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In  a  previous  paper by  the  same  author  the 
foundation  was laid for the  theory  of 
photolithographic defects  in  integrated circuits. 
This  paper  expands  on  the  earlier  one  and 
shows  how  to calculate  the  critical  areas  and 
probability  of  failure  for  dense  arrays  of  wiring. 
The  results are used  to  determine  the  nature of 
the defect  size distribution  with  electronic  defect 
monitors. Several  statistical  techniques  for  doing 
this are  described  and  examples  are  given. 

1. Introduction 
This paper is a  sequel to  an earlier one [ I ]  on modeling of 
integrated  circuit defect sensitivities. The earlier  work 
described mathematical models  for very small defects that 
cause  insulator  pinholes and reverse current  diode leakage. It 
also dealt with photolithographic defects, in which case the 
defect size becomes of importance. 

In that  paper  the critical area was defined as  that area in 
which the  center of  a defect must fall to cause  a failure or 
fault in the  integrated  circuit. This  area was found  to vary as 
a  function of the  diameter x of circular defects. The 
magnitude of X was used as  the defect size, and we explained 
how  long  conductive lines could be used to  determine  the 
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nature of the defect size distribution.  Measurements  at IBM, 
taken over  a long period of time, have suggested a l /x3 fall- 
offin  that  distribution  as  the defects size x increases. 

pattern “proximity” on critical area calculations, the 
consequences  of a ]/x3 distribution,  and  the effect of 
limiting the critical area  to  the size of a chip  or defect 
monitor. These three subjects are covered  here, as well as  the 
determination of the defect size distribution with defect 
monitors. 

Not covered  in the previous paper were the effect of 

2. Critical  area as a function  of defect size 
The critical  area  for  a  long conductor of  width w and length 
L was found in [ 11 to be 

&x) = 0 for 0 5 x 5 w, (la) 

&x) = L(x - w) for w s x c: 00, (1b) 

as  a function of defect size x. This  function is depicted 
graphically in Figure 1. 

of width s and length L, the critical area was found  to be 

A ( x )  = 0 for 0 5 x 5 s, (2a) 

A ( x )  = L(x - s) for s 5 x 5 m. (2b) 

This is the  same  function  as  that for open circuits  except 
that  the symbol s is used for  spacing  instead  of w for line 
width. This  complete  duality between open  and  short circuit 
models  holds even for many of the  more complex  circuits. 
Where  they are  the same,  only the  open circuit case is 
described in this paper. 

For two very large conductors, separated by a narrow slit 
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where n is a positive number, have  been  used to analyze 
defect monitor data. This distribution has a maximum and 
discontinuous slope at defect  size x,,. 

A value of n = 3 has  been found acceptable in a number 
of experiments at IBM, as described  in [ I ] .  This is the 
number that is used in this paper. It produces the 
distribution 

which has an average  defect density B. A plot of this 
function is  shown in Figure 2. The graph indicates that the 

a -  
defect density has a maximum at x,,. Defects  smaller than 
this size cannot be resolved by the optics used in the 

I Critical area as a function of defect size for a very long and narrow photolithographic process. The minimum dimensions of the 
integrated circuit conductor of length L and width w. patterns must therefore always  be larger than xo. 

Other defect  size distributions can also be  used.  An 
example of a hypothetical exponential distribution appears 
elsewhere in this paper. 

4. Average  critical  area for a single  long  line 
In [ 11 the failures caused by defects were called  faults. The 
expected or average number of faults X can be calculated by 
combining the critical area and the defect  size distribution 
with the integral 

X = Im A ( x P ( x ) d x .  (5) 

Since x,, < w, the critical area in ( 1  b) and the defect  size 
distribution in (4b) are the only nonzero contributors to this 
integral, and therefore 

x = lm L(x - w ) q d x .  
2 -  

X -- e -  Evaluation gives 

Hypothetical defect size distribution. L X 3  x = -  
2w . 

With this result it is  possible to define an average  critical 
area 

3. Defect  size distribution - Lx2 A =A 
2 w .  (8) 

The critical areas as a function of defect  size  have to be 
combined with a distribution of defect densities that is also a This average  takes the defect  size distribution into account. 
function of defect  size. Hypothetical distributions of the The average number of faults in this example is  now  simply 
form given  by 

The subscript 1 has been  used  here to designate the critical 
area for a single  long  line. We next take a look at the critical 
area of two  long conductive lines. (3b) 
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I Two long  lines.  The critical areas  for the lines grow independently I until they meet halfway between. I Defect  size  for which the  two  critical  areas meet halfway between 

For defects larger than 2w + s the critical area increases 
only  outside the  two lines. Figure 5 shows the  two dashed 
lines that  form  the  boundaries of the critical areas  in  that 
case. According to  the diagram the distance between these 
lines  is X + s. The critical area is  therefore given by L(x + s). 

The preceding discussion can be summarized by writing t 
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When the separation s between the  two  conductors 
becomes large, the critical area of the  two lines 

lim A, = 2 2 ,  
s- 

I Array of N long  conductors, each one of width w and each pair 
spaced  a  distance s apart. 

