476

Editor’s Note: This article was intended for the 25th Anniversary
Issue of the Journal, but was unavailable at the time of publication.
Because we feel that some readers might enjoy exploring with the
authors the profound implications of this classical problem, we are
including it here.

Harlow Freitag, Editor

Aspects of the
traveling
salesman
problem

by M. Held
A. J. Hoffman
E. L. Johnson
P. Wolle

For fifty years the traveling salesman problem
has fascinated mathematicians, computer
scientists, and laymen. It is easily stated, but
hard to solve; it has become the prototypical
hard problem in theoretical computer science. A
large part of the extensive research conducted
by IBM in the broad area of optimization, or
mathematical programming, contributed to or
was inspired by aspects of this challenging
problem. This article reviews some of that work
as well as recent developments in techniques
that were used on the largest traveling salesman
problem ever solved.

1. Introduction

The first statement of the Traveling Salesman Problem
(TSP) we know of was made in 1930 by the Viennese
mathematician Karl Menger. It arose in connection with “A
new definition of curve length” that Menger proposed: that
the length of a curve be defined as the least upper bound of
the set of all numbers that could be obtained by taking each
finite set of points of the curve and determining the length of
the shortest polygonal graph joining all the points. “We call
this the messenger problem, because in practice the problem
has to be solved by every postman, and also by many

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

M. HELD ET AL.

travelers: finding the shortest path joining all of a finite set of
points whose distances from each other are given. Of course,
the problem can be solved by a finite number of trials. No
rule is known that would reduce the number of trials to less
than the number of permutations of the given points. The
rule of proceeding from the origin to the nearest point, then
to the nearest point to that, and so on, does not generally
give the shortest path” [1].

The new definition of curve length may not have panned
out, for it does not appear in Menger’s later work. While its
computational tractability, or lack thereof, has little bearing
on whether it suited his mathematical needs for a definition
of curve length, he certainly saw the practical difficulty of
solving a problem of reasonable size. Given n points, and the
distances c;; between each pair of points , j, one path would
be determined by a particular ordering i, i,, - - -, i, of the
points, and the length of the path would be ¢;;, + ¢;; + ---
Y i In a “brute force” approach, that calculation would
be made for each ordering of the points (an insignificant half
of the orderings could be skipped in the symmetric case that
¢; = ¢, forall i, j, and one went to the great trouble of
checking whether an ordering had already been checked in
the reverse direction). The number of such orderings is #!,
the innocent-looking function whose growth with # is
explosive: 5! = 120; 10! = 3 628 800, and 25! = 16 x 10°
(greater than the age of the universe in microseconds). As
Menger indicates, these problems cannot be solved unless
rules can be devised that give numbers of operations far
smaller than these.

The next mention we know of the problem is in 1934,
followed by perhaps its first statement in connection with a
practical problem: Merrill Flood, in his 1956 review article
[2], writes: “This problem was posed, in 1934, by Hassler

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Whitney in a seminar talk at Princeton University. There are
as yet no acceptable computational methods....”
Mentioning related problems from the theory of graphs,
Flood continues: “I am indebted to A. W. Tucker for calling
these connections to my attention, in 1937, when I was
struggling with the problem in connection with a schoolbus
routing study in New Jersey.”

There is a small difference between Menger’s statement
and Flood’s, which is now the customary statement: Flood
seeks a closed polygonal path, or tour—the salesman visits
all the cities and returns to his point of origin. The cost to be
minimized is thus ¢;, + --- + ¢, _, + ¢, ;. A permutation P
is a function from the integers 1, - - -, n onto the same
integers {i.e., (i) # P(j) if i # j]; and it represents a tour if it
is a cyclic permutation, i.e., is such that n successive
applications of P to any of those integers generates all of
them. We can then state the TSP as the problem of
minimizing 2,¢,,,, over all cyclic permutations P. (We do
not assume symmetry, i.e., ¢; = ¢;.) While this holds for
Euclidean distances, it fails to hold in many applications. As
a simple example, ¢, might represent the travel time from ;
to j in hilly country. The closed path represented by a
permutation is called a directed tour. When the matrix (c,)is
symmetric, only symmetric permutations need be
considered, and one speaks of undirected tours.

Partly because of its simple statement and its quickly
acquired reputation for difficulty, the problem has fascinated
a whole generation of professionals and laymen; the former
have published some 300 technical papers on aspects of it.
Much of that fascination for professionals is due to the fact
that other combinatorial problems, sounding much like the
TSP, have yielded to analysis, and practical algorithms for
solving them, even in large-scale cases, have been devised.
(The “assignment problem” of the next section is a fine
example.) By the early sixties many of the ideas that have
been used on the problem had been proposed; they are
reviewed in Ralph Gomory’s paper [3]. Nevertheless the TSP
remained difficult and has become, indeed, the prototype of
a “hard” combinatorial problem, the most cited example of
an NP-complete problem in computational complexity (see
the next section); and perhaps it has inspired much of the
work of that field. Likewise, all the work that has been done
on it has had important consequences for the whole area of
optimization. It was attacked by procedures which found
much more general use in the broad field of integer
programming and even in nonlinear programming. It seems
that most of the research on optimization methods done at
IBM is connected with this problem, and a review of the
history of efforts to solve and understand it covers a large
part of IBM researchers’ work in optimization.

This account focuses on IBM contributions to
mathematical and computational problems related to the
TSP, with mention of some work from other sources that
was truly seminal. For reasons of space we have had to omit

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

any description of the many applications, some of them not
at all obvious, to which the TSP has lent itself, as well as a
great deal of IBM work in the broader field of mathematical
techniques of optimization; but enough remains to show that
a great deal of progress has been made in coping with “hard”
problems and that good, hard problems can inspire good
research.

2. Complexity and heuristics

During the last ten vears the notion of NP-completeness has
swept through computer science and allied fields. We do not
detail that complex subject here. For a complete treatment
the reader is referred to the first two chapters of the book by
Garey and Johnson [4]. We mention only that the TSP,
which is the first problem described in their book, is a
member of the class of what are called NP-complete
problems. These are problems for which there is no known
algorithm which is “good” (in the sense of being
“polynomially bounded”: having a running time bounded by
a polynomial in the length of the input data string needed to
define any particular instance of the problem). Further, if a
“good” algorithm existed for any of them, a good algorithm
would exist for each of them. These problems come from a
variety of important fields, including database design,
network design, compiler implementation, and operations
research. While the question of finding such an algorithm is
still open, most experts believe it will never happen.

Building on a foundation laid by Stephen Cook, Richard
Karp established the polynomial equivalence of many
combinatorial problems with the TSP. His basic paper {5],
presented at the first IBM symposium on computational
complexity in 1971, described 21 such problems. We like to
think that much of his interest in the area was spurred by his
earlier work at the IBM Thomas J. Watson Research Center
on the TSP itself [6, 7).

