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This  paper  discusses  improvements  to 
conventional  software  reliability  analysis  models 
by  making  the  assumptions  on  which  they are 
based more  realistic.  In  an  actual  project 
environment,  sometimes  no  more  information is 
available  than  reliability  data  obtained  from  a 
test  report.  The  models  described  here  are 
designed  to  resolve  the  problems  caused  by  this 
constraint  on  the  availability  of  reliability  data. 
By  utilizing  the  technical  knowledge  about  a 
program,  a test, and test  data,  we  can  select  an 
appropriate  software  reliability  analysis  model 
for accurate  quality  assessment.  The  delayed 
S-shaped  growth  model,  the  inflection  S-shaped 
model,  and  the  hyperexponential  model  are 
proposed. 

1. Introduction 
Quality control is one of the key engineering  technologies in 
today’s industry. Some hardware oriented reliability theories 
and models, such as the exponential and the Weibull 
distribution models,  have contributed to the high reliability 
of  present-day electric parts and consumer products. 
Similarly, in the world  of computer software, comprehensive 
software  reliability theories and models can be  expected to 
contribute towards achieving  software quality objectives. 

The first  well-known proposal for software  reliability 
analysis was made by Jelinski and Moranda [ 11. Their model 
allows us to estimate the following  reliability  measures  based 
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on observing the results of a  test,  i.e., from the error 
detection (discovery)  process. One measure  is the number of 
errors that were  initially  present in a  tested  program. 
Another is the error detection rate, which indicates the 
efficiency  of  testing. From a mathematical point of  view, 
many of the later models [e.g., the Musa execution time 
model and  the Goel-Okumoto nonhomogeneous Poisson 
process (NHPP) model] are identical to the Jelinski- 
Moranda model. The models  discussed in this paper are in 
the category of reliability  growth  models. The simplest  form 
of such a model is the exponential model  shown in Figure 1. 
As discussed in this paper, software  reliability  growth  is 
defined by the mathematical relationship that exists  between 
the time span of  using (or testing)  a program and  the 
cumulative number of errors discovered. 

In contrast to the above assumed exponential growth in 
software  reliability,  S-shaped  software  reliability  growth  is 
more often observed in real  projects [2-51. Curve (b) of  Fig. 
1 is  a  typical  S-shaped  reliability  growth curve. In Japan, the 
Gompertz model and the logistic curve are used to represent 
S-shaped  software  reliability  growth.  Although it is quite 
practical to use the Gompertz model and the logistic  curve, 
it  is sometimes dangerous since  these models may  lead to a 
more optimistic assessment than other models [6, 71. No 
interpretations of  physical meaning are implied in the 
parameters of the Gompertz model.  Although the 
parameters of the logistic  model  have some interpretations, 
these interpretations are not realistic in actual projects. 

There are many reasons why observed  software  reliability 
growth curves often  become  S-shaped. As described in this 
paper, the S-shaped  software  reliability  growth  curve is 
typically  caused by the definition of errors (i.e.,  failures or 
faults); more specifically, the problem  is under what 
conditions test  personnel  decide that they have  detected an 
error. The growth is also  caused by the continuous test  effort 
increase in which the test  effort  has  been incrementally 
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increased through the test period. Some of these  causative 
factors or influences  can  be  described by making the basic 
assumptions of the exponential growth  model more redistic. 
The delayed  S-shaped  software  reliability  growth  model and 
the inflection  S-shaped  software  reliability  growth  model 
described  later  have  been  developed incorporating the basic 
assumptions of the exponential software  reliability  growth 
model  with new, more realistic assumptions. 

In addition to the S-shaped  software  reliability golkth 
curve, on rare  occasions we also  observe in real  projects the 
hyperexponential reliability  growth  curve  shown as curve  (c) 
of  Fig. 1. Based on our analysis of one of the IBM software 
error data sets, hyperexponential software  reliability  growth 
may  be  observed  when the following conditions are satisfied: 
I )  The program under test  consists of two or more modules 
which  have  different characteristics (i.e.,  different 
complexity,  written in a different  language,  different error 
ratio, etc.); 2) the modules have  been  well  tested prior to 
their integration, and not too many errors (faults) remain in 
the program; and 3) the software  system  is  fairly  large. 
Theoretically, if error detection rates of modules are 
different, the integrated reliability  growth of those 
independent modules will become rapid linear growth  with 
eventual saturation beyond a certain point. In  such  cases, it 
is not reasonable to apply the ordinary exponential growth 
model. It yields a quite pessimistic  assessment in comparison 
with actual results  because of the linear growth and the rapid 
saturation. 

Therefore, the ordinary exponential growth model, the 
Gompertz model, and the logistic  (curve)  model are 
sometimes insufficient and inaccurate to analyze actual 
project error data for  software quality assessment. In this 
paper, we propose three different  software  reliability  growth 
models: the delayed  S-shaped  growth  model, the inflection 
S-shaped  growth model, and the hyperexponential growth 
model.  Moreover,  several  examples of applying  these  models 
for  analyzing actual project error data are given.  Finally, the 
applicability  for actual software  reliability  assessment of 
these  models along with the ordinary exponential growth 
model  is  discussed. 

