
tmpty arrays In
extended APL

by 0. L. Orth

During the past several years considerable work
has been done on extending APL in three areas:
operators, heterogeneous data, and nested
data. In each area a proposed extension must
treat empty arrays consistently. In this paper
various possibilities for providing consistent
behavior are presented. The new proposals
possess at least one of two important qualities
in which older proposals tend to be deficient:
consistent behavior is independent of the
structural properties of rank and nesting, and
the user has control over the behavior when he
wants it.

1. Introduction
This paper explores the effects on empty arrays of proposed
extensions to APL i n three general areas: extended operators,
heterogeneous arrays, and general (i.e., nested) arrays. An
important aspect of the usability of APL is consistent
behavior for empty arrays, and this will certainly remain true
in an extended APL language. We therefore examine the
ways in which empty arrays presently interact with the APL
primitive and derived functions, so as to maintain effective
interactions in an extended language. It is not the intention
of this paper to make detailed proposals for language
extensions. The specific extensions presented here simply
provide contexts in which to analyze empty arrays: others
might have served just as well.

To understand the importance of empty arrays in present
APL [1,2], consider the expression (P M) f M , where M is

OCopyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other

412 portion of this paper must be obtained from the Editor.

a character matrix whose rows contain names, and P is a
proposition whose value is a boolean vector with one
element for each row of its argument, such that (PM)[Z] is 1
if and only if the criteria tested in P are true for me]. The
result of the expression is a matrix whose rows all satisfy the
criteria tested in P. If no row of M satisfies these criteria,
then the result is an empty matrix with no rows. Evidently,
after such an expression is executed within an APL program,
the program must continue to execute in a consistent
manner for both empty and nonempty results. Otherwise,
programmers would be required to make explicit provisions
for all potential occurrences of empty arrays.

A nonempty array in present APL is uniquely determined
by two independent characteristics, its shape (the lengths of
its axes) and its element list (in some predetermined order).
Rank is another fundamental characteristic but is not
independent of shape, since the rank of an array A is the
shape of the shape of A . Still another fundamental
characteristic is type (numeric or character), but it can be
derived from the element list. In most implementations
there is also an associated storage type which is of finer
resolution than the APL numeric type, typically boolean,
integer, or real. Some implementations also have more than
one storage type for character arrays. Even though it may be
possible to ascertam that certain primitives consistently
produce values of particular storage types, no primitive
distinguishes among storage types for its arguments:
primitives may require boolean or integer values of their
arguments, but not boolean or integer storage types.

have obvious realizations as arrays: in APL notation, the
shape of an array A is the vector pA, and the element list is
the vector ,A. The rank ofA is ppA. There are commonly
used realizations of type that can be produced by various
APL expressions, and almost all of them depend on so-called
“fill” elements.

The notion of fill in APL is closely related to that of type.
Certain APL structural primitives rearrange the elements of

These two independent characteristics of nonempty arrays

D. L. ORTH IBM 1. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

an argument array in ways that sometimes leave gaps that
must be filled; in present APL each location corresponding
to a gap is filled with a scalar zero or a scalar blank,
depending on whether the argument array consists of
numbers or characters. The scalar used to fill the gaps is
called the fill element of the argument array. Like type, the
fill element of a nonempty array can be determined from the
element list of the array. Unlike type, fill elements are also
an important characteristic of empty arrays.

Empty arrays are not vacuous like the empty set in
mathematics. They, as well as nonempty arrays, have shape
and element lists; they are distinguished from nonempty
arrays by having empty element lists and zeros in their
shapes. An array with no elements must have the shape
characteristic; the expression introduced above, i.e.,
(P M) f M, may apply to a ten-column matrix and produce
a matrix with no rows, i.e., an array with shape zero-by-ten.
Empty arrays must also have fill elements because the above-
mentioned structural primitive functions can produce
nonempty arrays from empty ones, which means that all the
locations in the nonempty results are gaps that must be
filled, and these primitives must behave as consistently for
empty and nonempty arguments as the other primitives. In
effect, empty arrays have type: the result of the above
expression for a character matrix M is also a character
matrix, whether that result is empty or nonempty.

Since empty arrays have empty element lists, their fill
elements cannot be computed from their element lists, and
therefore Jill is a third independent characteristic of APL
arrays. Of course, it would have been possible in the
beginning to have defined the fill element of an empty array
in terms of emptiness, so that the fill element would have
always been computable from the element list. However, this
was not done, and in retrospect the assignment of a single fill
element to all empty arrays would have been unfortunate.

Thus, fill is a third characteristic of APL arrays that is
independent of shape and element list (if only because of
empty arrays) that (like the other two) can be realized as an
array and that has been particularly useful in extending the
definitions of primitive functions to empty arrays.

More observed all this in a context similar to APL [3,4]
and-from the viewpoint of APL-has adopted the fill
element of an array as the realization of its type. Thus in
APL the scalar zero would be taken as the type of numeric
arrays and the scalar blank as the type of character arrays.
Following More, type would be called the third independent
characteristic of APL arrays, and in our Sections 3 and 4 the
arrays from which fill is derived are in fact called type arrays,
or simply type. More’s work in this area has led to his
concept of array prototypes, which are used to provide array
theory primitives with consistent extensions to empty arrays.

More’s work in array theory to APL extensions, most
notably, perhaps, [5] ; a complete bibliography can be found

Several years ago a series of papers appeared relating

in [6]. These papers are primarily concerned with general, or
nested, arrays and the primitive functions and operators that
apply to them. Some attention is given to the problem of
empty arrays, principally in [7], and the general conclusion,
at least for the so-called permissive general array systems, is
that More’s array theoretic concepts for empty arrays should
be adopted for extended APL. However, despite the firm
theoretical foundation for prototypes in array theory, in
many practical situations within the context of APL, fill
based on prototypes does not behave as well as some other
possibilities [8]. There are two aspects of prototypes that
make them too restrictive for extended APL: First, when
adapted to APL, prototypes provide fill elements, whereas-
as we will see-fill arrays are often more suitable; and
second, the prototype of a nonempty array is derived from
the element list and therefore cannot be independently
specified.

In this paper, Section 2 is concerned with the effect of
empty arrays on extensions to the primitive operators. There
are essentially two different sets of definitions for the
extended operators, instances of which can be found in
[9, 101. We use the definitions in [IO], with some variations,
because they do not require general arrays and therefore can
be treated independently of the other extensions under
consideration. A brief discussion of the other definitions
appears in Section 4.

heterogeneous data. Again, in order to isolate this extension
from the others, only flat heterogeneous arrays are discussed,
i.e., APL-like arrays that are a mixture of numbers and
characters. A definition of fill arrays is developed and its
advantages over fill elements are discussed.

Section 4 concerns empty general arrays. A permissive
general array system is discussed first; the name derives from
the fact that the fundamental primitive used to create nested
data has no effect on ordinary scalars. Such a system must
also admit heterogeneous data if it is to be effective, and the
results presented here extend those of Section 2. A brief
discussion of strict general .array systems follows. As in
[7, IO], there is really only one useful general form that a fill
definition can take. Next is a presentation leading to the
conclusion that ordinary fill elements are often preferred to
more complicated forms.

Section 5 deals with the conflict that arises because a
simple form of fill is more effective in some applications and
a more complex form in others. Essentially, the solution
offered is to make fill a specifiable quantity, and that in turn
rests on establishing fill as a concept independent of type.
Curiously, it is also shown that specifiable fill provides an
informal kind of abstract data typing. See [6, 1 11 for
discussions of extensions to APL that permit more formal
data abstractions.

Section 3 is concerned with empty arrays and

The index origin is assumed to be 1 unless stated
otherwise.

413

IBM J RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. ORTH

2. Extended operators
In present APL the primitive operators (reduction, scan,
axis, outer product, and inner product) apply only to certain
primitive functions. It is assumed in this section that these
operators apply to all functions: primitive, derived, and
defined. It is also assumed that only simple homogeneous
arrays are permitted, as in present APL. The definitions
adopted here for the extended primitive operators are as
follows, where f and g are any functions and, unless stated
otherwise, A and B are nonempty arrays:

Definition I-reduction

if N > 1, where N is a scalar whose value is -1 t pA.
Otherwise,
f/A e A[;. . . ;I]

or

f/A w A

if N = 1 or if A is a scalar, respectively.

