428

Software
reliability analysis
models

by Mitsuru Ohba

This paper discusses improvements to
conventional software reliability analysis models
by making the assumptions on which they are
based more realistic. In an actual project
environment, sometimes no more information is
available than reliability data obtained from a
test report. The models described here are
designed to resolve the problems caused by this
constraint on the availability of reliability data.
By utilizing the technical knowledge about a
program, a test, and test data, we can select an
appropriate software reliability analysis model
for accurate quality assessment. The delayed
S-shaped growth model, the inflection S-shaped
model, and the hyperexponential model are
proposed.

1. Introduction
Quality control is one of the key engineering technologies in
today’s industry. Some hardware oriented reliability theories
and models, such as the exponential and the Weibull
distribution models, have contributed to the high reliability
of present-day electric parts and consumer products.
Similarly, in the world of computer software, comprehensive
software reliability theories and models can be expected to
contribute towards achieving software quality objectives.
The first well-known proposal for software reliability
analysis was made by Jelinski and Moranda [1]. Their model
allows us to estimate the following reliability measures based

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

MITSURU OHBA

on observing the results of a test, i.e., from the error
detection (discovery) process. One measure is the number of
errors that were initially present in a tested program.
Another is the error detection rate, which indicates the
efficiency of testing. From a mathematical point of view,
many of the later models [e.g., the Musa execution time
model and the Goel-Okumoto nonhomogeneous Poisson
process (NHPP) model] are identical to the Jelinski-
Moranda model. The models discussed in this paper are in
the category of reliability growth models. The simplest form
of such a model is the exponential model shown in Figure 1.
As discussed in this paper, software reliability growth is
defined by the mathematical relationship that exists between
the time span of using (or testing) a program and the
cumulative number of errors discovered.

In contrast to the above assumed exponential growth in
software reliability, S-shaped software reliability growth is
more often observed in real projects [2-5]. Curve (b) of Fig.
1 is a typical S-shaped reliability growth curve, In Japan, the
Gompertz model and the logistic curve are used to represent
S-shaped software reliability growth. Although it is quite
practical to use the Gompertz model and the logistic curve,
it is sometimes dangerous since these models may lead to a
more optimistic assessment than other models [6, 7]. No
interpretations of physical meaning are implied in the
parameters of the Gompertz model. Although the
parameters of the logistic model have some interpretations,
these interpretations are not realistic in actual projects.

There are many reasons why observed software reliability
growth curves often become S-shaped. As described in this
paper, the S-shaped software reliability growth curve is
typically caused by the definition of errors (i.e., failures or
faults); more specifically, the problem is under what
conditions test personnel decide that they have detected an
error. The growth is also caused by the continuous test effort
increase in which the test effort has been incrementally

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

increased through the test period. Some of these causative
factors or influences can be described by making the basic
assumptions of the exponential growth model more realistic.
The delayed S-shaped software reliability growth model and
the inflection S-shaped software reliability growth model
described later have been developed incorporating the basic
assumptions of the exponential software reliability growth
model with new, more realistic assumptions.

In addition to the S-shaped software reliability growth
curve, on rare occasions we also observe in real projects the
hyperexponential reliability growth curve shown as curve (c)
of Fig. 1. Based on our analysis of one of the IBM software
error data sets, hyperexponential software reliability growth
may be observed when the following conditions are satisfied:
1) The program under test consists of two or more modules
which have different characteristics (i.e., different
complexity, written in a different language, different error
ratio, etc.); 2) the modules have been well tested prior to
their integration, and not too many errors (faults) remain in
the program; and 3) the software system is fairly large.
Theoretically, if error detection rates of modules are
different, the integrated reliability growth of those
independent modules will become rapid linear growth with
eventual saturation beyond a certain point. In such cases, it
is not reasonable to apply the ordinary exponential growth
model. It yields a quite pessimistic assessment in comparison
with actual results because of the linear growth and the rapid
saturation.

Therefore, the ordinary exponential growth model, the
Gompertz model, and the logistic (curve) model are
sometimes insufficient and inaccurate to analyze actual
project error data for software quality assessment. In this
paper, we propose three different software reliability growth
models: the delayed S-shaped growth model, the inflection
S-shaped growth model, and the hyperexponential growth
model. Moreover, several examples of applying these models
for analyzing actual project error data are given. Finally, the
applicability for actual software reliability assessment of
these models along with the ordinary exponential growth
model is discussed.

2. Exponential growth models
A fault, in this paper, is defined as a cause of a failure. A
fault is an erroneous statement or statements in a program
which cause one or more failures. A failure is defined as an
erroneous result or the malfunction of a program. During a
test, we run test cases, observe results of runs, and eventually
detect failures. After failure detection, failure analysis or
fault isolation is performed. As a result of fault isolation, we
find a fault and define a fix for the fault. The exponential
software reliability growth models are designed to describe
the failure detection process.

The models proposed by Musa [8], by Littlewood and
Verrall [9], and by Goel and Okumoto [10] can be regarded

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Cumulative number of errors

Cumulative usage time

Software reliability growth curves. (a) Exponential software re-
liability growth; (b) typical S-shaped reliability growth; and (c)
hyperexponential reliability growth.

as vanants of the exponential growth models. In particular,
the Musa execution time model and the Goel-Okumoto
NHPP model are mathematically isomorphic. The
Littlewood-Verrall model is another interpretation of the
Jelinski-Moranda model based on a Bayesian approach.

The exponential growth models are based on the following
assumptions:

1. All faults in a program are mutually independent from
the failure detection point of view.

. The number of failures detected at any time is
proportional to the current number of faults in a
program.

. The probability of failure detection (proportionality) is
constant,

. The isolated faults are removed prior to future test
occasions.