2. Exponential growth models 
A fault, in this paper, is defined as a cause of a failure. A 
fault is an erroneous statement or statements in a program 
which  cause one or more failures. A failure  is  defined as an 
erroneous result or the malfunction of a program. During a 
test, we run test  cases,  observe  results  of runs, and eventually 
detect  failures.  After  failure detection, failure  analysis or 
fault  isolation is performed. As a result of fault isolation, we 
find a fault and define a fix for the fault. The exponential 
software  reliability  growth  models are designed to describe 
the failure detection process. 

The models  proposed by Musa [8], by Littlewood and 
Verrall [ 9 ] ,  and by Goel and Okumoto [ IO]  can be  regarded 

Cumulative usage time 

I Software  reliability  growth  curves. (a) Exponential  software  re- 
liability  growth; (b) typical  S-shaped  reliability  growth; and (c) 
hyperexponential  reliability  growth. 

as variants of the exponential growth  models. In particular, 
the Musa execution time model and the Goel-Okumoto 
NHPP model are mathematically isomorphic. The 
Littlewood-Verrall  model  is another interpretation of the 
Jelinski-Moranda model based on a Bayesian approach. 

The exponential growth  models are based on the following 
assumptions: 

1. All faults in a program are mutually independent from 

2. The number of failures detected at any time is 
the failure detection point of  view. 

proportional to the current number of faults in a 
program. 

3. The probability of failure detection (proportionality) is 

4. The isolated faults are removed prior to future test 
constant. 

occasions. 

Musa's  model has made a unique contribution to our 
understanding of the relationship between execution time 
and calendar time. The model  allows us to predict a future 
reliability  figure  of a program  based on the failure detection 
process of a test. The model  is  characterized by the following 
function: 

m(t) = N (  1 - exp (-Ct/M7')), (1) 

where t is execution time, that is, the total CPU time utilized 
to complete the test  case runs up to a time of observation, C 
is the testing  compression factor, N is the number of failures 
in the program, M is the total number of failures  possible 429 
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during the maintained life  of the program, T is'the mean 
time to failure (MTTF) at the beginning of the test, and m(t) 
is the number of failures  discovered as a result of test  case 
runs up to the time of observation. 

characterized by the following mean value function of a 
nonhomogeneous Poisson  process: 

m(t) = N (  1 - exp (-&t)), (2) 

Similarly, the Goel-Okumoto NHPP model  is 

where t is the time of observation, 6 is the failure detection 
rate, and m(t) is the number of failures detected up to the 
time of observation. Obviously  Eqs. (1) and (2) are 
isomorphic. The advantage of this model  is a simple and 
compact algorithm of the parameter estimation method (see 
Appendix A). The exponential growth model gives a good 
estimate of the parameter N if the assumptions described 
above are satisfied  (see  Example 5 in Section 6). 

The assumption of mutual independency of faults is 
equivalent to assuming that all faults in a program are 
randomly captured (failures occur randomly). Actually, 
faults are mutually dependent because  of  logical or 
functional dependencies that exist  within a program (lattice 
structure). This mutual dependency of faults makes the 
observed  software  reliability  growth  curve  S-shaped,  because 
the number of detectable faults increases as the number of 
detected faults increases. During the early  phase of a test, the 
growth  is slow. The more faults are removed, the more 
(dependent) faults become  detectable. Then the growth 
gradually  goes up while the number of undetected faults 
which are detectable increases. The growth  becomes  slow 
again  beyond this point, because the number of detectable 
faults gradually  decreases. Thus, the growth of this failure 
detection process  becomes  S-shaped. 

undetected failures  changes from time to time during the test 
period in real  projects. For example, when one observes a 
failure detection process  based on calendar time, the test 
effort  (i.e., the  amount of  work required for  performing the 
test) is not homogeneously distributed. Thus, the observed 
software  reliability  growth  may  become  S-shaped  (if there is 
a peak  of  effort in the latter half  of the test period, as in 
Example 2 in Section 6). 

In addition, the proportionality of capturing the 

Moreover, if there were  two or more different  sources of 
failures and if they had different 
software  reliability  growth curve 
hyperexponential, as described in Section 5. 

3. Delayed  S-shaped growth model 
The delayed  S-shaped  software  reliability  growth  model has 
been  developed  for  describing a software error removal 
phenomenon and its physical interpretation using a model 
that has a time delay function in  the sense  of control theory. 
Using this model, we can  analyze a test  process as a fault 

430 isolation  process, not only a failure detection process. Fault 

isolation means that certain failures can be intentionally 
reproduced, leading to the identification of the fault and its 
removal. Sometimes error data of a test report are not failure 
detection data, but the fault isolation in an actual project 
(see  Example 1 in  Section 6). The model  is  designed  for 
analysis of the fault  isolation data. 

The delayed  S-shaped  growth  model  is  based on the 
following assumptions: 

1. All faults in a program are mutually independent from 

2. The'probability of failure detection at any time is 
proportional to the current number of faults in a 
program. 

3. The proportionality of failure detection is constant. 
4. The probability of fault isolation at any time is 

5. The proportionality of fault isolation  is constant. 
6. Tlie detected faults  can be entirely  removed. 

the failure detection point of  view. 

proportional to the current number of faults not isolated. 

The model  is characterized by the following  delayed S- 
shaped  reliability  growth mean value function g ( t )  of NHPP: 

g(t) = N(1 - (1 + pt)exp(-pOl, (3) 

where t is time of observation, p is the fault removal  (failure 
detection and fault isolation) rate parameter, and g(t) is the 
number of faults  isolated up to time t. The mean  value 
function of Eq. (3) gives an S-shaped  reliability  growth 
curve. 

