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For  fifty  years  the  traveling  salesman  problem 
has  fascinated  mathematicians,  computer 
scientists,  and  laymen. It is  easily  stated,  but 
hard  to  solve; it has  become  the  prototypical 
hard  problem  in  theoretical  computer  science. A 
large  part of  the extensive  research  conducted 
by IBM in  the  broad area of  optimization,  or 
mathematical  programming,  contributed  to  or 
was  inspired  by  aspects  of  this  challenging 
problem.  This  article  reviews  some  of  that  work 
as  well  as  recent  developments  in  techniques 
that  were  used  on  the  largest  traveling  salesman 
problem  ever  solved. 

1. Introduction 
The first statement of the Traveling  Salesman  Problem 
(TSP) we know of was made in 1930 by the Viennese 
mathematician Karl Menger. It arose in connection with “A 
new definition of curve length” that Menger proposed that 
the length of a curve be defined as the least upper bound of 
the set of all numbers that could be obtained by taking each 
finite  set of points of the curve and determining the length of 
the shortest polygonal  graph joining all the points.  “We  call 
this the messenger problem, because in practice the problem 
has to be  solved  by  every postman, and also by many 
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travelers:  finding the shortest path joining all of a finite  set  of 
points whose distances from each other are given.  Of  course, 
the problem can be solved  by a finite number of trials. No 
rule is known that would  reduce the number of trials to less 
than  the number of permutations of the given  points. The 
rule of proceeding from the origin to the nearest point, then 
to the nearest point to that, and so on, does not generally 
give the shortest path” [I]. 

The new definition of curve length  may not have panned 
out, for  it  does not appear in Menger’s later work.  While its 
computational tractability, or lack  thereof, has little bearing 
on whether  it suited his mathematical needs for a definition 
of curve length, he  certainly saw the practical  difficulty  of 
solving a problem of reasonable size. Given n points, and the 
distances cu between  each pair of points i, j ,  one path would 
be determined by a particular ordering i,, i,, . . . , in of the 
points, and the length of the path would be c , ~ , ~  + cjlC + . . . 
+ cjWljn. In a “brute force” approach, that calculation would 
be made for each ordering of the points (an insignificant  half 
of the orderings  could be skipped in the symmetric case that 
cd = e,, for all i, J, and  one went to the great trouble of 
checking  whether an ordering had already  been  checked in 
the reverse direction). The number of such  orderings is n!, 
the innocent-looking function whose growth  with n is 
explosive: 5 !  = 120; lo! = 3 628 800, and 25! = 16 X loz5 
(greater than  the age  of the universe in microseconds). As 
Menger indicates, these problems cannot be  solved  unless 
rules  can be  devised that give numbers of operations far 
smaller than these. 

The next mention we know of the problem  is in 1934, 
followed  by perhaps its first statement in connection with a 
practical problem: Memll Flood, in his  1956  review article 
[2], writes: “This problem was posed, in 1934, by Hassler 
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Whitney in a seminar talk at Princeton University. There are 
as yet no acceptable computational methods.. . .” 
Mentioning related problems from the theory of graphs, 
Flood continues: “I am indebted to A. W. Tucker for  calling 
these connections to my attention, in 1937, when I was 
struggling  with the problem in connection with a schoolbus 
routing study in New Jersey.” 

There is a small  difference  between  Menger’s statement 
and Flood‘s, which  is  now the customary statement: Flood 
seeks a closed  polygonal path, or tour-the  salesman  visits 
all the cities and returns to his point of origin. The cost to be 
minimized is thus ci,i2 + . . . + ciplim + clnll. A permutation P 
is a function from the integers 1 ,  . . . , n onto the same 
integers  [i.e., P(i) # P ( j )  if i # j]; and it represents a tour if it 
is a cyclic permutation, i.e.,  is such that n successive 
applications of P to any of those integers  generates  all of 
them. We can then state the TSP as the problem of 
minimizing ZiciP(,) over  all  cyclic permutations P. (We do 
not assume symmetry, i.e., cu = cjl.) While this holds for 
Euclidean  distances, it fails to hold in many applications. As 
a simple example, c,, might  represent the travel time from i 
to j in hilly country. The closed path represented by a 
permutation is  called a directed tour. When the matrix ( cJ  is 
symmetric, only symmetric permutations need  be 
considered, and one speaks of undirected tours. 

Partly because of its simple statement and its quickly 
acquired reputation for  difficulty, the problem has fascinated 
a whole generation of professionals and laymen; the former 
have  published some 300 technical papers on aspects of it. 
Much of that fascination for  professionals  is due to the fact 
that other combinatorial problems, sounding much like the 
TSP,  have  yielded to analysis, and practical algorithms for 
solving them, even in large-scale  cases, have been  devised. 
(The “assignment  problem’’  of the next  section is a fine 
example.) By the early  sixties many of the ideas that have 
been  used on the problem had been proposed; they are 
reviewed  in Ralph Gomory’s paper [3]. Nevertheless the TSP 
remained difficult and has  become, indeed, the prototype of 
a “hard” combinatorial problem, the most cited example of 
an NP-complete  problem in computational complexity  (see 
the next section); and perhaps  it has inspired much of the 
work  of that field.  Likewise,  all the work that has been done 
on it has had important consequences for the whole area of 
optimization. It was attacked by procedures which found 
much more  general use  in the broad field of integer 
programming and even in nonlinear programming. It seems 
that most of the research on optimization methods done at 
IBM  is connected with this problem, and a review  of the 
history of efforts to solve and understand it covers a large 
part of  IBM researchers’  work in optimization. 

mathematical and computational problems related to the 
TSP, with mention of some  work  from other sources that 
was truly seminal. For reasons of space we  have had to omit 

This account focuses  on  IBM contributions to 

any description of the many applications, some of them not 
at all  obvious, to which the TSP has lent itself, as well as a 
great  deal of  IBM  work in the broader field  of mathematical 
techniques of optimization; but enough remains to show that 
a great  deal of progress has been made in coping  with “hard” 
problems and  that good, hard problems can inspire good 
research. 