[351

W

LS

Musa’s model has made a unique contribution to our
understanding of the relationship between execution time
and calendar time. The model allows us to predict a future
reliability figure of a program based on the failure detection
process of a test. The model is characterized by the following
function:

m(t) = N{l — exp (—C{/MT)}, (1)

where ¢ is execution time, that is, the total CPU time utilized
to complete the test case runs up to a time of observation, C
is the testing compression factor, N is the number of failures
in the program, M is the total number of failures possible

MITSURU OHBA

429

430

during the maintained life of the program, T is'the mean
time to failure (MTTF) at the beginning of the test, and m(¢)
is the number of failures discovered as a result of test case
runs up to the time of observation.

Similarly, the Goel-Okumoto NHPP model is
characterized by the following mean value f_unctlon ofa
nonhomogeneous Poisson process:

m(t) = N{1 = exp (—o0), 3 @

where ¢ is the time of observation, ¢ is the failure detection
rate, and m(¢) is the number of failures detected up to the
time of observation. Obviously Egs. (1) and (2) are
isomorphic. The advantage of this model is a simple and
compact algorithm of the parameter estimation method (see
Appendix A). The exponential growth model gives a good
estimate of the parameter N if the assumptions:-described

-above are satisfied (see Example 5 in Section 6).

The assumption of mutual independency of faults is
equivalent to assuming that all faults in a program are
randomly captured (failures occur randomly). Actually,
faults are mutually dependent because of logical or
functional dependencies that exist within a program (lattice
structure). This mutual dependency of faults makes the
observed software reliability growth curve S—'Shaped, because
the number of detectable faults increases as the number of
detected faults increases. During the early phase of a test, the
growth is slow. The more faults are removed, the more
(dependent) faults become detectable. Then the growth
gradually goes up while the number of undetected faults
which are detectable increases. The growth becomes slow
again beyond this point, because the number of detectable
faults gradually decreases. Thus, the growth of this failure
detection process becomes S-shaped.

In addition, the proportionality of capturing the
undetected failures changes from time to time during the test
period in real projects. For example, when one observes a
failure detection process based on calendar time, the test
effort (i.e., the amount of work required for performing the
test) is not homogeneously distributed. Thus, the observed
software reliability growth may become S-shaped (if there is
a peak of effort in the latter half of the test period, as in
Example 2 in Section 6).

Moreover, if there were two or more different sources of
failures and if they had different detection ratds, the observed
software reliability growth curve might becom|
hyperexponential, as described in Section 5.

3. Delayed S-shaped growth model

The delayed S-shaped software reliability growth model has
been developed for describing a software error removal
phenomenon and its physical interpretation using a model
that has a time delay function in the sense of control theory.
Using this model, we can analyze a test process as a fault
isolation process, not only a failure detection process. Fault

MITSURU OHBA

isolation means that certain failures can be intentionally
reproduced, leading to the identification of the fault and its
removal. Sometimes error data of a test report are not failure
detection data, but the fault isolation in an actual project
(see Example 1 in Section 6). The model is designed for
analysis of the fault isolation data.

The delayed S-shaped growth model is based on the
following assumptions:

1. All faults in a program are mutually independent from
the failure detection point of view.

2. The probability of failure detection at any time is
proportional to the current number of faults in a
program.

3. The prbportionality of failure detection is constant.

4. The probability of fault isolation at any time is
proportional to the current number of faults not isolated.

5. The proportionality of fault isolation is constant.

6. The detected faults can be entirely removed.

The model is characterized by the following delayed S-
shaped réliability growth mean value function g(¢) of NHPP:

g(t) = N{l — (1 + pt) exp (—p1)}, 3)

where ¢ is time of observation, p is the fault removal (failure
detection and fault isolation) rate parameter, and g(¢) is the
number of faults isolated up to time ¢. The mean value
function of Eq. (3) gives an S-shaped reliability growth
curve,

The physical meaning of the fault isolation rate p is as
follows. Let F(r;) be the p.d.f. (probability density function)
of failure detection between observation of the (i — 1)th and
the ith failure detection. As with the exponential growth
model, F(r,) is given by

F(Ti) = ¢{N_ (l - 1)}7

where ¢ is the failure detection rate and ¢, is the time when
the ith failure is detected. Independently of the failure
detection rate, suppose G(r) is the p.d.f. of fault isolation
between isolation of the (j — 1)th and the jth fault. G(7)) is
given by -

O=sr <t -t , 4)

GEp=Mi=(=D, O=7<mini,, =1 (5

where X is the fault isolation rate and /; is the time when the
Jjth fault is isolated. The relation between Egs. (4) and (5)
can be modeled as shown in Figure 2.

From another point of view, the model can be
reformulated as simultaneous differential equations:

d
S0 = 6N = (), (6)

4) = M0 - 20,)

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

where f(¢) is the cumulative number of unique failures
detected up to time ¢, with () corresponding to F(r;), and
g(?) is the cumulative number of unique faults isolated up to
time ¢, with g(7) corresponding to G(;). By assuming ¢ =

X = p, the above simultaneous differential equations can be
solved in terms of g(z). The results are identical to those of
Eq. (3). The mean value function of Eq. (3) gives an S-
shaped software reliability growth curve for the initial delay
of fault isolation after the initial failure detection. As ¢
becomes larger, the difference between the delayed S-shaped
growth and the exponential growth curves becomes smaller.
The parameters of Eq. (3) can be estimated by a method
similar to that of the Goel-Okumoto NHPP model (see
Appendix B).