The physical meaning of the fault isolation rate p is  as 
follows.  Let F(T,) be the p.d.f. (probability density function) 
of failure detection between observation of the (i - 1)th and 
the ith  failure detection. As with the exponential growth 
model, F ( T ~ )  is  given by 

where 6 is the failure detection rate and t ,  is the time when 
the ith failure  is  detected. Independently of the failure 
detection rate, suppose G(T,') is the p.d.f. of fault  isolation 
between  isolation  of the ( j  - 1)th and thejth fault. G(T,') is 
given  by 

G(T,!) = ?(i - ( j  - I ) ) ,  0 I T,'< min (ti+,, ti- t,:,), ( 5 )  

where X is the fault  isolation  rate and f,' is the time when the 
jth fault is isolated. The relation between  Eqs. (4) and (5) 
can  be  modeled  as  shown in Figure 2. 

From another point of  view, the model can be 
reformulated as simultaneous differential equations: 
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where f ( t )  is the  cumulative  number of unique failures 
detected up  to  time t ,  with f ( t )  corresponding to F(7;), and 
g(t) is the  cumulative  number of unique faults  isolated up  to 
time t ,  with g(t) corresponding to G ( T ~ ) .  By assuming 4 
X = p, the  above  simultaneous differential equations  can be 
solved in terms of g( t ) .  The results are identical to those of 
Eq. (3). The  mean value function of Eq. (3) gives an S- 
shaped  software reliability growth  curve  for the initial delay 
of fault  isolation  after the initial  failure  detection. As t 
becomes larger, the difference between the delayed S-shaped 
growth and  the exponential growth curves  becomes  smaller. 
The  parameters of Eq. (3) can  be estimated by a method 
similar to  that  of  the  Goel-Okumoto NHPP model (see 
Appendix B). 

The delayed S-shaped growth model gives a  better 
estimate of the  parameter N (the initial number of  faults  of a 
program) when the fault  isolation data, which consist of 
pairs  of the observation time (or cumulative effort index up 
to  that  time)  and  the  cumulative  number of  faults isolated, 
are available, as  in  Example 1 in  Section 6.  Generally the 
fault  isolation data  are  more  accurate  than  the failure 
detection data because one fault may cause several different 
failures under different conditions if  we can  assume  that new 
faults are  not spawned by fixing faults. The model, however, 
does  not fit observed data  in  the following cases: 

When the  time delay between failure  detection and fault 
isolation  is negligible. 
When  the test effort spent for  failure  detection and fault 
isolation is not constant. 
When new faults are generated by fixing the  inherent 
faults. 

One  of  the advantages  of  using the fault  isolation data is 
that  there  are  some faults  which are removed dunng'the 
fault  isolation process of other faults  without  failure 
detection by a test team.  Sometimes  the test team:is 
responsible not  only for  detecting  failures but also,for 
analyzing failures or isolating failure  conditions. In such 
cases, delayed S-shaped growth is frequently  observed [2]. 

4. Inflection  S-shaped growth model ', 
The inflection S-shaped software reliability growth  model has 
been  developed to analyze the software failure detection 
process and its  underlying  reasons by modifying the logistic 
curve  model which is widely used by Japanese  computer 
makers  for assessing the reliability growth of  their  software 
products. The underlying  concept is that  the observed 
software reliability growth  becomes S-shaped if faults  in  a 
program are mutually dependent (some  faults are  not 
detectable before some  other faults are removed). 

following assumptions: 
The inflection S-shaped growth  models are based on  the 

I Model of the  delayed  reliability  growth 

1. Some of the faults in a program are  mutually  dependent 
(there may  be a set of  faults  which are  not detectable). 

2. The probability  of  failure  detection at  any  time is 
proportional to the  current  number of  detectable  faults in 
a  program. 

3. The  proportionality is constant. 
4. The isolated faults can be entirely  removed. 

The  model is characterized by the following inflection S- 
shaped  growth mean value function h(t)  of NHPP: 

h( t )  = N 
1 - exp(-@t) 

1 + +.exp ( - 4 t )  ' 

where is the failure  detection rate  in  the sense of the 
Jelinski-Moranda  model, + is the inflection parameter,  and 
h(t) is the  number of failures detected up  to  time t. The 
inflection parameter is defined  for given r by the following 
equation: 

where r is  the inflection rate which  indicates the  ratio of the 
number of  detectable  faults to  the total number of faults in 
the program. Basically the  model rests on  the  assumption 
that  the  error discovery rate increases throughout a test 
period. The  model becomes  equivalent to  the exponential 
growth model if the inflection rate  equals 1, which is 
equivalent to  assuming  that all faults  of a program are 
detectable from  the beginning  of  a test. The  model 
approaches  the logistic curve model  as  the inflection rate 
tends towards  zero, which is equivalent to assuming that 
only  a few faults  of  a  program are detectable at  the 
beginning and faults  rapidly  become  detectable. 

The physical interpretation of the inflection rate is as 
follows. Let H(T,) be  the p.d.f. of failure detection between 
the observation  of the (i  - 1)th and  the ith  failure  detection. 
As with the exponential growth model, H(T,) is given by the 
following equation: 43 1 
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I Number of detected failures i and the inflection rate function u(i). 