2. Complexity and heuristics 
During the last ten years the notion of NP-completeness has 
swept through computer science and allied  fields. We do not 
detail that complex  subject  here. For a complete treatment 
the reader is referred to the first  two chapters of the book by 
Garey and Johnson [4]. We mention only that the TSP, 
which  is the first  problem  described in their book, is a 
member of the class of what are called NP-complete 
problems. These are problems for which there is no known 
algorithm which  is “good” (in the sense  of  being 
“polynomially bounded”: having a running time bounded by 
a polynomial in the length of the input data string needed to 
define any particular instance of the problem). Further, if a 
“good” algorithm existed for any of them, a good algorithm 
would  exist  for  each  of them. These problems come from a 
variety of important fields, including database design, 
network  design, compiler implementation, and operations 
research.  While the question of finding  such an algorithm is 
still open, most  experts  believe it will never happen. 

Building on a foundation laid by Stephen Cook, Richard 
Karp established the polynomial equivalence of many 
combinatorial problems with the TSP. His basic paper [ 5 ] ,  
presented at  the first  IBM symposium on computational 
complexity in 197 1, described 2 1 such problems. We like to 
think that much of his interest in the area was spurred by his 
earlier work at  the IBM Thomas J. Watson  Research Center 
on the TSP itself [6,7]. 

The NP-complete results  have  given a new impetus to 
heuristic methods for  solving  these  problems,  which can 
fairly  be  viewed  as “intractable” in the sense that there seems 
to be little use, at present, in seeking algorithms for them 
which  yield  assured solutions but whose  laboriousness  does 
not grow  exponentially  with  problem  size.  We  may  define 
heuristic as an algorithm for which  we know no mechanism 
inherent to the algorithm for  establishing the optimality of 
the results it produces. Much work has been done on 
heuristic algorithms for the TSP and related  problems, and 
some of these  have  been  remarkably  effective, as was later 
determined when methods arose with  which optimality 
could be established. We do not review these  here  (since 
most IBM  work has focused on the more demanding task of 
guaranteeing solutions) except to mention the important 
work  of  Lin and Kernighan [8]. Their heuristic produces 
excellent near-solutions to the TSP which  were  used to 
provide starting points for the very-large-scale problems of 
Section 1 1. 477 
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The likelihood that heuristic methods may  be the only 
feasible approach to many combinatorial problems of  large 
size has certainly made those methods more interesting and 
respectable, and has given impetus to an entire new  field  of 
research: obtaining performance guarantees for heuristic 
algorithms, both in worst-case and probabilistic senses. Here 
too the TSP has played a seminal role. Karp’s 1977 paper [9] 
established the general definitional framework  for the 
probabilistic analysis of heuristic algorithms, and applied it 
to the TSP. 

3. Linear  programming 
The general linear programming (LP) problem plays a 
central role in many of the computational methods that have 
been  used on the TSP. It may be stated Minimize the linear 
function z = cx subject to the constraints Ax = b, x 2 0, or 

min (cx:Ax = 6, x 2 0), (1) 

where x is a variable  n-vector and the given data c, A ,  b are, 
respectively, an n-vector, an m-by-n matrix, and an m- 
vector.  (We juxtapose c and x to denote an inner product, 
and A and x to denote matrix-vector multiplication. We 
note that standard devices [ 101 convert problems having 
inequalities Ax 5 b, or variables x not constrained as here, 
into this form.) 

The term “programming” does not refer to the writing of 
programs for a computer, but to planning. About 1944 a 
group of scientists including the mathematician George 
Dantzig was brought together by the U.S. Air  Force under 
the project title “Scientific Computation of Optimum 
Programs,” with the mission of applying mathematical 
techniques to large-scale planning (“programming”) 
problems.  They found the simple (in  principle) LP statement 
to be an adequate model for a vast  field  of applications, and 
thus called the procedure linear programming. In 1947 
Dantzig invented the algorithm he called the “simplex 
method” for  solving the models numerically, and that 
algorithm, greatly improved, and redeveloped for each new 
generation of computer, is the one  in use today. 

programming and computing have  been contemporary in an 
almost uniquely exact  sense. Their histories  parallel  each 
other year  by year in a remarkable way” [ 1 11. The first 
general-purpose linear programming routine was written for 
the SEAC in 195 1. On Dantzig’s  moving to the RAND 
Corporation in Santa Monica, California, in 1952, he, W. 
Orchard-Hays, and L. Cutler began development of the first 
large-scale  software  for linear programming on RAND’S 
IBM 701 computer. On introduction of the IBM 704 in 
1955, the RAND group, with support from 1BM in machine 
time and personnel, developed a routine for this machine 
which, widely distributed by the SHARE organization, set 
the formats and standards for LP software  from that point 

As one of the pioneers has said, “mathematical 

478 on. It could handle problems having up to 250 linear 

relations, a staggering number for the time, and found 
immediate and widespread  use,  first in the oil industry. 
Refinery operation, storage, and distribution problems could 
all be modeled as LP problems, and solving them turned out 
to be  highly  profitable.  We note that an IBM Petroleum 
Conference held  in Endicott, New York, in October 1953 
was host to a number of papers on LP applications. 

