Modeling of
defects in
integrated circulit
photolithographic
patterns

by C. H. Stapper

In a previous paper by the same author the
foundation was laid for the theory of
photolithographic defects in integrated circuits.
This paper expands on the earlier one and
shows how to calculate the critical areas and
probability of failure for dense arrays of wiring.
The results are used to determine the nature of
the defect size distribution with electronic defect
monitors. Several statistical techniques for doing
this are described and examples are given.

1. Introduction

This paper is a sequel to an earlier one [1] on modeling of
integrated circuit defect sensitivities. The earlier work
described mathematical models for very small defects that
cause insulator pinholes and reverse current diode leakage. It
also dealt with photolithographic defects, in which case the
defect size becomes of importance.

In that paper the critical area was defined as that area in
which the center of a defect must fall to cause a failure or
fault in the integrated circuit. This area was found to vary as
a function of the diameter x of circular defects. The
magnitude of x was used as the defect size, and we explained
how long conductive lines could be used to determine the
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nature of the defect size distribution. Measurements at IBM,
taken over a long period of time, have suggested a 1/x’ fall-
off in that distribution as the defects size x increases.

Not covered in the previous paper were the effect of
pattern “proximity” on critical area calculations, the
conseguences of a 1 J/x distribution, and the effect of
limiting the critical area to the size of a chip or defect
monitor. These three subjects are covered here, as well as the
determination of the defect size distribution with defect
monitors.

2. Critical area as a function of defect size
The critical area for a long conductor of width w and length
L was found in [1] to be

A(x) =0 for0=yx<w, (1a)

Alx) = L{x —w)

as a function of defect size x. This function is depicted
graphically in Figure 1.

For two very large conductors, separated by a narrow slit
of width s and length L, the critical area was found to be

forw=x < o, (1b)

Ax) =0
A(x) = Lix — )

This is the same function as that for open circuits except
that the symbol s is used for spacing instead of w for line
width. This complete duality between open and short circuit
models holds even for many of the more complex circuits.
Where they are the same, only the open circuit case is
described in this paper.

for0 = x <3, (2a)

fors < x < . (2b)
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Critical area as a function of defect size for a very long and narrow
integrated circuit conductor of length L and width w.

Hypothetical defect size distribution.

3. Defect size distribution

The critical areas as a function of defect size have to be
combined with a distribution of defect densities that is also a
function of defect size. Hypothetical distributions of the
form

2n — UxD
Do =228 0 < x < e (a)
(n+ l)x,
2An - Dxo'D
D(x) = —(—(n—:%_ for xo = x = =, (3b)
C. H. STAPPER

where # is a positive number, have been used to analyze
defect monitor data. This distribution has a maximum and
discontinuous slope at defect size x,,.

A value of n = 3 has been found acceptable in a number
of experiments at IBM, as described in [1]. This is the
number that is used in this paper. It produces the
distribution

D
Di(x) = % for 0 < x < x,, (4a)
Xo
xoD
D(x) =% for x, = x <, (4b)
X

which has an average defect density D. A plot of this
function is shown in Figure 2. The graph indicates that the
defect density has a maximum at x,. Defects smaller than
this size cannot be resolved by the optics used in the
photolithographic process. The minimum dimensions of the
patterns must therefore always be larger than x,,.

Other defect size distributions can also be used. An
example of a hypothetical exponential distribution appears
elsewhere in this paper.

4. Average critical area for a single long line

In [1] the failures caused by defects were called faults. The
expected or average number of faults A can be calculated by
combining the critical area and the defect size distribution
with the integral

A= j; A)D(x)dx. &)
Since x, < w, the critical area in (1b) and the defect size

distribution in (4b} are the only nonzero contributors to this
integral, and therefore

- 2D
>\=f Lix — w)Xe” dy. (6)
w X
Evaluation gives
_ LxD
A= (7)

With this result it is possible to define an average critical

area
2
1= Lxq
2w

®)

This average takes the defect size distribution into account.
The average number of faults in this example is now simply
given by

A=A4.D. ®

The subscript 1 has been used here to designate the critical
area for a single long line. We next take a look at the critical
area of two long conductive lines.
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Two long lines. The critical areas for the lines grow independently

until they meet halfway between. Defect size for which the two critical areas meet halfway between
two lines is 2w +s.

5. Critical area for two conductive lines
The diagram in Figure 3 represents two conductive lines,
each of width w, and a space s between them. The length of
these lines is given as L. It is assumed that this length is
much greater than the line width or the spacing so that end
effects can be neglected. We determine the critical area for
the condition where an open circuit in either one of the lines
or both lines is considered a failure or a fault.