I Diagram  pertinent to the determination of the critical  area of & 
conductors for very large defects. 

x =  L(3w + 2 4 x 3  
2w(2w + s)  . 

From  this result we can define 

A ,  = 
- L(3w + 2s) x :  

2w(2w + s) 
as  the average critical area for  two very long conductors. 
This is an interesting result and merits some discussion. 

6. The  proximity  effect 
Combining  the  formulas  in (8) and (14)  allows us  to express 
the critical area for  two  lines in  terms of the critical area of 
the single line. This results in 

(3w + 2s) - A, = 
(2w + s) A I .  464 

is exactly twice the critical area of a single line. This is as 
expected. For most  integrated  circuits, however, the spacing 
between long conductive lines is of the  same  magnitude 
(numerical  dimension)  as  the  line width. If  we therefore let 
s = w, the critical area  in ( 1  5 )  becomes 

This shows that  the critical area of  two closely spaced 
conductors is less than  the  sum of the critical areas of  two 
single conductors.  We call this  the  “proximity effect.” It is 
caused by the increase  of  critical area  as a function of  defect 
size. The critical area of each line will grow independently 
until  these  two areas  meet halfway between the two lines. 
The merging  occurs  when the defect size is  equal to twice the 
line width  plus the spacing. For defects larger than this, the 
critical area increases as a function of  defect size as  it did for 
a single line. The effect is therefore independent of the defect 
size distribution. Use  of the l / x 3  distribution  in  this example 
merely simplified the mathematics. Other size distributions 
affect only  the  magnitude,  not  the principle  involved here. 

The proximity effect does  not imply that a manufacturer 
of integrated  circuits must  cram all the photographic 
patterns closer together.  Although the sensitivity to defects 
causing open circuits may be lowered in this way, the 
sensitivity to defects causing short circuits is increased by the 
tighter  spacing  of the patterns. The  optimal  situation 
therefore depends delicately on  the defect  densities and size 
distribution of the defects causing open  and  short circuits. 

7. A large  number of long  conductors 
Most  integrated  circuit chips have a large number of 
interconnecting wires. In  computer logic circuits and 
memory chips,  such connections consist  of  long parallel 
lines. It is  therefore useful to investigate the critical area of N 
parallel conductors, each  of width w, and each  pair  spaced 
by distance s, as  shown  in Figure 7. All these  lines are 
assumed to be of the  same length L. 

In this case we assume  that  an open  circuit  in any of the 
lines constitutes a failure  for the  entire  array. If we had 
assumed, for  instance, that  an open  circuit in  any pair  of 
lines  caused  a failure, while open circuits  in single lines are 
permissible, the results would come  out  quite differently. We 
investigate that  situation later. 

When  an  open circuit  in any of the parallel wires results in 
a  failure, the  minimum defect size needed to cause this 
problem is the  same  as  the width  of the line. For defects 
slightly larger than this, the critical area increases linearly for 
each  line independently. We therefore  have 

The key to critical area calculations is the failure criterion. 
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A(x)  = NL(x - w). (18) 

This area grows as a function of defect  size until the 
boundaries of the critical areas between  each pair of lines 
meet. As was the case  with  two conductors, this happens 
halfway  between the lines when the defect  size x = 2w + s. 
The condition for this is  shown in Fig. 7. Substituting this 
defect  size  in (1 8 )  shows that the critical area at this point is 
given  by NL(w + s). 

we  have considered until now? In that case the critical area 
increases  only in the region outside the parallel conductors, 

What happens for  defect  sizes that are larger than the ones 

as shown in Figure 8. From the diagram it can be 
determined that the space  between the top  and bottom 
dashed line is 2 ( ~ / 2  - w )  + Nw + ( N  - 1)s. It is 
consequently possible to write the entire critical area 

8 " 

Critical area as  a function of defect size for N parallel conductors. 

function as 

A ( x )  = 0 for 0 5 x I w, ( 194 

A ( x )  = NL(x - w) for w 5 x 5 2w + s, ( 19b) 

A ( x )  = L { x  + ( N  - 2 ) ~  + ( N  - 1)s) 

for 2w + s 5 X < 00. (19c) 

This result is depicted graphically in Figure 9. 
The critical area in (19) can  be combined with the size 

distribution in (4) to give the expected or average number of 
faults  in  these conductors. Again only part (4b) of the size 
distribution contributes; an evaluation of the pertinent 
integrals gives 

x =  L ( ( N  + I)w + N s J x i b  
2w(2w + s) ' (20) 

which  shows that the average critical area is 

A, = 
- L ( ( N  + I)w + NsJx i  

This last  result can also be  expressed in terms of A , ,  the 
critical area of a single conductive line, to give 

2w(2w + s) . (21) 

A, = 
- ( N  + I)w + Ns - 

2w + s AI.  