Development of algorithms and software for LP has never 
ceased.  Every  large computer manufacturer has  provided 
routines for LP and some of the extensions we discuss. IBM 
has built its own  LP  software  since the early  sixties; the 
current version,  MPSX [ 121, can handle more than 16 000 
equations and an almost unlimited number of variables. It 
and earlier IBM LP software are heavily  used in thousands 
of installations. 

An important mathematical aspect of LP is duality. It was 
found (see,  e.g., [lo]) that Lugrange multipliers (the m-vector 
y below) could be used in LP by formulating the minimax 
problem 

min,, max, [cx - (Ax - b)y], (2) 

easily  seen to be equivalent to (1). A fundamental theorem 
asserts the equality of ( 2 )  to 

max,, min, [by - ( ~ ‘ y  - ~ 1 x 1 ,  (3) 

which  is equivalent to the new LP problem 

max { by:ATy 5 c). (4) 

The problem (4) is  called the dual of the original LP 
problem, and the equivalence of the two LP problems is 
stated in the duality theorem of linear programming If either 
the problem (1) (called in this context the primal problem) 
or the dual problem has a solution, then so does the other; 
and then the values of cx and by are equal. 

A solution of the dual problem, along with that of the 
primal, is automatically produced when the primal problem 
is  solved by modem LP software. That fact  provides an 
ironclad test of optimality: any x and y satisfying the 
constraints of the primal and dual, respectively,  must  satisfy 
the inequalities ex 2 (ATy)x = by, so when  such x and y are 
found with cx = by, the required minimum and maximum 
are known to be at hand; checking optimality is  trivial. 

Another important theoretical feature of LP  is the fact 
that if a problem  has any solution at all, then it has one 
which  is an extreme point of the convex  polyhedron defined 
by the constraints of ( l ) ,  that is, a solution which  is not a 
convex combination of any other two points satisfying the 
constraints. Further, the simplex method always  yields such 
an extreme point solution, a fact we use later. 

4. Permutation  problems 
LP provides a powerful tool for problems involving 
permutations. We can  represent a permutation P as a matrix 
of  real numbers as follows: the n-by-n  real matrix X will 
have the entry .xL, = 1 ,  where P( i) = j ,  and zero  elsewhere. 
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The matrix X thus has exactly one 1 in each  row and the 
same in each column,  and any matrix consisting entirely of 
zeros and ones (0- 1, for short) having that property is 
square, and represents a permutation. We call such matrices 
permutation matrices. Another expression of this property is 

Ex,, = 1 for all i, 
J 

Ex,, = I for all j ,  
I 

.xfi 2 0 for  all i, j .  ( 5 )  

Noting that 

when X represents the permutation P, we could state a 
minimization problem over the set  of all permutations as 
that of minimizing the right-hand side of (6) for all 0-1 
matrices satisfying the constraints (5). Since the requirement 
X 2 0 evidently holds, we have formulated it as an LP 
problem, save  for the requirement that only zeros and ones 
be used, rather than  any nonnegative numbers satisfying the 
constraints. 

For such a problem, we can take advantage of the fact that 
our LP software will find an extreme point solution of the 
problem. A celebrated theorem of Garrett Birkhoff states 
that  the extreme points of the polyhedron defined by ( 5 )  are 
precisely  all the permutation matrices. Thus our solution of 
the  LP problem will automatically be 0- 1, and  the required 
permutation is found. (Other problems whose LP solutions 
are also automatically 0- 1 are mentioned in  Section 10.) 

as the "assignment" problem. Suppose that any of n people 
can do any of n different jobs  (but  not all equally well), and 
let c,, be the net cost  of  assigning  person i to  job j .  The 
problem is that of finding an assignment, or permutation, P 
so that the total cost Zr~ iP ( i )  is minimized. Large assignment 
problems-n > 8000"could thus be  solved by present LP 
software, although the problem has such  special features that 
certain refinements of standard LP methods operate with 
even much greater efficiency. 

any subset  of the set  of  all permutations, find  (which is 
possible in principle) a system  of linear equations and 
inequalities which  defines the convex  hull  of that set, and 
solve the resulting LP problem (again possible  in principle); 
the answer  is the permutation sought. Unhappily, in most 
cases  we do not know how to  do this explicitly. The only 
difference  between the assignment problem and the TSP is 
that  any permutation may be an assignment, while  only 
cyclic permutations can be tours; but we do not know  how 
to write  down  all the linear relations that define the convex 
hull of the set of all tours. (It has  been done for small 

The problem just stated is a useful one, commonly known 

One might hope to generalize the approach above: Given 

problems. The  number of such constraints is vast, and is 
known to grow exponentially.) However, all is not lost: It 
may be possible to find enough of those constraints to define 
that part of the convex  set  lying  close to the  optimum 
solution, and  thus solve the problem without finding all the 
constraints. Such a procedure has succeeded, and is 
discussed in Section 5. 

A fruitful offshoot of these considerations has been a wide 
variety  of mathematical results linked to LP representations 
of combinatorial problems, which are reviewed in Section 
10. 

Alternatively, if it  were  possible to ensure that X would 
remain 0-1, one could write a set of linear constraints which 
exclude unsuitable permutations for the TSP. Let S denote 
any proper subset of the points I ,  . . . , n. The requirement 

where I SI denotes the cardinality of S, is called a "subtour 
elimination" constraint, and ensures that the permutation 
does not have a cycle on S, that is, a closed path running 
just through the points of S, since the left-hand side  is just 
the total number of single segments joining points of S. Thus 
if all constraints of the form (7) can be enforced (we  may, 
incidentally, omit subsets S for which I S 1 > n/2), together 
with (5 ) ,  and X can be made 0- 1, the linear formulation will 
suffice. 