The delayed S-shaped growth model gives a better
estimate of the parameter N (the initial number of faults of a
program) when the fault isolation data, which consist of
pairs of the observation time (or cumulative effort index up
to that time) and the cumulative number of faults isolated,
are available, as in Example 1 in Section 6. Generally the
fault isolation data are more accurate than the failure
detection data because one fault may cause several different
failures under different conditions if we can assume that new
faults are not spawned by fixing faults. The model, however,
does not fit observed data in the following cases:

1. When the time delay between failure detection and fault
isolation is negligible.

2. When the test effort spent for fatlure detection and fault
isolation is not constant.

3. When new faults are generated by fixing the inherent
faults. ’

One of the advantages of using the fault isolation data is
that there are some faults which are removed during the
fault isolation process of other faults without failure
detection by a test team. Sometimes the test team'is
responsible not only for detecting failures but also*for:
analyzing failures or isolating failure conditions. In such
cases, delayed S-shaped growth is frequently observed {2].

4. Inflection S-shaped growth model
The inflection S-shaped software reliability growth model has
been developed to analyze the software failure detection
process and its underlying reasons by modifying the logistic
curve model which is widely used by Japanese computer
makers for assessing the reliability growth of their software
products. The underlying concept is that the observed
software reliability growth becomes S-shaped if faults in a
program are mutually dependent (some faults are not
detectable before some other faults are removed).

The inflection S-shaped growth models are based on the
following assumptions:

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

I Model of the delayed reliability growth.

—

. Some of the faults in a program are mutually dependent
(there may be a set of faults which are not detectable).

. The probability of failure detection at any time is
proportional 1o the current number of detectable faults in
a program.

. The proportionality is constant.

. The isolated faults can be entirely removed.

N

S

The model is characterized by the following inflection S-
shaped growth mean value function 4(f) of NHPP:

1 — exp(—¢!)
L+ y-exp(—¢t)’

where ¢ is the failure detection rate in the sense of the
Jelinski-Moranda model, ¢ is the inflection paramctér, and
h(1) is the number of failures detected up to time ¢. The
inflection parameter is defined for given r by the following
equation:

h(t) = N 8

1_
¥ =—=,

r

r>0, &)

where r is the inflection rate which indicates the ratio of the
number of detectable faults to the total number of faults in
the program. Basically the model rests on the assumption
that the error discovery rate increases throughout a test
period. The model becomes equivalent to the exponential
growth model if the inflection rate equals I, which is
equivalent to assuming that all faults of a program are
detectable from the beginning of a test. The model
approaches the logistic curve model as the inflection rate
tends towards zero, which is equivalent to assuming that
only a few faults of a program are detectable at the
beginning and faults rapidly become detectable.

The physical interpretation of the inflection rate is as
follows. Let H(r,) be the p.d.f. of failure detection between
the observation of the (i — 1)th and the ith failure detection.
As with the exponential growth model, H(r)) is given by the

following equation: 431

MITSURU OHBA

432

u(i)

Number of detected failures i and the inflection rate function u(i).

H(r) = ¢-u(i)-{N — (i = 1)}, (10)

where u(i) is the inflection rate function which satisfies the
condition 0 < u(i), where 0 < i < N. In this model, the
inflection rate function is approximated by the following
linear function: '

u(i)=r+(1—r)]i\.[. (11)

Equation (11) means that the failure detection rate H(r)) is
proportional to the current number of faults in the program
and the proportionality is dependent upon the number of
failures detected, in contrast to the total number of failures.
The more failures we detect, the more undetected failures
become detectable [11] (see Figure 3). There are two types of
faults in a program:

1. Mutuaily independent.
2. Mutually dependent.

Faults of the first kind occur on different program paths,
and faults of the second kind are on the same program paths
[see Figure 4(a)]. Thus, the second or later faults on the
same program path become detectable if and only if the
preceding faults have been removed. Only faults on different
paths are independent pairwise of one another. For example,
every fault in Figure 4(b) has equal probability of being
captured (i.e., the random capturing assumption). Faults in a
program, however, are usually partially ordered by the
execution paths of the program, as illustrated in Figure 4(c).
Where there exists a small number of faults in a program
(the faults can be regarded as being mutually independent),
we can assume the inflection rate to be 1. In an ideal case,
the inflection rate function increases according to the order
of the logarithmic function of the number of faults isolated,
because of the lattice structure of the mutually dependent
faults.

(a) Dependency of error occurrence; (b) independent faults in a program; and (c) dependent faults in a program.

MITSURU OHBA

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

The parameters of Eq. (8) can be estimated by a method
similar to that used with the Goel-Okumoto NHPP model
when the inflection rate is given (see Appendix C).
Otherwise, the least squares method can be used. If the
inflection rate is greater than or equal to 0.5, then the
reliability growth curve does not have an inflection and
becomes similar to, but not identical with, the exponential
growth (see Figure 5). The reliability growth curve has an
inflection point if the inflection rate is less than 0.5. In
analysis of actual project data, not only by the mutual
dependency of faults but also by the gradual increase in test
effort, the inflection rate becomes smaller than 1.

The inflection S-shaped growth model gives a better
estimate of the parameter N than the exponential growth
model if one of the following conditions is satisfied:

1. The software is fairly large and contains a fairly large
number of errors.

2. The testing effort increases (or decreases) throughout the
test period.

The first condition is related to the mutual dependency of
errors, and the second condition is related to the time
distribution of the testing effort (see Example 2 in Section 6).
The model does not fit observed behavior if the data are
fault isolation data or new faults are generated by fixing the
inherent faults.

5. Hyperexponential growth model

The sum of different exponential growth curves does not
result in a new exponential growth curve, but in the
hyperexponential growth curve. The hyperexponential
software reliability growth model has been developed to
analyze a failure detection process in module-structured
software and its underlying causes on the basis of the
ordinary exponential growth model. In particular, the model
is used for analyzing a software failure detection process in
which two or more different kinds of modules are tested. In
other words, the model can be applied to software consisting
of new modules and a set of reused (existing) modules.