Definition 2-scan

(fW)[; . . . ; I] c-) f/A[; . . . ;LZ]

where the scalar Z takes any valid index value. Otherwise, if
0 = -1 t p A ,

fWC-)A

Dejnition 3"axis
If C c f[l]B then

C[Zl;. . . ;IN,;. . . ;] c* fB[;Zl;. . . ;ZNl

where the integers Z 1 through IN take on all valid index
values. The definition of f [q B is similar, except that
individual subarrays of B to which f is applied lie along the
Kth axis instead of the first. The length of the Kth axis may
be zero. Analogously, if C t Af[I]B then

C[Z1; * . . ;IN,; . . . ;] t, A[;Z1; . . . ;INJfB[;Il; . . . ;IN
and A f [q B is similar. Presumably this operator would be
extended to permit specification of more than one axis, as
well as specification of different axes for the argument (or, in
the dyadic case, both arguments) and the result. However,
the additional generality adds nothing to the discussion here.

Dejnition 4-outer product
If C c A 0 .fB then

C[II; . . . ;ZNJl; . . . ;JM,;. . . ;]
C, A[Zl; . . . ;ZNlfB[Jl; . ;JMI

where the integers I1 through JM take on all valid index
414 values.

Dejnition 5-inner product
If C c Af.gB then

C[Il; . . . ;ZN,Jl; . . . JM,; . . . ;]
C, f/A[Zl; . . * ;ZN,]gB[;Jl; . . . ;JM]

for ZI through JM as above.
For example, if M + 2 2 ~ ~ 4 , then

3 f [2] M c , 2 3 p I 2 0 3 4 0

JMc, 1 3 2 4

M[;l];o.,M[;2] c, 2 2 2 p 1 2 1 4 3 2 3 4

Note that the utility of both outer product and inner
product would be enhanced significantly if the axis operator
applied to these operators. Outer product applies its function
argument to all pairs of scalars, one from the left argument
array and the other from the right. The effect of axis would
presumably be to apply the function argument to all pairs of
subarrays along specified axes. The effect on inner product
would be analogous. Similar behavior is obtained by Iverson
[101 through the concept of function rank.

These definitions evidently give the same results as the
present APL operators when applied to the same restricted
class of functions and nonempty arrays. The problem to be
considered in this section is to define the extended operators
for empty arguments in such a way as to agree with the
present operators whenever the latter are defined and to
apply to as wide a range of functions and empty arrays as
possible. There are two cases to the problem of empty
arguments: Either the associated result in present APL is
nonempty, as can occur in reduction and inner product, or
the result is empty. The case of nonempty results is
considered first.

Nonempty results
In present APL only reduction and inner product can
produce nonempty results from empty arguments. For
example, +/LO is 0, x/2 OpO is 1 1, and (2 OpO) +.X (0 3pO) is
2 3pO. It is enough to discuss reduction because nonempty
results of an inner product on empty arguments are due to
the reduction therein. The following definition is based on
the one in the IBM APL Standard [12, Section 2.4.11; f is
assumed to be a primitive scalar function.

Dejnition 6
If 0 = - 1 pA (i.e., there are no subarrays along the last
axis), then (I) i f f has no left or right identity, then f/A
evokes a domain error; (2) iff has a right identity, denoted
here by the scalar RI, then f/A is (-1 4 pA)pRI; otherwise, (3)
i f f has a left identity LI, then f/A is (-1 J pA)pLZ.

Note: I f f has both a left and right identity, they are
identical, and their common value is called the identity off.

This definition is motivated by the following relation for
arrays A with 1 < -1 t pA:

D. L. ORTH IBM J. RES. DEVELOP. VOL. 2s NO. 4 JULY 1984

f/A - A [; . . ' ;I]) ff/A[; .. . ; I 1 1 - 1 7 PA] (1)

If 1 = - 1 7 p A , this relation takes the form

A [; . ' . ; I] c-f A [; ' . . ;1] f f/A[; . . . ;lo] (2)

and is true iff has a right identity and f/A[; . . . ;LO] is
appropriately defined in terms of that identity.

The expressions (-1 1 pw)pLI and (-1 1 pw)pRI in the
above definition are called left and right identity-inducing
expressions by Brown and Jenkins [131. In addition, it is
convenient to refer to g: (-1 1 pw)pLI and h: (-1 1 pw)pRZ as
left and right identity-inducing functions. Brown and Jenkins
discuss identity-inducing expressions for nonscalar
primitives, as well as the generation of such expressions for
derived functions, and even though their definition of
reduction differs from the one above (see Section 4), their
basic idea can be adapted to our purposes here.

Definition 7
The function f is said to have a right identity-inducing
function g if for every A with 1 = -1 7 PA,

A [; . . . ;I] - A [; . . . ;I]fgA[;. * . $01 (3R)

or a lt$ identity-inducing function g if for every such A ,

A [; . . . ; l] c, (@I[; . . . ;10])fA[; . . . ; I] (3L)

Extended reduction is then defined as follows:
If 0 = - 1 7 pA, then: (1) iff has no right or left identity-

inducing function, then f/A evokes a domain error; (2) iff
has a right identity-inducing function g, then f/A is defined
to be g A ; otherwise, (3) iff has a left identity-inducing
function g, then f/A is defined to be gA.

2 2, then

A c, A , 2 O p A and A c-f (2 OpA), A

More generally,

A t* A , ((- l 1 p A) , 0)pA and

For example, consider the catenate primitive a, w. If p A c,

A - (((- 1 1 PA), O) P A) , '4

for any array A . In particular, and following the form of (3R)
and (3L), if I t A [; . . . ;LO] then

A [; . . . ;I] * A [; . . . ;l],((-2 1 PI) , 0)pI

4 ; . ' . ; I 1 tf (((-2 1 PI) , O) P Z) , 4 ; . . . ;I1

Consequently g: ((-2 1 pw) , 0)pw is both the right and left
identity-inducing function of catenate, and therefore , / A is
((-2 1 P A) , 0)pA whenever 0 = - 1 7 p A .

To repeat, a scalar function with right or left identity R I
or L I has the right or left identity-inducing expression
(-1 1 pw)pRZ or (- 1 1 pw)pLZ. In addition, identity-inducing
expressions for the nonscalar primitives are as shown in
Table 1.

Table 1 Identity-inducing expressions for the primitive
functions.

Dyadic
function

Catenate
Reshape
Take
Drop
Compress
Expand
Rotate
Transpose
Membership
Index of
Domino
Encode
Decode
Deal
Format

Identity-inducing
expression

((-2.1 PW), O)PW (Note 1)

- 1 1 Pw

-1 1 Pa
(or-1 + ppW)po
(-1 7 -1 1 pulp1 (Note 1)

(-1 -1 -1 pw)pl (Note 1)
(-2 1 pw)pO (Note 1)
tor-l + ppW

(-1 1 pw)pl (Note 2)
LL/LO (Note 3)
(11 t pw)'.=ll t PO

1/10

Leji-
right

L R
L
L
L
L
L
L
L
R
L
R
L
None
None
None

Note I: Relation (3) holds only for A of rank at least 2.
Note 2: Relation (3) holds only ifall elements ofA have boolean values.
Note 3 Relation (3) holds only if all elements of A have M t U d number values.

As for nonprimitive functions, consider first the simple
derived functions; i.e., primitive operators applied to
primitive functions. There would be advantages to being able
to formally generate identity-inducing functions of all the
simple derived functions from those of the primitive
functions, but unfortunately that is not possible. Some
results in that direction are

A.

B.

r.

Following [131, iff is a primitive function with a right
(left) identity-inducing function g, then 0 .f has a right
(left) identity-inducing function h if and only if g
commutes with indexing, in which case hw c, gOpw. (The
function g commutes with indexing if p g A c, -1 1 pA
whenever 0 = -1 7 p A , and

(g A) [I l ; . . . ; I N c, g A [I I ; . . . ;IN,10]

for all valid indices I1 through IN.)

commutes with indexing and the right or left identity-
inducing expression of 0 .f is identical to R I or L I ,
respectively.
Analogously, f[ppw] has a (right or kft) identity-inducing
function h if and only if g commutes with indexing along
all axes other than the ppwth, in which case

ha * g[pp.l..

In particular, iff is a primitive scalar function, then g

L. The results for inner product are not as general. Some
specific results are: e.f has the left identity-inducing
function ID 1 7 pw for ID: (L W) 0 . = LW iff is compress, 415

IBM I. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. ORTH

and also has identity-inducing functions based on ID for
certain combinations of primitive scalar functions (e.g.,
+.X, X.*, and #.A).

Evidently it is also not possible to formally generate
identity-inducing functions for defined functions, except in a
few simple cases. A practical scheme is to permit defined
identity-inducing functions that can somehow be associated
with defined functions (see, e.g., [141. As for nonsimple
derived functions (primitive operators applied to
nonprimitive functions), apparently the only practical
treatment is to define a function for any member of this
class when its use requires an identity-inducing function and
then apply the mechanism for defined functions. In fact, in
view of the rather sparse results in (C), it may be prudent to
treat all functions derived from inner product, reduction,
and scan in this manner as well.