The NP-complete results have given a new impetus to
heuristic methods for solving these problems, which can
fairly be viewed as “intractable” in the sense that there seems
to be little use, at present, in seeking algorithms for them
which yield assured solutions but whose laboriousness does
not grow exponentially with problem size. We may define
heuristic as an algorithm for which we know no mechanism
inherent to the algorithm for establishing the optimality of
the resulits it produces. Much work has been done on
heuristic algorithms for the TSP and related problems, and
some of these have been remarkably effective, as was later
determined when methods arose with which optimality
could be established. We do not review these here (since
most IBM work has focused on the more demanding task of
guaranteeing solutions) except to mention the important
work of Lin and Kernighan [8]. Their heuristic produces
excellent near-solutions to the TSP which were used to
provide starting points for the very-large-scale problems of
Section 11.

M. HELD ET AL.

477

478

The likelihood that heuristic methods may be the only
feasible approach to many combinatorial problems of large
size has certainly made those methods more interesting and
respectable, and has given impetus to an entire new field of
research: obtaining performance guarantees for heuristic
algorithms, both in worst-case and probabilistic senses. Here
too the TSP has played a seminal role. Karp’s 1977 paper [9]
established the general definitional framework for the
probabilistic analysis of heuristic algorithms, and applied it
to the TSP.

3. Linear programming

The general linear programming (LP) problem plays a
central role in many of the computational methods that have
been used on the TSP. It may be stated: Minimize the linear
function z = cx subject to the constraints Ax = , x = 0, or

min {cx:Ax = b, x = 0}, (1)

where x is a variable n-vector and the given data c, A4, b are,
respectively, an n-vector, an m-by-n matrix, and an m-
vector. (We juxtapose ¢ and x to denote an inner product,
and 4 and x to denote matrix-vector multiplication. We
note that standard devices [10] convert problems having
inequalities Ax < b, or variables x not constrained as here,
into this form.)

The term “programming” does not refer to the writing of
programs for a computer, but to planning. About 1944 a
group of scientists including the mathematician George
Dantzig was brought together by the U.S. Air Force under
the project title “Scientific Computation of Optimum
Programs,” with the mission of applying mathematical
techniques to large-scale planning (“programming”)
problems. They found the simple (in principle) LP statement
to be an adequate model for a vast field of applications, and
thus called the procedure linear programming. In 1947
Dantzig invented the algorithm he called the “simplex
method” for solving the models numerically, and that
algorithm, greatly improved, and redeveloped for each new
generation of computer, is the one in use today.

As one of the pioneers has said, “mathematical
programming and computing have been contemporary in an
almost uniquely exact sense. Their histories parallel each
other year by year in a remarkable way” [11]. The first
general-purpose linear programming routine was written for
the SEAC in 1951. On Dantzig’s moving to the RAND
Corporation in Santa Monica, California, in 1952, he, W.
Orchard-Hays, and L. Cutler began development of the first
large-scale software for linear programming on RAND’s
IBM 701 computer. On introduction of the IBM 704 in
1955, the RAND group, with support from IBM in machine
time and personnel, developed a routine for this machine
which, widely distributed by the SHARE organization, set
the formats and standards for LP software from that point
on. It could handle problems having up to 250 linear

M. HELD ET AL.

relations, a staggering number for the time, and found
immediate and widespread use, first in the oil industry.
Refinery operation, storage, and distribution problems could
all be modeled as LP problems, and solving them turned out
to be highly profitable. We note that an IBM Petroleum
Conference held in Endicott, New York, in October 1953
was host to a number of papers on LP applications.

Development of algorithms and software for LP has never
ceased. Every large computer manufacturer has provided
routines for LP and some of the extensions we discuss. IBM
has built its own LP software since the early sixties; the
current version, MPSX [12], can handle more than 16 000
equations and an almost unlimited number of variables. It
and earlier IBM LP software are heavily used in thousands
of installations.

An important mathematical aspect of LP is duality. It was
found (see, e.g., [10]) that Lagrange multipliers (the m-vector
¥ below) could be used in LP by formulating the minimax
problem

min,_, max, [ex — (4x — b)y], 2)

easily seen to be equivalent to (1). A fundamental theorem
asserts the equality of (2) to

max, min,, [by — (ATy - c)x], 3)
which is equivalent to the new LP problem
max {by:A"y < ¢}. “)

The problem (4) is called the dual of the original LP
problem, and the equivalence of the two LP problems is
stated in the duality theorem of linear programming: If either
the problem (1) (called in this context the primal problem})
or the dual problem has a solution, then so does the other;
and then the values of cx and by are equal.

A solution of the dual problem, along with that of the
primal, is automatically produced when the primal problem
is solved by modern LP software. That fact provides an
ironclad test of optimality: any x and y satisfying the
constraints of the primal and dual, respectively, must satisfy
the inequalities cx = (A73)x = by, so when such x and y are
found with ¢x = by, the required minimum and maximum
are known to be at hand; checking optimality is trivial.

Another important theoretical feature of LP is the fact
that if a problem has any solution at all, then it has one
which is an extreme point of the convex polyhedron defined
by the constraints of (1), that is, a solution which is not a
convex combination of any other two points satisfying the
constraints. Further, the simplex method always yields such
an extreme point solution, a fact we use later.

4. Permutation problems

LP provides a powerful tool for problems involving
permutations. We can represent a permutation P as a matrix
of real numbers as follows: the #-by-n real matrix X will
have the entry x; = 1, where P(i) = j, and zero elsewhere.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

The matrix X thus has exactly one 1 in each row and the
same in each column, and any matrix consisting entirely of
zeros and ones (0-1, for short) having that property is
square, and represents a permutation. We call such matrices
permutation matrices. Another expression of this property is

Tx;=1 foralli
j

2x,=1 forallj,

x;z0 foralli 5)
Noting that
e = 2%, (©)

i

when X represents the permutation P, we could state a
minimization problem over the set of all permutations as
that of minimizing the right-hand side of (6) for all 0-1
matrices satisfying the constraints (5). Since the requirement
X = 0 evidently holds, we have formuiated it as an LP
problem, save for the requirement that only zeros and ones
be used, rather than any nonnegative numbers satisfying the
constraints.

For such a problem, we can take advantage of the fact that
our LP software will find an extreme point solution of the
problem. A celebrated theorem of Garrett Birkhoff states
that the extreme points of the polyhedron defined by (5) are
precisely all the permutation matrices. Thus our solution of
the LP problem will automatically be 01, and the required
permutation is found. (Other problems whose LP solutions
are also automatically 0-1 are mentioned in Section 10.)

The problem just stated is a useful one, commonly known
as the “assignment” problem. Suppose that any of n people
can do any of n different jobs (but not all equally well), and
let ¢; be the net cost of assigning person i to job j. The
problem is that of finding an assignment, or permutation, P
so that the total cost Z,C;p;, is minimized. Large assignment
problems——n > 8000—could thus be solved by present LP
software, although the problem has such special features that
certain refinements of standard LP methods operate with
even much greater efficiency.