Ignoring for the  moment  the extraordinary number- 
2"""of these constraints (there are other, more compli- 
cated, formulations which make their number more nearly 
reasonable)-the question is, can the variables be forced to 
be 0-I? Of course, the answer is "yes," for otherwise this 
paper would not have  been written; most of the rest of it 
deals with just that question. 

5. The 42-city problem 
The first TSP of serious size  was  solved in 1954 by George 
Dantzig, Ray Fulkerson, and Selmer Johnson of the  RAND 
Corporation [ 131. The method used,  necessary at the time, 
was a hybrid: repetitive use of LP as we describe here and a 
certain amount of direct human manipulation of 
intermediate results. They chose a problem with symmetric 
distances (road distances between  42 major cities in the 
United States), which  modestly  reduces the computational 
demands: Instead of dealing with  full permutation matrices 
and square numerical matrices with n2 entries, only 
n( n - 1)/2 entries are needed. Data xu are recorded only for 
i < j .  A one in position i, j for i < j signifies a path segment 
joining cities i and j ,  the direction of traversal being ignored. 
The principles they used are just  the same for the 
unsymmetric problem. 

plane. While that term was not coined at RAND, but later 479 
The most important tool they developed  was the cutting 
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by Ralph Gomory at Princeton (see below), the concept 
became an essential  ingredient in the application of LP to 
integer  problems.  Its  basic  principle  is as follows: 

If the solution of an approximation (say, R )  to an 
optimization problem (say, Q) does not satisfy  all the 
constraints of Q, adjoin to R a linear constraint which 
the solution of R does not satisfy but which  is  satisfied 
by all candidates for the solution of Q. 

By the theorem of separating hyperplanes, this can always  be 
done if the constraints of R define a convex set; the adjoined 
linear constraint defines the cutting plane, which cuts away a 
portion of R not agreeing  with the requirements of Q. The 
RAND researchers  began  with an LP (a problem R )  for the 
TSP using  only the constraints X 2 0 and the “degree two” 
constraints 

together with an heuristically  generated tour which, of 
course,  provided a basic  feasible solution to the LP. Linear 
programming pivot  steps  were then performed until either 
an optimal tour was obtained or until a pivot step would 
lead to a vertex  which  was not a tour (owing to the 
occurrence of subtours) but which  was  still 0- 1. In the latter 
case the LP was augmented by the appropriate subtour 
elmination constraint (7), forming a new R. This process 
continued until a pivot step would  lead to a solution which 
was not 0-1. At this point, R was  solved to optimality, 
providing a lower bound for the optimal value of the TSP. A 
branching strategy was then used: A promising variable xu. 
whose  value  lay  strictly  between 0 and 1 was chosen, and 
two separate cases studied, one in which the variable was set 
to 0 and  another in which it was set to 1. Frequently an ad 
hoc argument based on inspection of a near-tour could be 
used to eliminate one of these cases; if not, both could be 
pursued. Finally, a simple argument based on the reduced 
costs of the LP solution to R frequently could be  used to 
show that  one of the two settings of the variable  would 
necessarily  result in a solution whose cost was  greater than 
that of the best tour so far found, so that that setting could 
be eliminated. 

Their ad  hoc argument presaged the kind of method later 
formalized as “enumeration” in integer programming, and 
the argument based on costs was a forerunner of the general 
“branch and bound” procedure, both discussed in Section 8; 
but it was the idea of the cutting plane that first became 
important for very  wide  classes of problems. 

Commenting on the RAND work on the TSP in 1964, 
Gomory wrote: “I do not see  why this particular approach 
stopped where  it did. It should be  possible to use the same 
approach today, but in an algorithmic manner. We no 
longer  have to be artistic about generating the separating 

480 hyperplanes or cuts, since this is  now done automatically in 

integer programming. . .” [ 3 ] .  He  was  right; the whole 
procedure could be effectively automated. In the next  section 
we describe how this was  first done for general  integer 
programming problems.  However,  it took fifteen  more  years 
before the insights that were  being  developed  could make 
full automation of a large-scale TSP solution a reality. 

6. Cutting planes 
The early  work at the RAND Corporation on the TSP 
reviewed in the previous section showed the utility of LP for 
these problems and the value  of  skillfully constructed cutting 
planes. At that time, however, there was no systematic 
method for generating cutting planes that would cut off 
noninteger solutions of the approximating LP problem. That 
was first provided by Gomory [ 14- 161, who  gave a method 
with proven finite  convergence for general  all-integer 
problems. 

An integer programming (IP) problem is the LP problem 
(I ) ,  with the additional restriction that x, be an integer for 
j E J,  where J is a subset of ( 1,2, . . . , n). In a pure integer 
program J consists of  all  of ( 1, 2, . . . , n 1, while  for a mixed 
integer  program J is a proper subset of them. 

problems,  for  they incorporate discrete and nonconvex 
aspects  of problems which cannot be modeled by L P  
Gomory’s review paper [ 171 covers many aspects of that. 
Certain important LP problems, describing flows  in 
networks,  have the total unimodularity property (see  Section 
10) and thus automatically give integer optimum solutions; 
but one does not expect a typical IP problem to fall in that 
class, and in general much work  is required to get from an 
LP solution (with fractional values) to an integer solution 
(with all x, integer, j E J). 

“standard or “tableau” form of the simplex method (see, 
e.g., [IO]). Briefly, at each iteration a subset of rn variables 
x,: j E B = ( j , ,  . . . , j,] is  designated basic and the 
remaining set, say N, nonbasic. The rn equations 

IP problems are almost always more difficult than LP 

The Gomory cut is  best  described in terms of the 

equivalent to the starting system of equations, permit the 
expression of the basic  variables  explicitly in terms of the 
nonbasic, and yield the basic feasible solution (x,, = 6,: i = 
1, . . ., r n ]  of the problem on setting x, = 0, j E N.  If all 6, 
are integral, then so is the basic solution; otherwise,  choosing 
some nonintegral b,, the cutting plane 

is adjoined to the system, whereflc) denotes the fractional 
part of c: fl c) = c - p ,  where p is the largest integer p 5 c. 