When the spacing  between the lines  is very large, we obtain 

which equals the total critical area of N independent single 
lines. This is what one would expect. 

the lines is  exactly the same as the line width.  In this case, 
Let us next  look at the condition where the space  between 

This suggests that the total critical area is  less than the sum 
of the critical areas of N conductors that are spaced  far apart. 
This illustrates the proximity  effect once more. However, it 
does  even more than that. If  we combine the results in (16) 
and ( I  7), we  see that the critical area for  two  closely  spaced 
conductors is 5/6 times the critical area of two  parallel lines 
that are separated by a large distance. This number is  larger 
than the 2/3 obtained with the N parallel  lines in (25). It 
indicates that the proximity effect  becomes more 
pronounced when the number of conductors is increased. 

8. Other  critical  areas  associated  with  a  large 
number of parallel conductors 
Earlier  in this paper a comment was made about the 
complete duality that exists  between open and short circuits. 
This still holds for the case  of N conductors. We must, 
however,  realize that there are only N - 1 spaces  associated 
with N conductors. Taking this into account and swapping 
the width w and spacing s gives a critical area 

A ( x )  = 0 for 0 5 x I s, (26a) 

A ( x )  = ( N  -1)L(x - s) for s 5 x 5 2s + w, (26b) 

A ( x )  = L ( x  + ( N  - 3)s + ( N  - 2)wJ 

for 2s + w 5 X < m. (26c) 

If the defect  size distribution for these  defects can also be 
described by (4), the average critical area becomes 

- L(Ns  + ( N  - I ) w ) x ~  
(24)  as.^-^ = 2s(2s + w) 

and for a very  large number of conductors we have for short circuits in N long conductors with N - I spaces. 
The subscript s has  been added to indicate short circuits. 

2 -  ANIml '5 - N A , .  (25) Such a designation, however,  is  completely optional. In most 
s=w 3 practical  cases an index i is  used to indicate the defect  type. 465 
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I Critical area  for open circuits grows in the space between conduc- 
tors when two or more lines have to be open-circuited to cause a 
failure. 

I Defect size that will always cause two or more lines to fail when its 
center falls anywhere between the two dashed horizontal lines indi- 
cated at the right. 

I 

I 

I 
I 

I 

Ixw/2-2w-s 

I Upper and lower boundaries for large defects that  will cause at least 
two conductors to be open-circuited. 
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This makes it possible to categorize the open and short 
circuit critical areas corresponding to each photolithographic 
process  step. 

Also pointed out in the previous  section was the critical 
area dependence on failure criteria. Let  us take a  look at an 
example. Take the case  where we can afford to have an open 
circuit in  a  single  line, but not in two or more lines. This can 
happen in circuits with redundancy. Therefore, the smallest 
defect that causes  a failure is x = 2w + s, as can  be  seen in 
Fig. 7. If this defect  were  placed  slightly  lower than shown,  it 
would  cause  only one line to be open-circuited, which  is 
permissible.  Even somewhat larger  defects can fall on this 
array of  wires and cause only one line to be open-circuited. 

The critical area in which the center of these  defects  must 
fall will again  increase  linearly  with  defect  size. This critical 
area, however,  increases  between adjacent conductors, as 
indicated by the dashed lines in Figure 10. From geometrical 
considerations it is possible to deduce that the distance 
betweeh  these dashed lines is x - 2w - s. As  we  saw before, 
there are ( N  - 1) of these  spaces  between the conductors. 
The critical area therefore becomes L( N - 1 )(x - 2 w - s). 
This critical area will  grow until it corresponds to a  defect 
size that will  always open up two lines when its center falls 
within the array of  wires. The smallest  defect  for  which this 
condition occurs is shown in Figure 11. It has a diameter 
x = 3w + 2s. For defects  larger than this, the critical area 
can  grow  only outside the wires. This is illustrated in Figure 
12. In this case the boundary of the critical areas  is formed 
by the locus of centers of defects that just open-circuit the 
top two or bottom two conductors. If the center of the defect 
shown had fallen  slightly  higher,  it  would  have  open- 
circuited only one line, which  is  allowed  according to the 
failure criterion. By adding all the vertical dimensions in Fig. 
12 it  can be determined that the distance between the top 
and bottom dashed  line  is x + ( N  - 4)w + ( N  - 3)s. With 
the preceding  results the critical area can be  expressed as 

A(x) = L ( N -  l)(x - 2w - s) 
for 2 w  + s c x 5 3w + 24 (28b) 

4 x 1  = a x  + ( N  - 4)w + ( N  - 3)sJ 

for 3w + 2s c x 5 03. (28c) 

When this function is combined with the defect  size 
distribution in (4), we obtain 

JN2 = 
L{(N - 1)w + Ns] x; 

2(2w + s)(3w + 2s) 

for the average critical area. This result can be compared to 
the average critical area for N lines in (2 1)  to give 
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when N is much larger than 1. 
The critical area  in (29)  is  therefore  smaller than  the 

critical area of N long lines in (2 1). It  demonstrates  that 
critical areas differ if different failure  definitions are 
associated with the  same photolithographic  patterns.  Often 
changes in test conditions result in radical  changes  of the 
critical areas. The failure  criteria must therefore be clearly 
known before the critical  areas can be determined  for  any 
integrated  circuit pattern. 