One might hope to generalize the approach above: Given
any subset of the set of all permutations, find (which 1s
possible in principle) a system of linear equations and
inequalities which defines the convex hull of that set, and
solve the resulting LP problem (again possible in principle);
the answer is the permutation sought. Unhappily, in most
cases we do not know how to do this explicitly. The only
difference between the assignment problem and the TSP is
that any permutation may be an assignment, while only
cyclic permutations can be tours; but we do not know how
to write down all the linear relations that define the convex
hull of the set of all tours. (It has been done for small

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

problems. The number of such constraints is vast, and is
known to grow exponentially.) However, all is not lost: It
may be possible to find enough of those constraints to define
that part of the convex set lying close to the optimum
solution, and thus solve the problem without finding all the
constraints. Such a procedure has succeeded, and is
discussed in Section 5.

A fruitful offshoot of these considerations has been a wide
variety of mathematical results linked to LP representations
of combinatorial problems, which are reviewed in Section
10.

Alternatively, if it were possible to ensure that X would
remain 0-1, one could write a set of linear constraints which
exclude unsuitable permutations for the TSP. Let .S denote

any proper subset of the points 1, - - -, n. The requirement
Y ox; =[S -1, Y)]
iJES, 7]

where | S| denotes the cardinality of S, is called a “subtour
elimination” constraint, and ensures that the permutation
does not have a cycle on S, that is, a closed path running
just through the points of S, since the left-hand side is just
the total number of single segments joining points of S. Thus
if all constraints of the form (7) can be enforced (we may,
incidentally, omit subsets .S for which |.S] > n/2), together
with (5), and X can be made 0-1, the linear formulation will
suffice.

Ignoring for the moment the extraordinary number—
2""'_of these constraints (there are other, more compli-
cated, formulations which make their number more nearly
reasonable)—the question is, can the variables be forced to
be 0-17 Of course, the answer is “yes,” for otherwise this
paper would not have been written; most of the rest of it
deals with just that question.

5. The 42-city problem
The first TSP of serious size was solved in 1954 by George
Dantzig, Ray Fulkerson, and Selmer Johnson of the RAND
Corporation {13). The method used, necessary at the time,
was a hybrid: repetitive use of LP as we describe here and a
certain amount of direct human manipulation of
intermediate results. They chose a problem with symmetric
distances (road distances between 42 major cities in the
United States), which modestly reduces the computational
demands: Instead of dealing with full permutation matrices
and square numerical matrices with n’ entries, only
n(n — 1)/2 entries are needed. Data x,, are recorded only for
i < j. A one in position /, j for i < j signifies a path segment
joining cities i and J, the direction of traversal being ignored.
The principles they used are just the same for the
unsymmetric problem.

The most important tool they developed was the cutting
plane. While that term was not coined at RAND, but later

M. HELD ET AL.

479

480

by Ralph Gomory at Princeton (see below), the concept
became an essential ingredient in the application of LP to
integer problems. Its basic principle is as follows:

If the solution of an approximation (say, R) to an
optimization problem (say, Q) does not satisfy all the
constraints of Q, adjoin to R a linear constraint which
the solution of R does not satisfy but which is satisfied
by all candidates for the solution of Q.

By the theorem of separating hyperplanes, this can always be
done if the constraints of R define a convex set; the adjoined
linear constraint defines the cutting plane, which cuts away a
portion of R not agreeing with the requirements of Q. The
RAND researchers began with an LP (a problem R) for the
TSP using only the constraints X = 0 and the “degree two”
constraints
X+ Tx; =2,

isj J=i

i=1a"'7n5 (8)

together with an heuristically generated tour which, of
course, provided a basic feasible solution to the LP. Linear
programming pivot steps were then performed until either
an optimal tour was obtained or until a pivot step would
lead to a vertex which was not a tour (owing to the
occurrence of subtours) but which was still 0-1. In the latter
case the LP was augmented by the appropriate subtour
elmination constraint (7), forming a new R. This process
continued until a pivot step would lead to a solution which
was not 0—1. At this point, R was solved to optimality,
providing a lower bound for the optimal value of the TSP. A
branching strategy was then used: A promising variable x;
whose value lay strictly between 0 and 1 was chosen, and
two separate cases studied, one in which the variable was set
to 0 and another in which it was set to 1. Frequently an ad
hoc argument based on inspection of a near-tour could be
used to eliminate one of these cases; if not, both could be
pursued. Finally, a simple argument based on the reduced
costs of the LP solution to R frequently could be used to
show that one of the two settings of the variable would
necessarily result in a solution whose cost was greater than
that of the best tour so far found, so that that setting could
be eliminated.

Their ad hoc argument presaged the kind of method later
formalized as “enumeration” in integer programming, and
the argument based on costs was a forerunner of the general
“branch and bound” procedure, both discussed in Section 8;
but it was the idea of the cutting plane that first became
important for very wide classes of problems.

Commenting on the RAND work on the TSP in 1964,
Gomory wrote: “I do not see why this particular approach
stopped where it did. It should be possible to use the same
approach today, but in an algorithmic manner. We no
longer have to be artistic about generating the separating
hyperplanes or cuts, since this is now done automatically in

M. HELD ET AL.

integer programming . . .” [3]. He was right; the whole
procedure could be effectively automated. In the next section
we describe how this was first done for general integer
programming problems. However, it took fifteen more years
before the insights that were being developed could make
full automation of a large-scale TSP solution a reality.

6. Cutting planes

The early work at the RAND Corporation on the TSP
reviewed in the previous section showed the utility of LP for
these problems and the value of skillfully constructed cutting
planes. At that time, however, there was no systematic
method for generating cutting planes that would cut off
noninteger solutions of the approximating LP problem. That
was first provided by Gomory [14-16], who gave a method
with proven finite convergence for general all-integer
problems.

An integer programming (IP) problem is the LP problem
(1), with the additional restriction that x, be an integer for
Jj € J, where J is a subset of {1, 2, - .. , n}. In a pure integer
program J consists of all of {1, 2, - .-, n}, while for a mixed
integer program J is a proper subset of them.

IP problems are almost always more difficult than LP
problems, for they incorporate discrete and nonconvex
aspects of problems which cannot be modeled by LP;
Gomory’s review paper [17) covers many aspects of that.
Certain important LP problems, describing flows in
networks, have the total unimodularity property (see Section
10) and thus automatically give integer optimum solutions;
but one does not expect a typical IP problem to fall in that
class, and in general much work is required to get from an
LP solution (with fractional values) to an integer solution
(with all x, integer, j € J).

The Gomory cut is best described in terms of the
“standard” or “tableau” form of the simplex method (see,
e.g., [10]). Briefly, at each iteration a subset of m variables
X:j€B={j,---,j,l is designated basic and the
remaining set, say N, nonbasic. The m equations

i=1-,m ®

equivalent to the starting system of equations, permit the
expression of the basic variables explicitly in terms of the
nonbasic, and yield the basic feasible solution {x, = b:i=
1, ---, m} of the problem on setting x; =0, j € N. If all b,
are integral, then so is the basic solution; otherwise, choosing
some nonintegral 171 the cutting plane

¥ flay)x; = fiby) (10)
jEN

is adjoined to the system, where f{c) denotes the fractional
part of ¢: f{c) = ¢ — p, where p is the largest integer p < ¢.