Empty results
The other aspect of the problem of applying functions
derived from the extended primitive operators to empty
arguments occurs when the comparable results in present
APL are empty. There is no problem for reduction and scan.
If 0 = -1 t pA, then f/A is defined in terms of the identity-
inducing function off, whether or not other axes of A are of
length zero, while fw is A. If 0 # -1 t pA, then the
definitions of f/A and fw in Definitions 1 and 2 apply,
whether or not A has axes of length zero. Difficulties occur
in defining values for the following:

1. Af[K]B and f[K] B when an argument axis other than the

2. A 0 .fB when an argument is empty; and
3. Ae.fB when an axis of A other than the last or an axis of

B other than the first has length zero.

Kth has length zero;

The difficulty in each case is due to the fact that there is
nothing to which to apply the argument function f. [For
example, what is the result of (LO). . p l 2 3)?] In present APL
these operators apply to a restricted class of functions for
which the above results are derived formally from general
shape and type rules, but there are no general shape and type
rules for the extended operators. (Actually, the results of 1-3
above can be derived from formal identities for the
nonscalar primitives ,\&<, but that is not in general
true of pTJ/Q?T, where shapes of results can depend on
values of the elements in element lists and, in some cases,
the index origin.)

More [4, Sections 15, 16,25, 291 has encountered this
difficulty in a similar context, and has proposed a solution
that constructs nonempty arguments to which the function
arguments can be applied. More’s scheme can be adapted to
our purposes as follows:

416 Step 1 “Fill in” empty arguments by applying the function

FILLAZN:((po)T - (cppo)ecy) 1 w

to them, with left argument K for f[K], and LO for 0 .f and
e.f;

Step 2 Apply the derived functions to the resulting
nonempty arguments;

Step 3 Obtain the desired results by “emptying” or
“vacating” the results along those axes where the arguments
were filled. That is, if R is a result obtained by the first two
steps and S is pR, form T from S by replacing each 1 in S
with 0 whenever the I is due to a “filled-in” axis of an
argument; T t R is then the result of the derived function.

For example, outer product for empty arguments would
be defined in terms of outer product for nonempty
arguments as follows (the first expression represents steps 1
and 2, the fourth step 3):

FA t (1O)FILLAINA

FB - (c0)FILLAIN B

IR c FA 0 . fFB

A 0 .fB - ((pIR X 0 = (p p I R) t 0 = (pA),pB) t IR

Thus in the case of (10)o.pl 2 3, Step 1 yields (,O)o.pl 2 3,
Step 2 yields I 3 OpO, and Step 3 yields 0 3 OpO.

because there are functions that do not apply to arrays of
zeros or arrays of blanks, such as the left argument of @ in
origin 1; see also “Numerical applications” in Section 4. (In
array theory a result is always returned, and in those cases
where the function does not apply to zeros or blanks the
elements of the results are “faults.”) This difficulty would be
overcome in APL if it were possible to alter the contents of
the “filled-in” arrays. Specifically, to each function f there
could be an associatedjll-transforming function h, just as
there is an associated identity-inducing function, that would
be applied to nonempty results of FILLAIN whenever
certain derived functions involving fare applied to empty
arguments. For example, in the above definition of outer
product for empty arguments, the intermediate result ZR
would be defined in terms of the fill-transforming function h
as follows:

IR + (hFA)o.f(hFB)

Thus the following would be inserted between Steps 1 and 2.

Step 1A Apply the fill-transforming function off to the
results of Step 1.

AS stated, More’s scheme will not work in general for APL

Note that the procedure is now consistent with the present
evaluation of these operators for primitive scalar functions
and empty array arguments. The fill-transforming function h
for a primitive scalar function f can simply be defined by
h: (pw)pD, where D is any scalar whose value is the domain
off. It is also worth noting that for many dyadic functions

D. L. ORTH IBM 1. RES. DEVELOP, VOL. 28 NO. 4 JULY 1984

such as the primitive structural functions it would be far
more effective to have separate fill-transforming functions
for the left and right arguments.

Further details of fill-transforming functions can be
developed in similar ways to those of identity-inducing
functions and are left to the reader.

3. Heterogeneous arrays
In this section heterogeneous arrays are assumed to be
available in APL, i.e., arrays containing both numbers and
characters as elements. This assumption has little effect on
the considerations of the preceding section, and
consequently the present discussion is mainly concerned
with the primitives take and expand, and with fill.

elements for heterogeneous arrays. One way is to distinguish
the heterogeneous type in the same way that numeric and
character types are distinguished, and to define the fill
element to be a distinguished element that is neither
numeric nor character. However, there does not appear to be
an obviously useful class of scalars of heterogeneous type, as
there is for both character and numeric types. (In fact, any
analogy of heterogeneous arrays with numeric and character
arrays will ultimately fail because heterogeneity is not
actually a third distinct type, but is instead the lack of a
distinctive type.) A second approach is to choose a fill
element for heterogeneous arrays that is either a number or a
character, but not necessarily zero or blank. Perhaps a
special graphic could be created for that purpose. However,
it would most likely be very cumbersome to account for
such an exception in practical situations. A third approach is
to use zero and blank as the fill elements for all arrays-
homogeneous and heterogeneous-and to compute which is

There are several fairly obvious ways to define fill

In present APL, where all arrays are homogeneous, these two
viewpoints lead to the same result, but this is not necessarily
true when heterogeneous arrays are permitted. Continuing
the example, suppose that a numeric column is appended on
the left of the character matrix of names, containing,
perhaps, the ages of the people named in the corresponding
rows of the character matrix. If the resulting matrix is
expanded and a fill element is used, then each new row
created by expand consists entirely of copies of that fill
element. However, thinking in terms of fill arrays, the fill
could typify every row of the matrix by having zero as its
first element and blanks as its remaining elements, and each
new row created by expand could be a copy of this fill array.

Applications such as this suggest the following definitions.

Definition 8
A nonempty array A is said to be uniform with respect to the
Kth axes if all elements of

A[;. . . $1; . . . ;IN,. . . ;]

are either numbers or characters for each valid set of values
of the scalars I1 through IN, where these scalars index the
axes of A other than the Kth. For example, the matrix in the
previous example is uniform with respect to the first axis
because the first column consists entirely of numbers while
all other columns consist entirely of characters.

In particular, A is said to be uniform if it is uniform with
respect to all axes, ;.e., if all elements of A are of the same
type.

Dejnition 9
Thejill array of a nonempty array A with respect to the Kth
axes of A is defined to be

to be used from the arrays to be filled. For example, one A[; . . . ; ,I; . . . ; , I ; . . . ;]
possibility would be to use the blank as fill element for all
heterogeneous arrays, thereby distinguishing between purely
numeric arrays and arrays with at least one character
element. Still another scheme, one that is Suggested by array
theory [3,4], would be to use zero for fill in a nonempty
array A if lT,A is a number and blank if l f ,A is a character.
(The use of the first element of ,A is suggested by the fact
that every nonempty array A has a first element. One could
just as well use the last element, or the middle, etc.)

Still another possibility, which is also suggested by array
theory [3,4], is that fill is not necessarily based on a single
element. This section is primarily concerned with the notion
offill arrays, as opposed to fill elements.

To appreciate the appeal of more elaborate fill, consider a
character matrix in present APL whose rows contain names.
When expand is applied along the first axis of this matrix,
new blank rows may appear, which consist of replications of
the fill element (the scalar blank). In this case one could also
conceive of the fill as a blank vector (or blank one-row
matrix) and of the new blank rows as copies of that fill array.

with every number replaced by zero and every character
replaced by blank, where the Is index the axes specified in K.
(The use of , 1 instead of 1 has the useful effect that the rank
of the fill array is the same as the rank of the array it fills.)