In such a case, faults in these modules have different
characteristics from the failure detection point of view; i.e.,
the proportionality of capturing undetected failures in the
modules is completely different (the failure detection rate of
the reused modules is smaller than that of new modules
because those failures are usually difficult to detect).

The model is characterized by the following
hyperexponential growth mean value function y(¢) of NHPP:

¥ = X Nil — exp(=¢,0)}, (12)

i=1

where # is the number of clusters of modules which have
similar characteristics, V, is the number of initial errors in
cluster i, and ¢, is the failure detection rate for cluster i. The

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Number of errors

| Parameter r and reliability growth.

hyperexponential growth model is a simple sum of the
2xponential growth models of clusters that have different
failure detection rates. The number of detected failures up to
time ¢, y(2), can be given by the following simple equation:

y(1) = Nofl — exp (—oot)}, (13)

if and only if the failure detection rate of each cluster is
nearly equal to ¢,; i.e., ¢, = ¢, (fori =1, 2, - -, n). This
implies that the observed software reliability growth is not
exponential, but hyperexponential, if a program under test
consists of several different clusters that have different error
characteristics. On the other hand, it is true that the ordinary
exponential growth model can be used for analyzing the
growth in reliability of module-structured software if the
modules have similar characteristics, i.e., the same failure
detection rate. The greater the number of clusters,
theoretically the more the observed software reliability
growth curve may differ from ordinary exponential growth
(see Figure 6).

The parameters of Eq. (12) can be estimated by means of
clustering the modules by characteristics, applying the
ordinary exponential growth model (e.g., the Goel-Okumoto
NHPP model) for the estimation of the parameters ¥, and ¢,
for each cluster i, and summing the estimation results into
the final estimation. If the program consists of a single
cluster of modules, then the method of estimating the
exponential growth model parameters used for the Goel-
Okumoto method can be used.

The hyperexponential growth model gives a better
estimate of the number of faults than the ordinary

MITSURU OHBA

433

434

Cumulative number of errors

Test time

| Hyperexponential software reliability growth.

Number of errors

Test time

Small software package time/error data analysis by the delayed S-
shaped model.

exponential growth mode! and the S-shaped software
reliability growth models if one of the following conditions is
satisfied:

—

. The software is module-structured and the complexity of
the modules is significantly different.

. The software consists of a set of newly developed modules
and a set of reused (existing) modules.

[\9]

MITSURU OHBA

3. Some modules of the software interact directly with either
the hardware devices or other system modules (which also
contain some errors).

Although the observed software reliability growth curve of
this hyperexponential model is similar to one of the ordinary
exponential growth models, its physical interpretation is
quite different. As a result, if the ordinary exponential
growth model is inappropriately applied, the estimation
results become unrealistic and inaccurate (typically N
becomes infinite and ¢ becomes zero because the observed
growth is linear before a saturation point).

6. Examples of application

Here we describe some experimental results of applying the
delayed S-shaped, the inflection S-shaped, and the
hyperexponential software reliability growth models. The
following error data sets obtained from actual project reports
are used:

1. On-line data entry software package test data (see
Appendix D).

. RADC Project A test data with calendar time [3].

. RADC Project A test data with effort index [3].

. RADC Project B test data with calendar time [3).

RADC Project B test data with effort index [3].

. Hardware control program test data (see Appendix E).

. PL/1 application program test data (see Appendix F).

RN NV N N)

The small on-line data entry control software package has
been available since 1980 in Japan. The size of the software
is approximately 40 000 lines of code. The testing time (time
axis) was measured on the basis of the number of shifts spent
running test cases and analyzing the results. The number of
persons on the test team was constant throughout the test
period. Figure 7 shows the analysis results using the delayed
S-shaped growth model. The estimated mean value function
is

g(t) = 71741 = (1 + 0.104¢) exp (—0.1041)}. (14)

The model fits the observed data well in this case in terms of
the correlation coefficient (this is also supported by the chi
square test and the Kolmogorov-Smirnov test). The test
team reported a failure after it had reproduced it. Based on
our field problem tracking data of this software for more
than three years, the actual value of the parameter N (the
number of initial faults) is 69 (the estimate is 72). In this
case, the exponential growth model does not fit the observed
data at all, and the estimated number of initial errors is
infinite. Thus, the delayed S-shaped growth model provides a
good fit to the data in this case.

The second example is Project 2 data of the Rome Air
Development Center (RADC) project [3]. In this case, the
test time'is measured on the basis of calendar time (the

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

r=0.038
N=1315.9
$=0.221137
SSE=122481.7

Number of errors

Test time

RADC Project A time/error data analysis by the inflection S-shaped
model.

monthly progress report). The size of the software is
approximately 124 000 lines of code. It took thirty-five
months to complete the test, and the test effort (the work
load for the test) was not evenly distributed throughout the
test period. The test effort gradually increased as the test
proceeded. Figure 8 shows the analysis results using the
inflection S-shaped growth model where the inflection rate is
0.038; i.e., the observed growth in software reliability is
almost equivalent to the logistic curve. Consequently, the
logistic curve model may fit well in this case. The estimated
mean value function obtained by the method of maximum
likelihood is

1 — exp (—0.2211)
1 + 25.3-exp (—0.221z)°

h(t) = 1315.9 (15)
and the error sum of squares is 22 481.7. The inflection S-
shaped growth model fits the observed data quite well,
compared with the exponential growth model and the
delayed S-shaped growth model. For example, in the case of
the Goel-Okumoto NHPP model (Figure 9), the estimated
mean value function is

m(t) = 2499.5{1 — exp (—=0.021¢)}, (16)

and the error sum of squares is 453 070 (twenty times larger
than that of the inflection S-shaped growth model). In this
case, the inflection S-shaped growth model provides a better
fit to the data than the exponential model in terms of the
correlation coefficient.