It 1s easy to check that any integer solution of (9) also
solves (10), while the current basic feasible solution does not,
so that (10) truly gives a cutting plane. Gomory was able to

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

show that repeated adjunction of these cuts, together with a
suitable organization of the dual simplex method
calculation, would terminate with an integer solution after a
finite number of steps.

Unhappily, pure cutting plane methods have not been
adequately developed for mixed integer problems; and they
display a certain lack of stability on even small pure
problems. While some are solved quickly, similar problems
may just run on and on. This behavior is not well
understood, but then it is not surprising since the good
behavior of the simplex method on linear programs is not
well understood either; and what cutting plane methods do is
convert the problem to a linear program with many
constraints not specifically identified in advance.
Nevertheless, cutting planes continue to play an essential
part in the efficient solution of very large integer problems,
including the largest TSP ever solved (see Section 11).

In a different direction, cutting planes have been
important in solving nonlinear programming problems. A
general statement of the problem is

min fy(x): f(x) = 0, i=1 ..., m, (1)

where x is the n-vector (x,, - - - , x,). (Of course, if all the
functions of (11) are linear, this is just an LP problem.)
Denoting the gradient of the function f; at any point x by
f,.(x), any nonlinear function of (11) can be approximated by
the family of linear functions

S5 + [W x = 5,

if the points x,, - - -, x* are suitably chosen. The solution of
the resulting LP problem, if not a sufficiently good
approximation to a solution of (11), can be adjoined to the
existing collection as X', and the procedure repeated. The
rate of convergence of this kind of procedure, first proposed
in 1957, was established for convex functions by Philip
Wolfe [18], who refers to the extensive literature on this
approach.

The cutting-plane methods all add constraints to an
approximate problem R to make it more nearly like the
given problem Q; that is, they add rows to the matrix 4
defining the linear problem. In view of LP duality, that
procedure is equivalent to adding columns to the transpose
of A4 which defines the dual problem. Such a general scheme,
devised from other considerations by Dantzig and Wolfe
[19] for the solution of very large LP problems of a certain
“decomposable” structure, is called column generation, and
has found hosts of applications in large-scale LP and NLP.
One of these was the work of Gomory and Hu [20] on
communication network design, and another the work of
Gilmore and Gomory [21] (which was awarded the
Lanchester Prize of the Operations Research Society of
America for 1963) on the “cutting stock” problem, which
also led to some of the further developments sketched in the
next section.

i=1,.-.,K

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

7. Knapsacks and facets

A pure integer programming (IP) problem in nonnegative
variables having only one constraint (4 has but a single
row), Za,x; < a, is called a knapsack problem. Despite its
simple appearance, the knapsack problem is NP-complete;
indeed, there are ways to state any pure IP problem as a
knapsack problem—the number of constraints is no measure
of complexity! Among many other appearances, it occurs as
a subproblem, which must be solved many times, in the
cutting stock algorithm of Gilmore and Gomory [21]. Their
paper [22] devoted to the knapsack problem itself presents
several algorithms for solving it, one based on a property of
the problem which has had many subsequent ramifications:
As the right-hand side a varies, there are only, essentially, a
finite number of solutions of the problem; further, there is a
periodicity in the values of all but one variable for
sufficiently large values of a. This observation, along with his
earlier work on cutting planes, led Gomory to the discovery
of similar periodicities for the general pure integer problem
{23] and to the so-called group problem for IP [24].

Gomory then focused on the polyhedra of the convex hull
of group solutions as an object of study for IP [25]. In a
landmark paper [26] he gave numerous properties of this
class of polyhedra, including a powerful characterization of
the facets (defining inequalities) of these polyhedra in terms
of subadditive functions of a real variable.

In subsequent work [27, 28] Gomory and Ellis Johnson
continued those studies, including for the first time-
continuous variables. Johnson [29] and Crowder and
Johnson [30] extended this work to the general mixed
integer group problem, giving some insight into why cutting
planes had not been successful for the mixed problem and
what type of functions needed to be used to successfully
address it. This work has been continued to provide a
general theory [31] of facets of mixed integer programs.

At the same time, algorithmic developments featured use
of subadditive functions for these cyclic group problems, the
general group problem, the pure integer problem [32],
certain mixed problems, and the knapsack problem {33].

The moral of this highly compressed tale (which omits
most of the literature written on the subject at the Thomas J.
Watson Research Center during the last ten years) is that
study of the structure of the polytopes determining IP
problems was difficult, but rewarding; and it is continuing,
with significant benefit to practical solution of these
important problems.

Meanwhile, intensive work was going on at IBM and
elsewhere on identifying more of the facets of specific
combinatorial problems (e.g., [34]). While work in the fifties
(reviewed by Gomory [3]) had discovered classes of facets for
the TSP going far beyond degree two (8) and subtour
elimination (7), it was a new class of facets [35, 36] that
greatly aided the successful calculations reported in
Section 11.

M. HELD ET AL.

481

482

Let K be an odd integer and let S, S|, - - - , S be proper
subsets of the cities such that {S,, - - - , S} are pairwise
disjoint but each contains at least one node of S, and at least
one node not in S,. Then the constraint

K K
Z E xijS|S0|+ Z (ISkI—l)—<%K>, (12)
=0 iJESinj Jo=1

where (.) denotes the next highest integer, constitutes a facet
of the TSP [35].

Subtour elimination constraints are a very special case of
these: If K = 1 and S; = {i} is a single node, then (12)
becomes just (7). It is known that, despite the obviously vast
number of constraints of the form (12), they do not define
the TSP polyhedron; still other facets exist, but
characterizations for them have not been found.

8. Enumeration and branching

Despite the complete impossibility of solving the TSP, or
any other combinatorial problem of interesting size, by
simply enumerating all feasible solutions, the concept of
enumeration is at the heart of many of today’s solution
procedures. They all, of course, incorporate some means of
limiting the amount of enumeration that has to be done, and
differ from one another primarily in how they go about that.

In the early sixties Michael Held and Richard Karp [6]
found that the so-called dynamic programming technique
could be applied to permutation problems; it reduces the
growth rate of the work required to solve the problem from a
number like 7! to one more like 2”. They developed a
computer program for solving the TSP which was able to
solve problems having as many as 13 cities using only
internal memory on a 32K computer. They combined this
dynamic programming algorithm with a heuristic scheme
which then made possible the solution of problems of as
many as 50 cities (without, however, assurance that the true
solution had been found). The program was so successful
(for its time) that IBM issued a press release about it. Despite
this early success, dynamic programming has not proven to
be a particularly effective technique for solving hard
combinatorial problems, except possibly for knapsack
problems [22].

In 1963 Little, Murty, Sweeney, and Karel published a
landmark paper [37] which first used the term “branch and
bound” (BB). A very simple method was proposed and
tested for the TSP. The results showed a great deal of
promise: Problems of 40 cities could be solved in a few
minutes of IBM 7090 computer time.