Let us first look at defects that are only slightly larger than
the line width w. This situation is shown in Fig. 3, and the
critical area associated with it is double that of a single line:

A(x) = 2L(x — w). (10)

The critical areas for these two lines continue to grow this
way as a function of defect size until they meet halfway
between the lines, as shown in Figure 4. This happens for
the defect size x = 2w + . .

For defects larger than 2w + s the critical area increases
only outside the two lines. Figure 5 shows the two dashed
lines that form the boundaries of the critical areas in that
case. According to the diagram the distance between these
lines is x + 5. The critical area is therefore given by L(x + s).

The preceding discussion can be summarized by writing
the functional dependence of the critical area as

A =0 forO0=x=<w, (11a)
Alx) =2L(x — w) forw=x=<2w+s, (11b)
A(x) = L(x + s) for2w+s<y <o, (11¢c)

This function is plotted in Figure 6.
Combining (11) with the defect size distribution of (4)
gives the average number of faults

2wts ;ﬁ
>\=f 2L(x — wy X9 dx
" i |_Figure6
i D
+ f L(x + ) X—3 dx. (12) Critical area as a function of defect size for two long conductive
2w+s X lines.
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Evaluation of the integrals gives

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 C. H. STAPPER



464

Figu
Array of N long conductors, each one of width w and each pair
spaced a distance s apart.

Diagram pertinent to the determination of the critical area of N
conductors for very large defects.

_LGw+ 25)xiD

(13)
2w(2w + )
From this result we can define
2
- L3w + 2s) x4 (14)

2T 2w2w + 5)

as the average critical area for two very long conductors.
This is an interesting result and merits some discussion.

6. The proximity effect

Combining the formulas in (8) and (14) allows us to express
the critical area for two lines in terms of the critical area of
the single line. This results in

— (Bw+ 25 -
T (15)
C. H. STAPPER

When the separation s between the two conductors
becomes large, the critical area of the two lines
lim 4, = 24, (16)
S—0
is exactly twice the critical area of a single line. This is as
expected. For most integrated circuits, however, the spacing
between long conductive lines is of the same magnitude

(numerical dimension) as the line width. If we therefore let
s = w, the critical area in (15) becomes

5
=§A1- (17)

This shows that the critical area of two closely spaced
conductors is less than the sum of the critical areas of two
single conductors. We call this the “proximity effect.” It is
caused by the increase of critical area as a function of defect
size. The critical area of each line will grow independently
until these two areas meet halfway between the two lines.
The merging occurs when the defect size is equal to twice the
line width plus the spacing. For defects larger than this, the
critical area increases as a function of defect size as it did for
a single line. The effect is therefore independent of the defect
size distribution. Use of the l/x3 distribution in this example
merely simplified the mathematics. Other size distributions
affect only the magnitude, not the principle involved here.
The proximity effect does not imply that a manufacturer
of integrated circuits must cram all the photographic
patterns closer together. Although the sensitivity to defects
causing open circuits may be lowered in this way, the
sensitivity to defects causing short circuits is increased by the
tighter spacing of the patterns. The optimal situation
therefore depends delicately on the defect densities and size
distribution of the defects causing open and short circuits.

7. A large number of long conductors

Most integrated circuit chips have a large number of
interconnecting wires. In computer logic circuits and
memory chips, such connections consist of long parallel
lines. It is therefore useful to investigate the critical area of N
parallel conductors, each of width w, and each pair spaced
by distance s, as shown in Figure 7. All these lines are
assumed to be of the same length L.

The key to critical area calculations is the failure criterion.
In this case we assume that an open circuit in any of the
lines constitutes a failure for the entire array. If we had
assumed, for instance, that an open circuit in any pair of
lines caused a failure, while open circuits in single lines are
permissible, the results would come out quite differently. We
investigate that situation later.

When an open circuit in any of the parallel wires results in
a failure, the minimum defect size needed to cause this
problem is the same as the width of the line. For defects
slightly larger than this, the critical area increases linearly for
each line independently. We therefore have
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A(x) = NL(x = w). (18)

This area grows as a function of defect size until the
boundaries of the critical areas between each pair of lines
meet. As was the case with two conductors, this happens
halfway between the lines when the defect size x = 2w + s.
The condition for this is shown in Fig. 7. Substituting this
defect size in (18) shows that the critical area at this point is
given by NL(w + s).

What happens for defect sizes that are larger than the ones
we have considered until now? In that case the critical area
increases only in the region outside the parallel conductors,
as shown in Figure 8. From the diagram it can be
determined that the space between the top and bottom
dashed line is 2(x/2 — w) + Nw+ (N = 1)s. It is
consequently possible to write the entire critical area
function as

Ax)=0 forO=x=w, (19a)

A(x) = NL(x — w) forw=sx<2w+s, (19b)

AX)=Lix + (N = 2w+ (N — 1)s}
for2w+ s=< x <. (19¢)

This result is depicted graphically in Figure 9.