The third example is the test data of the same RADC
project, but in this case the testing time is based on the
testing effort index. The effort index was measured by

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

“ 9w 0:0210002
SSE#453070

Number of errors

Test time

RADC Project A time/error data analysis by the exponential growth

model.

Effort index (workload)

Calendar time

m

| Time distribution of RADC Project A test effort.

observing the operation time spent for the test. As described
previously, the testing effort was not homogeneously
distributed, so that the effort index would be a more
reasonable measure of the testing time. As illustrated in
Figure 10, the testing effort has a peak in the latter half of
the test period.

Figure 11 shows the analysis results using the inflection S-
shaped growth model where the inflection rate is 0.23. This
implies that the observed reliability growth curve is slightly

MITSURU OHBA

435

436

Number of errors

Test time

T ——

RADC Project A effort/error data analysis by the inflection
S-shaped model.

Number of errors
: . T =N
o : wilo
. , §§§§
\ 9L
: Ew"‘

Test time

RADC Project B time/error data analysis by the inflection S-shaped
model.

S-shaped, reflecting the mutual dependency of faults. The
strongly S-shaped growth curve of the calendar-time-based
data can be regarded as being caused primarily by the
nonhomogeneous time distribution of the testing effort. The
estimated mean value function is

1 — exp (—=0.319¢)
1 + 3.3-exp (—0.319¢)°

h(t) = 1316.8 (17)

and the error sum of squares is 77 888. The inflection S-

MITSURU OHBA

Number of errors

Test time

T

RADC Project A effort/error data analysis by the exponential

growth model.

Number of errors

Test time

SFiguera

RADC Project B time/error data analysis by the exponential growth
model.

shaped model gives a good fit to the observed data. In this
case, the exponential growth model also gives a good fit
(Figure 12). The estimated mean value function is

m(t) = 1438.0{1 — exp (—0.127¢)}, (18)

and the error sum of squares is 111 650 (one and a half
times larger than that of the inflection S-shaped growth
model). In this case, the inflection S-shaped growth model
provides a better fit to the data than the exponential model

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

in terms of the correlation coeflicient. The estimated number
of failures, N, indicated by the inflection S-shaped growth
model compares well with the estimate of the inflection
S-shaped growth model based on calendar time data (the
estimated number of initial errors is 1316 based on the
calendar time data and 1317 based on the effort index), but
not as well with the exponential growth model. We also note
that the model is quite adaptive.

The fourth example is Project | data of the RADC project
[3]. In this case, the testing time is measured based on
calendar time. The size of the software is approximately
1 317 000 lines of code. It took twelve months to complete
the test, and the test effort was not homogeneously
distributed throughout the test period. The testing effort
gradually decreased as the test proceeded. Figure 13 shows
the analysis results using the inflection S-shaped growth
model where the inflection rate is 0.99991. This implies that
the observed software reliability growth is almost
exponential. The estimated mean value function using the
least squares method is

1 — exp (—0.130¢)
1 + 0.00009-exp (—0.130¢) °

h(t) = 3404.8 (19)
and the error sum of squares is 12 820. The inflection
S-shaped model gives a good fit to the observed data. In this
case, the exponential growth model also gives a good fit
(Figure 14). The estimated mean value function is

m(t) = 3242.5{1 — exp (—0.1437)}, (20)

and the error sum of squares is 13 354 (which almost equals
that of the inflection S-shaped growth model). In this case,
both the exponential growth model and the inflection
S-shaped growth model provide a good fit to the data.
However, these estimated numbers are quite different from
the numbers estimated based on the effort index as described
below.

The fifth example is the test data from the same RADC
project, but the testing time is based on the testing effort
index. The effort index is based on the same definition as in
the third example. As illustrated in Figure 15, the testing
effort was not homogeneously distributed, so that the testing
effort index would be more reasonable than the calendar
time as the testing time unit. Figure 16 shows the analysis
results using the inflection S-shaped growth model where the
inflection rate is 0.944. This implies that the observed
reliability growth is slightly different from the exponential
growth curve for the mutual dependency of errors. The
estimated mean value function using the least squares
method is

1 — exp (—~0.135¢)

(D) = 35409 1506 exp (=0.1350) °

@n

and the error sum of squares is 19 663. The inflection S-
shaped model gives a good fit to the observed data. In this

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Effort index (worklioad)

Calendar time

| Time distribution of RADC Project B test effort.

7=0.943808
| N=1354086
“$=0135353 -
SSE=19663.3.

Number of errors

Test time

RADC Project B effort/error analysis by the inflection S-shaped
model.

case, the exponential growth model also gives a good fit
(Figure 17). The estimated mean value function is

m(t) = 3770.8{1 — exp (—0.1172)}, (22)

and the error sum of squares is 16 488 (which almost equals
that of the inflection S-shaped growth model). In this case,

MITSURU OHBA

437

438

N=3770.79
$=0.116734
SSE=16487.8

@
-
8
2
B
5]

kS
S
o}

8
E
5

Z.

Test time

h_

Module €

Cumulative number of errors detected

3
P 3ol .

- ek

Module' A

Test time

Figure 18

I Observed hyperexponential growth curve.

the exponential growth model provides a better fit to the
data than the inflection S-shaped growth model, but the
estimated number of failures is quite large.

MITSURU OHBA

RADC Pfoject B effort/error data analysis by the exponential
" | . growth model.

