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During  the  past  several  years  considerable work 
has  been  done on extending APL in  three  areas: 
operators,  heterogeneous  data,  and  nested 
data.  In  each  area  a  proposed  extension must 
treat empty  arrays  consistently.  In  this  paper 
various  possibilities  for  providing  consistent 
behavior are presented.  The new  proposals 
possess at least one of two  important  qualities 
in  which  older  proposals  tend  to be deficient: 
consistent  behavior is independent of the 
structural  properties of rank  and  nesting,  and 
the  user  has  control  over  the  behavior  when  he 
wants  it. 

1. Introduction 
This paper explores the effects on empty arrays of proposed 
extensions to APL i n  three general areas: extended operators, 
heterogeneous arrays, and general (i.e., nested) arrays. An 
important aspect  of the usability  of  APL is consistent 
behavior for empty arrays, and this will certainly remain true 
in  an extended APL  language. We therefore examine the 
ways in which empty arrays presently interact with the APL 
primitive and derived functions, so as to maintain effective 
interactions in an extended language.  It is not the intention 
of this paper to make detailed proposals for  language 
extensions. The specific extensions presented here simply 
provide contexts in which to analyze empty arrays: others 
might  have  served just as well. 

To understand the importance of empty arrays in present 
APL [ 1,2], consider the expression (P M )  f M ,  where M is 
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a character matrix whose  rows contain names, and P is a 
proposition whose value is a boolean vector with one 
element for each  row  of its argument, such that (PM)[Z]  is 1 
if and only if the criteria tested in P are  true for me]. The 
result  of the expression  is a matrix whose  rows  all  satisfy the 
criteria tested in P. If no row of M satisfies  these criteria, 
then the result is an empty matrix with no rows. Evidently, 
after such an expression is executed within an APL program, 
the program must continue to execute in a consistent 
manner for both empty and nonempty results. Otherwise, 
programmers would be required to make explicit provisions 
for all potential occurrences of empty arrays. 

A nonempty array in present APL is uniquely determined 
by two independent characteristics, its shape (the lengths of 
its axes) and its element  list (in some predetermined order). 
Rank is another fundamental characteristic but is not 
independent of shape, since the rank of an array A is the 
shape of the shape of A .  Still another fundamental 
characteristic is type (numeric or character), but it can be 
derived from the element list. In most implementations 
there is also an associated storage type which is of finer 
resolution than  the APL numeric type, typically boolean, 
integer, or real. Some implementations also have more than 
one storage type for character arrays. Even though it  may be 
possible to ascertam that certain primitives consistently 
produce values  of particular storage  types, no primitive 
distinguishes among storage types for its arguments: 
primitives may require boolean or integer values of their 
arguments, but not boolean or integer  storage  types. 

have obvious realizations as arrays: in APL notation, the 
shape of an array A is the vector pA, and the element list  is 
the vector ,A. The rank ofA is ppA. There are commonly 
used realizations of type that can be produced by various 
APL expressions, and almost all of them depend on so-called 
“fill” elements. 

The notion of fill in APL  is  closely related to that of type. 
Certain APL structural primitives rearrange the elements of 

These  two independent characteristics of nonempty arrays 
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an argument array in ways that sometimes leave  gaps that 
must be  filled; in present APL  each location corresponding 
to a gap is  filled  with a scalar zero or a scalar blank, 
depending on whether the argument array consists of 
numbers or characters. The scalar used to fill the gaps  is 
called the fill element of the argument array. Like type, the 
fill element of a nonempty array can be determined from the 
element list of the array. Unlike type, fill elements are also 
an important characteristic of empty arrays. 