It  is  easy to check that any integer solution of (9) also 
solves (IO), while the current basic  feasible solution does not, 
so that ( IO)  truly gives a cutting plane. Gomory was able to 
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show that repeated adjunction of these  cuts, together with a 
suitable organization of the dual simplex method 
calculation, would terminate with an integer solution after a 
finite number of steps. 

Unhappily, pure cutting plane methods have not been 
adequately developed  for  mixed  integer  problems; and they 
display a certain lack  of stability on even small pure 
problems.  While some are solved  quickly, similar problems 
may just run on and on. This behavior  is not well 
understood, but then it is not surprising since the good 
behavior of the simplex method on linear programs is not 
well understood either; and what cutting plane methods do is 
convert the problem to a linear program  with many 
constraints not specifically  identified in advance. 
Nevertheless, cutting planes continue to play an essential 
part in the efficient solution of  very  large  integer  problems, 
including the largest TSP ever  solved  (see  Section 1 1 ) .  

In a different direction, cutting planes have  been 
important in solving nonlinear programming problems. A 
general statement of the problem  is 

min&(x): f ;(x) I 0, i = 1, . . . , m, ( 1  1) 

where x is the n-vector (x,, . . . , x,). (Of course, if all the 
functions of (1 1 )  are linear, this is just an LP problem.) 
Denoting the gradient of the function1; at any point x by 
$(x), any nonlinear function of ( I  I )  can be approximated by 
the family of linear functions 

if the points x,, . . . , x“ are suitably  chosen. The solution of 
the resulting LP problem, if not a sufficiently  good 
approximation to a solution of ( 1  I), can  be adjoined to the 
existing  collection as x“’”, and the procedure repeated. The 
rate of convergence of this kind of procedure, first  proposed 
in 1957, was established  for  convex functions by Philip 
Wolfe [ 181, who  refers to the extensive literature on this 
approach. 

The cutting-plane methods all add constraints to an 
approximate problem R to make it more nearly  like the 
given  problem Q; that is,  they add rows to the matrix A 
defining the linear problem. In view of LP duality, that 
procedure is equivalent to adding columns to the transpose 
of A which  defines the dual problem. Such a general  scheme, 
devised  from other considerations by Dantzig and Wolfe 
[ 191 for the solution of  very  large LP problems of a certain 
“decomposable” structure, is  called column generation, and 
has found hosts of applications in  large-scale  LP and NLP. 
One of these  was the work  of Gomory and Hu [20] on 
communication network  design, and another the work  of 
Gilmore and Gomory [21] (which was awarded the 
Lanchester  Prize of the Operations Research  Society of 
America  for 1963) on the “cutting stock” problem, which 
also led to some of the further developments sketched in the 
next  section. 

7. Knapsacks  and  facets 

A pure integer programming (IP) problem in nonnegative 
variables  having  only one constraint ( A  has but a single 
row), Zujx, 5 a, is  called a knapsack problem. Despite its 
simple appearance, the knapsack  problem is NP-complete; 
indeed, there are ways to state any pure IP problem as a 
knapsack  problem-the number of constraints is no measure 
of complexity!  Among many other appearances, it occurs as 
a subproblem, which must be  solved many times, in the 
cutting stock algorithm of Gilmore and Gomory [21]. Their 
paper [22] devoted to the knapsack  problem  itself  presents 
several algorithms for solving  it, one based on a property of 
the problem which has had many subsequent ramifications: 
As the right-hand side a varies, there are only, essentially, a 
finite number of solutions of the problem; further, there is a 
periodicity in the values of all but one variable  for 
sufficiently  large  values of a. This observation, along  with  his 
earlier work on cutting planes,  led Gomory to the discovery 
of similar periodicities  for the general pure integer problem 
[23] and to the so-called group problem for IP [24]. 

of group solutions as an object  of study for IP [25]. In a 
landmark paper [26] he  gave numerous properties of this 
class  of polyhedra, including a powerful characterization of 
thefacets (defining inequalities) of these polyhedra in terms 
of subadditive functions of a real  variable. 

In subsequent work [27,28] Gomory and Ellis Johnson 
continued those studies, including for the first time’ 
continuous variables. Johnson [29] and Crowder and 
Johnson [30] extended this work to the general  mixed 
integer group problem, giving some insight into why cutting 
planes had not been  successful for the mixed problem and 
what type of functions needed to be used to successfully 
address it. This work  has  been continued to provide a 
general theory [ 3 11 of facets of mixed  integer  programs. 

At the same time, algorithmic developments featured use 
of subadditive functions for these  cyclic group problems, the 
general group problem, the pure integer  problem [32], 
certain mixed problems, and the knapsack  problem [33]. 

The moral of this highly  compressed tale (which omits 
most of the literature written on the subject at the Thomas J. 
Watson  Research Center during the last ten years)  is that 
study of the structure of the polytopes determining IP 
problems was difficult, but rewarding; and it is continuing, 
with  significant  benefit to practical solution of these 
important problems. 

elsewhere on identifying more of the facets of  specific 
combinatorial problems (e&, [34]). While  work in the fifties 
(reviewed by Gomory [3]) had discovered  classes  of  facets  for 
the TSP going  far  beyond  degree  two (8) and subtour 
elimination (7), it was a new class of facets [35, 361 that 
greatly aided the successful calculations reported in 
Section 1 1. 