9. A single  conductor  on a chip 
The critical areas  that we have  considered until now all 
become very large for large defects. Experience has 
furthermore  taught us that  the likelihood of such large 
defects occumng is very small, as exemplified by the l /x3 
distribution. In practice  it has therefore  proven useful to 
limit the  maximum critical area  to  the  chip area.  A  couple  of 
examples are treated  in  this  section. 

Consider a chip of length L and height H with a single 
conductor, as  shown in Figure 13. This  conductor is  again  a 
line of width wand length L. It is  centered on  the  chip so 
that its center line is exactly H / 2  from  both  the  top  and 
bottom sides of the chip. Any open circuit in  the  pattern is 
considered  a failure. The critical area is restricted to those 
defects whose centers fall inside the chip. This restriction  has 
no effect on defects that  are slightly larger than  the  line 
width w. For  them  the critical area grows as a function of 
defect size just as  it did for the  unbounded  line  in (1 b). 
However,  when the  boundaries of the critical areas  coincide 
with the edges of the chip, the growth stops. At this point  the 
critical area is equal  to  the  chip area. The defect size that 
corresponds to  this  area  can  be  determined  from  the 
dimensions in Fig. 13. With  its center  at  the  top edge of the 
chip,  such  a  defect must be large enough  to cause an  open 
circuit in  the line. This  happens when the radius  is equal  to 
H/2 + w/2. The defect size x = H + MI, therefore, belongs to 
a defect which always causes an  open circuit in  the 
conductor,  no  matter where its center falls on  the chip. 
Defects larger than  this size will have the  same property. 

The critical area for the  conductive line on a chip  can 
consequently be written  mathematically  as 

A ( x )  = 0 for 0 5 x I w, (3 la) 

A(x) = L(x - w) for w I x I H + w, (31b) 

A(x) = LH for H + w 5 x < m. (3 IC) 

A  plot of this  function is shown in Figure 14. 

defect size distribution  to give an average critical area 
The result in  (31) can be combined by integration with the 

The superscript 1 again  indicates that  this is the critical area 
for  a single conductor, while the subscript  c is used to 
indicate that  the critical  area is restricted to  the  chip size. 

I Chip  with  a  single  conductor.  Critical  areas  are  limited  to the chip 
area. 

I Critical  area of‘ a  single  conductor on a  chip 

Expressing this result in terms of A,, the unrestricted or 
unbounded critical area of a single line of (8) gives 

Typical chip  dimensions  are H = 5 mm  and  line widths w 
are usually about 2 pm. As a  result zlc = 0.9996 A,. This 
shows that for all practical  purposes the difference between 
A,c and 2, is indeed negligible. 

In  the preceding  example the  conductor was centered 
halfway on  the  chip.  We next  look at  the  situation where 
such  a conductor is offset from center,  as  shown in Figure 
15. For small  defects the critical area again grows as a 
function of defect size, as it did for the single line  in ( 1 b). It 
does so until  the  boundary of this  area reaches the nearest 467 
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edge of the chip. It can be deduced from Fig. I5 that this 
happens for a defect  of radius aH + w/2. For defects  larger 
than this the critical area grows  only id one direction. This 
growth continues until the boundary of the critical area 
coincides with the bottom edge  of the  chip in Fig. 15. 
The defect radius corresponding to this condition is 
( 1  - u)H + ~ / 2 .  

The above approach can be  used to determine that  the 
critical area in this case becomes 

A ( x )  = 0 for 0 I x 5 w, (344 

A(x)  = L(x - w) for w 5 x 5 2aH + w, (34b) 

Chip with an off-center conductor. A ( x )  = L(x + 2aH - ~ ) / 2  

for 2aH + w 5 X 5 2(1 - a)H + w, (34c) 

A ( x )  = L H  for 2( 1 - a)H + w 5 X < m. (344  

The graph of this function is plotted in Figure 16. 
Combining the areas in (34) with the defect  size distribution 
gives an average critical area 

A‘ = 

The prime has  been  used to indicate that this result differs 
from (32), even though for a = 112 the two results are  the 
same. It can furthermore be seen that 

LH LH( w + 4 4  1 - u)H) X :  
2rrHL I C  ~ W ( W  + 2aW)(w + 2( 1 - u ) H ) ’  (35) 

- L x 2  
2rrH + \I‘ 2(1-o)H+w lim A ; ,  = 3, 2w (36) 

H”tm 

X which indicates that this critical area also approaches the 
critical area of the unbounded single conductive line (8). 

Critical area of an off-center conductor. 10. A large number of conductive  lines  on a chip 
Let us next  investigate the critical area for a large number of 
parallel conductive lines on a chip. With equal spacing 
between N lines the problem can be simplified by assuming 
that the center of the top and bottom lines  is  spaced a 
distance H/2M from the top  and bottom edges  of the chip. 
This is shown in Figure 17. The pitch, or center-to-center 
spacing of the lines, in this case  is HIN. 