The sixth example is the test data of a hardware control
program. The size of the software is approximately 35 000
lines of code. The testing time was measured based on
calendar time. Figure 18 shows the observed software
reliability growth curves of each major module. The software
consists of three major modules, i.e., the base module -
(Module A), the extended function module (Module B), and
the newly added module (Module C). The reliability growth
of the base module was relatively stable from the begmmng
of the test, that of the extended function module was snmlar .
while the newly added module’s reliability growth was
unstable. Using the hyperexponential growth model, we
obtain the analysis result shown in Figure 19. The estimated
mean value functions are

my(t) = 58.9{1 — exp (=0.1912)}, (23)
my(t) = 94.9{1 — exp (=0.1320)}, (24)
mu(t) = 164.4{1 — exp (=0.1731)). - (25)

Thus, the estimated mean value function of the total
package is

m(t) = m,(t) + my(t) + m{z). . (26)

At the final checkpoint, the estimated number of failures was
318 based on hyperexponential growth model analysis. The
actual value after six months’ testing beyond that checkpoint
was 320. Thus, we can conclude that the hyperexponential
growth model is quite accurate. In this case, the exponential
growth model also fits the observed data because failure
detection rates, ¢, of each module are distributed in the
range from 0.1 to 0.2 (the estimation by the
hyperexponential growth model is better, but the dlﬁ'erence
is not significant).

The last example is the test data of a PL/I database
application program. The size of the software is
approximately 1 317 000 lines of code. The time axis is the
execution time in this case. Figure 20 shows the analysis
results using the inflection S-shaped growth model where the
inflection rate is 0.2. This implies that the observed
reliability growth is slightly S-shaped for the mutual
dependency of faults. The estimated mean value function is

— exp (—0.094r)

hit) = 341.2 1 ¥ 4.0-exp (=0.0947)

@7

and the error sum of squares is 3406. The inflection S-
shaped model gives a good fit to the observed data. In this
case, the exponential growth model also gives a good fit
(Figure 21). The estimated mean value function is

m(t) = 455.4{1 — exp (—0.0271)}, (28)

and the error sum of squares is 3932 (which almost equals
that of the inflection S-shaped growth model). In this case, a
total of 358 failures were observed. The inflection S-shaped

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Number of errors

Test time

Hardware control program test data analysis by the hyperexponen-
tial growth model.

model provides a better fit to the data than the exponential
growth model in terms of the correlation coefficient in this
case.

7. Conclusion

For the effort index data or the execution-time-based data,
the exponential growth model fits the observed data well, as
shown by the fifth example of the previous section. This
implies that the exponential growth model should be used
where execution-time-based data are available [12]. There
are, however, exceptions such that the observed software
reliability growth is S-shaped, since the times recorded are
the fault detection times (not the failure detection times) or
the faults of the program are mutually dependent as in the
seventh example of the previous section.

For the calendar-time-based data with nonhomogeneous
time distribution of the testing effort, the exponential growth
model does not fit the observed data, even if the observed
reliability growth curve is similar to the exponential growth
curve, as in the third example of the previous section (Fig.
12). Rather, the inflection S-shaped growth model fits well
(Fig. 11). In particular, the inflection S-shaped growth model
fits the calendar-time-based data which has an inflection
point, as in the second example of the previous section (Fig.
8).

In the case in which the test team recorded the time when
they isolated a failure symptom, the delayed S-shaped
growth model gave a good fit to the data if the failure
analysis time (or the fault isolation effort) was significant and
the effort was homogeneously distributed, as in the first
example of the previous section (Fig. 7).

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

r=0.2

. N=347.23
¢=0.0935493
SSE=3406.33

Number of errors

Test time

PL/1 application program execution time data analysis by the inflec-
tion S-shaped growth model.

N=455.371
¢ =0.0267368
SSE=13931.82

Number of errors

Test time
PL/1 application program execution time data analysis by the expo-
nential growth model.

In the case in which the errors of the tested program are
not expected to be independent of one another (i.e., high
program complexity, many initial errors, etc.), the inflection
S-shaped growth model fits the observed data well, as in the
seventh example of the previous section (Fig. 20).

In the case in which the software consists of two or more
clusters of modules which have different characteristics [i.e.,
some existing (reused) modules and some newly developed

MITSURU OHBA

439

440

modules, or some modules written in high-level language
and some modules written in basic assembler language, etc.],
the hyperexponential growth model sometimes fits the
observed data well, as in the sixth example of the previous
section (Fig. 19). :

Reliability growth analysis based on calendar-time data
cannot be done with as much confidence as that based on
the effort index or on execution time data. The reason is that
the shape of the observed reliability growth curve is
changeable, depending strongly upon the time distribution of
the testing effort. The observed growth curve rapidly
saturates once the testing effort (e.g., the number of persons
on a test team) is reduced. Thus, the saturation of the
observed reliability growth does not always indicate that
software reliability has become stable, as in the fourth
example of the previous section.

Some remaining problems concerning the software
reliability growth model are still open. First, a reasonable
criterion for evaluating the goodness of fit of an estimation
has not been developed. The correlation coeflicient is not
sufficient for this problem. The chi square test is also
inappropriate. For example, the estimation done for the
seventh example by the exponential growth model is assured
by the chi square test. Although the estimation done by the
inflection S-shaped model is obviously better than that of the
exponential growth model, it is not assured by the chi square
test. The Kolgomorov-Smirnov test is better than the chi
square test, but it still has a problem of sensitivity. Second, a
reasonable method of determining the upper and lower
bounds of an estimated reliability growth has not been
developed. The theoretical upper and lower bounds are
practically meaningless, typically in the case of the NHPP
models. It only depends upon the estimated mean value
function, not upon the goodness-of-fit index.

Appendix A: An algorithm for parameter
estimation for the exponential growth model
The parameters of the exponential software reliability growth
model are estimated as follows. Here we use the method
proposed by Goel and Okumoto [10]. Suppose that the data
shown in Table 1, pairs of the observation time and the
cumulative number of failures observed, are available.