A “decade of enumeration” followed: A profusion of
papers appeared presenting and testing different enumerative
methods for the TSP and a host of other combinatorial
problems. Notable among these was the work of Spielberg
and his colleagues who, in a succession of papers and
computer programs (see, e.g., [38-42] gave very efficient
enumerative methods for general IP, 0-1 IP, and various

M. HELD ET AL.

versions of the plant location problem which, like the TSP, is
NP-complete. A great deal of general-purpose software using
BB methods for mixed integer programming was also
written, including the IBM Program Product MPSX-MIP/
370 [43]. Its developers have documented the extensive
investigation into choice of method and solution strategy
that preceded its design [44]. It continues to be the state-of-
the-art software for the solution of general IP problems.

A typical BB algorithm contains three elements. These are
separation (partitioning) into subproblems, selection of
subproblems (branching), and bounding. Let us state the
optimization problem in the form minimize z(x), x € S,
where S denotes the set of all objects to be investigated—in
the case of the TSP, the set of all tours. We do not attempt
to solve the problem directly over .S, but divide it
successively into smaller and smaller sets to be searched—
separation. For the TSP separation is usually done by
dividing a given set of tours into two subsets: In one subset
all tours must pass over the link joining a certain pair of
cities, and in the other subset no tour may use that link. For
0-1 problems it is done by fixing a single variable at either 0
or 1. As the enumeration proceeds the subsets decrease in
size until it finally becomes possible to solve the
subproblems. If this happens before their number becomes
huge, the problem will be solved. (The language of graph
theory is often used to describe the above procedure. The
family of subsets is a tree; separation is branching; and
eliminating a subset from consideration, as below, pruning.)

The most important possibility for limiting the number of
subsets generated is the discovery of a sufficiently high lower
bound for the subset under investigation: If it can be shown,
by any means, that all subsets of the current set can yield no
lower a value for z than some value already obtained
elsewhere, then that set need no longer be pursued. In
integer programming the bounding is typically done by LP:
At a particular step, certain integer variables have been
(tentatively) fixed; the integer requirement is dropped on the
remaining variables, so that the remaining minimization
problem is just an LP problem; and its solution, since its
constraints are a relaxation of those of the IP problem, must
yield a lower bound on all possible solutions having those
variables fixed. When suitable strategies are used for the
crucial choice of which subsets to explore first, so that high
bounds are obtained soon and large areas of the problem are
ruled out for searching, the technique is very powerful.

In 1970 Held and Karp developed a BB algorithm for the
TSP by using an easily implemented “subgradient”
procedure, described in the next section, to quickly compute
very sharp bounds. It was so effective that, as they wrote [7],
“It is possible for us to do something which has never been
done before—to present in their entirety the search trees for
large combinatorial problems of this type.” The 42-city
problem [13], for example, required the enumeration of only
61 of the 33 x 10* possible tours in the problem.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

At present, software that solves large combinatorial
problems is based almost exclusively on BB, which
underscores the importance of the bounding methods
described in the next section.

9. Bounds and subgradients
One of the most computationally useful ideas to arise in the
seventies is that many difficult problems can be viewed as
easy problems complicated by additional constraints; it leads
to a general scheme for producing bounds for BB algorithms
which, under the name Lagrangian relaxation, has had
widespread use. In the form in which it is presently used it
follows from the work of Held and Karp [7], who used it to
develop a very successful algorithm for the symmetric TSP.
Let the given problem be stated as

min {cx:Ax = b, x € S},

(13)

where S is one of the subsets of the BB procedure for which
a lower bound is needed. In a 0-1 IP, for example, S is the
set of all 0—1 vectors whose trial values have not yet been
fixed. We form, as in Section 3, a Lagrangian for the
problem, and rewrite it as

min, o max, [cx — (4x — b)y]. (14)
It is immediate that (14) is no less than
max, F(y) = max, min,[by — (4"y — c)x], (15)

so that the function F(y) defined in (15) serves as a lower
bound of (13) for any y. [The values of (13) and (15) are not
necessarily equal here, as is the case in LP duality. They
would be equal if the set .S were convex, but the sets in
which we are interested are very nonconvex.]

When S is the set of all 0-1 vectors, the calculation of
F(y) for any y is trivial. The application to the TSP is
subtler. Held and Karp chose S to be the set of all “1-trees,”
a 1-tree being a collection of intercity links consisting of a
spanning tree on the cities 2, 3, - - . , n together with two
distinct links to city 1. Every tour is a 1-tree, and a 1-tree is a
tour only if each city has just 2 links. The latter requirement
is just the degree-two constraint (8), which thus serves as
Ax = b above. Calculation of F(y) in this case requires
finding a minimal spanning tree, a problem for which very
fast algorithms are available.

Since a high lower bound for (13) is important, we want a
y that makes F(y) large, although finding its exact
maximum may not be worth the trouble. Being the infimum
of a family of linear functions, F is concave, but not
everywhere differentiable. A “differential calculus” of such
functions has been developed (see, e.g., [45]) in which the
notion of subgradient, an extension of the gradient for
differentiable functions, is central. In our case, a subgradient
of Fat yis given by 4x,, where x is that member of §
achieving the minimum of (14). A concave function can be
maximized by a surprisingly simple procedure: Choose step

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

lengths 1, > 0 such that 7, — 0 and ¥, ¢, = o, choose the
starting point y,, and perform the recursion y,,, = y, + t,g,
fork=0,1,2, .., where g, is a subgradient of F at y,. The
values F(y,) then converge to the maximum value of F.
Held and Karp invented a version of this scheme for their
TSP work [7). The general procedure is due to the Soviet
mathematician N. Z. Shor {46], who further developed it in
many subsequent publications (e.g., [47]). While even now
the rate of convergence of subgradient optimization, as this is
called in the Western literature, is not well understood, the
speed with which a single step can be taken makes it an
excellent algorithm for getting approximate solutions.
Crowder, Held, and Wolfe [48] demonstrated its practicality
for a wide variety of optimization problems. It had long been
thought that differentiability was essential for the
effective maximization of a concave function. The success
of one method for nondifferentiable functions inspired
a variety of more refined procedures (e.g., [49, 50]) as well
as the publication of a collection of papers on the new
subject of “Nondifferentiable Optimization” [50]; but here
we wander from the trail of work closely related to the TSP.

10. Combinatorial offshoots

The connection between problems involving permutations
and linear programming described in Section 4 has inspired
a whole literature connecting LP, especially duality theory,
with extremal combinatorial problems of a more general
nature.

To describe the general setting, consider the LP problem
(1) and its dual (4), and assume that its data 4, b, c are all
integral. Suppose it is true that the set of all pairs (x, y)
which are respectively feasible for primal and dual have a
combinatorial meaning if they are integral. If one can prove
there exist optimal (x, y) which are integral, then the duality
theorem of linear programming proves a combinatorial
theorem.

The first explicit instance of this paradigm may have been
a proof of the Konig-Egervary theorem that the largest
cardinality of a set S of 1s contained in a (0, 1) matrix M
such that no two elements of S are in the same row or
column is the smallest cardinality of a set T of rows and
columns containing all 1s in M. The first cardinality sought
is given by the solution of the LP problem

maximize IM;x,:x; 20, ¥x, < 1, Xx; < 1, (16)

i i i
whose constraints relax those (5) defining permutation
problems. If the optimum vertex X = (x;) is integral, then
each row and column of X consists either entirely of zeros or
of a single one, the remaining entries being zero, and the X
sought has as many ones as possible. If (16) is taken as a
dual problem, the primal problem is
minimize Ju; + Yv,;:u, = 0, 0,20, u, + v; =2 M,

i J

for all 4, j, 483

(17

M. HELD ET AL.

484

which evidently yields the second cardinality sought.