In terms of fill arrays, expand along the Kth axis of A
would be defined just as it is now, except that the subarrays
of the result corresponding to zeros in the left argument
would be copies of the fill array with respect to axis K
instead of replications of a fill element. For example, if

A t 2 3p1, ‘A’, 2 , 3, ’B’, 4

then

(1 1 OiA)[3;] c, 0,’ ’,0

(1 1 1 OW)[;4] c, 0 0

In general, if A is uniform with respect to the Kth axis, then
so is I\[K]A.

nonempty arrays is take. Unlike expand, take does not apply 417
The only other primitive function that uses fill for

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. ORTH

along an axis. (The extended axis operator, Definition 3, if
available, would apply to take, and the definition of
N f [KIA would follow directly from the one for N f A
suggested below.) However, based on common usage of the
take function, it is assumed that there are implied axes along
which take applies, and that these axes depend on the
arguments. Specifically, the implied axes for N t A are
(N # p A) / ~ p p A , i.e., those for which there is a change in
length. Proceeding in the same manner as for expand, N f A
would be defined so that each subarray of the result that lies
along axes (N # p A) / ~ p p A , and would presently be a
replication of fill elements, is instead a copy of the fill array
with respect to axes (N # pA)/LppA. For example, if

A e 2 3p1, ’A’ , 2, 3, ’B’ , 4

then

(3 3 f A)[3 ;] c, 0,’ ’,0

(2 4 t A) [; 4] c, 0 0

and 3 4 f A is filled with copies of 1 1pO. As with expand, if
A is uniform with respect to axes (N # p A) / ~ p p A , then so is
N f A .

for instance, by the previous example concerning matrices
whose first column is numeric and whose remaining
columns are character. In such an application it would not
be unreasonable to expect that all such matrices have the
same fill arrays with respect to the first axis, whether the
matrices are empty or nonempty. Evidently, such a
requirement of empty arrays can be met only if fill arrays
and the axes with respect to which they apply are somehow
associated with empty arrays. (For example, one can think of
an empty array in present APL as having associated with it a
one-element fill array that is either a zero or a blank, and
that applies to all axes.) Thus primitive functions that
produce empty arrays would be responsible to establish such
associations for nonempty arguments and to transform
existing associations for empty arguments. (In present APL
the primitives are responsible for establishing the types of
empty results, and follow the type rule stated in [12, Section
2.41.)

Before we deal with the establishment and transformation
of the suggested associations, it may be worthwhile to give
more thought to the underlying idea. Specifically, there is the
following question: What is to be done when an empty array
is associated with a fill array and one particular set of axes,
but a primitive is applied that requires a fill array with
respect to another set of axes? One answer is to associate all

The next question concerns empty arrays and is suggested,

necessarily a fill array with respect to any set of axes, but is
the source from which those fill arrays can be constructed.
Moreover, in order to simplify the definitions by removing
unnecessary distinctions between empty and nonempty
arrays, an array will also be associated with every nonempty
array, one from which fill arrays with respect to all sets of
axes can also be constructed. If all fill arrays of a nonempty
array A can be constructed from the array associated with A ,
then a reasonable choice for that associated array is the one
obtained from A by replacing every number in A with a zero
and every character with a blank. As was pointed out in the
introduction, the array associated with A can be called the
type array of A , or simply the type of A .

The situation, then, is as follows.

Definition IO
The type TA of the nonempty array A is defined to be A
with every number replaced by a zero and every character
replaced by a blank.

The type TA of an empty array A is nonempty, and is to
be determined from the types of the nonempty arrays from
which A is constructed, as well as the primitive functions
and derived functions used in the construction. Using the
concept of fill arrays with respect to certain axes as a guide,
it will be required that p TA c, 1 [PA.

Definition I I
The fill array with respect to the Kth axes of any array A
(empty or nonempty) whose type is TA is defined to be

where the , Is index the axes specified in K . The following is
a detailed proposal for nonscalar types of empty arrays.

There are five primitives that can produce empty arrays
from nonempty ones: compress, take and drop, reshape, and
indexing. The following definitions apply for both empty
and nonempty arguments, and for empty results, but not
necessarily for nonempty results.

Compress (Z / [K] A) is defined for empty results so that if
TA is the type of A , then the type of an empty result is the
fill array of TA with respect to the Kth axes.

Analogously, the primitives take (N T A) and drop (N 1 A)
are defined so that the type of an empty result is the fill array
of TA with respect to axes (N # p A) / ~ p p A and (N # 0) / ~ p p A ,
respectively.

As for reshape (SPA) , and again following common usage
of the function, the type of an empty result is

possible fill arrays and their axes with each empty array, but (1 r slP TA [, 1 ;, 1 ; . . . ;, 11
a more practical answer, perhaps, is to associate one array,
from which fill arrays with respect to all sets of axes can be unless (-S t 0 l) / S equals (- (PA) t 0 1) pA, in which case
constructed. We follow the latter suggestion, which means the type of empty result is (1 r S)p TA.
that with each empty array there is associated a second array And finally, for indexing (A [I 1 ; . . ;I& . . . ;ZNl), the

418 but not a set of axes, and that the associated array is not implied axes of application are those axes J for which either

D. L. ORTH IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

ZJ C, ~(pA)[4 or ZJ is elided, and the type of an empty result
isTA[Kl;...;KJ;...;KN],whereKJis,lifJisanimplied
axis of application, and is ZJ otherwise.

As for expand (I\[K]A) of an empty array A, if the result
is also empty, then its type is TA if Z contains no Is, and
A[K]TA otherwise. If the result is nonempty, it is defined in
the same way as for nonempty A, except that the fill array is
that of TA with respect to the Kth axis. The definition of
N t A is analogous. If the result is empty, then its type is
(1 r N) t TA! while if the result is nonempty it is defined in
the same way as for nonempty A, except that the fill array is
that of TA with respect to axes (N # pA)/cppA.

Rules to produce the types of empty results of the other
nonscalar primitives can be derived in a fairly
straightforward manner, and we only illustrate them here;
for example, if TA is the type of the empty array A, then
4TA is the type of $A, while (q5pA) p0 is the type of HA
(which is defined for matrices A with ?/PA), and TA is the
type of B,A if B is also empty. In addition, for a primitive
scalar function f, (p TA) p0 is the type of the empty results
fA, AfB, and BM, where B is either a scalar or is empty and
of the same shape as A. There are also straightforward rules
to define the types of empty results of derived functions that
are valid in present APL.

As for the extended operators, identity-inducing and fill-
transforming functions apply just as well in the presence of
fill arrays as arrays of fill elements. In fact, their use might be
enhanced-particularly for defined functions-because they
would apply to a richer class of arrays. In particular,
K FILLAZN A would be identical to the fill of A with respect
to the Kth axes.

Each of the fill element definitions at the beginning of this
section can be analyzed in the same way as the fill arrays
definition. For example, the above three-point scheme for
type and fill arrays would appear as follows for the last of the
suggested fill element definitions.

Definition 12
The type TA of the nonempty array A is defined to be
((ppA) p 1)pO if 1 ?,A is a number and ((ppA)p I)p’ ‘ if 1 T,A is
a character.

The type TA of an empty array A is to be determined by
analyzing the appropriate primitives, as with fill arrays. Since
it is formally convenient for the rank of TA to be the same
as the rank of A, it would be required that (p TA) c, (ppA)p 1.

Definition 13
The fill with respect to the Kth axes of the array A (empty or
nonempty) whose type is TA is defined to be

((PA)r - (r p p ~) m p TA

The rest of the analysis is left to the reader, since it only
involves defining certain primitives in ways very similar to
present APL.

4. General arrays
It appears (so far, at least) that APL general array
implementations fall into two general categories, which are
usually referred to as permissive systems and strict systems.
Permissive systems are discussed first, since they tend to
contain more extensive general array features than strict
systems, and as far as the topics of this paper are concerned,
are more closely related to the preceding section.

Permissive general arrays
In this section it is assumed that APL has been extended to
include extended operators, heterogeneous arrays, and
(permissive) general arrays. Our purpose is to examine the
concepts of identity-inducing functions, fill-transforming
functions, and fill arrays in this context. For convenience we
begin by introducing some of the basic functions that apply
to general arrays.

First of all, there are new primitive functions denoted by
cw and >W and called enclose and disclose, such that for any
array A, C A is a scalar holding A, and 301 is A. An array
that contains no enclosed elements is said to beflat. Both the
enclose and disclose of a flat scalar A are assumed to be
identical to A. The function called LIST produces a flat
vector of the numbers and characters in its argument. That
is, LIST A is ,A if A is flat, and otherwise LIST A is
(LIST > (,A)[I]), followed by LIST 3 (,A)[2], etc.

With regard to operators, the existence is assumed of the
primitive scalar extension operator called each and denoted
by ”. That is, for every monadic function f the shape of f A
is the same as the shape of A, and every element of f A is
obtained by disclosing the corresponding element of A,
applying f to the disclosed contents, and enclosing the result.
The description for dyadic f is similar. Moreover, f is
applied to empty arrays by using f‘s fill-transforming
function h and the technique in Section 2. In the monadic
case,

f B C, (pf‘B) t f’h(t0)FZLLAZN B

and the dyadic case is similar. In addition, if g is the identity-
inducing function of the dyadic function f, then g “ is the
identity-inducing function o f f .

disclose. The elements of C[K]A hold the subarrays of A
along the Kth axes, while the subarrays of >[K]B along the
Kth axes are the elements held by B. Consequently, for
nonempty A and B

A *-* >[K] C [KIA (44

B-C[K]>[K]B (4b)

The axis operator is assumed to apply to both enclose and

These identities are important because the functions in-
volved in them provide fundamental transitions between
simple and general arrays. More generally

f[K]A >[L]f C [KIA (Sa) 419

IBM I. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. ORTH
-

f”B - C [L] f [K] 3 [K] B

for any appropriate function f; L is the set of axes along
which the individual results of f [K] lie. Disclose of a nonsca-
lar and nonempty array is defined to be disclose along those
axes which position the individual disclosed elements along
the last axes of the result. Note that C A c* C[tppA]A.