The number of failures observed up to time ¢, M(¢), is a
random quantity. Assuming a Poisson distribution, the
probability that M(¢) has the value z is given by

PriM@) =z = 'ﬂz('i)i x e, (29)

where m(f) is a mean value function which is given by Eq.
(2).

Suppose that z, number of failures have been observed up
to £, and z,,, number of failures have been observed up to
t.,, where ¢, > 1, and z,,, > z,. The conditional probability
of M(t,,) = z,,, given M(t) = zis given by

MITSURU OHBA

PriM,,) = 2,1 M(1) = 2}
= briM(t,,) - M) = 2, — 2}

—
_imy)) = mUFTT m-m
iy —) '

(30)

The joint probability that the pairs of data {,, z} (i = 1,
2, - - -, n) are observed is therefore given by

PriM(0) = 0, M(t)=z,---,M(1,)=z,

— fI {m(t,-) _ m(ti—n)}z'_zi—l

’ X e“m(lg)-m(l,-_,)‘. (3 1))
i=1 (z;— 2!

This joint probability may be used as the likelihood function
for estimating the parameters NV and ¢ of Eq. (2).

Estimates of N and ¢ can be found by maximizing the log-
likelihood (logarithm of the likelihood) L:

n

L= E. (2, = z_) In {m(t) — m(1,_)}

- Sl - -) G
where
m(t) = N[1 — ¢ *"]. (33)

Taking the derivatives of L with respect to N and ¢ and
setting them equal to zero, we obtain the equations

Z
N=1—o=m (34)

Nt e®= 3 (2~

=1

—¢-1,

. i ALY
Zi—l) l:l ee—O’"i—l _I,—l _i"i] . (35)

e

Thus the estimate of ¢ is given as one of the solutions of
the equation
—¢-t

e "
Toen - LG
=1

n @t

tee i~y et
_ z,_l)[x et] (36)

The above equation can be numerically solved with respect
to ¢.

- e

Appendix B: An algorithm for parameter
estimation for the delayed S-shaped growth
model
The parameters for the delayed S-shaped software reliability
growth model are estimated as follows. Here we use the
method proposed by Ohba, Yamada, Takeda, and Osaki [2].
Assume that the data shown in Table 1 are available.

As with the exponential software reliability growth model,
the joint probability that the pairs of data {z,, z} (i = 1,
2, - -+, n) are observed is given by

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

PriM(0) = 0, M(t,) = z,, -+, M(t,) = z,}

oy 180) = g T s

= E p— X € , (37
where g(z) is, from Eq. (3),
g(t) = N[1 = (1 + ¢-1)-€*"]. . (38)

This joint probability furiction may be used as the likelihood
function for estimating the parameters N and ¢.

Estimates of N and ¢ can be found by maximizing the log-
likelihood L:

L= 2 (Z,* - zi—l) In {g(t,') - g(t,*_l)}

- Z In ‘(Zi - Zi_l)!} = g(tn)~ (39)

=1

Taking the derivatives of L with respect to N and ¢ and
setting them equal to zero, we obtain the equations

z

Nt ven)e ™ (40)
N‘¢‘ti'e—¢"" = 2 KZ[- z,‘-])‘
i=1
¢-17-€%" = gty e
e e

Thus, the estimate of ¢ is given as one of the solutions of
the equation
AU AL
1—(1+¢-1)e"™

2 by 2 —¢-tiy
¢.[‘_.e ‘ ¢'li—1'e ¥

(I + ¢t e’ —(1 + ¢-t,.)e""""] T (42)

=2 (2, = z,_) I:
i=1

The above equation can be numerically solved with respect
10 ¢.

Appendix C: An algorithm for parameter
estimation for the inflection S-shaped growth
model
The parameters of the inflection S-shaped software reliability
growth model are estimated as follows. We use the method
proposed by Ohba [15]. Assume that the data shown in
Table 1 are available and the parameter r or y is given.

As with the exponential software reliability growth model,
the joint probability that the pairs of data {1, z} (i = 1,

2, - - -, n) are observed is given by
PriM(©)=0, M) =z, -, M(t,) =z
o) = AT e 43)

i=1 (z, — 7))

where, from Eq. (8),

IBM J, RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Table 1 Failure data.

Time of observation Cumulative number of failures
4 Z
123 Z3
[] []
t’l z’l
1—e "
ht)=N -7 . 44
) = N (44)

This joint probability function may be used as the likelihood
function for estimating the parameters N and ¢.

Estimation of N and ¢ can be found by maximizing the
log-likehood L:

L=7Y (z; — z_,) In {h(t,) — h(t,_)}}

i=1

~ 2 In {Gz, — 2 = A(,). (45)

Taking the derivatives of L with respect to N and ¢ and
setting them equal to zero, we obtain the equations

_n(l+yet™

N e Tl (46)
AP ETES Mk
= é (z; — z2) [t".e;:f,i: ﬁ‘;'_i_.: -
+ 1‘{;[; e:;, ;”i-ﬁ:i] . D

Thus the estimate of ¢ is given as one of the solutions of
the equation

Lozt 1=+ 2t
1 —-e?® 1+ e ®h
n —-1; -l
t-e” i —1t,_ e
=X (= z) [' o R T
i=1 e -

\l"ti‘e_w‘i ‘P'ti—l 'e—q’"i_l

e -] (48)

L+ g™

The above equation can be numerically solved with respect
to ¢.

Appendix D: On-line data entry software
package test data

The pairs of the observation time and the cumulative
number of faults detected were as shown in Table 2.

MITSURU OHBA

441

442

Table 2 On-line data entry software package test data.

Table 4 PL/1 application program test data.