H(T, )  = 4.u(i) .(N - (i - l ) ) ,  (10) 

where u(i> is the inflection rate function which  satisfies the 
condition 0 5 u(i), where 0 5 i 5 N. In this mode1,'the 
inflection rate function is approximated by the following 
linear function: 

u( i )  = r + ( 1  - r )  - 
i 

N '  

Equation ( 1  1) means that  the failure detection rate H(T~)  is 
proportional to the  current number of faults in the program 
and the proportionality is dependent upon the number of 
failures detected, in contrast to  the total number of failures. 
The more failures we detect, the more undetected failures 
become detectable [ 1 I ]  (see Figure 3). There are two  types  of 
faults in a program: 

1. Mutually independent. 
2.  Mutually dependent. 

( 1   1 )  

Faults of the first kind occur on different program paths, 
and faults of the second kind are  on  the same program paths 
[see Figure 4(a)]. Thus, the second or later faults on  the 
same program path become detectable if and only if the 
preceding faults have been removed. Only faults on different 
paths are independent pairwise  of one another. For example, 
every fault in Figure 4(b) has equal probability of  being 
captured (i.e., the random capturing assumption). Faults in a 
program, however, are usually partially ordered by the 
execution paths of the program, as illustrated in Figure 4(c). 
Where there exists a small number of faults in a program 
(the faults can be regarded as being mutually independent), 
we can assume the inflection rate to be 1. In an ideal case, 
the inflection rate function increases according to the order 
of the logarithmic function of the number of faults isolated, 
because of the lattice structure of the mutually dependent 
faults. 

I (a) Dependency of error occurrence; (b) independent faults in  a  program; and (c) dependent faults in a  program 

432 
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The  parameters of Eq. (8) can be estimated by a method 
similar to  that used with the  Goel-Okumoto  NHPP  model 
when the inflection rate is given (see Appendix C ) .  
Otherwise, the least squares method  can be used. If the 
inflection  rate  is  greater than or equal  to 0.5, then  the 
reliability growth  curve does  not have an inflection and 
becomes  similar to,  but  not identical  with, the exponential 
growth (see Figure 5). The reliability growth  curve  has an 
inflection point if the inflection rate  is less than 0.5. In 
analysis  of actual project data,  not only by the  mutual 
dependency of faults but also by the gradual  increase in test 
effort, the inflection rate becomes  smaller than 1. 

The inflection S-shaped growth model gives a better 
estimate of the  parameter N than  the exponential  growth 
model if one of the following conditions is satisfied: 

1. The software is fairly large and  contains a fairly large 

2. The testing effort increases (or decreases) throughout  the 
number of errors. 

test period. 

The first condition is related to  the  mutual dependency  of 
errors, and  the second condition is related to  the  time 
distribution of the testing effort (see Example 2 in Section 6). 
The model  does not fit observed behavior if the  data  are 
fault  isolation data or new faults are generated by fixing the 
inherent faults. 

5. Hyperexponential growth model 
The  sum of different exponential  growth  curves does  not 
result in a new exponential  growth  curve, but  in  the 
hyperexponential  growth  curve. The hyperexponential 
software reliability growth model has been  developed to 
analyze  a failure detection process in module-structured 
software and its  underlying  causes on  the basis of the 
ordinary exponential growth model. In particular, the  model 
is used for analyzing  a  software  failure  detection process in 
which two or more different kinds of modules  are tested. In 
other words, the model can  be applied to software  consisting 
of new modules  and a set of reused (existing) modules. 

In such  a case, faults  in  these modules have different 
characteristics from  the failure detection point of view;  i.e., 
the proportionality of capturing undetected  failures in  the 
modules is completely different (the failure detection  rate  of 
the reused modules is smaller than  that of new modules 
because those failures are usually difficult to detect). 

hyperexponential  growth  mean value function y ( t )  of NHPP: 
The model is characterized by the following 

n 

y ( t )  = c N,(1 - exp (-4,r)L (12) 
I= 1 

where n is the  number of  clusters  of modules which have 
similar characteristics, N, is the  number of initial errors in 
cluster i, and 4, is the failure detection rate for  cluster i .  The 

I Parameter r and  reliability  growth 

hyperexponential  growth  model  is  a  simple sum of the 
Exponential growth  models  of  clusters that have different 
failure  detection rates. The  number of  detected  failures up  to 
time t ,  y(t) ,  can be given by the following simple equation: 

if and only if the failure  detection rate of  each  cluster  is 
nearly equal  to c$~; i.e., 4o = 6, (for i = 1, 2, . . ., n). This 
implies that  the observed  software reliability growth  is not 
exponential, but hyperexponential, if a  program under test 
consists  of several different clusters that have different error 
characteristics. On  the  other  hand,  it is true  that  the  ordinary 
exponential  growth model  can be used for  analyzing the 
growth  in reliability of  module-structured  software if the 
modules have  similar  characteristics, i.e., the  same failure 
detection rate. The greater the  number of clusters, 
theoretically the  more  the observed  software reliability 
growth  curve may differ from  ordinary  exponential growth 
(see Figure 6). 

The  parameters of Eq. (1 2) can  be estimated by means of 
clustering the  modules by characteristics,  applying the 
ordinary  exponential growth model (e& the  Goel-Okumoto 
NHPP  model) for the  estimation of the  parameters N,  and 4, 
for each cluster i ,  and  summing  the  estimation results into 
the final estimation. If the program consists of  a single 
cluster of modules, then  the  method of estimating  the 
exponential  growth  model parameters used for the Goel- 
Okumoto  method  can be used. 