The critical area in (19) can be combined with the size
distribution in (4) to give the expected or average number of
faults in these conductors. Again only part (4b) of the size
distribution contributes; an evaluation of the pertinent
integrals gives

_ L{(N + Dw + NsjxyD

b 2
2w(2w + 5) (20)
which shows that the average critical area is

_ _ LYN + Dw + Nsjx;

Av = 2w@w +s) 2D
This last result can also be expressed in terms of 4, the
critical area of a single conductive line, to give

- N+ w4+ Ns —

A = (__)W__;g i (22)

N 2w+ s "
When the spacing between the lines is very large, we obtain

lim 4, = NA,, (23)
which equals the total critical area of NV independent single
lines. This is what one would expect.

Let us next look at the condition where the space between
the lines is exactly the same as the line width. In this case,

_ 2N+ 1 -

AN|s=w = 3 Al’ (24)
and for a very large number of conductors we have

- 2

A ~ = NA,. (25)
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LiX+(N=2w+(N<bsp

v Defect size, X

I Critical area as a function of defect size for N parallel conductors.

This suggests that the total critical area is less than the sum
of the critical areas of N conductors that are spaced far apart.
This illustrates the proximity effect once more. However, it
does even more than that. If we combine the results in (16)
and (17), we see that the critical area for two closely spaced
conductors is 5/6 times the critical area of two parallel lines
that are separated by a large distance. This number is larger
than the 2/3 obtained with the N parallel lines in (25). It
indicates that the proximity effect becomes more
pronounced when the number of conductors is increased.

8. Other critical areas associated with a large
number of parallel conductors
Earlier in this paper a comment was made about the
complete duality that exists between open and short circuits.
This still holds for the case of N conductors. We must,
however, realize that there are only N — 1 spaces associated
with N conductors. Taking this into account and swapping
the width w and spacing s gives a critical area
Alx)=0 for0=sx=<s, (26a)
A(x)=(N-=1)L(x = 5) forssx<2s+w, (26b)
A(x) = L{x + (N = 3)s + (N = 2)w}

for2s + w=< x <o, (26c)

If the defect size distribution for these defects can also be
described by (4), the average critical area becomes
- _ L{Ns+ (N - Dwjxg

SNl 25(2s + w)

@7

for short circuits in N long conductors with N — 1 spaces.
The subscript s has been added to indicate short circuits.
Such a designation, however, is completely optional. In most
practical cases an index / is used to indicate the defect type.

C. H. STAPPER
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Figure 10 '

Critical area for open circuits grows in the space between conduc-
tors when two or more lines have to be open-circuited to cause a
failure.

Defect size that will always cause two or more lines to fail when its
center falls anywhere between the two dashed horizontal lines indi-
cated at the right.

w
Xi2=2w=s

Upper and lower boundaries for large defects that will cause at least
two conductors to be open-circuited.
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This makes it possible to categorize the open and short
circuit critical areas corresponding to each photolithographic
process step.

Also pbinted out in the previous section was the critical
area dependence on failure criteria. Let us take a look at an
example. Take the case where we can afford to have an open
circuit in a single line, but not in two or more lines. This can
happen in circuits with redundancy. Therefore, the smallest
defect that causes a failure is x = 2w + s, as can be seen in
Fig. 7. If this defect were placed slightly lower than shown, it
would cause only one line to be open-circuited, which is
permissible. Even somewhat larger defects can fall on this
array of wires and cause only one line to be open-circuited.

The critical area in which the center of these defects must
fall will again increase linearly with defect size. This critical
area, however, increases between adjacent conductors, as
indicated by the dashed lines in Figure 10. From geometrical
considerations it is possible to deduce that the distance
between these dashed lines is x — 2w — 5. As we saw before,
there are (N — 1) of these spaces between the conductors.
The critical area therefore becomes L(N — 1)(x — 2w — s).
This critical area will grow until it corresponds to a defect
size that will always open up two lines when its center falls
within the array of wires. The smallest defect for which this
condition occurs is shown in Figure 11. It has a diameter
x = 3w + 2s. For defects larger than this, the critical area
can grow only outside the wires. This is illustrated in Figure
12. In this case the boundary of the critical areas is formed
by the locus of centers of defects that just open-circuit the
top two or bottom two conductors. If the center of the defect
shown had fallen slightly higher, it would have open-
circuited only one line, which is allowed according to the
failure criterion. By adding all the vertical dimensions in Fig.
12 it can be determined that the distance between the top
and bottom dashed line is x + (N — 4w + (N — 3)s. With
the preceding results the critical area can be expressed as

Ax)=0 for0<sx=<2w+s, (28a)
AX)=LIN=-1)x —2w—y3)

for2w+s<sx <s3w+2s, (28b)
A(x) = Lix + (N = 4w + (N - 3)s}

for 3w+ 2s < x s . (28¢c)
When this function is combined with the defect size

distribution in (4), we obtain
- — Dw+ Ns} x>
i, = L{(N - )w s} Xo 29)

22w + 53w + 2s)

for the averége critical area. This result can be compared to
the average critical area for N lines in (21) to give

w -

N W TS (30)
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when N is much larger than 1.

