
As described later, text is echoed as it is typed, when
possible, directly in editable message fields defined by the
application in the display file. The application specifies the
initial keyboard cursor position in a message field when the
keyboard is enabled. An event is reported when the “enter”
key is used.

Valuators  Valuators return scalar values in an application-
specified range. Dials are the model for logical valuator
devices supported by GSSP.

Obtaining graphic input

Graphic input is made available to an application following
an event. The application may use GSSP to poll or wait for
an event. Events may be generated using an enabled pick,
button, or keyboard device. For each event, the logical
device type and specific device causing the event are
reported.

Information that is available after an event includes the
locator position and valuator scalar values. Keyboard input
is determined by inquiring the contents of editable message
fields. When a pick event occurs, the identifier of the logical
buffer containing the selected entity and the selected entity
name can be obtained, as well as the coordinate position and
the trace of the hierarchical display file structure for the
graphic primitive pointed to by the pick device.

e Distributed system support

GSSP provides distributed system functions that allow
applications executing on the time-shared host system to
exploit capabilities of intelligent workstations. Distributing
important fixed functions to a processor local to a graphics
terminal offloads the time-shared host, and allows dynamic
visual feedback for user interaction to be provided that
otherwise would not be possible with a time-shared host
mainframe computer [14]. Dynamic visual feedback can
improve user productivity by allowing trial-and-error graphic
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input strategies to be avoided. For example, a rubberband
line shows the designer the actual relationships between a
new line that is to be created and other design data. Without
the dynamic visual feedback of a rubberband line, the
designer may need to input and delete several trial lines to
iterate to a satisfactory result.

The fixed-function distributed support provided by GSSP
is defined in a device-independent way, by associating fields
in the display file with logical input devices. When there is
no processor local to a graphics terminal that can be
programmed to provide the defined capabilities, the fixed-
function support can be emulated by the GSSP device driver
on the host computer.

The capabilities provided by fixed-function distributed
support are editable message fields, locator dragging and
rubberbanding, various options for enhanced locator control
and feedback, action lists, gates, and data registers.

GSSP provides some basic support for distributed
applications. This support allows a part of an application to
be distributed to an intelligent workstation, and allows the
portion of an application executing on the host system to
control and communicate with the portion executing on the
distributed processor. This capability allows distributed
application functions beyond the fixed-function distributed
support provided by GSSP. However, device independence
may not be maintained unless the application provides
equivalent functions for the various supported graphics
systems.

Message fields

A message field is a text string in the display file that is
assigned an identifier so that the field can be referenced. A
message field can be made editable to allow input from a
keyboard, and can be updated, cleared, or deleted by the
application. A message field text string may be positioned
anyplace on the screen, and is always generated with the
string precision attribute.

GSSP supports a keyboard cursor that may be initially
inserted into any editable message field by the application.
Keyboard input is echoed in the message field, as it is
entered if possible. The cursor can be moved to any editable
message field in the display file using a “jump” key.

After an event, the contents of message fields may be
obtained to allow the application to determine keyboard
input. The current keyboard cursor position can also be
obtained, in terms of the identifier of the message field
containing the keyboard cursor, the cursor position in the
message field, and the identifier of the logical buffer
containing the message field.

Locator dragging and rubberbanding

Graphic data can be “attached” to the locator to allow
“dragging” and “rubberbanding.” GSSP functions allow the
locator to drag any arbitrary graphic primitives, to drag
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entities, to drag subpicture instances, to rubberband lines,
and to rubberband rectangles (by moving one corner with
the locator while the diagonally opposite corner is fixed).
Any combination of these techniques can be used
simultaneously.

Enhanced locator control and feedback

The following distributed-system fixed functions allow
special capabilities for dynamic visual feedback of the
locator tracking symbol position:

o Area constraint—the locator position is constrained to the
locator viewport.

¢ Axis constraint—the locator position can be constrained

to a horizontal or vertical axis, or to either 45-degree

diagonal.

Grid constraint—the locator position can be constrained

to intersection points of an application-specified grid

overlaying the locator window.

Crosshairs—axial crosshairs that span the locator viewport

may be “attached” to the locator. The crosshairs may be

flat (vertical and horizontal) or tilted (positive and negative
45-degree diagonals).

e Digital readout—the locator position and the vector
components between the locator position and a specified
reference position may be dynamically “read out” into
specified message fields. These digital readouts are
displayed in an application-specified world coordinate
system.

¢ Bump buttons—an application can specify buttons that
move the locator position, in compass directions, by a
specified world coordinate system increment, without
requiring a button event.