The hyperexponential  growth  model gives a better 
estimate of the  number of  faults than  the  ordinary 433 
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Test time 

I Hyperexponential software reliability growth. 

Test time 

I shaped  model. 
Small  software  package  timeierror  data  analysis by the delayed S- 

exponential growth  model and the S-shaped  software 
reliability  growth models if one of the following conditions is 
satisfied: 

1. The software is module-structured and the complexity of 

2. The software  consists of a set  of  newly developed  modules 
the modules is significantly  different. 

and a set  of  reused  (existing)  modules. 

3. Some modules of the software interact directly  with either 
the hardware  devices or other system modules (which  also 
contain some errors). 

Although the observed  software  reliability  growth curve of 
this hyperexponential model is similar to one of the ordinary 
exponential growth  models, its physical interpretation is 
quite different. As a result, if the ordinary exponential 
growth  model is inappropriately applied, the estimation 
results  become unrealistic and inaccurate (typically N 
becomes infinite and 4 becomes  zero  because the observed 
growth is linear before a saturation point). 

6. Examples of application 
Here we describe some experimental results of applying the 
delayed  S-shaped, the inflection S-shaped, and the 
hyperexponential software  reliability  growth  models. The 
following error data sets obtained from actual project reports 
are used: 

1. On-line data entry software  package test data (see 

2. RADC Project A test data with calendar time [3]. 
3. RADC Project A test data with  effort  index [3]. 
4. RADC Project B test data with calendar time [3]. 
5 .  RADC Project B test data with  effort  index [3]. 
6. Hardware control program  test data (see  Appendix E). 
7. PL/I application program  test data (see  Appendix F). 

Appendix D). 

The small on-line data entry control software  package has 
been available since  1980 in Japan. The size  of the software 
is approximately 40 OOO lines of code. The testing time (time 
axis) was measured on the basis  of the number of shifts spent 
running test cases and analyzing the results. The number of 
persons on the test team was constant throughout the test 
period. Figure 7 shows the analysis  results  using the delayed 
S-shaped  growth  model. The estimated mean value function 
is 

g(t) = 71.7(1 - (1 + 0.104t) exp(-O.l04t)}. (14) 

The model fits the observed data well in this case in terms of 
the correlation coefficient (this is  also supported by the chi 
square test and the Kolmogorov-Smirnov test). The test 
team reported a failure  after it had reproduced it. Based on 
our field problem tracking data of this software  for more 
than three years, the actual value of the parameter N (the 
number of initial faults)  is  69 (the estimate is 72). In this 
case, the exponential growth  model does not fit the observed 
data at all, and the estimated number of initial errors is 
infinite. Thus, the delayed  S-shaped  growth  model  provides a 
good  fit to the data in this case. 

The second example is Project 2 data of the Rome Air 
Development Center (RADC) project [3]. In this case, the 
test time+ measured on the basis of calendar time (the 
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Test time 

RADC Project  A  time/error  data  analysis  by  the  inflection  S-shaped I model. 

monthly progress  report). The size  of the software  is 
approximately  124 000 lines of  code. It  took  thirty-five 
months to complete the test, and the test  effort (the work 
load  for the test) was not evenly distributed throughout the 
test  period. The test  effort  gradually  increased as the test 
proceeded. Figure 8 shows the analysis  results  using the 
inflection  S-shaped  growth  model  where the inflection  rate  is 
0.038; i.e., the observed  growth in software  reliability  is 
almost equivalent to the logistic  curve.  Consequently,  the 
logistic  curve  model  may  fit  well  in this case. The estimated 
mean  value function obtained by the method of maximum 
likelihood is 

h( t )  = 1315.9 
1 - exp (-0.221t) 

1 + 25.3.exp (-0.22lt) ’ 

and the error sum of squares  is  22  48  1.7. The inflection S- 
shaped  growth  model  fits  the  observed data quite well, 
compared with the exponential  growth  model and the 
delayed  S-shaped  growth  model.  For  example, in the case  of 
the Goel-Okumoto NHPP model (Figure 9), the estimated 
mean  value function is 

m(t) = 2499.5( 1 - exp (-0.021t)), (16) 

and the error sum of squares is  453 070 (twenty times larger 
than that of the inflection  S-shaped  growth  model). In this 
case, the inflection  S-shaped  growth  model  provides  a better 
fit to the data than the exponential model  in terms of the 
correlation coefficient. 

The third example is the  test data of the  same RADC 
project, but in this case  the  testing time is  based on the 
testing  effort  index. The effort index was measured by 

Test time 

I RADC Project  A  time/error  data  analysis  by  the  exponential  growth 
model. 

Calendar time 

I Time  distribution of RADC Project  A  test  effort. 

observing the operation time spent for the test. As described 
previously, the testing  effort  was not homogeneously 
distributed, so that the effort  index  would be a more 
reasonable  measure of the  testing  time. As illustrated in 
Figure 10, the testing  effort  has  a  peak in the latter half  of 
the test  period. 

shaped  growth  model  where the inflection  rate  is 0.23. This 
implies that the observed  reliability  growth  curve  is  slightly 435 

Figure 11 shows the analysis  results  using the inflection S- 
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Test time 

RADC Project A  effortierror data analysis by the inflection I S-shaped model. 