As in Section 7, we assume that an open circuit in any of 
the conductors will cause the  chip to fail. For defects  slightly 
larger than w the critical area varies  linearly  as it does in ( 1  8) 
and (19b). This linear growth in area as a function of  defect 
size continues until the critical areas between the lines 
merge, or until the critical areas associated  with the top and 
bottom lines  reach the top or bottom edge of the chip. With 
the dimensions chosen in this example all these conditions 
occur for the same defect of  size HIM + w. 

The critical area therefore is simply 

m -  A ( x )  = 0 for0 5 x I w, (37a) 

Chip with a large number of conductive  lines. A ( x )  = NL(x - w) for w 5 X 5 H/M + w, (37b) 

468 A(x)  = H L  for HIM + w 5 x I 00. (37c) 
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This  function looks the  same as that of  the single line in Fig. 
14 except that  the slope  of the  ramp is N times steeper. 
When  the critical area  in (37) is averaged over the defect size 
distribution,  the result becomes 

for  the average critical area. 

then  the pitch of the  pattern  is 

H / N =  w + S. (39) 

As a result we can write (38) as 

If  we take  the space between the lines in Fig. 17 to be s, 

which in  terms of the average critical area of N unbounded 
lines  (21)  becomes 

H AN< = 
- 

( N  + l)w + Ns A N .  

Once  more using (39) allows us to write this  result  as 

This is the  same relationship that existed between the 
bounded  and  unbounded critical area of  a single conductor 
in (33). It therefore demonstrates  once  more  that we 
introduce a negligible error when the critical area calculation 
is restricted to  the chip’s surface. This  appears  to  be valid as 
long as  the  dimensions of the photolithographic patterns  are 
small compared  to  the  chip  dimensions, even when the  chip 
is crammed full with those  patterns. 

The preceding  results are  due  to  the  l/x3 defect size 
distribution.  They would also hold  for  a 1/x4 distribution, 
but not  for a l /x2 distribution. For the  latter case the 
unbounded critical areas become infinitely large and  the 
mathematics becomes  somewhat more difficult. 
Nevertheless, a 1 /x2 size distribution  would  have great 
practical value and it is unfortunate  that it has not yet shown 
up in the real world. If it did exist, it  would  become possible 
to increase yield by shrinking  the dimensions  of  the 
integrated  circuit  photolithographic  patterns. We investigate 
the effect of pattern shrinking on critical areas next. 

11. Consequences of the l /x3  distribution 
Competition continually forces manufacturers of integrated 
circuit components  to find ways to lower cost and  to 
increase  productivity. One way to achieve  this is by 
decreasing the  dimensions of the photolithographic patterns 
and increasing the  number of  circuits per wafer. Let us do 
this to  the  pattern in Fig. 17. If  we shrink all the  dimensions 
by a  fraction “a,” we have the following relationships: 

w ‘ = aw, (434  

s‘ = as, (43b) 

L’ = aL, (434 

H’ = aH. ( 4 3 4  

The  prime indicates the  shrunken dimensions. The critical 
area for the smaller chip becomes 

(44) 

When the fractions in (43) are substituted in (44), the result 
gives 

This is an  amazing result. Equal critical areas imply  the 
same average number of  failures A’ = A since Z i c D  = ANcD. 
The resulting yields of the large and small chips  are therefore 
equal. 

The above phenomenon  can readily be explained. The 
smaller chip  has fewer defects on it because of the reduced 
chip size. These  smaller  patterns, however, are sensitive to 
smaller defects. With  a 1 /x defect size distribution,  the 
increase  in  small defects exactly equals the decrease in  chip 
area. For a 1/x2 distribution  the average number of  faults 
would go down  and  the yield would  increase  when we 
shrank  the photolithographic  patterns. For a l /x4 
distribution  the opposite  would happen;  the yield would be 
lowered when we decreased the dimensions. 

12. Probability  of  failure 
The probability of failure  has  been discussed in [ 11. It relates 
to  the critical area by 

A, = BA, (46) 

where A, is the critical  area, B the probability of failure, and 
A the  chip area. The probability  of  failure is therefore 
obtained by dividing the critical area by the  chip area: 

0 = AJA.  (47) 

If, for  example, we divide the critical area of the  chip with N 
conductors by the  chip  area A = LH, the probability of 
failure becomes 

@(x) = 0 for 0 5 x 5 w, (484  

B(x) = N ( x  - w)/H for w 5 X 5 H / N  + w, (48b) 

@(X) = 1 for H / N  + w 5 X 5 00. ( 4 W  

This result states that  the probability of failure is zero  for 
defects of size X < w, the probability of failure is one for 
defects of size x < H / N  + w, and  the probability of failure 
varies linearly with defect size for defects of all other sizes, 
viz., w < x < H / N  + w. 469 
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Guhman  at IBM  Burlington, Vermont. Also in Burlington, 
W. N. Kuschel and D. H.  Withers  developed  a  simulation 
program  for determining  the probability  of failure. In their 
approach, circular defects of different sizes are superimposed 
in  random locations on  the  actual design patterns. The 
computer program then checks  for open  or  short circuits  in 
the patterns. The fraction  of defects, of a given size, that 
cause a failure  equals the probability  of failure for that defect 
size. This  approach  has been used in subsequent programs 
by J. Carter of IBM Burlington and K. Barkley of  IBM East 
Fishkill. The latter's program is now being used to  minimize 
the defect sensitivities of new integrated  circuit chip designs. 