Finally, every primitive scalar function f is assumed to be
pervasive, in that f2 is identical to fA for every appropriate
array A. Consequently, the primitive scalar functions are
referred to instead as the primitive pervasive functions.

The concepts of type and fill arrays introduced in Section
3 can be extended to APL systems with both general and
heterogeneous arrays. In this section the following four defi-
nitions of type and fill for a nonempty array A are consid-
ered.

(5b)

Dejinition 14”flatfill elements
The type and fill element of A is ((ppA)pl)pO if 1 t LISTA is
a number and ((ppA)p 1)p’ ‘ if I T LIST A is a character.

Definition 1S”nestedfill elements
The type and fill element of A is obtained from
A [, l ; , l ; . . . ; , 1] by replacing each number in this scalar with a
zero and each character with a blank.

Note: This definition, which introduces general arrays as
fill elements, is based on the array theory concept of
prototype [4]; if TA is the type of A by Definition 15, then
I T A is the prototype of A.

Definition I6”fatfiN arrays
The type TA of A is obtained from A by replacing each
element E with a scalar blank if 1 T LIST E is a character
and with a scalar zero if 1 1 LIST E is a number. The fill
array of A with respect to the Kth axes is

where the 1s index the axes specified in K.

Definition I7”nestedfiN arrays
The type TA of A is obtained from A by replacing each
character in A with a blank and each number with a zero.
The fill array of A with respect to the Kth axes is

where the 1 s index the axes specified in K.
Note that Definitions 14 and 15 are identical for flat

arrays, as are Definitions 16 and 17. Moreover, Definitions
I6 and 17 for flat arrays provide the same fill arrays as those
in Definition 9.

The definitions of uniformity and uniformity with respect
to specific axes (Definition 8) carry over to general arrays
simply by requiring that the word “type” in those definitions
refer to one of Definitions 14 to 17. Enclose and disclose

420 along axes provide transformations between nonempty

uniform arrays and nonempty arrays that are uniform with
respect to specific axes. That is, if A is uniform with respect
to the Kth axes, then C [K] A is uniform, while if B is
uniform, then 3 [K] B is uniform with respect to the Kth
axes.

Each of the above definitions can be extended to empty
arrays by the technique used in Section 3, but care must be
taken in accounting for the behavior of enclose and disclose
along axes. For example, the expression C[K]O 0 1pO
indicates the potential for forming empty arrays that hold
empty arrays (K equals 2 3), empty arrays that hold
nonempty arrays (K equals 3), and nonempty arrays that
hold empty arrays (K equals I 2). Whether or not empty
arrays holding other arrays can actually be formed depends
on which type definition is adopted, for in such cases only
the type can provide information about the arrays to be held.

The first problem to be discussed is that of extending the
definitions of ol and >B to empty A and B, as well as those
of C [K] A and 3 [K] B , so as to maintain identities (4a) and
(4b). The behavior of functions derived from the each
operator on empty arguments can subsequently be derived
from (5b) by assuming that that identity holds for empty B
and applying the evaluation procedure in “Empty results.”

For each of the above types, proposed definitions of CA,
3 B , C [K] A , and 3 [K] B for empty arguments A and B, and
the validity of relations (4a) and (4b), are as follows, where
TA and TB are the types of A and B, and ZB is the two-
element vector 0,’ ’.

1. Based on Definition 14, C A is a scalar with type TA and
>B is identical to B. More generally, C [K] A has shape
(-(~ppA)tK)/pA and type (pp C [KIA)p 1)p TA, while
> [a B has shape S[9 4 (lpS)tK], where S c) (pB),
(p , K) p l , and type ((pp 3 [K]B)pl)pTB. For example,

C[2 310 0 2pZB c.* OpZB[I]

and

>[3]0 Op C ZB c, 0 0 IpZB[I]

In general, (4b) holds but (4A) fails, e.g.,

I[3 J C [310 0 2pZB c, 0 0 pZB[I]

2. Definition 15 provides a richer class of types for nested
arrays than flat arrays. Based on this definition, C A is a
scalar with type C(pA)pTA, while 3 B has shape
(pB),p 3 (r0)pTB and type ((pp 3 B)pl)p 3 TB. More
generally, C [K] A has shape as in (1) and type
((pp C [K]A)pl)p C (pA)[K]pTA, while > [K] B has shape
as in (1) but with S c, (pB), p 3 TB, and type
((p p 3 [K]B)pl)p I TB. For example,

C[2 310 0 2pZB c, Op C 0 2pZB[1 1

where Op C 0 2pZB[I J is the empty vector with type

D. L. ORTH IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

3.

c 0 2pZB[I] (whose content 0 2pZB[I] has type ZB[I]) ,
and

>[3]0 O p C ZB t, 0 0 2pZB[11

where 0 0 2pZB[I] has type ZB[I] . In general, (4a) holds
but (4b) fails, e.g.,

c [3] 3 [3]0 O p C ZB t, 0 O p C (pZB)pZB[11

Definition 16 provides a richer class of types for flat
arrays than nested arrays. Based on this definition, C A is
a scalar with type (~0)p TA and 3 B is identical to B. More
generally, the shapes of C[K]A and >[K]B are as in (I) ,
the type of C[K]A is TA[;. . .;,l;. . . ; , I ; . . . ; I (where the
Is index the Kth axes), and the type of >[K]B is
(1 [p 3 [a B) p T B . The examples for Definition 14 are
the same here. In general, (4b) holds but (4a) fails.

4. Based on Definition 17, C A is a scalar with type
c(pA) f TA, while >B has shape (pB), p 3 (r0)pTB and
type >D”TB, where D: (1 [P W) f W . More generally,
C [q A has shape as in (I) , 3 [K] B has shape as in (I) but
with Sc* (pB), p 3 (lO)pTB, the type of C[K]A is
E” c [KITA, where E: (pA)[K] f W , and the type of
>[aB is >[KID.’ TB. For example,

C[2 310 0 2pZB c, O p C 0 2pZB

where O p C 0 2pZB is the empty vector with type
CO 2pZB (whose content 0 2pZB has type 1 2pZB), and

>[3]0 O p C ZB t, 0 0 2pZB

where 0 0 2pZB has type 1 1 2pZB. Both (4a) and (4b)
hold in general.

Note that each definition of C [~ W is consistent with the
three-step evaluation procedure in “Empty results.”

We turn now to the identity-inducing and fill-
transforming functions of the primitive pervasive functions.
Recall that for a primitive scalar function f with a (right or
left) identity element I , and for a scalar D whose value is the
domain off, the identity-inducing function g and the fill-
transforming function h can be defined as follows:

g: (-1 .1 PW)PI
h: (PW)PD (6 4

The question to be considered is whether or not these
definitions should be modified to reflect nested types for the
primitive pervasive functions. Presumably, the new
definitions would be as follows:

g: I + (-1 4 pw)p(TYPEw) # TYPEw
h:D+w#w (6b)

where TYPE A is the type of A for all A. (The expression
X # X has the effect of replacing each number and each
character in X with a zero.)

is reasonable because it is consistent with the description of
The proposed definition for the fill-transforming functions

pervasiveness in terms of the each operator and with the
definition of the each operator for empty array arguments.
The proposed definition for the identity-inducing functions,
however, is not acceptable. For example, consider the array

A+2Ip(C12) ,C22p3456

and the relation (2) of Section 2 for +. If types are defined by
Definition 15, then

A[;rO] t, 2 O p C 0 0

and therefore, according to the identity-inducing function
(6b),

+/A[;lO] t, 2p C 0 0

Therefore relation (2) fails for A because it requires
evaluating (2 2p3 4 5 6)+0 0, which evokes a rank error.
Relation (2) does not fail for A and Definition 17 because

A[;LO] t, 2 Op(C0 0), C2 2pO

and

+/A[;LO] t, (CO 0), C2 2pO

In this case, however, the identity-inducing expression for
0 .+, which is simply 0, cannot be produced by applying the
method described in (A), “Nonempty results,” to the
identity-inducing expression for +. If we restrict our
attention to uniform arrays, then Definitions 15 and 17 have
the same effects with respect to the proposal at hand, relation
(2) holds, and (A) in “Nonempty results” will produce an
identity-inducing expression of ”.+. However, there is no
point in accepting such a restriction because the identity-
inducing expressions for the primitive scalar functions given
in (6a) can also be used for the primitive pervasive functions,
and apply for nonuniform general arrays as well as uniform
ones. These identity-inducing expressions are evidently the
most generally useful ones.