Action lists

Entities can be structured to include action lists to allow pick
selections to be handled dynamically. When an entity
containing an action list is selected with the pick device, the
action list is executed. No pick event is reported to the
application. An action list allows limited display file
programming to provide dynamic visual feedback and to
collect data for graphic input. Action-list functions generate
graphic orders in the display file that, when executed by
hardware or interpreted by device driver software, can
dynamically reposition entities and subpicture instances,
open and close gates, and store data in data registers.

Gates

The model for a gate is a conditional branch in the display
file. A gate is defined by specifying the start and end of the
gated sequence of graphic data in a logical buffer. Gated
sequences may be overlapped. If a gate is open, the gated
sequence is executed when the image is generated. If the gate
is closed, the gated sequence is not executed. The application
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GSSP control block relationships. In this case, an application is
using two view surfaces and has created three logical buffers. Logi-
cal buffer 1 is associated with both view surfaces, logical buffer 2 is
associated only with view surface 1, and logical buffer 3 is associ-
ated only with view surface 2.

program specifies whether a gate is initially open or closed,
and may later reference a gate to change its state.

Gates can be used to change the visibility and static
attributes of graphic output. This can be done dynamically
by using action list functions to open and close gates. After
an event, an application may determine whether gates have
been open or closed.

Data registers

An application may define an array of data registers. Action
list functions can dynamically store data constants in
specified data registers. An application can obtain the
contents of the data registers following an event to
determine, for example, which action lists were executed.

Implementation

An overview of the implementation of the GSSP device
driver interface can provide some insight into the way
various issues of device independence related to interactive
performance are resolved.
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A key issue in the design of the second release of GSSP
was the split of function between the device-independent
component and device drivers. It is desirable to make device
drivers simple to implement, implying that as much function
as possible should be provided by the device-independent
component. A conflicting goal, however, is to take advantage
of hardware capabilities whenever possible, implying that
function should be delegated to device drivers. GSSP
resolves these tradeoffs for various cases in different ways,
but usually leans towards delegating function to the device
driver to allow the best interactive performance to be
achieved. While this can make the development of device
drivers relatively more difficult, it is expected that subroutine
libraries of common services will evolve to assist in
developing device drivers for graphics systems having similar
characteristics.

Each GSSP device driver maintains its own display file.
This may be a pseudo-display file interpreted by the device
driver, or the same physical display file used by refresh
display hardware. When the device driver is implemented to
use a specific hardware display file format, the need to
translate between different representations of the same data
is eliminated, so that interactive performance is optimized.

A device driver is invoked by the device-independent
component of GSSP using a subroutine procedure call
whenever a device-dependent action is required. Typicaily, a
device driver is invoked to add to the display file, to modify
or inquire into fields already defined in the display file, and
to obtain graphic input.

The interface protocol between the device-independent
component and device drivers is based on control blocks in
which the state of the system is maintained. This control
block interface allows the device-independent component
and a device driver to share system state information. Figure
6 shows the relationship between the various major control
blocks. The control blocks are defined and organized
according to the kind of state information they contain
(global to the system, or specific to a logical buffer), and
according to the owner of the state information (device-
independent component, or a specific device driver).

The graphic system control area (GSCA) is owned by the
device-independent component and contains state
information global to the entire graphics system, such as the
aspect ratio and coordinate system of the virtual device. The
GSCA points to a list of view surface control blocks and to
a list of logical buffer control blocks.

There is a view surface control block (VSCB) for each
initialized device used by a graphics application. Each VSCB
is owned by a device driver, and contains state information
global to the device driver. The first part of a VSCB has a
fixed format that can be accessed by the device-independent
component to obtain device characteristics, such as physical
device addressability, static attributes supported by
hardware, etc., and to obtain event reports for graphic input.

IBM J. RES. DEVELOP. VOL. 28 NO. S SEPTEMBER 1984




It also points to a list of graphic buffer control blocks. The
remainder of the VSCB is called the VSCB extension and
contains device driver implementation-dependent
information, such as actual display file pointers.

There is a logical buffer control block (LBCB) for each
initialized logical buffer. LBCBs are owned by the device-
independent component and contain device-independent
state information for a logical buffer, such as the current
world coordinate position for graphic output, the static
attributes in effect, the viewing transformation window and
viewport, state information controlling display file
segmentation and structure, etc. An LBCB points to a list of
graphic buffer control blocks. Each LBCB also points to a
graphic field control table (GFCT), which maintains device-
independent information about each construct in the logical
buffer to which an identifier is assigned.