The probability  of  failure as a function of defect size is 

e - :  
also useful in another way. The probability  of failure curve 
shown  in Figure 18 is general. The average probability  of 

I A general  probability of failure  curve. failure obtained  from this, and  the defect size distribution in 
(4), is 

The average probability of failure can also be obtained 
with (47). Thus, dividing the average  critical area  in (40) by 
the  chip  area LH gives the result 

2 - 
o =  x0 

2w(2w + s)' (49) 

It should be noted  here that for the  shrunken  chip defined in 
(43), (44), and (45)  of the previous  section the average 
probability  of  failure  becomes 

2 = e/a2. 

Since (I is smaller than  one,  this result  implies that e. is 
larger than e. The average probability  of  failure  therefore 
increases  when we decrease the size of the photolithographic 
patterns. This  stands  to reason. The smaller patterns  are 
sensitive to small defects and  there  are  more of these. Since 
the defect size distribution is incorporated  in (49) and (50), 
this effect is properly accounted for. 

The concept  of  probability  of  failure as a function of 
defect size has advantages  over the direct determination of 
critical areas. In  computer logic and  memory  chips identical 
circuits are used a large number of  times. The probability  of 
failure as a function of  defect size, as well as the average 
probability  of  failure,  for one  circuit is exactly the  same as 
that for  ten thousand circuits or more. It is  therefore possible 
to determine  the probability of failure  for a single circuit or a 
small number of circuits and use this result to  determine  the 
critical area for a large number of circuits. 

A number of computer programs  have been developed at 
IBM to determine  the probability  of  failure  curves  for 
various  circuits. Analytical programs that calculate the 
increase of probability  of  failure as a function of defect size 
were developed by R. W. Bartoldus and N. F. Brickman at 

470 the IBM Laboratory in East Fishkill, New York,  and by G. 

if a > x0. We can therefore simplify the critical area 
calculation  for  a large number of cases that have the  same 
probability of failure curves as in Fig. 18. 

It is also possible to  combine  the probability  of failure 
curve  shown in Fig. 18 with other size distributions. For  the 
l / x n  defect size distribution  in (3b) the average probability 
of failure is 

provided a > x0.  Another defect size distribution formerly 
investigated by this  author is the  exponential  distribution 

where 1 is a parameter.  When  this is combined with the 
probability  of  failure  curve of Fig. 18, the average probability 
of failure becomes 

Other results are possible with different hypothetical defect 
size distributions. The question, of course, is which of  these 
distributions fits the  actual  data best. How  this is determined 
is the  topic of the next  section. 

13. Verification of the  defect  size distribution 
The  nature of the defect distribution  can be investigated with 
defect monitors. Such  monitors have to be designed to detect 
open or  short circuits;  they are  known as open circuit 
detectors  and  short circuit  detectors.  A defect monitor is 
essentially an  array of a large number of parallel conductors 
like the  ones described in  Sections  7 and 10. To  make  an 
open  circuit  detector, the  ends of the parallel wires are 
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Open circuit defect monitor. Short circuit monitor. 

connected  alternately to form  a  serpentine  line like the  one 
shown  in Figure 19. The  monitor in that figure was designed 
by D. Thomas of IBM Burlington and was part of an 
experimental chip  named “YATS” or “yield analysis test 
site.” The yield theory developed by this  author  and 
described in [2, 31 was based on  data  obtained with the 
defect monitors  on  that test site. Similar  open  circuit 
detectors have been described by A. C. Ipri and I. C. Sarace 
of RCA [4]. 

The YATS chip also contained  short circuit monitors.  In 
this case the  ends of the parallel conductors  are connected  in 
such  a way that two  interspersed  comblike structures  are 
formed.  These structures have also been referred to as 
interdigitated fingers. A  YATS short circuit  detector of this 
type is shown in Figure 20. Ipri and Sarace had similar short 
circuit monitors [4]. 

defect monitors  are  the  same as  those  for the array of 
parallel conductors  on a  chip.  These were described in the 
previous  sections.  Therefore,  for an open  circuit monitor of 

The probabilities of failure and  the critical areas for these 

given in  Eq. (38). This, of course,  presumes that  the l/x3 
size distribution is valid, as it  appeared to be in the case of 
the YATS data.  The critical areas for different size 
distributions  are discussed later  in  this  section. 

The critical area of a short circuit monitor is the  same as 
that of the  open circuit monitor except that  the symbol s for 
spacing is swapped with w for  line width to give a critical 
area 

A, = 
- L H ~ ~  

2s(2s + w)‘ 
In this  case it is presumed that  the defect size distribution 
again  peaks at defect size x,, and falls off as ]/x3 for larger 
defect sizes. 