With regard to operators, there is another set of
straightforward definitions for the extended primitive
operators. This set, which depends on the presence of general
arrays, can be defined simply by changing the appropriate
lines of Definitions 1-5.

2. Scan
Same definition, but in terms of the new reduction
definition.

3. Axis
Unchanged. 42 1

IBM I. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. ORTH

4. Outer product Following the form established for the permissive system

422

alternatives, we have the following definition of type and fill
for a nonempty array A .

5. Inner product (in terms of the new definition of reduction) Definition 18”strictfill elements
The type and fill element ofA is the ((p p A) p I) p O if 1 T A is a

The development of identity-inducing functions in Section
2 can be camed out for this definition of reduction as well;
in fact, this is the definition used in [131. It should be clear
that g is the (right or left) identity-inducing function off with
respect to reduction as in Definition 1 if and only if g ” is the
(right or left) identity-inducing function off with respect to
this reduction definition. The above discussion of nested
types and identity-inducing functions for the primitive
pervasive functions applies equally well to this definition,
with the same conclusion. Unlike Definitions 1-5, the shape
rules for the present operators also apply to these extensions.
However, the type rules do not, so that fill-transforming
functions and the three-step evaluation procedure in “Empty
results” are just as necessary here for producing types of
empty results in a consistent way.

number, the ((p p A) p l) p ’ ’ if 1 T A is a character, or
((ppA)pl)pGF if 1 T A is nested.

This definition can be extended to empty arrays by the
technique in Section 3. Based on Definition 18, the proposed
definitions of o l , >B, C [K) A , and >[KIA for empty
arguments A and B, and the validity of identities (4a) and
(4b), are as follows, where TA and TB are the types of A and
B.

5. Based on Definition 18, C A is a scalar with type GF and
>B is identical to B. More generally, C [K] A and C [K] B
have the same shapes as described for Definition 14. The
type of C[WA is GF, while the type of > [K] B is
((p p 3 [K]B)pI)pGF. As with Definitions 14 and 16, (4b)
holds but (4a) fails in general.

presented in the next section.
A recommendation for the value of the fill element GF is

Strict general arrays
For the purposes of this paper, the main differences between We turn now to a less formal question, namely, the utility of
a strict array system and a permissive system are the more elaborate fill definitions in actual applications. In
that, in a strict system, this section nested types and fill are examined in the context

Numerical applications

a. Enclose of a simple scalar is not identical to that simple

b. The primitive scalar functions are not pervasive.
c. General arrays are uniform in the sense that if at least

scalar, e.g., C3 +/+ 3.

one element of an array is nested, then all elements must
be nested.

In this section it is assumed that APL has been extended to
include extended operators (Definitions 1-5) and (strict)
general arrays.

arrays are heterogeneous, while strict general arrays are
homogeneous and therefore can be considered a third APL
type, along with simple numeric arrays and simple character
arrays. Consequently, a nested scalar (say GF) could be
chosen for fill in general arrays that would be the
counterpart of 0 for simple numeric arrays and ’ ’ for simple
character arrays. In analyzing this definition we follow a
parallel course to the section on permissive general arrays so
as to make comparisons easy: A strict general array system
may in fact not contain some of the features discussed here.

The definitions of the each operator, as well as enclose
and disclose along axes, can be included in a strict system
and identities (4a) and (4b) hold for nonempty A and B. It
should be noted, however, that not all arrays B are in the
domain of > [K] w because the result must be homogeneous.

The basic point to be made here is that permissive general

of numerical applications, where it is not uncommon for fill
to become involved in computations. The effects of
Definitions 15 and I7 are examined in terms of a class of
numerical applications that can be handled particularly well
in APL with extended operators and general arrays, which
we call alternate arithmetic applications. This class of
applications also provides some insight into identity-
inducing and fill-transforming functions, and we begin there.

To illustrate these applications, we first point out it is not
uncommon for an algorithm using floating-point arithmetic
to behave unacceptably because that arithmetic is only an
approximation to real number arithmetic. In such cases it
would be very helpful to execute the algorithm with a more
accurate arithmetic such as rational number arithmetic or
higher-precision floating-point arithmetic. Either of these
alternate arithmetics can be employed simply by defining the
desired arithmetic functions in an appropriate way and
substituting the names of these functions for the
corresponding primitive arithmetic symbols in the
algorithm’s definition. Evidently this can lead to derived
functions defined in terms of primitive operators and defined
functions, and thereby to the problems discussed in Section
n L.

The first point to be discussed is actually a continuation of
the discussion of permissive general arrays and concerns the
definition of the identity-inducing functions of the primitive

D. L. ORTH IBM 1. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

pervasive functions (6b) when types are based on either
Definition I5 or 17. It can happen that an alternate
arithmetic function is simply the corresponding pervasive
primitive, and in such cases the function in (6b) produces
the desired effect. Examples include vectorspace addition (on
which is based one of the principal supporting arguments for
that definition) and rational number multiplication. In
vectorspace arithmetic all arrays A under consideration are
uniform with all elements holding vectors of a given length,
and this would be true as well for values of + / A [; L ~] if those
values are based on (6b), but would not be true of (6a).
Rational number arithmetic and X/A[; rO] are similar. In
most cases, however, an alternate arithmetic function is not
simply a primitive, and therefore the identity-inducing
functions for the pervasive primitives are not generally
relevant to alternate arithmetic applications; the required
general solution to the problem of providing identity-
inducing functions for alternate arithmetics will involve a
mechanism for controlling the behavior of reduction for
defined functions, such as the one proposed in Section 2 .
Moreover, even when the alternate arithmetic function can
be expressed as a pervasive primitive, that primitive is being
used in a restricted context. It therefore seems appropriate
that a defined function such as PLUS: (Y + w or TIMES:
(Y x w should be used instead and the desired reduction
behavior obtained through whatever mechanism is available
for defined functions.

Rational arithmetic provides a significant example of the
problem that can occur when fill-transforming functions are
not used in the evaluation procedure in “Empty results” for
producing results of derived functions in empty arguments.
Arrays of rational numbers are conveniently represented by
uniform general arrays whose elements all hold two-element
vectors, the first of which represents the numerator, and the
second, the denominator. The fill for such an array is,
according to Definition 15 or 17, an array whose elements
all hold the two-element vector 0 0. But 0 0 is not a valid
representation of a rational number because the
denominator is 0, and therefore the fill is not a valid array of
rational numbers. Consequently, functions that perform
rational number arithmetic will evoke a domain error when
applied to the fill. Fill-transforming functions are required
here: an effective one is (pa)p C 0 1.

The fill provided by Definitions 15 and 17 can be pleasing
in appearance for applications of uniform arrays, but can
have detrimental effects when the arrays are nonuniform. In
general, Definitions 14 and 16 provide more effective fill
than Definitions 15 and 17 for numerical applications. To
illustrate this point, consider polynomial arithmetic, which is
another instance of alternate arithmetic. Polynomials can be
represented by coejicienf vectors C whose corresponding
polynomials are +/C X w*lpC (in zero origin). The terms of
a polynomial are

C[O] C [l] x 0 C [2] x w*2

etc., and the terms are said to be in increasing order (with
respect to powers of w). In many applications it is preferable
for the terms to be in decreasing order:

D[O] x w*2 D [I] x w 0 [2]

in which case the polynomials are expressed as
+/D X w*qhpD. General arrays permit analogous
representations of polynomials of several variables, i.e., when
w stands for a vector instead of a scalar. The coefficient
vectors of such polynomials, arranged in increasing order,
would be general arrays C for which pp 3 C [I] t, I for every
scalar index I , and the terms would be

C[O] (> C [l]) x w (3 C [2]) x w 0 . x w

etc. The polynomial itself could be expressed as

+/LIST C X ((o . x)) \ l , (-1 + pC)p C w

As in the case of a single variable, decreasing order of the
multiple-variable terms is preferred in many applications:

(>D[O])XwO .xw (I D [I]) x w 0121

If A and C are coefficient vectors of two polynomials of a
single variable whose terms are in increasing order, the sum
of the two polynomials has coefficient vector

(MT A) + (M+ (PAYPC) t c (74

The fill provided in this expression by all four definitions
has a single element, which is 0. For example, the sum of the
polynomials with coefficient vectors 2 5 and - 1 0 3 has
coefficient vector 2 5 0 + -1 0 3, or 1 5 3. If the terms were
organized in decreasing order, the sum would have
coefficient vector

(M t B) + (M+ - (pB) rpD) t D (7b)

Expression (7a) also applies when A and C are coefficient
vectors of two polynomials of several variables with terms in
increasing order. Once again, the fill provided by all four
definitions has a single element 0 because the first element of
a coefficient vector is a simple scalar. For example, the sum
of the polynomials with coefficient vectors A + 2 , C 5 6 and
B e -1, (C0 I) , C 2 2p3 5 0 -6 has coefficient vector
(A , 0) + B, or I , (C5 7), C 2 2p3 5 0 -6. However, if the terms
are in decreasing order, only Definitions 14 and 16
consistently provide a single-element fill. Using Expression
(7b) and either Definition 15 or 17, the sum of the
coefficient vectors A t (C5 6) , 2 and B +- (C2 2p3 5 0 -6),
(cO l) , - l would be produced by evaluating the expression

((C0 O), A 1 + B

(c0 0 is the fill) which evokes a rank error when evaluating

In this application the nested fill could be avoided by
0 0 + 2 2 p 3 5 0 - 6 .

replacing Expression (7b) with

$ m + (M + w) w) t w 423

IBM J . RES. DEVELOP VOL. 28 NO. 4 JULY 1984 D. L. ORTH
-

but simple scalar elements are not always so readily
available. The primitive scalar (or pervasive) functions are
the building blocks for all numerical applications and, with
respect to these functions, only flat scalars are universal
arguments, i.e., compatible with all (numeric) arrays. As a
consequence, the most generally useful fill arrays for
numerical primitives are flat.