A graphic buffer control block (GBCB) is owned by a
device driver and contains device-dependent information
about a logical buffer associated with a specific view surface.
The first part of a GBCB has a fixed format that can be
accessed by the device-independent component. It contains
the current physical device coordinate position and the
transformation factors to convert directly from the world
coordinate system to physical device coordinates. The
remainder of the GBCB, the GBCB extension, contains
device driver implementaton-dependent information.

A device driver maintains global pointers to its display file
in the VSCB extension and pointers to logical buffers within
the display file in the GBCB extension. A device driver
usually maintains what we have called a buffer reference
pointer table (BRPT) in the GBCB extension to allow quick
access to fields defined with an identifier in a logical buffer.
The BRPT contains pointers in the display file to entities,
message fields, subpictures, instances, gates, and transforms
within a logical buffer. BRPT entries correspond to entries in
the GFCT maintained by the device-independent compo-
nent and can be located by using the same table indexes.

There is little extra overhead in maintaining the control
blocks to separate device-independent and device-dependent
information. Most of the information would be needed in a
device-specific implementation anyway. In a number of tests
comparing the performance of the device-specific
implementation of the first release of GSSP with the second
release of GSSP using a device driver for the same IBM
1130-1653 system, we have never observed any execution
time difference greater than one percent.

Issues of device independence

We describe GSSP as a device-independent graphics system.
Ideally, an application using GSSP should be able to be used
on any device which is supported by a GSSP device driver. Is
this really the case? What is gained and what is lost by an
application using a device-independent graphics subroutine
package?
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GSSP device drivers for passive-output devices such as
plotters do not support graphic-input functions, so
interactive applications obviously cannot be used with those
devices. The advantages of providing output-only support for
plotters with GSSP are that output-only application program
modules can be written that are device-independent, and
that application programmers need learn how to use only
one basic graphics package.

With the obvious exception of output-only systems, we
believe that we have been very successful in allowing
interactive graphics applications to be run on devices using
different display technologies and having different levels of
hardware function. Responsibility for device independence,
however, must be shared by a graphics application as well as
the graphics package. For example, if an application ignores
the possibility of buffer overflow errors that can be reported
by GSSP, the application may run successfully on storage
tube or raster frame buffer display systems, but fail on
display systems having relatively limited amounts of display
file storage. A more robust application would check for the
buffer overflow condition and notify the user and allow a
means of displaying a smaller window, for example, if the
condition occurred.

Developers of highly interactive graphics applications are
often very aware of hardware capabilities and limitations.
Such applications tend to be targeted to a specific device,
with a good deal of care taken to optimize human factors.
The use of a device-independent graphics package need not
restrict such an approach. GSSP provides a rich set of
functions that directly support hardware features. GSSP also
provides inquiry functions that an application can use to
determine, and thus tailor its operation for, important device
characteristics.

Even if a graphics application is targeted to a particular
device for optimized human factors, the use of a device-
independent graphics package allows that application to at
least run on other supported devices. This benefits the
pragmatic end user who would like to use the application
but does not have ready access to the first-choice hardware.
The human factors of the application do indeed change. The
end user, however, can still usually understand the images
produced by the application even if capabilities such as
intensity, color, linestyle, and entity verification are not
provided, and can still interact with the application even if
input devices are simulated by the device driver.

Probably the most important benefit of using a device-
independent graphics package is the ability of an application
to migrate to new hardware that obviously cannot be
anticipated by the application developer. Once a device
driver is available for a new device, retargeting an
application specifically for it usually requires only
incremental changes to optimize human factors for device
characteristics and to take advantage of new hardware

features. Migration is especially simple when the new device 521
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supports the features of the earlier hardware as well as
providing new capabilities, which is often the case.

Summary

GSSP provides a rich set of atomic functions that can be
combined with a great deal of flexibility to provide a wide
range of application techniques. GSSP functions directly
support the capabilities of many graphics hardware
configurations. However, GSSP functions are defined in a
device-independent manner that can be interpreted in a
meaningful way by device driver software if necessary.

CAD applications seek to optimize interactive
performance and human factors to maximize designer
productivity. The segmented, structured display file and
distributed system functions supported by GSSP are
especially useful for meeting these objectives. GSSP
functions allow images to be efficiently generated and
incrementally updated from hierarchically structured data
typical of many CAD applications. Meaningful dynamic
visual feedback can be provided for graphic input, and
graphic input can be directly correlated to the application
data.

As hardware costs decline, we expect to see more function
provided by graphics hardware, and tighter coupling of the
graphics hardware to the computer on which the application
executes. Such a configuration will provide improved
interactivity and more dynamic visual feedback to user
input, resuiting in higher user productivity. We are confident
that the direction we have taken with GSSP will allow us to
continue to take advantage of these developments.
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