To  determine  the defect size distribution of  a 
photolithographic process requires the use of defect monitors 
with different line widths and  line spacings. We now look at 
a  hypothetical  example that shows how this is done  in  the 
case of open  circuits. It is assumed that  the  minimum  line 
width is u and  that we have monitors with line widths u, 

length L and height H ,  the critical area is identical to  the  one I Su,  2u, 2Su,  3 4  and 6u. The physical area  of  these 47 1 
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Table 1 Physical area, line width, and relative critical area of Stapper [3] and 0. Paz and T. R. Lawson, Jr. [ 5 ]  described 
six open circuit monitors. methods for eliminating gross yield failures from  such 

i = Monitor A ,  = Monitor W, = Line Relative 
number  area  width  critical  area 

1 A a 1 
2 A 1.5a 0.4444 
3 A 2a 0.25 
4 A 2.5a 0.16 
5 1.5A 3a 0.1667 
6 2A 6a 0.0556 

Table 2 Data from monitors with  different line widths. 

i = Monitor N, = Sample u, = Number of U{/N,  Relative 
number size failing monitors average 

monitor  data. These are  the gross failures that affect entire 
areas of wafers. Furthermore,  in  actual  data  there is the 
possibility of  invalid information caused by tested  errors, 
probe  damage,  and misprobing. All such faulty information 
must be removed from  the  data before it is analyzed. This 
often requires  multiple  testing and visual inspections of  the 
wafers. As a result the valid monitor  sample size is usually 
less than  the total number of monitors  that  are available. An 
example of this  can be seen in the typical monitor  data 
tabulated in Table 2. Column 3, with the  number of failing 
monitors U,, contains  the valid failure data only. The 
monitors with invalid data have  been  excluded  from the 
sample  to give the  same size N, shown in  Column 2. 

The  monitor yield for the  data is given by 

= I - UJN,.  (59b) 

If we use Poisson statistics, this can be set equal  to 

1 1721 61 0.0354 1 
2 1732 27 0.0161 0.4398 
3 1730 13 0.0091 0.2120 
4 1725 11 0.0061 0.1799 
5 1741 I 1  0.0060 0.1783 
6 174 I 3 0.0020 0.0486 

Y,, = e I .  
-X  

monitors is  shown in Table 1 and varies between A and 2A. 
According to (40) the critical area is given by 

where the subscript i indicates the  monitor  number, A i  the 
physical monitor area, w, the  line width, and s, the spacing 
between lines. If the  line spacing  is designed to be equal to 
the  line width, the critical area is given by 

Multiplying  this quantity by 6a/A produces the relative 
critical area given in  Column 4 in Table 1. 

given by 
The average or expected number of failing monitors x, is 

- x, = Amp, 

where is the average defect density associated with the 
photolithographic process that is being monitored with these 
defect  detectors.  Since  this defect density  is the  same for all 
monitors,  it follows that  the relative average number of 
faults per monitor x, should be the  same  as  the  ratio of the 
critical areas. Let us see how  this works out. 

We assume  that  there  are 109 of  each one of the  monitors 
1-6 on a wafer. A  batch (or lot) of I6 of  these wafers 
therefore gives us 1744 of each  of  these monitors. When 

472 these are tested, not all the  data  are valid for analysis. 

If X i  < 0.05, we can  furthermore  make  the  approximation 

Y,, = 1 - x,. 

Combining (61) and (59b) gives 

which is tabulated  in Column 4  of Table 2.  If we multiply 
these  results by N J U , ,  they will be normalized  in the  same 
way as  the critical areas  in Column 4 of Table 1. And  indeed 
the  numbers look  similar. 

How good  is the  relationship between the relative critical 
areas in  Column 4 of Table 1 and  the relative average 
number of  failures per monitor of Column 5 in  Table  2?  A 
number of statistical techniques  are available  for  quantifying 
this. The simplest method is use of the correlation 
coefficient. Programs for calculating  this quantity  are  part of 
every statistical  library  for use on digital computers,  and 
even hand calculators are available  with the capability to 
determine it. The closer the correlation coefficient is to a 
value of one,  the better the agreement is between the two 
sets of data for which it  is  calculated. In  the example given 
here  it comes  out  to be 0.998. This implies excellent 
agreement between the  two sets of  numbers. As a result, the 
l/x3 defect size distribution is an excellent model  for  these 
data. 

There is a danger  in using the correlation technique  to 
verify statistical models. When we obtain a  good result we 
do  not know  how  this compares with the results  of other 
models. Even though  in the preceding discussions we have 
obtained excellent agreement between data  and models, 
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there  may be even better models that give even higher 
correlation coefficients when data  and  model results are 
correlated.  Exploring this possibility in  more detail  is the 
subject of  the next  section. 

14. Optimization of defect  size distribution 
To optimize  the defect size distribution requires  a more 
flexible critical area calculation than  the  one  obtained with 
the 1/x3 distribution. Both the  ]/x"  distribution  in (3)  and 
the e-X" distribution  in (53) are possible candidates. Other 
distributions  may be needed if the  data require it. This, 
however, is beyond the scope  of this paper. 