Test  time 

I model. 
RADC Project B timeierror data analysis by the inflection S-shaped 

S-shaped,  reflecting the mutual dependency of faults. The 
strongly  S-shaped  growth  curve of the calendar-time-based 
data can be regarded as being  caused  primarily by the 
nonhomogeneous  time distribution of the testing  effort. The 
estimated mean  value function is 

h(t)  = 1316.8 1 - exp  (-0.319t) 
1 + 3.3.exp (-0.319t) ’ 

436 and the error sum of squares is 77 888. The inflection S- 

Test time 

RADC  Project  A  effortierror  data  analysis by the exponential I growth model. 

Test time 

I RADC Project B timeierror data analysis by the exponential growth 
model. 

shaped  model  gives a good  fit to the observed data. In this 
case, the exponential  growth  model  also  gives a good  fit 
(Figure 12). The estimated mean  value function is 

m(t)  = 1438.01 1 - exp (-0.127t)J, (18) 

and the error sum of  squares  is 1 1 1 650 (one and a half 
times larger than that of the inflection  S-shaped  growth 
model).  In this case, the inflection  S-shaped  growth  model 
provides a better fit to the data than the exponential model 
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in terms of the correlation coefficient. The estimated number 
of failures, N ,  indicated by the inflection S-shaped  growth 
model compares well with the estimate of the inflection 
S-shaped  growth model based on calendar time data (the 
estimated number of initial errors is 13 16 based on the 
calendar time data and 13 17 based on  the effort index), but 
not as well with the exponential growth model. We also note 
that the model is quite adaptive. 

The fourth example is Project 1 data of the RADC project 
[3]. In this case, the testing time is measured based on 
calendar time. The size  of the software  is approximately 
1 3 17 000 lines  of code. It took twelve months to complete 
the test, and  the test  effort  was not homogeneously 
distributed throughout the test  period. The testing effort 
gradually  decreased as the test proceeded. Figure 13 shows 
the analysis results  using the inflection S-shaped  growth 
model where the inflection rate is 0.9999 1. This implies that 
the observed  software  reliability  growth is almost 
exponential. The estimated mean value function using the 
least squares method is 

h ( f )  = 3404.8 
1 - exp (-0.130t) 

I + 0.00009. exp (-0.130t) ' 

and the error sum of squares is I2  820. The inflection 
S-shaped  model  gives a good fit to the observed data. In this 
case, the exponential growth  model  also  gives a good fit 
(Figure 14). The estimated mean value function is 

m(t) = 3242.51 1 - exp (-0.143t)J, (20) 

and  the  error sum of squares is 13 354 (which almost equals 
that of the inflection  S-shaped  growth model). In this case, 
both the exponential growth model and the inflection 
S-shaped  growth model provide a good fit to the data. 
However,  these estimated numbers are quite different from 
the numbers estimated based on the effort index as described 
below. 

The fifth example is the test data from the same RADC 
project, but the testing time is  based on  the testing effort 
index. The effort index is  based on  the same definition as in 
the third example. As illustrated in Figure 15, the testing 
effort was not homogeneously distributed, so that the testing 
effort index would be more reasonable than  the calendar 
time as the testing time unit. Figure 16 shows the analysis 
results  using the inflection  S-shaped  growth model where the 
inflection rate is 0.944. This implies that  the observed 
reliability  growth  is  slightly different from the exponential 
growth curve for the mutual dependency of errors. The 
estimated mean value function using the least squares 
method is 

h(t)  = 3540.9 
1 - exp (-0.135t) 

1 + 0.06.exp (-0.135t) ' 

and the error sum of squares is 19 663. The inflection S- 
shaped model  gives a good fit to  the observed data. In this 

Calendar time 

I Time  distribution of RADC Project B test  effort 

Test time 

I model. 
RADC Pro.ject B effortierror analysis by the inflection S-\haped 

case, the exponential growth model also gives a good  fit 
(Figure 17). The estimated mean value function is 

m(t) = 3770.811 - exp (-0.1 17t)], ( 2 2 )  

and the error sum of squares is  16 488 (which almost equals 
that of the inflection S-shaped  growth model). In this case, 437 
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Test time 

RADC Project B effortierror  data  analysis by the  exponential 
growth  model. 

,r 

438 

Test time 

I Observed  hyperexponential  growth  curve. 

the exponential growth model provides a better fit to the 
data than the inflection  S-shaped  growth  model, but the 
estimated number of failures is quite large. 

The sixth  example is the test data of a hardware control 
program. The size  of the software is approximately 35 000 
lines of code. The testing time was measured  based on 
calendar time. Figure 18 shows the observed  software 
reliability  growth curves of each major module. The software 
consists of three major modules, i.e., the base module 
(Module A), the extended function module (Module B), and 
the newly added module (Module C).  The reliability  growth 
of the base module was  relatively stable from the beginning 
of the test, that of the extended function module was  si.milar, 
while the newly added module’s  reliability  growth  was 
unstable.  Using the hyperexponential growth model, we 
obtain the analysis  result  shown in Figure 19. The estimated 
mean  value functions are 

m,(t) = 58.9(1 - exp (-0.191[)}, (23) 

mB(t) = 94.9(1 - exp (-0.132t)], (24) 

m&) = 164.4(1 - exp (-0.173C)l. (25) 

Thus, the estimated mean value function of the total 
package  is 

. .  

m(t) = m,(t) + m&) + mc(t). . (26) 