The critical area in (29) is therefore smaller than the
critical area of N long lines in (21). It demonstrates that
critical areas differ if different failure definitions are
associated with the same photolithographic patterns. Often
changes in test conditions result in radical changes of the
critical areas. The failure criteria must therefore be clearly
known before the critical areas can be determined for any
integrated circuit pattern.

9. A single conductor on a chip

The critical areas that we have considered until now all
become very large for large defects. Experience has
furthermore taught us that the likelihood of such large
defects occurring is very small, as exemplified by the 1/x°
distribution. In practice it has therefore proven useful to
limit the maximum critical area to the chip area. A couple of
examples are treated in this section.

Consider a chip of length L and height H with a single
conductor, as shown in Figure 13. This conductor is again a
line of width w and length L. It is centered on the chip so
that its center line is exactly H/2 from both the top and
bottom sides of the chip. Any open circuit in the pattern is
considered a failure. The critical area is restricted to those
defects whose centers fall inside the chip. This restriction has
no effect on defects that are slightly larger than the line
width w. For them the critical area grows as a function of
defect size just as it did for the unbounded line in (1b).
However, when the boundaries of the critical areas coincide
with the edges of the chip, the growth stops. At this point the
critical area is equal to the chip area. The defect size that
corresponds to this area can be determined from the
dimensions in Fig. 13. With its center at the top edge of the
chip, such a defect must be large enough to cause an open
circuit in the line. This happens when the radius is equal to
H/2 + w/2. The defect size x = H + w, therefore, belongs to
a defect which always causes an open circuit in the
conductor, no matter where its center falls on the chip.
Defects larger than this size will have the same property.

The critical area for the conductive line on a chip can
consequently be written mathematically as

A(x)=0 forO=sx<w, (31a)
Alx) = L(x = w) forw=sx=<sH+w, (31b)
A(x)=LH for H+w=<yx <o, (31¢)

A plot of this function is shown in Figure 14.
The result in (31) can be combined by integration with the
defect size distribution to give an average critical area

_ LHx,

= S0l + ) (32)

The superscript 1 again indicates that this is the critical area

for a single conductor, while the subscript ¢ is used to
indicate that the critical area is restricted to the chip size.
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Chip with a single conductor. Critical areas are limited to the chip
area.

| Critical area of a single conductor on a chip.

Expressing this result in terms of 4,, the unrestricted or
unbounded critical area of a single line of (8) gives

- H _

= T r e (33)

Typical chip dimensions are H = 5 mm and line widths w
are usually about 2 um. As a result 4, = 0.9996 4,. This
shows that for all practical purposes the difference between
A, and 4, is indeed negligible.

In the preceding example the conductor was centered
halfway on the chip. We next look at the situation where
such a conductor is offset from center, as shown in Figure
185. For small defects the critical area again grows as a
function of defect size, as it did for the single line in (1b). It
does so until the boundary of this area reaches the nearest

C. H. STAPPER
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LH
2aHL

s

W 2aH +w 20=a)H+w

X

I Critical area of an off-center conductor.

Chip with a large number of conductive lines.
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edge of the chip. It can be deduced from Fig. 15 that this
happens for a defect of radius aH + w/2. For defects larger
than this the critical area grows only in one direction. This
growth continues until the boundary of the critical area
coincides with the bottom edge of the chip in Fig. 15.
The defect radius corresponding to this condition is
(1 —a)H + w/2.

The above approach can be used to determine that the
critical area in this case becomes

Alx)=0
Ax)=Lx —w)
Alx) = L(x + 2aH — w)/2

for0<x=<w, (34a)

forw=syx=<2aH+w, (34b)

for2aH+w=x<2(1-aH+w, (34¢)

Alx)=LH for2(l —a)H+w=x <oo, (34d)

The graph of this function is plotted in Figure 16.
Combining the areas in (34) with the defect size distribution
gives an average critical area

_ LH{w + 4a(1 — a)H} x.

’

1c = Zw(w + 2aH)iw + 2(1 — a)H} 35)

The prime has been used to indicate that this result differs
from (32), even though for @ = 1/2 the two resuits are the
same. It can furthermore be seen that

.= Lx(z)

v — ZA0 3

1111_[1 Al.=5.5 (36)
which indicates that this critical area also approaches the
critical area of the unbounded single conductive line (8).