This completes the analysis of the alternative arithmetic
applications and permissive general arrays. A similar analysis
for a strict general system leads to the recommendation that
the fill element GF be given the value CO.

Nonnumerical applications
Fill plays a more static role in nonnumerical applications
than in numerical ones, but even there the definitions of fill
arrays and nested fill elements in Section 4 can cause
difficulties in applications of nonuniform arrays. For
example, employee information may be kept in a general
array of rank 1 with one element for each employee. As is
common in data base applications, there may also be special
information, pertaining, perhaps, to the organization of the
data, or containing a separate representation of employee
names for efficient sorting, or any of a number of things. If
this special information is stored in reserved elements at the
front of the general array, as would be natural, then the fill
will be the type of some portion of the special information
and will most likely bear little resemblance to the
organization of the employee data, which would probably be
quite regular. In addition, it could be quite expensive to
detect the fill and replace it, should that be necessary.
Evidently a simple fill element would be best here, since it is
economical as far as space is concerned, and it is also easily
detected in case it is to be replaced.

5. A fill primitive
Iverson [10, Section F] points out in his discussion of
function rank that in the application of a general nonscalar
APL function, the axes of an argument w will be split at
some point K such that the function is applied to each
subarray along axes K 1 Lppw. In the monadic case the rank
of the function is defined to be the nonnegative integer MF
for which (ppw) - MF equals K, and the dyadic case is
similar. We call these subarrays the units to which the
function applies, and we say that the complementary axes
KT ~ p p w represent a collection of units. Applications often
deal with collections of logical units, i.e., subarrays which the
user views as units, and Iverson goes on to describe a rank
operator by which the ranks of functions can be controlled
so that the resulting units to which functions apply coincide
with the logical units of the applications.

As we have seen, a potential use of fill is to provide a
means of associating “typical” units with empty collections
so that they will be processed in a consistent manner with

424 nonempty collections, and fill derived from type arrays

guarantees this consistency for sequences of primitives in
which each function applies to a collection of units and
produces a collection of units. In particular, the units may be
transformed as the processing proceeds. Array theory
provides fill elements, and thereby a way of associating
“typical” elements with empty general arrays (hence the
name prototype). Thus, in the context of extended APL with
fill elements, consistent behavior for empty collections of
nonscalar units cannot be expected.

representing typical units. In most applications not only are
collections of units processed, but the units themselves as
well, and it is very often the case that the units have no
logical units of their own. For example, an employee data
base may keep a pair of arrays as information on each
person, such as name (a character vector) and salary history
(a numeric matrix). Consequently a character vector,
numeric matrix pair may be viewed as a logical unit of the
data base, but neither a character vector nor a numeric
matrix would be considered as the logical unit of a pair.
Another example is provided by the coefficient vectors
described in “Numerical applications,” where the enclosed
elements are all of different ranks. As illustrated in Section 4,
in processing the units themselves, or when arrays do not
consist entirely of logical units, the most useful type
definitions are those that provide the most universally
applicable, elementary fill quantities.

goals, i.e., to permit “typical” units of empty collections to
be represented by fill, and at the same time to provide
elementary fill for irregular arrays. The key is to remove the
dependency of fill on type arrays and to require the primitive
functions to propagate fill, which is consistent with present
APL (see the “type” rules in [12, Section 2.41). We begin
again with present APL, but describe things so as to prepare
the way for the admission of heterogeneous and general
arrays, and consequently the descriptions at first contain
redundancies for present APL.

A useful classification of APL arrays is as follows. The
class NN of APL arrays consists of all arrays whose fill is a
scalar zero and, if nonempty, whose elements are all
numbers, while the class CC of APL arrays consists of all
arrays whose fill is a scalar blank and, if nonempty, whose
elements are all characters. The class NA of APL arrays
consists of all empty arrays together with all nonempty
arrays whose elements are all numbers, i.e., there are no
restrictions on fill; the class CA of APL arrays consists of all
empty arrays together with all nonempty arrays whose
elements are all characters. Class AA arrays are all APL
arrays. Using this classification, the following is a complete
description of fill for the results of the primitive functions in
present APL.

Unfortunately, not all uses of fill have to do with

The goal of this section is to reconcile these two disparate

1. The scalar primitives other than = and # apply to class

D. L. ORTH IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

2.

3 .

4.

5 .

6.

7 .

8.

NA arrays and produce class NN arrays; the scalar
primitives = and # apply to class AA arrays and produce
class NN arrays.
The nonscalar primitives BITAV? and monadic L apply
to class NA arrays and produce class NN arrays; the
nonscalar primitives t, monadic p, and dyadic L apply to
class AA arrays and produce class NN arrays.
Monadic ;6 applies to class AA arrays and produces class
CC arrays; dyadic ;6 applies to class NA left and right
arguments and produces class CC arrays; 2 applies to
class CA arrays and produces class AA arrays.
The nonscalar dyadic primitives 7J/\+$ and dyadic p
apply to class NA left arguments and class AA right
arguments, and a result array has the same fill as that of
the right argument; the nonscalar monadic primitives 1$4,
apply to class AA arrays and a result array has the same
fill as that of the argument.
If both arguments of catenate (,) are nonempty, then they
are both class NA or they are both class CA, and the
result has their common fill; if one argument is empty,
then both arguments are of class AA and the fill of the
result is the same as the fill of the nonempty argument; if
both arguments are empty, they are of class AA and the
fill of the result is the same as the fill of the right
argument.
The fill of a result of indexing is the same as the fill of the
array being indexed; the fill of an array altered by index-
specification is the same as the fill of the array before
alteration unless the entire array is replaced, in which
case the fill is the same as the fill of the replacement.
The fill arrays for take and expand are defined as follows
(see Section 3): Let

FXw + (-w) X pa

Then the fill array for A [K] A is (A F S K # tppA)pTA,
where TA is the fill of A , and the fill array for N 7 A is
(A FS (N # pA)/rppA)pTA.
The fill for numeric constants is the scalar zero and the
fill for character constants is the scalar blank.

In order to admit heterogeneous and general arrays, this
eight-part description is simply accepted as the definition of
fill for the results of the primitive functions, where the only
required change is to the definition of catenate for two
nonempty arguments. Thus (5) should now read as follows:

5’. The arguments of catenate are of class AA, and if both
arguments are nonempty or if both are empty, then the
fill of the result is the same as the fill of the right
argument, while if one argument is empty, then the fill
of the result is the same as the fill of the nonempty
argument.

In addition to this change, general arrays require
definitions for enclose (C w) and disclose (>w) analogous to

those for the other primitives, which are taken to be the
following.

9. Enclose (C) applies to arrays of class AA, and if TA is the
fill of an argument, then CTA is the fill of the result; 3
applies to arrays of class AA, and if TA is the fill of an
argument, then >TA is the fill of the result.

Thus a permissive general array extension admits no new
fill elements, while a strict one admits CO, C’ ’, CCO, CC’ ’,
etc. Note that enclose and disclose are the only primitives
that actually transform the fill: the others simply pass it
along or replace it.

create some interesting effects that may at first seem
counterintuitive. For example, if

A t 2 3

then the fill of A is the scalar zero (8). According to (6), the
result of

A[I] t ’A‘

A[2] t ‘B’

still has fill zero even though A is ’AB’ , so that in particular

1 0 1 \A tr, ‘A ‘, 0, ‘B‘

Once fill becomes a truly independent characteristic of APL
arrays, one must expect to encounter pairs of sequences of
primitives that yield arrays with the same shape and element
list but with different fill.