At the final checkpoint, the estimated number of failures was 
3 18  based on hyperexponential growth  model  analysis. The 
actual value after six months’ testing  beyond that checkpoint 
was  320. Thus, we can conclude that the hyperexponential 
growth model is quite accurate. In this case, the exponential 
growth  model  also  fits the observed data because  failure 
detection rates, 4i, of each module are distributed in the 
range from 0.1 to 0.2 (the estimation by the 
hyperexponential growth  model is better, but the difference . 

is not significant). 

application program. The size  of the software is 
approximately 1 3 17 000 lines of code. The time axis  is the 
execution time in this case. Figure 20  shows the analysis 
results  using the inflection  S-shaped  growth  model  where the 
inflection rate is  0.2. This implies that the observed 
reliability  growth is  slightly  S-shaped for the mutual 
dependency of faults. The estimated mean value function is 

The last  example is the test data of a PL/I database 

h(t)  = 347.2 
1 - exp  (-0.094t) 

1 + 4.0.exp (-0.094~) ’ 

and the error sum of squares is  3406. The inflection S- 
shaped  model gives a good fit to the observed data. In this 
case, the exponential growth  model  also  gives a good  fit 
(Figure 21). The estimated mean value function is 

m(t) = 455.41 1 - exp (-0.027t)), (28) 

and the error sum of squares is  3932  (which almost equals 
that of the inflection  S-shaped  growth model). In this case, a 
total of  358  failures  were  observed. The inflection  S-shaped 
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Test  time 

L 

Test time 

Hardware control program test data analysis by the hyperexponen- I tial growth model. I PLiI application program execution time data analysis by the inflec- 
tion S-shaped growth model. 

model  provides  a better fit to the data than the exponential 
growth  model in terms of the correlation coefficient in this 
case. 

7. Conclusion 
For the effort  index data or the execution-time-based data, 
the exponential growth  model  fits the observed data well, as 
shown by the fifth example of the previous section. This 
implies that the exponential growth  model should be used 
where  execution-time-based data are available [ 121. There 
are, however, exceptions such that the observed  software 
reliability  growth  is  S-shaped,  since the times recorded are 
the fault detection times (not the failure detection times) or 
the faults of the program are mutually dependent as in the 
seventh example of the previous section. 

For the calendar-time-based data with nonhomogeneous 
time distribution of the testing  effort, the exponential growth 
model  does not fit the observed data, even if the observed 
reliability  growth curve is similar to the exponential growth 
curve, as in the third example of the previous section (Fig. 
12). Rather, the inflection  S-shaped  growth model fits  well 
(Fig. 1 1). In particular, the inflection  S-shaped  growth  model 
fits the calendar-time-based data which  has an inflection 
point, as in the second  example  of the previous section (Fig. 

In the case in which the test team recorded the time when 
8). 

they  isolated  a failure symptom, the delayed  S-shaped 
growth  model  gave  a  good  fit to the  data if the failure 
analysis time (or the fault isolation effort) was significant and 
the effort  was homogeneously distributed, as in the first 
example of the previous section  (Fig. 7). 

Test  time 

I PLiI application program execution time data analysis by the expo- 
nential growth model. 

In the case in which the errors of the tested  program are 
not expected to be independent of one another (i.e.,  high 
program  complexity, many initial errors, etc.), the inflection 
S-shaped  growth  model  fits the observed data well, as in  the 
seventh example of the previous section (Fig. 20). 

In the case in which the software  consists of two or more 
clusters of modules which  have  different characteristics [Le., 
some existing  (reused) modules and some newly  developed 439 
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modules, or some modules written in high-level  language 
and some modules written in basic  assembler  language, etc.], 
the hyperexponential growth  model sometimes fits the 
observed data well, as in the sixth example of the previous 
section  (Fig. 19). 

Reliability  growth  analysis  based on calendar-time data 
cannot be done with as much confidence as that based on 
the effort index or on execution time data. The reason  is that 
the shape of the observed  reliability  growth curve is 
changeable, depending strongly upon the time distribution of 
the testing  effort. The observed  growth curve rapidly 
saturates once the testing  effort ( eg ,  the number of persons 
on a test team) is  reduced. Thus, the saturation of the 
observed  reliability  growth  does not always indicate that 
s o h a r e  reliability has become stable, as in the fourth 
example of the previous section. 

Some remaining problems concerning the software 
reliability  growth  model are still open. First, a reasonable 
criterion for evaluating the goodness of  fit  of an estimation 
has not been  developed. The correlation coefficient is not 
sufficient for this problem. The chi square test  is  also 
inappropriate. For example, the estimation done for the 
seventh example by the exponential growth  model  is  assured 
by the chi square test.  Although the estimation done by the 
inflection  S-shaped model is obviously better than that of the 
exponential growth  model, it is not assured by the chi square 
test. The Kolgomorov-Smirnov test  is better than the chi 
square test, but it still has a problem of sensitivity. Second, a 
reasonable method of determining the upper and lower 
bounds of an estimated reliability  growth has not been 
developed. The theoretical upper and lower bounds are 
practically  meaningless,  typically in the case  of the  NHPP 
models. It only depends upon  the estimated mean value 
function, not upon the goodness-of-fit  index. 