10. A large number of conductive lines on a chip
Let us next investigate the critical area for a large number of
parallel conductive lines on a chip. With equal spacing
between N lines the problem can be simplified by assuming
that the center of the top and bottom lines is spaced a
distance H/2N from the top and bottom edges of the chip.
This is shown in Figure 17. The pitch, or center-to-center
spacing of the lines, in this case is H/N.

As in Section 7, we assume that an open circuit in any of
the conductors will cause the chip to fail. For defects slightly
larger than w the critical area varies linearly as it does in (18)
and (19b). This linear growth in area as a function of defect
size continues until the critical areas between the lines
merge, or until the critical areas associated with the top and
bottom lines reach the top or bottom edge of the chip. With
the dimensions chosen in this example all these conditions
occur for the same defect of size H/N + w.

The critical area therefore is simply

Alx)=0 forO0=x=w, (37a)
Alx) = NL(x — w) forw=sx<H/N+w, (37b)
A(x) = HL for HHN + w < x < o, (37¢)
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This function looks the same as that of the single line in Fig.
14 except that the slope of the ramp is N times steeper.
When the critical area in (37) is averaged over the defect size
distribution, the result becomes

_ LHx,

e = 2uCHIN + ) 9

for the average critical area.
If we take the space between the lines in Fig. 17 to be s,
then the pitch of the pattern is

H/IN=w+s. (39)
As a result we can write (38) as

2
T = __Lli)ﬁ__ (40)

Ne T Dw(dw + 5)’

which in terms of the average critical area of N unbounded
lines (21) becomes

— H _
= 1. 41
Ane (N+ Dw+ Ns ¥ “h
Once more using (39) allows us to write this result as
o @)

Nc=H+wAN'

This is the same relationship that existed between the
bounded and unbounded critical area of a single conductor
in (33). It therefore demonstrates once more that we
introduce a negligible error when the critical area calculation
is restricted to the chip’s surface. This appears to be valid as
long as the dimensions of the photolithographic patterns are
small compared to the chip dimensions, even when the chip
is crammed full with those patterns.

The preceding results are due to the | /x3 defect size
distribution. They would also hold for a 1/x* distribution,
but not fora 1 /x2 distribution. For the latter case the
unbounded critical areas become infinitely large and the
mathematics becomes somewhat more difficult.
Nevertheless, a 1/x” size distribution would have great
practical value and it is unfortunate that it has not yet shown
up in the real world. If it did exist, it would become possible
to increase yield by shrinking the dimensions of the
integrated circuit photolithographic patterns. We investigate
the effect of pattern shrinking on critical areas next.

11. Consequences of the 1 /x distribution
Competition continually forces manufacturers of integrated
circuit components to find ways to lower cost and to
increase productivity. One way to achieve this is by
decreasing the dimensions of the photolithographic patterns
and increasing the number of circuits per wafer. Let us do
this to the pattern in Fig. 17. If we shrink all the dimensions
by a fraction “a,” we have the following relationships:
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w' = aw, (43a)
s’ = as, (43b)
L' =al, (43c)
H'=aH (43d)

The prime indicates the shrunken dimensions. The critical
area for the smaller chip becomes

- L'H'x(z)

[

T W Ew + ) 44

When the fractions in (43) are substituted in (44), the result
gives

Afe = Ay (45)
This is an amazing result. Equal critical areas imply the
same average number of failures A’ = A since 4, D = 4,,.D.
The resulting yields of the large and small chips are therefore
equal.

The above phenomenon can readily be explained. The
smaller chip has fewer defects on it because of the reduced
chip size. These smaller patterns, however, are sensitive to
smaller defects. With a 1 /XJ defect size distribution, the
increase in small defects exactly equals the decrease in chip
area. For a 1/x° distribution the average number of faults
would go down and the yield would increase when we
shrank the photolithographic patterns. For a 1/x*
distribution the opposite would happen; the yield would be
lowered when we decreased the dimensions.

12. Probability of failure
The probability of failure has been discussed in [1]. It relates
to the critical area by

A, =04, (46)

where A, is the critical area, 8 the probability of failure, and
A the chip area. The probability of failure is therefore
obtained by dividing the critical area by the chip area:

6=A/A. (47)

If, for example, we divide the critical area of the chip with N
conductors by the chip area A = LH, the probability of
failure becomes

(x) =0 for0=x=<w, (48a)
#(x) = N(x — wy/H forw=x =< HIN+w, (48b)
Ux)=1 for HHN + w=x < o, (48¢)

This result states that the probability of failure is zero for
defects of size x < w, the probability of failure is one for
defects of size x < H/N + w, and the probability of failure
varies linearly with defect size for defects of all other sizes,

viz., w < x < H/N + w. 469
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| A general probability of failure curve.