Time of observation Cumulative number of faults Time of observation Cumulative Cumulative
(day) {week) execution time number of failures
1 2 -
2 3 1 245 15
3 4 2 4.90 44
4 5 3 6.86 66
6 9 4 7.84 103
7 11 5 9.52 105
8 12 6 12.89 110
9 19 7 17.10 146
10 21 8 20.47 178
11 22 9 21.43 179
12 24 10 23.35 206
13 26 11 26.23 233
14 30 12 27.67 255
15 31 13 30.93 276
16 37 14 34.77 298
17 38 15 38.61 304
18 41 16 40.91 311
19 42 17 42.67 320
20 45" 18 44.66 325
21 46 19 47.65 328

Table 3 Hardware control program test data.

Time of Cumulative number of failures
ol():;mt}i)on Module A Module B Module C
1.0 — 10 _
1.5 17 — 47
2.0 — 18 —
3.0 24 34 77
4.5 37 47 95
6.0 42 51 99
8.0 44 63 119
11.0 50 71 133
12.0 53 75 - 141
13.0 54 78 147

Appendix E: Hardware control program test data

The pairs of the observation time and the cumulative
number of unique failures detected were as shown in Table
3.

Appendix F: PL/I application program test data
The tuples of the observation time, the cumulative CPU
execution time, and the cumulative number of unique
failures detected were as shown in Table 4.

Acknowledgments

The author thanks L. A. Belady of IBM, S. Osaki and S.
Yamada of Hiroshima University, and H. Kobayashi of
IBM. Osaki and Yamada have contributed to design of the
delayed S-shaped growth model and to development of the

MITSURU OHBA

parameter estimation method for the model. Belady has
influenced our summarization of the work. In particular, the
idea of the inflection S-shaped growth model was prompted
by discussions with him. Kobayashi and Osaki encouraged
the author to develop the hyperexponential growth model.
Finally, the author especially expresses his thanks to all the
referees for their comments and advice.

References

1.

4.

Z. Jelinski and P. B. Moranda, “Software Reliability Research,”
(Statistical Computer Performance Evaluation), W. Freiberger,
Ed., Academic Press, Inc., New York, 1972.

. M. Ohba, S. Yamada, K. Takeda, and S. Osaki, “S-Shaped

Software Reliability Growth Curve: How Good Is It?”,
Proceedings IEEE COMPSAC 82, Chicago, 1982, pp. 38-44,

. W. D. Brooks and R. W. Motley, “Analysis of Discrete Software

Reliability Models,” Technical Report RADC-TR-80-84, Rome
Air Development Center, New York, 1980.

A. Kanno, “Software Engineering,” (in Japanese), Union of
Japanese Scientists and Engineers, Tokyo, 1979.

. K. Sakata, “Formulation for Predictive Methods in Software

Production Control: Static Prediction and Failure Rate
Transition Model,” (in Japanese), Trans. IECE Japan (Institute
of Electronics and Communication Engineers of Japan) 57, 277-
283 (1974).

. S. Yamada, M. Ohba, and S. Osaki, “S-Shaped Software

Reliability Growth: Models and Comparisons,” presented at the
Summer Symposium on Operations Research, Daisen, Japan,
1983.

. M. Kajiyama, S. Yamada, S. Osaki, and M. Ohba,

“Comparisons of Software Reliability Growth Models,” (in
Japanese), Proceedings, Information Processing Society of Japan
Spring Conference, Tokyo, Japan, 1982, pp. 401-402.

. 1. D. Musa, “Validity of Execution-Time Theory of Software

Reliability,” IEEE Trans. Reliability R-28, 181-191 (1979).

. B. Littlewood and J. Verrall, “A Bayesian Reliability Growth

Model for Computer Software,” Proceedings, IEEE Symposium
on Computer Software Reliability, New York, 1973, pp. 70-77.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

10. A. L. Goel and K. Okumoto, “Time-Dependent Error Detection
Rate Model for Software Reliability and Other Performance
Measures,” IEEE Trans. Reliability R-28, 206-211 (1979).

{1. F. N. Parr, “An Alternative to the Rayleigh Curve for Software
Development Effort,” IEEE Trans. Software Eng. SE-6, 291~
296 (1980).

12. P. N. Misra, “Software Reliability Analysis,” /BM Syst. J. 22,
262-270 (1983).

13. M. Ohba and M. Kajiyama, “A Software Reliability Growth
Model with Learning Factor of Testing,” (in Japanese),
presented at the Information Processing Society of Japan
Working Group Conference on Software Engineering, Sendai,
Japan, 1983.

14. M. Ohba and N. Yonehara, “A Module-Structured Software
Reliability Growth Model: Hyperexponential Model,” (in
Japanese), presented at the Information Processing Society of
Japan Fall Conference, Fukuoka, Japan, 1982.

15. M. Ohba, “S-Shaped Software Reliability Growth Models,” (in
Japanese, abstract in English), presented at the Union of
Japanese Scientists and Engineers Annual Reliability and
Maintainability Symposium, Tokyo, 1983.

Received July 1, 1983, revised February I, 1984

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Mitsuru Ohba Science Institute, IBM Japan, Ltd., Kowa Building
No. 36, 5-19, Sanbancho, Chiyoda-ku, Tokyo 102, Japan. Mr. Ohba
is an advisory researcher in a software engineering group at the
Science Institute. He is currently working on multinational language
support of operating system messages, and on the software reliability
assessment method and the software quality index. Mr. Ohba joined
IBM at the Product Test Laboratory in Fujisawa in 1974. Since that
time, he has worked to develop tools for the testing of remotely
attached terminals and measurements of the performance of banking
system terminals. Mr. Ohba holds B.S. and M.S. degrees in
computer science from the Aoyama-Gakuin University, Tokyo. He
is a member of the Information Processing Society of Japan.

MITSURU OHBA

443