Gomory then focused on the polyhedra of the convex hull 

Meanwhile, intensive work  was  going on at IBM and 
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Let K be an odd  integer and let So, SI, . . . , S, be proper 
subsets of the cities such that (S,, . . . , SKI are pairwise 
disjoint but each contains at least one node of So and at least 
one node not in S,. Then the constraint 

where (.) denotes the next  highest  integer, constitutes a facet 
of the TSP [35]. 

Subtour elimination constraints are a very  special  case  of 
these:  If K = 1 and So = { i )  is a single node, then (1 2) 
becomes just (7). It is  known that, despite the obviously  vast 
number of constraints of the form ( 1  2),  they do not define 
the TSP polyhedron; still other facets  exist, but 
characterizations for them have not been found. 

8. Enumeration  and  branching 
Despite the complete impossibility of solving the TSP, or 
any other combinatorial problem of interesting size,  by 
simply enumerating all  feasible solutions, the concept of 
enumeration is at the heart of many of today’s solution 
procedures. They all, of course, incorporate some means of 
limiting the amount of enumeration that has to be done, and 
differ from one another primarily in how they go about that. 

In the early  sixties  Michael Held and Richard Karp [6] 
found that the so-called dynamic  programming technique 
could be applied to permutation problems; it reduces the 
growth rate of the work required to solve the problem from a 
number like n! to one more like 2”. They  developed a 
computer program for solving the TSP which  was able to 
solve problems having as many as 13 cities  using  only 
internal memory on a 32K computer. They combined this 
dynamic programming algorithm with a heuristic scheme 
which then made possible the solution of problems of as 
many as 50 cities (without, however, assurance that the true 
solution had been found). The program was so successful 
(for its time) that IBM  issued a press  release about it. Despite 
this early  success, dynamic programming has not proven to 
be a particularly effective technique for solving hard 
combinatorial problems, except  possibly for knapsack 
problems [22]. 

In 1963 Little, Murty, Sweeney, and Karel  published a 
landmark paper [37] which  first  used the term “branch and 
bound” (BB). A very simple method was proposed and 
tested  for the TSP. The results  showed a great  deal of 
promise: Problems of 40 cities  could be  solved in a few 
minutes of  IBM 7090 computer time. 

A “decade of enumeration” followed: A profusion of 
papers appeared presenting and testing  different enumerative 
methods for the TSP and a host  of other combinatorial 
problems. ‘Notable among these was the work  of  Spielberg 
and his  colleagues  who, in a succession of papers and 
computer programs (see, e g ,  [38-421 gave  very  efficient 

482 enumerative methods for  general IP, 0-1 IP, and various 

versions of the plant location problem  which,  like the TSP,  is 
NP-complete. A great  deal of general-purpose  software  using 
BB methods for mixed  integer programming was also 
written, including the IBM Program Product MPSX-MIP/ 
370 [43]. Its developers  have documented the extensive 
investigation into choice of method and solution strategy 
that preceded its design [44]. It continues to be the state-of- 
the-art software  for the solution of general IP problems. 

separation (partitioning) into subproblems, selection of 
subproblems (branching), and bounding. Let us state the 
optimization problem in the form minimize z(x), x E S, 
where S denotes the set of all  objects to be  investigated-in 
the case  of the TSP, the set  of  all tours. We do not attempt 
to solve the problem directly  over S, but divide it 
successively into smaller and smaller  sets to be  searched- 
separation. For the TSP separation is  usually done by 
dividing a given set of tours into two  subsets: In one subset 
all tours must pass  over the link joining a certain pair of 
cities, and in the other subset no tour may use that link. For 
0- 1 problems it is done by  fixing a single  variable at either 0 
or 1. As the enumeration proceeds the subsets  decrease in 
size until it finally  becomes  possible to solve the 
subproblems. If this happens before their number becomes 
huge, the problem will  be solved. (The language of graph 
theory is often  used to describe the above procedure. The 
family of subsets is a tree; separation is branching; and 
eliminating a subset from consideration, as below, pruning.) 

The most important possibility for limiting the number of 
subsets generated is the discovery of a sufficiently  high lower 
bound for the subset under investigation: If it can be shown, 
by any means, that all  subsets  of the current set can yield no 
lower a value for z than some value  already obtained 
elsewhere, then that set  need no longer be pursued. In 
integer programming the bounding is typically done by L P  
At a particular step, certain integer  variables  have  been 
(tentatively) fixed; the integer requirement is dropped on the 
remaining variables, so that the remaining minimization 
problem  is just an LP problem; and its solution, since its 
constraints are a relaxation of those of the IP problem, must 
yield a lower bound on all  possible solutions having those 
variables  fixed.  When suitable strategies are used for the 
crucial choice of  which  subsets to explore  first, so that high 
bounds are obtained soon and large areas of the problem are 
ruled out for searching, the technique is very powerful. 

In 1970 Held and Karp developed a BB algorithm for the 
TSP by using an easily implemented “subgradient” 
procedure, described in the next section, to quickly compute 
very sharp bounds. It was so effective that, as they  wrote [7], 
“It is  possible for us to do something which has never  been 
done before-to present in their entirety the search trees for 
large combinatorial problems of this type.” The 42-city 
problem [ 131, for  example, required the enumeration of only 
6 1 of the 33 X possible tours in the problem. 

A typical BB algorithm contains three elements. These are 
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At present, software that solves  large combinatorial lengths t, > 0 such that tk 0 and z k  tk = 00, choose the 
problems is  based almost exclusively on BB, which starting point yo, and perform the recursion yk+, = yk + tkgk 
underscores the importance of the bounding methods for k = 0, 1, 2, . . . , where g, is a subgradient of F at yk. The 
described in the next  section. values F( y,) then converge to the maximum value of F. 