The average probability of failure can also be obtained
with (47). Thus, dividing the average critical area in (40) by
the chip area LH gives the result

2
Xo

= 2w(w + 5)° “49)

|

It should be noted here that for the shrunken chip defined in
(43), (44), and (45) of the previous section the average
probability of failure becomes

8 = 6/d". (50)

Since a is smaller than one, this result implies that 9’ is
larger than 8. The average probability of failure therefore
increases when we decrease the size of the photolithographic
patterns. This stands to reason. The smaller patterns are
sensitive to small defects and there are more of these. Since
the defect size distribution is incorporated in (49) and (50),
this effect is properly accounted for.

The concept of probability of failure as a function of
defect size has advantages over the direct determination of
critical areas. In computer logic and memory chips identical
circuits are used a large number of times. The probability of
failure as a function of defect size, as well as the average
probability of failure, for one circuit is exactly the same as
that for ten thousand circuits or more. It is therefore possible
to determine the probability of failure for a single circuit or a
small number of circuits and use this result to determine the
critical area for a large number of circuits.

A number of computer programs have been developed at
IBM to determine the probability of failure curves for
various circuits. Analytical programs that calculate the
increase of probability of failure as a function of defect size
were developed by R. W. Bartoldus and N. F. Brickman at
the IBM Laboratory in East Fishkill, New York, and by G.
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Guhman at IBM Burlington, Vermont. Also in Burlington,
W. N. Kuschel and D. H. Withers developed a simulation
program for determining the probability of failure. In their
approach, circular defects of different sizes are superimposed
in random locations on the actual design patterns. The
computer program then checks for open or short circuits in
the patterns. The fraction of defects, of a given size, that
cause a failure equals the probability of failure for that defect
size. This approach has been used in subsequent programs
by J. Carter of IBM Burlington and K. Barkley of IBM East
Fishkill. The latter’s program is now being used to minimize
the defect sensitivities of new integrated circuit chip designs.

The probability of failure as a function of defect size is
also useful in another way. The probability of failure curve
shown in Figure 18 is general. The average probability of
failure obtained from this, and the defect size distribution in
4), is

,x
o N

§= 2 &3]

o

if @ > x,. We can therefore simplify the critical area
calculation for a large number of cases that have the same
probability of failure curves as in Fig. 18.

1t is also possible to combine the probability of failure
curve shown in Fig. 18 with other size distributions. For the
1/x" defect size distribution in (3b) the average probability
of failure is

n— n—2y n—
20 - d" g

0= ¥ D =200 = a2

(52)

provided @ > x,. Another defect size distribution formerly
investigated by this author is the exponential distribution

r,,x/!

oo =2, (53

where [ is a parameter. When this is combined with the
probability of failure curve of Fig. 18, the average probability
of failure becomes

[(e—a/[ _ é’_b/l)

b= b—-a

(54)

Other results are possible with different hypothetical defect
size distributions. The question, of course, is which of these
distributions fits the actual data best. How this is determined
is the topic of the next section.

13. Verification of the defect size distribution
The nature of the defect distribution can be investigated with
defect monitors. Such monitors have to be designed to detect
open or short circuits; they are known as open circuit
detectors and short circuit detectors. A defect monitor is
essentially an array of a large number of parallel conductors
like the ones described in Sections 7 and 10. To make an
open circuit detector, the ends of the parallel wires are
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| Open circuit defect monitor.

connected alternately to form a serpentine line like the one
shown in Figure 19. The monitor in that figure was designed
by D. Thomas of IBM Burlington and was part of an
experimental chip named “YATS” or “yield analysis test
site.” The yield theory developed by this author and
described in [2, 3] was based on data obtained with the
defect monitors on that test site. Similar open circuit
detectors have been described by A. C. Ipri and I. C. Sarace
of RCA [4].

The YATS chip also contained short circuit monitors. In
this case the ends of the parallel conductors are connected in
such a way that two interspersed comblike structures are
formed. These structures have also been referred to as
interdigitated fingers. A YATS short circuit detector of this
type is shown in Figure 20. Ipri and Sarace had similar short
circult monitors [4].

The probabilities of failure and the critical areas for these
defect monitors are the same as those for the array of
parallel conductors on a chip. These were described in the
previous sections. Therefore, for an open circuit monitor of
length L and height F, the cnitical area is identical to the one

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

I Short circuit monitor.

given in Eq. (38). This, of course, presumes that the 1/x’
size distribution is valid, as it appeared to be in the case of
the YATS data. The critical areas for different size
distributions are discussed later in this section.