The integrality of optimum primal and dual vectors
follows from the fact that the coefficient matrix 4 governing
the inequalities is totally unimodular; i.e., all nonsingular
square submatrices have determinant 1, which implies that
the use of Cramer’s rule to find the coordinates of an
optimum vertex will yield integral answers. Hoffman [52-54)
has given a characterization of @// combinatorial theorems of
this type, but the relevance of Cramer’s rule to such
theorems does not end there. One reason is that the relevant
totally unimodular matrix may take some trouble to find, as
in some generalizations of Dilworth’s theorem [55]. Also, it
may happen that, even though 4 is not totally unimodular,
the right-hand side b has the property that every vertex of
{x:Ax < b, x = 0} is integral. For example, in the case of the
so-called matching polytope, one can show that every vertex
has the property that one of the relevant determinants for a
Cramer’s rule argument has determinant *+1 [56].

Sometimes one can show that, for every integral ¢ for
which a dual problem max{by: 4 Ty<e, y=0}hasa
solution, it has an integral solution. This implies [57] that
every vertex of {x:Ax = b, x = 0} is integral, so
combinatorial interpretations follow. This fact can be used
to prove generalizations of the famous “max flow = min
cut” theorem [58]), the “shortest path = max cut packing”
theorem [59], and matroid intersection results. For some of
these, one shows that an optimal solution to the dual can be
artfully recast from a solution to a problem using a totally
unimodular matrix. For some others, the concept of lattice
polyhedron [58, 60] yields a unification of several earlier
results; and here the integrality of the dual problems follows
from the existence of an optimal y whose support
corresponds to rows forming a totally unimodular matrix.
For other results (e.g., [61]), dealing with Berge’s perfect and
balanced matrices, unimodularity seems to provide no clue.
For a recent status report, see [62].

A celebrated combinatorial use of inequalities and total
unimodularity is Baranyai’s parallelism theorem which
asserts that, if a set N has k/ elements, then there are disjoint
partitions of N, each partition consisting of subsets of exactly
h elements, such that each subset with h elements occurs in
exactly one partition. The special case & = 2 corresponds to
the classic problem of arranging k matches on each of 2k — 1
days so that a league of 2k teams can complete a round
robin tournament. This special case is easily done; indeed,
there is a formula for doing so; but for general 4 it was not
known before Baranyai whether it could be done, and a
formula is still unavailable. He uses a complicated inductive
argument, in which the critical step of the induction depends
on total unimodularity, 10 prove the existence of the desired
family of partitions. Building on Baranyai’s approach, and
using ideas of the cutting stock problem mentioned above,
together with linear programming duality and some delicate
computations involving binomial coefficients, one can find

M. HELD ET AL.

all pairs (n, h) such that if | N| = n, & < n, then there are
disjoint partitions of N containing subsets of at most h
elements, such that each S with | S| = 4 occurs in exactly
one partition [63, 64].

11. The 318-city problem

A TSP of 318 cities is not the largest problem ever tackled;
we have heard of attempts made on problems of more than
600 cities. The 318-city problem may, or may not, be the
largest problem ever solved; but it is the largest problem
known to have been solved. It is the largest of the ten
symmetric TSPs solved by Crowder and Padberg [65] in
1979. Three of those problems had already been solved, and
solution proven; for the remaining problems, the optimal
solutions were established for the first time. (Some of these
had been previously solved, but optimality of the solutions
had not been proved.)

As Crowder and Padberg state, their distant point of
departure was the RAND work [13] of 1954; but their
elaborate procedure, a sequel to that described in [66], used
almost every device that has been mentioned so far.

' They employed a procedure with three main steps. The
first phase used the Lin-Kerningham [8] heuristic to find a
good starting tour, and then a simplex-based procedure was
applied to an LP problem composed initially of the degree-
two constraints. During the course of this procedure, suitable
subtour-elimination, 2-matching, and comb constraints were
derived and used to augment the current LP problem. These
derived constraints had the property that they did not
exclude feasible tours, but the new augmented problem was
a tighter LP relaxation of the TSP problem. When the
constraint generation procedure could no longer identify
candidate constraints, the augmented LP problem was solved
to optimality, yielding a true lower bound on the minimum
tour length of the TSP problem.

Phase two involved fixing a subset of variables in the TSP
problem to either 0 or 1. This procedure, first employed in
this context in [13], utilized the upper bound of the tour
length from the Lin-Kerningham heuristic, and the solution
value and reduced costs from the LP problem solved in
phase one. For the 318-city TSP problem, this allowed more
than 49 000 of the 50 403 variables to be fixed (most at zero,
of course), thus reducing the problem to about three percent
of its original number of variables.

In the third phase, the reduced problem was treated as a
0-1 IP problem, utilizing MPSX-MIP/370 for its solution.
The 0-1 solution to this problem was either an optimal
solution to the reduced TSP problem—this solution, taken
in conjunction with the variables fixed at 1 in phase two,
yielded an optimal solution for the original TSP problem—
or defined a collection of subtours for the reduced problem.
In the latter case, appropriate constraints to exclude the
current 0-1 solution were generated and adjoined to the
problem, which was then re-solved. For the 318-city

IBM J. RES, DEVELOP. VOL. 28 NO. 4 JULY 1984

problem, the 0-1 LP problem required two such
augmentations before yielding the optimal tour. The total
CPU time (on the Thomas J. Watson Research Center’s
IBM 370/168, using VM/370 and MVS/TSO) was just under
six minutes.

Crowder and Padberg conclude [65]: “We cannot report
any failure of the proposed methodology In our view
this fact points to the suitability of facet-defining cutting-
planes for the purpose of proving optimality in hard and
difficult combinatorial optimization problems We are
confident that problems involving 1000 cities and more are
amenable to exact solution by today’s technology.”

Acknowledgment

We are particularly indebted to Harlan P. Crowder of the
IBM Thomas J. Watson Research Center and Carlton E.
Lemke of Rensselaer Polytechnic Institute, visiting the
Center, for a great deal of help and counsel.

References

1. Karl Menger, Ergebnisse eines Kolloquiums 3, 11-12 (1930).

2. M. M. Flood, “The Traveling-Salesman Problem,” Oper. Res. 4,
61-75 (1956).

3. R. E. Gomory, “The Traveling Salesman Problem,” Proceedings
of IBM Scientific Computing Symposium on Combinatorial
Problems, March 1964, IBM Data Processing Division, White
Plains, NY, March 1966, pp. 93-121.

4. M. R. Garey and D. S. Johnson, Computers and Intractability,
W. H. Freeman & Co., San Francisco, 1979.

5. R. M. Karp, “Reducibility Among Combinatorial Problems,”
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds., Plenum Publishing Co., New York, 1972, pp.
85-103.