Held and Karp invented a version  of this scheme for their 

9. Bounds and subgradients 
One of the most computationally useful  ideas to arise in the 
seventies is that many difficult problems can  be  viewed as 
easy problems complicated by additional constraints; it leads 
to a general scheme for producing bounds for BB algorithms 
which, under the name Lagrangian relaxation, has had 
widespread  use.  In the form in which it is presently  used it 
follows  from the work  of  Held and Karp [7],  who  used  it to 
develop a very  successful algorithm for the symmetric TSP. 

Let the given  problem  be stated as 

min (cx:Ax = b, x E S}, (13) 

where S is one of the subsets of the BB procedure for  which 
a lower bound is  needed. In a 0- 1 IP, for example, S is the 
set of  all 0- 1 vectors  whose trial values  have not yet  been 
fixed.  We form, as in Section  3, a Lagrangian  for the 
problem, and rewrite it as 

min, maxy [cx - (Ax - b)y]. (14) 

It  is immediate that (14) is no less than 

so that the function F( y )  defined in (1 5) serves as a lower 
bound of ( 13)  for any y. [The values of (1 3) and (1 5 )  are not 
necessarily equal here,  as  is the case in LP duality. They 
would be equal if the set S were convex, but the sets in 
which  we are interested are very nonconvex.] 

When S is the set of  all  0-1 vectors, the calculation of 
F( y) for any y is trivial. The application to the TSP is 
subtler. Held and Karp chose S to be the set of all  “1-trees,’’ 
a 1-tree  being a collection of intercity links  consisting of a 
spanning tree on the cities 2, 3, . . . , n together with  two 
distinct links to city 1. Every tour is a I-tree, and a 1-tree  is a 
tour only if each  city  has just 2 links. The latter requirement 
is just the degree-two constraint (8), which thus serves as 
Ax = b above. Calculation of F( y )  in this case requires 
finding a minimal spanning tree, a problem for which  very 
fast algorithms are available. 

Since a high  lower bound for ( 13) is important, we want a 
y that makes F( y )  large, although finding its exact 
maximum may not be worth the trouble. Being the infimum 
of a family  of linear functions, F is concave, but not 
everywhere  differentiable. A “differential  calculus” of such 
functions has  been  developed  (see,  e.g., [45] )  in which the 
notion of subgradient, an extension of the gradient for 
differentiable functions, is central. In our case, a subgradient 
of F at y is  given  by Ax,, where x is that member of S 
achieving the minimum of (14). A concave function can be 
maximized by a surprisingly simple procedure:  Choose step 

TSP work [7]. The general procedure is due to the Soviet 
mathematician N. Z. Shor [46],  who further developed it in 
many subsequent publications (e.g., [47]).  While  even  now 
the rate  of  convergence  of subgradient optimization, as this is 
called in the Western literature, is not well understood, the 
speed  with  which a single step caq be taken makes it an 
excellent algorithm for  getting approximate solutions. 
Crowder, Held, and Wolfe [48] demonstrated its practicality 
for a wide  variety of optimization problems. It had long  been 
thought that differentiability was essential for the 
effective maximization of a concave function. The success 
of one method for nondifferentiable functions inspired 
a variety of more refined procedures (e.g., [49, S O ] )  as well 
as the publication of a collection of papers on the new 
subject of “Nondifferentiable Optimization” [50]; but  here 
we wander from the trail of  work  closely  related to the TSP. 

10. Combinatorial off shoots 
The connection between problems involving permutations 
and linear programming described in Section 4 has inspired 
a whole literature connecting LP, especially duality theory, 
with  extrema1 combinatorial problems of a more general 
nature. 

(1) and its dual (4), and assume that its data A, b, c are all 
integral.  Suppose it is true that the set  of  all  pairs ( X ,  y )  
which are respectively  feasible  for primal and dual have a 
combinatorial meaning if they are integral.  If one can prove 
there exist optimal (x, y )  which are integral, then the duality 
theorem of linear programming proves a combinatorial 
theorem. 

a proof of the Konig-Egervary theorem that the largest 
cardinality of a set S of  1s contained in a (0, 1) matrix M 
such that no two elements of S are in the same row or 
column is the smallest cardinality of a set T of  rows and 
columns containing all 1 s in M. The first cardinality sought 
is  given  by the solution of the LP problem 

maximize &bf,xlI :xij 2 0, bij 5 I, >, 5 1, (16) 

whose constraints relax  those ( 5 )  defining permutation 
problems. If the optimum vertex X = (x,) is  integral, then 
each row and column of X consists either entirely of zeros or 
of a single one, the remaining entries being  zero, and the X 
sought has as many ones as possible.  If (16) is taken as a 
dual problem, the primal problem  is 

minimize xu, + Cv, : u, 2 0, V, 2 0, ui + vj 2 M,, 

To describe the general setting, consider the LP problem 

The first  explicit instance of this paradigm  may  have  been 

il I 1 

I I 

for  all i, j ,  ( 1  7) 483 
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which  evidently  yields the second cardinality sought. 
The integrality  of optimum primal and dual vectors 

follows  from the fact that the coefficient matrix A governing 
the inequalities is totally unimodular; i.e.,  all nonsingular 
square submatrices have determinant k 1, which  implies that 
the use  of  Cramer’s  rule to find the coordinates of an 
optimum vertex  will  yield integral answers. Hoffman [52-541 
has given a characterization of all combinatorial theorems of 
this type, but the relevance  of  Cramer’s rule to such 
theorems does not end there. One reason  is that the relevant 
totally unimodular matrix may take some trouble to find, as 
in some generalizations of  Dilworth’s theorem [55]. Also, it 
may happen that, even though A is not totally unimodular, 
the right-hand side b has the property that every  vertex  of 
(x:Ax 5 6, x z 0) is  integral. For example, in the case  of the 
so-called matching polytope, one can show that every  vertex 
has the property that one of the relevant determinants for a 
Cramer’s rule argument has determinant “1 [56]. 