In the presence of heterogeneous arrays it is possible to

c [K] w can be defined for empty arguments by the
procedure in “Empty results.” >[K]w is not a conventional
application of the axis operator, but is simply >w followed
by a dyadic transpose, so its definition for empty arguments
is straightforward. As with other fill element definitions (see
“Permissive general arrays”), identity (4a) holds but identity
(4b) fails in general for empty arrays. Of course this brings us
to the topic of consistent behavior for empty collections, and
we have seen that any fill element scheme will be deficient in
this area. What one should be able to do here is specify fill
arrays that replace the default fill elements. Iverson [10,
Section HI has defined variant forms of take and expand
that provide this capability, and that may well be sufficient if
these forms are extended to permit fill arrays as well as fill
elements, and if an alternative to the evaluation procedure in
“Empty results” is provided. Another approach is suggested
here, which is more in keeping with the developments in this
paper, and which we believe will be more general and more
convenient to use.

Definition 19
A new primitive function called FILL is defined which is
analogous to p and for which FILL A is the fill of A , while 425

IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. ORTH
-

F FILL A is the array whose shape and element list are the
same as those of A but whose fill is F. Thus for all arrays A,

A c, (FILL A) FILL (pA)p, A

Given such a primitive, and assuming that specified fill is
propagated by the same rules as default fill, consistent
behavior of empty collections of units can be obtained. If
TU is a typical unit of an application and the units lie along
certain axes within their collections, thon all that must be
done is to specify TU as the fill of a collection when
processing begins; if the units are enclosed scalars, then CTU
should be specified as fill. When an individual unit is
removed from a collection for processing, then respecify the
fill if necessary.

The properties of specifiable fill are examined by briefly
surveying the individual aspects of empty arrays discussed in
the preceding sections. Fill plays a minimal role in identity-
inducing functions because these functions tend to be
dependent only on shapes and the function argument of
reduction. However, it is probably not difficult to construct
examples where fill arrays, and in particular specifiable fill,
would be of use. On the other hand, specifiable fill eliminates
the need for fill-transforming functions associated with
defined functions because specifiable fill need not only
consist of zeros and blanks. For example, it was pointed out
in “Numerical applications” that (p a) p C 0 1 is an effective
fill-transforming function for rational arithmetic functions,
but the same effect can be obtained by assigning CO 1 as the
fill for arrays of rational numbers.

The type arrays of Sections 3 and 4 maintain the same
ranks as the arrays to which they are associated in order that
transformations on the associated arrays can be mirrored on
the types themselves. This manipulation of types is required
so as to maintain constant relations between the axes of type
arrays and the axes of the arrays to which they are
associated. These constant relations guarantee to the greatest
extent possible that any logical decomposition of arrays into
units and collections of units is mirrored in their types, and
therefore when a computation applied to an empty
collection requires fill, that the fill will have the form of a
“typical” logical unit.

In contrast, specifiable fill requires typical units to be
provided explicitly, but in so doing permits a greater variety
of possibilities, if only because it need not consist only of
zeros and blanks. The above descriptions of the primitives
are designed to pass along these typical units whenever it is
reasonable to do so, and to use them in the gaps created by
take and expand in the expected manner. In particular,
identities (4a) and (4b) hold for empty arrays when the
shapes of the empty arrays and the shapes of their specified
fill are correctly related. Since fill is specifiable, it has no
required relation to shape and element list, and therefore the
primitives cannot be expected to apply to fill in the same

426 way that they applied to type arrays. Consequently, when the

form of the logical units of an application changes, the form
of the fill must be explicitly changed as well.

The ability to specify the fill used by take and expand for
nonempty arrays is obviously useful. Other applications to
nonempty arrays arise from the fact that specifiable fill is an
independent quantity and therefore represents additional
information. For instance, it is sometimes difficult to know
whether or not an array represents a logical unit or a
collection of logical units. As an example, consider the
alternate arithmetic application of replacing the real
arithmetic camed out by the primitive functions with
rational arithmetic carried out by defined functions. If the
name PLUS everywhere replaces the symbol + (and
similarly for other arithmetic primitives) in an algorithm,
then the function PLUS must serve as an extension of + that
does ordinary real addition when it should as well as rational
number addition when it should. Suppose that fill is not
specifiable and that rational numbers are represented by two-
element vectors, while arrays of rational numbers are
represented by general arrays of two-element vectors. Then
the global replacement of + by PLUS can be guaranteed to
have the desired behavior only for operator extensions such
as Definitions 1-5 and only for algorithms that do not
themselves use general arrays. For if the algorithm uses
general arrays, then how is PLUS supposed to differentiate
between general arrays of pairs of real numbers and general
arrays representing arrays of rational numbers? And if the
operators apply disclose before function arguments are
applied, then how is PLUS supposed to determine whether
an ordinary two-element vector holds two real numbers or
one rational number? Both of these situations can be
clarified by allowing specifiable fill, and by specifying the fill
for any two-element vector representing a rational number
to be a two-element vector that represents a valid rational
number in the common domain of the arithmetic functions,
and that does not coincide with any other specified fill in the
algorithm.

Thus the following general conclusions can be made: Fill
arrays based on types provide the expected behavior for
empty collections of logical units, but do not generally
provide useful fill in other circumstances; just the opposite is
true of simple fill elements based on type; and specifiable fill
permits the user to control the behavior of empty collections
while providing a default fill that is generally useful in other
circumstances. In addition, specifiable fill can replace fill-
transforming functions and is of use in dealing with
nonempty arrays.

References and note
I . The original version of this paper was produced several years

ago as an informal working document. At the time no
production APL implementation had any of the extended
language features discussed here. Thus the reference throughout
the paper to “present APL” was clear: it meant a language level
on the order of [2]. What that phrase means today is not so

D. L. ORTH IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

clear, but it has been left alone, and the reader now knows to
what it refers.

2. APL Lmguuge, Order No. GC26-3847; available through IBM
branch offices.

3. Trenchard More, “Axioms and Theorems for a Theory of
Arrays,“ IBMJ. Res. Develop. 17, No. 2, 135-175 (1973).

4. T. More, “Types and Prototypes in a Theory of Arrays,”
Technical Report No. G320-2112. IBM Cambridge Scientific
Center, Cambridge, MA, May 1976.

APL,” Commun. ACM 22, No. 2, 79-96 (1979).

Conference Proceedings), APL Quote Quad 13, No. 1,277-314
(1982).

7. W. E. Gull and M. A. Jenkins, “Decisions for ‘Type’ in APL,”
Sixth ACM POPL Symposium Proceedings, 1979, pp. 190-196.

8. D. L. Orth, “A Comparison of the IPSA and STSC
Implementations of Operators and General Arrays Extensions of
APL,” (APL ’8 1 Conference Proceedings), APL Quote Quad 12,

5. W. E. Gull and M. A. Jenkins, “Recursive Data Structures in

6. K. F. Ruehr, “A Survey of Extensions to APL,” (APL ’82

NO. 2, 11-21 (1981).
9. Ziad Ghandour and Jorge Mezei, “Generalized Arrays,

Operators and Functions,” IBM J. Res. Develop. 17, No. 4, 335-
352 (1973).

Sharp Associates, Ontario, Canada, January 1983.

Based on APL Concepts,” Technical Report No. 80-104, Queens
University at Kingston, Ontario, 1980.

Standard,” (APL ’79 Conference Proceedings), APL Quote Quad
9, No. 4, Part 2,409-453 (June 1979).

(APL ’8 I Conference Proceedings), APL Quote Quad 12, No. 1,
62-66 (September 1981).

(APL ’83 Conference Proceedings), APL Quote Quad 13, No. 3,

10. K. E. Iverson, “Rationalized APL,” Research Report No. I , I. P.

11. M. A. Jenkins and J. Michel, “ALICE: An Extensible Language

12. A. D. Falkoff and D. L. Orth, “Development of an APL

13. J. A. Brown and M. A. Jenkins, “The APL Identity Crisis,”

14. D. A. Rabenhorst, “APL Function Variants and System Labels,”

281-284 (1983).

Received November 16, 1983; revised March 2, 1984

Donald L. Orth IBM Research Division, P.O. Box 218, Yorktown
Heights, New York 10598. Dr. Orth is a Research staff member in
the Computer Sciences Department. He is currently manager of the
APL compiler project. He joined IBM in 1974 at the IBM Scientific
Center in Philadelphia, Pennsylvania. He received his B.S. in 1961
and his MS. in 1963, both in mathematics, from the University of
Notre Dame, Indiana. He received his Ph.D. in mathematics in 1967
from the University of California at San Diego. From 1967 to 1969,
he was a National Science Foundation Fellow at Princeton
University, New Jersey. Dr. Orth is the author of Calculus in a New
Key.

IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

427

D. L. ORTH