6. M. Held and R. M. Karp, “A Dynamic Programming Approach
to Sequencing Problems,” SIAM J. Appl. Math. 10, 213-242
(1962).

7. M. Held and R. M. Karp, “The Travelling Salesman and
Minimum Spanning Trees, Part I,” Oper. Res. 18, 1138-1162
(1970); “Part I1,” Math. Program. 1, 6-26 (1971).

8. S. Lin and B. W. Kernighan, “An Effective Heuristic Algorithm
for the Travelling-Salesman Problem,” Oper. Res. 21, 498-516
(1973).

9. R. M. Karp, “Probabilistic Analysis of Partitioning Algorithms
for the Traveling-Salesman Problem in the Plane,” Math. Oper.
Res. 2, 209-224 (1977).

10. George B. Dantzig, Linear Programming and Extensions,
Princeton University Press, Princeton, NJ, 1963.

11. W. Orchard-Hays, “The Challenge of Analytic Use of
Computers for Global Problems,” Computers and Mathematical
Programming, W. W. White, Ed., U.S. Department of
Commerce, U.S. Government Printing Office, Washington, DC,
1978.

12. IBM Mathematical Programming System Extended/370
(MPSX/370) Program Reference Manual, Order No. SH19-
1095, 1978; available through IBM branch offices.

13. G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson, “Solution
of a Large-Scale Travelling-Salesman Problem,” Oper. Res. 2,
393-410 (1954).

14. R. E. Gomory, “Outline of an Algorithm for Integer Solutions to
Linear Programs,” Bull. Amer. Math. Soc. 64, 275-278 (1958).

15. R. E. Gomory, “Solving Linear Programming Problems in
Integers,” Proc. Symp. Appl. Math. 10, 211-215 (1960).

16. R. E. Gomory, “An Algorithm for Integer Solutions to Linear
Programs,” Recent Advances in Mathematical Programming, R.
L. Graves and P. Wolfe, Eds., McGraw-Hill Book Co., Inc., New
York, 1963, pp. 269-302.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

17.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.
34.

35.

36.

37.

38.

40.

41.

R. E. Gomory, “Large and Non-Convex Problems in Linear
Programming,” Proc. Symp. Interact Math. Res. High-Speed
Comp. (American Mathematical Society) XV, 125-139 (1963).

. P. Wolfe, “Convergence Theory in Nonlinear Programming,”

Integer and Nonlinear Programming, J. Abadie, Ed., North-
Holland Publishing Co., Amsterdam, 1970, pp. 1-36.

. G. B. Dantzig and P. Wolfe, “The Decomposition Algorithm for

Linear Programming,” Econometrica 29, 767-778 (1961).

. R. E. Gomory and T. C. Hu, “An Application of Generalized

Linear Programming to Network Flows,” SIAM J. Appl. Math.
10, 260-283 (1962).

P. C. Gilmore and R. E. Gomory, “A Linear Programming
Approach to the Cutting Stock Problem,” Oper. Res. 9, 849-859
(1961); “A Linear Programming Approach to the Cutting Stock
Problem—Part II,” Oper. Res. 11, 863-888 (1963).

P. C. Gilmore and R. E. Gomory, “The Theory and
Computation of Knapsack Functions,” Oper. Res. 14, 1045-
1074 (1966).

R. E. Gomory, “On the Relation Between Integer and Non-
Integer Solutions to Linear Programs,” Proc. Nat. Acad. Sci. 53,
260-265 (1965).

R. E. Gomory, “Faces of an Integer Polyhedron,” Proc. Nat.
Acad. Sci. 57, 16-18 (1968).

R. E. Gomory, “Properties of a Class of Integer Polyhedra,”
Integer and Non-linear Programming, J. Abadie, Ed., North-
Holland Publishing Co., Amsterdam, 1970, pp. 353-365.

R. E. Gomory, “Some Polyhedra Related to Combinatorial
Problems,” J. Lin. Alg. Appl. 2, 451-558 (1969).

R. E. Gomory and E. L. Johnson, “Some Continuous Functions
Related to Corner Polyhedra,” Math. Program. 3, Part I: 23-85,
Pari II: 359-389 (1972).

R. E. Gomory and E. L. Johnson, “The Group Problem and
Subadditive Functions,” Mathematical Programming, T. C. Hu
and S. M. Robinson, Eds., Academic Press, Inc., New York,
1973, pp. 157-184.

E. L. Johnson, “On the Group Problem for Mixed Integer
Programming,” Mathematical Programming Study 2:
Approaches to Integer Programming, M. L. Balinski, Ed., North-
Holland Publishing Co., Amsterdam, 1974, pp. 137-179.

H. P. Crowder and E. L. Johnson, “Use of Cyclic Group
Methods in Branch and Bound,” Mathematical Programming,
T. C. Hu and S. M. Robinson, Eds., Academic Press, Iric., New
York, 1973, pp. 213-226.

E. L. Johnson, “Faces of Polyhedra for Mixed Integer
Programming Problems,” Symp. Math. 19, 289-299 (1976).
C.-A. Burdet and E. L. Johnson, “A Subadditive Approach to
Solve Linear Integer Programs,” Ann. Disc. Math. 1, 117-143
(1977).

E. L. Johnson, “Subadditive Lifting Methods for Partitioning
and Knapsack Problems,” J. Algorithms 1, 75-96 (1980).

M. W. Padberg, “Packing, Covering, and Knapsack Problems,”
Ann. Disc. Math. 4, 265-287 (1979).

M. Grétschel and M. W. Padberg, “On the Symmetric
Travelling Salesman Problem,” Math. Program. 16, Part I:
Inequalities, 265-280; Part II: Lifting Theorems and Facets,
281-302 (1979).

V. Chvatal, “Edmonds Polytopes and Weakly Hamiltonian
Graphs,” Math Program 5, 29-40 (1973).

J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An
Algorithm for the Traveling Salesman Problem,” Oper. Res. 11,
972-989 (1963).

K. Spielberg, “Algorithms for the Simple Plant Location
Problem With Some Side Conditions,” Oper. Res. 17, 85-111
(1969).

. K. Spielberg, “Plant Location With Generalized Search Origin

With Some Side Conditions,” Manage. Sci. 16, 165-178 (1969).
C. E. Lemke, H. M. Salkin, and K. Spieiberg, “Set Covering By
Single Branch Enumeration with LP Subproblems,” Oper. Res.
19, 998-1022 (1971).

M. Guignard and K. Spielberg, “Reduction Methods for State
Enumeration Integer Programming,” Ann. Disc. Math. 1, 273~

285 (1977). 485

M. HELD ET AL.

486

42. M. Guignard and K. Spielberg, “A Direct Dual Method for the
Mixed Plant Location Problem With Some Side Conditions,”
Math. Program. 17, 198-228 (1979).

43. Mixed Integer Programming/370 (MIP/370) Program Reference
Manual, Order No. SH19-1099, 1979; available though IBM
branch offices.

44. M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G.
Ribiére, and O. Vincent, “Experiments in Mixed-Integer Linear
Programming,” Math. Program. 1, 76-94 (1971).