Sometimes one can show that, for every  integral c for 
which a dual problem max(by:ATy 5 c, y 2 0 )  has a 
solution, it has an integral solution. This implies [57] that 
every  vertex of (x:Ax z b, x 2 0) is integral, so 
combinatorial interpretations follow. This fact can be used 
to prove generalizations of the famous “max flow = min 
cut” theorem [SI) ,  the “shoqest path = max cut packing” 
theorem [59], and matroid intersection results. For some of 
these, one shows that an optimal solution to the dual can be 
artfully  recast from a solution to a problem  using a totally 
unimodular matrix. For some others, the concept of lattice 
polyhedron [58,60] yields a unification of several earlier 
results; and here the integrality of the dual problems follows 
from the existence  of an optimal y whose support 
corresponds to rows forming a totally unimodular matrix. 
For other results  (e.g., [61]), dealing  with Berge’s perfect and 
balanced matrices, unimodularity seems to provide no clue. 
For a recent status report, see [62]. 

A celebrated combinatorial use  of inequalities and total 
unimodularity is  Baranyai’s  parallelism theorem which 
asserts that, if a set N has kh elements, then there are disjoint 
partitions of N,  each partition consisting of subsets of  exactly 
h elements, such that each  subset  with h elements occurs in 
exactly one partition. The special  case h = 2 corresponds to 
the classic problem of arranging k matches on each of 2k - I 
days so that a league  of 2k teams can complete a round 
robin tournament. This special  case  is  easily done; indeed, 
there is a formula for doing so; but for general h it was not 
known before  Baranyai  whether it could be done, and a 
formula is  still  unavailable. He uses a complicated inductive 
argument, in which the critical step of the induction depends 
on total unimodularity, to prove the existence of the desired 
family of partitions. Building on Baranyai’s approach, and 
using  ideas  of the cutting stock  problem mentioned above, 
together  with linear programming duality and some delicate 

484 computations involving binomial coefficients, one can find 

all  pairs (n, h)  such that if I NI = n, h n, then there are 
disjoint partitions of N containing subsets of ut most h 
elements, such that each S with 1 S 1 5 h occurs in exactly 
one partition [63,64]. 

11. The 318-city problem 
A TSP of 3 18 cities  is not the largest  problem  ever tackled; 
we  have heard of attempts made on problems of more than 
600 cities. The 3 18-city  problem  may, or may  not, be the 
largest  problem  ever  solved; but it is the largest  problem 
known to have  been  solved. It is the largest of the ten 
symmetric TSPs  solved  by Crowder and Padberg [65] in 
1979. Three of those problems had already been  solved, and 
solution proven; for the remaining problems, the optimal 
solutions were  established for the first time. (Some of these 
had been  previously  solved, but optimality of the solutions 
had not been proved.) 

As Crowder and Padberg state, their distant point of 
departure was the RAND work [ 131 of 1954; but their 
elaborate procedure, a sequel to that described in [66], used 
almost every  device that has been mentioned so far. 

They employed a procedure with three main steps. The 
first  phase  used the Lin-Kerningham [8] heuristic to find a 
good starting tour, and then a simplex-based procedure was 
applied to an  LP problem  composed initially of the degree- 
two constraints. During the course of this procedure, suitable 
subtour-elimination, 2-matching and comb constraints were 
derived and used to augment the current LP problem. These 
derived constraints had the property that they did not 
exclude  feasible tours, but the new augmented problem  was 
a tighter LP relaxation of the TSP problem. When the 
constraint generation procedure could no longer identify 
candidate constraints, the augmented LP problem was solved 
to optimality, yielding a true lower bound on the minimum 
tour length of the TSP problem. 

Phase  two  involved  fixing a subset of variables in the TSP 
problem to either 0 or 1. This procedure, first  employed in 
this context in [ 131, utilized the upper bound of the tour 
length from the Lin-Kerningham heuristic, and the solution 
value and reduced  costs  from the LP problem  solved in 
phase one. For the 3 18-city TSP problem, this allowed more 
than 49 000 of the 50 403 variables to be  fixed (most at zero, 
of course), thus reducing the problem to about three percent 
of its original number of variables. 

In the third phase, the reduced problem was treated as a 
0-1 IP problem, utilizing MPSX-MIP/370 for its solution. 
The 0- 1 solution to this problem was either an optimal 
solution to the reduced TSP problem-this solution, taken 
in conjunction with the variables fixed at 1 in phase  two, 
yielded an optimal solution for the original TSP problem- 
or defined a collection of subtours for the reduced problem. 
In the latter case, appropriate constraints to exclude the 
current 0- 1 solution were generated and adjoined to the 
problem, which  was then re-solved. For the 3 18-city 
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problem, the 0- 1 LP problem  required  two  such 
augmentations before  yielding the optimal tour. The total 
CPU time (on the Thomas J. Watson  Research  Center’s 
IBM 370/168, using VM/370 and MVS/TSO) was just under 
six minutes. 

Crowder and Padberg conclude [65]: “We cannot report 
any failure of the proposed methodology. . . . In our view 
this fact points to the suitability of facet-defining cutting- 
Planes for the Purpose of proving optimality in hard and 
difficult combinatorial optimization problems. . . . We are 
confident that problems involving I000 cities and more are 
amenable to exact solution by today’s  technology.” 
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