Appendix A An  algorithm  for  parameter 
estimation  for  the  exponential  growth  model 
The parameters of the exponential software  reliability  growth 
model are estimated as follows. Here we  use the method 
proposed by Goel and  Okumoto [ 101. Suppose that the data 
shown in Table 1, pairs of the observation time and the 
cumulative number of failures observed, are available. 

random quantity. Assuming a Poisson distribution, the 
probability that M(t) has the value z is  given by 

The number of failures  observed up to time t, M(t), is a 

where m(t) is a mean value function which  is  given  by  Eq. 
(2) .  

Suppose that zi number of failures  have  been  observed up 
to t, and z,+~ number of failures  have  been  observed up to 
ti+,, where tr+l > ti and zi+] > zi. The conditional probability 

440 of M(ti+,) = zi+] given M(ti) = z, is given  by 

= Yr {M(t,+l) - M(ti) = z,+~ - zi) 

The  joint probability that the pairs of data ( t i ,  zil ( i  = 1, 
2, . . ., n) are observed  is therefore given  by 

This joint probability may be used as the likelihood function 
for estimating the parameters Nand 4 of Eq. (2). 

Estimates of N and 4 can be found by maximizing the log- 
likelihood  (logarithm of the likelihood) L: 

n 

L = c (z, - zi-1) In M i )  - m(tj-l)) 
i= I " 

- 1x1  Kz, - Z~-~)!I - m(t,), ( 3 2 )  
i= I 

where 

Taking the derivatives of L with  respect to Nand 4 and 
setting them equal to zero, we obtain the equations 

(34) 

Thus the estimate of 6 is  given as one of the solutions of 
the equation 

The above equation can be numerically  solved  with  respect 
to 6. 

Appendix B: An  algorithm  for parameter 
estimation  for  the delayed  S-shaped  growth 
model 
The parameters for the delayed  S-shaped  software  reliability 
growth  model are estimated as follows. Here we  use the 
method proposed by Ohba, Yamada, Takeda, and Osaki [ 2 ] .  
Assume that the data shown in Table 1 are available. 

As with the exponential software  reliability  growth model, 
the joint probability that the pairs of data If,, z,) (i = 1, 
2, . . ., n) are observed  is  given  by 
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Table 1 Failure data. 

where g(t,) is, from Eq. (31, 

g(ti) = N[ 1 - (1 + I$ * t i )  e?-'"']. (38) 

This joint probability function may be used as the likelihood 
function for estimating the parameters Nand 4. 

Estimates of N  and 4 can be found by maximizing the log- 
likelihood L: 

L = C (z i  - zi-J In M t , )  - g(tiJ 
n 

i- I 
" 

- C In Kzi - Z~-~)!I - g(tJ (39) 
i- I 

Taking the derivatives of L with  respect to  Nand 4 and 
setting them equal to zero, we obtain the equations 

n 

Thus, the estimate of 4 is  given as one of the solutions of 
the equation 

The above equation can be numerically  solved  with  respect 
to 4. 

Appendix C: An  algorithm  for  parameter 
estimation  for  the  inflection  S-shaped  growth 
model 
The parameters of the inflection  S-shaped  software  reliability 
growth  model are estimated as follows.  We  use. the method 
proposed by Ohba [IS]. Assume that the data shown  in 
Table 1 are available and the parameter r or + is given. 

the joint probability that the pairs of data [t,, z,] (i = 1, 
2, . . ., n) are observed is  given  by 

As with the exponential software  reliability  growth model, 

where,  from Eq. (8), 

(43) 

Time of observation Cumulative number offilures 

21 

2 2  . . . 
Z" 

(44) 

Thus the estimate of 4 is  given as one of the solutions of 
the equation 

t .z .e-"." 1 - J. + 2+.e-'"* 
n n  
1 - e-'." . 1 + +. e-'.'n 

The above equation can be numerically  solved  with  respect 
to 4. 

Appendix D: On-line data entry  software 
package  test  data 
The pairs of the observation time and the cumulative 
number of  faults detected were as shown  in Table 2. 
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Table 2 On-line data entry software  package  test data. Table 4 PL/I application program  test data. 

Time of observation Cumulative number of faults 
(day) 

~~ 

Time of observation Cumulative Cumulative 
(week) execution time number of failures 

1 
2 
3 
4 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2 
3 
4 
5 
9 

11 
12 
19 
21 
22 
24 
26 
30 
31 
37 
38 
41 
42 
45. 
46 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2.45 
4.90 
6.86 
7.84 
9.52 

12.89 
17.10 
20.47 
2  1.43 
23.35 
26.23 
27.67 
30.93 
34.77 
38.6 1 
40.9 I 
42.67 
44.66 
47.65 

15 
44 
66 

103 
105 
110 
I46 
175 
179 
206 
233 
255 
276 
298 
304 
31 1 
320 
325 
328 

Table 3 Hardware control program test data. 

Time of 
observation 

(month) 

Cumulative number offailures 

Module A Module B Module F 
1 .o 
1.5 
2.0 
3.0 
4.5 
6.0 
8.0 

11.0 
12.0 
13.0 

- 
17 

24 
37 
42 
44 
50 
53 
54 

- 
10 

18 
34 
47 
5 1  
63 
71 
75 
78 

- - 
47 

77 
95 
99 

I19 
133 
141 
147 

- 

Appendix E: Hardware  control  program  test  data 
The pairs of the observation time and the cumulative 
number of unique failures detected were as shown in Table 
3. 

Appendix F PL/I application  program  test  data 
The tuples of the observation time, the cumulative CPU 
execution time, and the cumulative number of unique 
failures detected were as shown in Table 4. 
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