The critical area of a short circuit monitor is the same as
that of the open circuit monitor except that the symbol s for
spacing is swapped with w for line width to give a critical
area

— LHxg

TN+ Wy ©3)

In this case it is presumed that the defect size distribution
again peaks at defect size x, and falls off as 1 /x3 for larger
defect sizes.

To determine the defect size distribution of a
photolithographic process requires the use of defect monitors
with different line widths and line spacings. We now look at
a hypothetical example that shows how this is done in the
case of open circuits. It is assumed that the minimum line
width is ¢ and that we have monitors with line widths a,
1.5a, 2a, 2.5a, 3a, and 6a. The physical area of these
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Table 1 Physical area, line width, and relative critical area of
six open circuit monitors.

i = Monitor  A; = Monitor W, = Line Relative
number area width critical area
1 A a 1
2 A 1.5a 0.4444
3 A 2a 0.25
4 A 2.5a 0.16
5 1.54 3a 0.1667
6 24 6a 0.0556

Table 2 Data from monitors with different line widths.

i = Monitor N,= Sample u;= Numberof U/N, Relative
number size Jailing monitors average
1 1721 61 0.0354 1
2 1732 27 0.0161 0.4398
3 1730 13 0.0091 0.2120
4 1725 11 0.0061  0.1799
5 1741 11 0.0060  0.1783
6 1741 3 0.0486

0.0020

monitors is shown in Table 1 and varies between A4 and 24.
According to (40) the critical area is given by

2
T A

o AXe 56
Ami = 3 o + )’ (36)

where the subscript / indicates the monitor number, 4, the
physical monitor area, w, the line width, and s, the spacing
between lines. If the line spacing is designed to be equal to
the line width, the critical area is given by

2
4 =A.'Xo

2 -
™mi 6W‘

(57)

Multiplying this quantity by 6a/4 produces the relative
critical area given in Column 4 in Table 1.

The average or expected number of failing monttors X, is
given by

X, =1,D, (58)

where D is the average defect density associated with the
photolithographic process that is being monitored with these
defect detectors. Since this defect density is the same for all
monitors, it follows that the relative average number of
faults per monitor X, should be the same as the ratio of the
critical areas. Let us see how this works out.

We assume that there are 109 of each one of the monitors
1-6 on a wafer. A batch (or lot) of 16 of these wafers
therefore gives us 1744 of each of these monitors. When
these are tested, not all the data are valid for analysis.
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Stapper [3] and O. Paz and T. R. Lawson, Jr. {5} described
methods for eliminating gross yield faitures from such
monitor data. These are the gross failures that affect entire
areas of wafers. Furthermore, in actual data there is the
possibility of invalid information caused by tested errors,
probe damage, and misprobing. All such faulty information
must be removed from the data before it is analyzed. This
often requires multiple testing and visual inspections of the
wafers. As a result the valid monitor sample size is usually
less than the total number of monitors that are available. An
example of this can be seen in the typical monitor data
tabulated in Table 2. Column 3, with the number of failing
monitors U,, contains the valid failure data only. The
monitors with invalid data have been excluded from the
sample to give the same size N, shown in Column 2.

The monitor yield for the data is given by

Yo = NN;U (592)
=1~ U/N,. (59b)

If we use Poisson statistics, this can be set equal to

Y =e™ (60)

If A; < 0.05, we can furthermore make the approximation
Y=1-X\. (61)
Combining (61) and (59b) gives

A= UJN, (62)

which is tabulated in Column 4 of Table 2. If we multiply
these results by N,/U,, they will be normalized in the same
way as the critical areas in Column 4 of Table I. And indeed
the numbers look similar.

How good is the relationship between the relative critical
areas in Column 4 of Table | and the relative average
number of failures per monitor of Column 5 in Table 2? A
number of statistical techniques are available for quantifying
this. The simplest method is use of the correlation
coefficient. Programs for calculating this quantity are part of
every statistical library for use on digital computers, and
even hand calculators are available with the capability to
determine it. The closer the correlation coefficient is to a
value of one, the better the agreement is between the two
sets of data for which it is calculated. In the example given
here it comes out to be 0.998. This implies excellent
agreement between the two sets of numbers. As a result, the
1/x’ defect size distribution is an excellent model for these
data.

There is a danger in using the correlation technique to
verify statistical models. When we obtain a good result we
do not know how this compares with the results of other
models. Even though in the preceding discussions we have
obtained excellent agreement between data and models,
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there may be even better models that give even higher
correlation coefficients when data and model results are
correlated. Exploring this possibility in more detail is the
subject of the next section.