For  the ]/x3 distribution  the probability  of  failure in (52) 
can  be multiplied by the  monitor  area A,  to give the critical 
area. For  an  open circuit monitor  the  quantity a in (52) 
must be replaced by the line  width w,. Similarly, b in (52) 
must  be replaced by 2w, + si so that  the average critical area 
is given by 

- 
= 

(n + 1)(N - 2)(w, + s,)w;-2(2w, + sy-2.  
(63) 

In  the case where w, = s, the average critical area is given 
by 

- (3n-2 - l)x$'A, 
= (n + I)(n - 2)3'-'w:"' 

With  this we can calculate the relative critical areas  for  the 
monitors in Table 1 for different values of n. When we 
determine  the correlation coefficient for  each value of n, it 
results in  the  curve shown in Figure 21. 

of 0.9983 occurs  for n = 3.07. The  l/x3  model is therefore 
indeed an excellent model  for the  data. However, even for 
n = 2.5 and n = 3.7 the correlation coefficients exceed 0.995 
and therefore  indicate that size distributions of l / ~ ' . ~  and 
]/x3" are also  acceptable  models for these data. 

The preceding results may  appear disturbing. If we have 
such  small distinctions in the correlation coefficients, how 
can we ever establish the  nature of the defect size 
distribution with any degree of  accuracy? This  can only be 
done with a more sensitive technique. A straightforward 
method  that  can be used for  this  is  a nonlinear least square 
fitting technique. In this method  the difference between the 
calculated and measured  values  for  each  observation is 
squared. The object then is to find the right combination of 
parameters in the model to  minimize  the  sum of these 
squares. The value n in (64) and  the defect  density D in 
X = Am(n)D are  the  two  parameters used in the  minimization 
process. This result gives n = 3.02 for the  minimum. How 
this minimum is approached  as a function of n is  shown in 
Figure 22. The vertical scale is logarithmic so that  in this 
case the  minimum is sharp  and well defined. 

We now take a  look at what happens with the exponential 
defect size distribution e-'" of (53). Using the probability  of 

The result shows that  the  optimum correlation coefficient 

2 . 5  3.0 3.5 

I 1  "c 

I Correlation  coefficient  as a function of 11 in the l ix"  defect  size 
distribution, 

2.5 3.0  3.5 

n "D 

Sum of the squares as a function of the power I I  in  the defect siLe I distribution. 

failure  in (54), the  monitor  area A , ,  and  the relationships 
a = w, and b = 2w, + s, results in  the critical area 

4 - e-(2H,,+s,)/q 

A,, = 
w, + s, 

(65) 473 
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0.5 1 .o 1.5 2.0 

Multiples of minimum  line  width 

Correlation  coefficient  as  a function of the length parameter in  an I exponential  defect size distribution. 

10- 

10 - 
0 I 2 

Multiples of the  minimum  line width 

Sum of the  squares  determination of P for an exponential  defect I size distribution. 

Under  the  condition where w, = s,, this result simplifies to 
lAie-wl( 1 - e-”’‘) 

2 w, Ami = 

To use this expression in a  correlation coefficient 

- 

474 comparison required that we express I in multiples  of the 

minimum  line width a in  the  form 1 = ma. It is now possible 
to  optimize  the correlation coefficient as a function of the 
parameter m .  The result  of  such an exercise is shown in 
Figure 23, where  a maximum correlation coefficient of 
0.9946 is reached  for I = 0 . 8 3 ~ .  This  maximum, however, is 
lower than  any of the correlation coefficients shown  in Fig. 
21. This therefore  leads to  the conclusion that  the l/x’ 
defect size distribution is  a  better model for  these data  than 
an exponential distribution. 

The  above results can also be checked with the  sum of the 
squares. The  minimum  sum of the squares as a function of I 
in  terms of  multiples  of line width a is  shown  in Figure 24. 
The  minimum occurs for I = 1 . 2 3 ~  and  the  sum of the 
squares  is 2.36 X This is an  order of magnitude higher 
than  the  minimum of 2.5 X in Fig. 22 obtained for  a 
] / x 3  defect size distribution.  This allows us  once  more  to 
conclude  that  the l/x3 distribution is a  better  model for 
these data  than  the  exponential  distribution. 

The reader has probably noted  that  the  two techniques 
used here for  determining  the  parameter I gave results that 
differed by approximately 40 percent. This is due  to  the 
exponential  nature  of  the  distribution  and  the fact that  no 
statistical technique is perfect. However, we can conclude 
that for  these data a  value of I = a is near  optimum. 

15. Conclusions 
In  this  paper  the critical areas for large arrays  of wiring and 
defect monitors have  been derived. In  doing so the 
“proximity” effect was described and its effect on critical 
area calculation was evaluated. It was also shown that if we 
shrink  the  patterns of long parallel  wires in width, spacing, 
and length, the I/x3 defect size distribution results in the 
same  random defect yield for the large and  shrunk patterns. 
Determination of the  nature of the defect size distribution is 
therefore  crucial if  we want  to decrease the cost of  integrated 
circuit manufacture by shrinking  the size of the integrated 
circuit  patterns. 

Experimental techniques for  evaluating the defect size 
distribution have  been  described and  an example with its 
results has been discussed. 
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