45. R. T. Rockafellar, Convex Analysis, Princeton University Press,
Princeton, NJ, 1970.

46. Yu. M. Ermolev and N. Z. Shor, “On the Minimization of Non-
Differentiable Functions,” (Russian) Kibernetika 3, 101-102
(1967).

47. N. Z. Shor, “Cut-Off Method with Space Extension in Convex
Programming Problems,” (Russian) Kibernetika 13, 94-95;
translated as Cybernetics 13, 94-96 (1977).

48. H. P. Crowder, M. Held, and P. Wolfe, “Validation of
Subgradient Optimization,” Math. Program. 6, 62-88 (1974).

49. J. K. Cullum, W. E. Donath, and P. Wolfe, “An Algorithm for
Minimizing Certain Non-Differentiable Convex Functions,” [50]
35-55 (1975).

50. P. Wolfe, “A Method of Conjugate Subgradients for Minimizing
Nondifferentiable Functions,” [50) 145-173 (1975).

51. M. L. Balinski and P. Wolfe, Eds., Mathematical Programming
Study 3: Nondifferentiable Optimization, North-Holland
Publishing Co., Amsterdam, 1976.

52. A.J. Hoffman, “Total Unimodularity and Combinatorial
Theorems,” Lin. Alg. Appl. 13, 103-108 (1976).

53. A.J. Hoffman, “Some Recent Applications of the Theory of
Linear Inequalities to Extremal Combinatorial Analysis,” AMS
Proc. Symp. Appl. Math. 10 (Combinatorial Analysis), 113-127
(1960).

54. A.J. Hoffman, “The Role of Unimodularity in Applying Linear
Inequalities to Proving Combinatorial Theorems,” Ann. Disc.
Math. 4, 73-84 (1979).

55. A.J. Boffman and H. S. Schwartz, “On Partitions of a Partially
Ordered Set,” J. Comb. Theory B23, 3-13 (1977).

56. A.J. Hoffman and R. Oppenheim, “Local Unimodularity in the
Matching Polytope,” Ann. Disc. Math. 2, 201-209 (1978).

57. A.J. Hoffman, “A Generalization of Max Flow-Min Cut,”
Math. Program, 6, 352-359 (1974).

58. R. E. Gomory and T. C. Hu, “Multi-Terminal Network Flows,”
Siam J. Appl. Math. 9, 551-570 (1961).

59. E. L. Johnson, “On Cut-Set Integer Polyhedra,” Cahiers Centre
Etudes Recherche Operationelle 17, 235-251 (1975).

60. A.J. Hoffman, “Blockers and Anti-Blockers of Lattice Clutters,”
Mathematical Programming Study 8: Polyhedral Combinatorics,
M. L. Balinski and A. J. Hoffman, Eds. North-Holland
Publishing Co., Amsterdam, 1978, pp. 197-207.

61. D. R. Fulkerson, A. J. Hoffman, and R. Oppenheim, “On
Balanced Matrices,” Mathematical Programming Study 1:
Pivoting and Extensions, M. L. Balinski, Ed., North-Holland
Publishing Co., Amsterdam, 1974, pp. 120-133.

62. A.J. Hoffman, “Linear Programming and Combinatorics,”
Proc. Symp. Pure Math. 34, 245-253 (1979).

63. C. Berge and E. L. Johnson, “Coloring the Edges of a
Hypergraph and Linear Programming Techniques,” Research
Report CORR 76/4, Dept. of Combinatorics and Optimization,
University of Waterloo, Ontario, 1976.

64. E. L. Johnson, D. Newman, and K. Winston, “An Inequality on
Binomial Coefficients,” Ann. Disc. Math. 2, 155-159 (1978).

65. H. Crowder and M. W. Padberg, “Solving Large-Scale
Symmetric Traveling Salesman Problems to Optimality,”
Manage. Sci. 26, 495-509 (1980).

66. M. W. Padberg and S. Hong, “On the Symmetric Travelling
Salesman Problem: A Computational Study,” Mathematical
Programming Study 12: Combinatorial Optimization, M. W.
Padberg, Ed., North-Holland Publishing Co., Amsterdam, 1980,
pp. 78-107.

M. HELD ET AL.

Received October 6, 1983

Michael Held /BM Academic Information Systems, 1 North
Broadway, White Plains, New York 10601. Mr. Held joined IBM in
1958; he held positions in several groups involved with IBM’s early
efforts in scientific computing, including the New York Scientific
Center and the Systems Research Institute, where he taught courses
and conducted research in mathematical programming and
computational complexity. He was an adjunct professor of
operations research and industrial engineering at Columbia
University and held a variety of editorial positions, including
coeditorship of Mathematical Programming and Management
Science. Mr. Held served on the Council of the Mathematical
Programming Society, was Chairman of its Publications Committee,
and is currently Chairman of its Executive Committee.

Alan J. Hoffman /BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Hoffman is manager of
senior consultants in the Mathematical Sciences Department of the
Thomas J. Watson Research Center. His research interests include
combinatorics, lincar algebra, and linear programming. Prior to
joining IBM in 1961, he was 2 member of the Institute for Advanced
Study, a mathematician at the National Bureau of Standards, a
scientific liaison officer with the Office of Naval Research (London),
and a consultant with the General Electric Company. He received
his Ph.D. in mathematics from Columbia University, where he was
also an undergraduate, in 1950. He is a Founding Editor of Linear
Algebra and its Applications, and is on the editorial boards of
Discrete Mathematics, Discrete Applied Mathematics, Naval
Research Logistics Quarterly and Combinatorica. He is an IBM
Fellow, a member of the National Academy of Sciences, and a
Fellow of the New York Academy of Science

Ellis Lane Johnson IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Johnson is manager of the
mathematical programming and modeling group in the
Mathematical Sciences Department of the Thomas J. Watson
Research Center, which he joined in 1968. His principal work has
been on the theory, computational methods, and applications of
integer programming. He received a B.S. in mathematics from
Georgia Institute of Technology in 1960 and the Ph.D. in operations
research at the University of California at Berkeley in 1965. He was
an assistant professor at Yale University from 1964 to 1967, and has
had visiting appointments at the University of Waterloo, Ontario,
the University of Bonn, Federal Republic of Germany, and the
University of Pisa, [taly. He is an editor for Discrete Applied
Mathematics and the SIAM Journal of Algebraic and Discrete
Mathematics.

Philip Wolfe 1BM Research Division, P.O. Box 218, Yorktown
Heights, New York 10598. Dr. Wolfe is a senior consultant in the
Mathematical Sciences Department of the Thomas J. Watson
Research Center. His research interests are centered in the subject of
mathematical programming. He received the A.B. in mathematics
and physics in 1948, and the Ph.D. in mathematics in 1954, from
the University of California at Berkeley. Subsequently he taught at
Princeton University, then was a mathematician at the RAND
Corporation, Santa Monica, California, from 1957 to 1966, when he
joined IBM. He was a founder of the Mathematical Programming
Society, which he served as chairman from 1978 to 1980, the
Friends of Optimization, and the journal Mathematical
Programming. He is a Fellow of the American Association for the
Advancement of Science and of the Econometric Society.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