14. Optimization of defect size distribution

To optimize the defect size distribution requires a more
flexible critical area calculation than the one obtained with
the 1/ distribution. Both the 1/x" distribution in (3) and
the ¢ distribution in (53) are possible candidates. Other
distributions may be needed if the data require it. This,
however, is beyond the scope of this paper.

For the 1/x distribution the probability of failure in (52)
can be multiplied by the monitor area A, to give the critical
area. For an open circuit monitor the quantity g in (52)
must be replaced by the line width w,. Similarly, b in (52)
must be replaced by 2w, + s, so that the average critical area
is given by
_ 2002w, + 57 = wi x4

— i 0 ‘7
m T (4 1N — 20w, + )W 2w, + )2 63)

In the case where w, = s, the average critical area is given
by

I @ =xg 4

- i
™ (4 1)~ 2)37 2w (64)
With this we can calculate the relative critical areas for the
monitors in Table 1 for different values of n. When we
determine the correlation coeflicient for each value of #, it
results in the curve shown in Figure 21.

The result shows that the optimum correlation coefficient
0f 0.9983 occurs for n = 3.07, The 1 /x3 model is therefore
indeed an excellent model for the data. However, even for
n=2.5and n = 3.7 the correlation coefficients exceed 0.995
and therefore indicate that size distributions of 1 /)(2'5 and
l/)(3'7 are also acceptable models for these data.

The preceding results may appear disturbing. If we have
such small distinctions in the correlation coefficients, how
can we ever establish the nature of the defect size
distribution with any degree of accuracy? This can only be
done with a more sensitive technique. A straightforward
method that can be used for this is a nonlinear least square
fitting technique. In this method the difference between the
calculated and measured values for each observation is
squared. The object then is to find the right combination of
parameters in the model to minimize the sum of these
squares. The value n in (64) and the defect density D in
N = A_(n)D are the two parameters used in the minimization
process. This result gives n = 3.02 for the minimum. How
this minimum is approached as a function of » is shown in
Figure 22. The vertical scale is logarithmic so that in this
case the minimum is sharp and well defined.

We now take a look at what happens with the exponential

defect size distribution ¢ of (53). Using the probability of
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Correlation coefticient

H—-

Correlation coefficient as a function of n in the i/x# defect size

distribution.

Sum of the squares

Sum of the squares as a function of the power 1 in the defect size

distribution.

failure in (54), the monitor area A4;, and the relationships
a=w,and b = 2w, + s, results in the critical area

L Ai{eﬂv,// _ e—-(2w,-+5,-)/[}

N

mi (65)

w,+ s,
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Correlation coefficient

0.5 1.0 1.5 20

Multiples of minimum line width

Correlation coefficient as a function of the length parameter in an
exponential defect size distribution.

Sum of the squares

Multiples of the minimum line width

Sum of the squares determination of { for an exponential defect

size distribution.

Under the condition where w;, = s,, this result simplifies to

1 - e (1 — &2
mi 2w'

(66)

To use this expression in a correlation coefficient
comparison required that we express / in multiples of the
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minimum line width 4 in the form / = ma. It is now possible
to optimize the correlation coeflicient as a function of the
parameter m. The result of such an exercise is shown in
Figure 23, where a maximum correlation coeflicient of
0.9946 is reached for / = 0.83a. This maximum, however, is
lower than any of the correlation coefficients shown in Fig.
21. This therefore leads to the conclusion that the l/x3
defect size distribution is a better model for these data than
an exponential distribution.

The above results can also be checked with the sum of the
squares. The minimum sum of the squares as a function of /
in terms of multiples of line width a is shown in Figure 24.
The minimum occurs for / = 1.23a and the sum of the
squares is 2.36 % 107, This is an order of magnitude higher
than the minimum of 2.5 X 10™° in Fig. 22 obtained for a
l/x3 defect size distribution. This allows us once more to
conclude that the 1/x* distribution is a better model for
these data than the exponential distribution.

The reader has probably noted that the two techniques
used here for determining the parameter / gave results that
differed by approximately 40 percent. This is due to the
exponential nature of the distribution and the fact that no
statistical technique is perfect. However, we can conclude
that for these data a value of / = g is near optimum.

15. Conclusions
In this paper the critical areas for large arrays of wiring and
defect monitors have been derived. In doing so the
“proximity” effect was described and its effect on critical
area calculation was evaluated. It was also shown that if we
shrink the patterns of long parallel wires in width, spacing,
and length, the 1/ defect size distribution results in the
same random defect yield for the large and shrunk patterns.
Determination of the nature of the defect size distribution is
therefore crucial if we want to decrease the cost of integrated
circuit manufacture by shrinking the size of the integrated
circuit patterns.

Experimental techniques for evaluating the defect size
distribution have been described and an example with its
results has been discussed.
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