Empty arrays are  not vacuous like the empty set in 
mathematics. They, as well as nonempty arrays, have shape 
and element lists; they are distinguished from nonempty 
arrays by having empty element lists and zeros in their 
shapes. An array with no elements must have the shape 
characteristic; the expression introduced above, i.e., 
( P  M )  f M,  may apply to a ten-column matrix and produce 
a matrix with no rows,  i.e., an array with shape zero-by-ten. 
Empty arrays must also  have  fill elements because the above- 
mentioned structural primitive functions can produce 
nonempty arrays from empty ones, which means that all the 
locations in the nonempty results are gaps that must be 
filled, and these primitives must behave as consistently for 
empty and nonempty arguments as the other primitives. In 
effect, empty arrays have  type: the result  of the above 
expression  for a character matrix M is  also a character 
matrix, whether that result  is empty or nonempty. 

Since empty arrays have empty element lists, their fill 
elements cannot be computed from their element lists, and 
therefore Jill is a third independent characteristic of APL 
arrays. Of course, it  would have been  possible in the 
beginning to have defined the fill element of an empty array 
in terms of emptiness, so that  the fill element would  have 
always  been computable from the element list.  However, this 
was not  done, and in retrospect the assignment of a single fill 
element to all empty arrays would  have  been unfortunate. 

Thus, fill is a third characteristic of  APL arrays that is 
independent of shape and element list  (if  only  because  of 
empty arrays) that (like the other two) can be realized as an 
array and  that has been particularly useful in extending the 
definitions of primitive functions to empty arrays. 

More observed  all this in a context similar to APL [3,4] 
and-from the viewpoint  of APL-has adopted the fill 
element of an array as the realization of its type. Thus in 
APL the scalar zero would  be taken as the type of numeric 
arrays and  the scalar blank as the type of character arrays. 
Following More, type would be called the third independent 
characteristic of  APL arrays, and in our Sections 3 and 4 the 
arrays from  which fill is derived are in  fact  called type  arrays, 
or simply type. More’s  work  in this area has led to his 
concept of array  prototypes, which are used to provide array 
theory primitives with consistent extensions to empty arrays. 

More’s  work in array theory to APL extensions, most 
notably, perhaps, [ 5 ] ;  a complete bibliography can be found 

Several  years  ago a series of papers appeared relating 

in  [6]. These papers are primarily concerned with  general, or 
nested, arrays and the primitive functions and operators that 
apply to them. Some attention is given to the problem of 
empty arrays, principally in [7], and the general conclusion, 
at least  for the so-called  permissive  general array systems, is 
that More’s array theoretic concepts for empty arrays should 
be adopted for extended APL.  However, despite the firm 
theoretical foundation for prototypes in array theory, in 
many practical situations within the context of  APL,  fill 
based on prototypes does not behave  as well as some other 
possibilities [8]. There are two aspects of prototypes that 
make them too restrictive for extended APL: First, when 
adapted to APL, prototypes provide fill elements, whereas- 
as we  will  see-fill arrays are often more suitable; and 
second, the prototype of a nonempty array is derived from 
the element list and therefore cannot be independently 
specified. 

In this paper, Section 2 is concerned with the effect of 
empty arrays on extensions to  the primitive operators. There 
are essentially two different sets  of definitions for the 
extended operators, instances of which can be found in 
[9, 101.  We use the definitions in [IO],  with some variations, 
because they do not require general arrays and therefore can 
be treated independently of the other extensions under 
consideration. A brief  discussion  of the other definitions 
appears in Section 4. 

heterogeneous data. Again, in order to isolate this extension 
from the others, only flat heterogeneous arrays are discussed, 
i.e.,  APL-like arrays that are a mixture of numbers and 
characters. A definition of  fill arrays is developed and its 
advantages over fill elements are discussed. 

Section 4 concerns empty general arrays. A permissive 
general array system  is  discussed  first; the  name derives from 
the fact that the fundamental primitive used to create nested 
data has no effect on ordinary scalars. Such a system must 
also admit heterogeneous data if it is to be  effective, and the 
results presented here extend those of Section 2. A brief 
discussion of strict general .array systems  follows. As in 
[7, IO], there is really only one useful general form that a fill 
definition can take. Next is a presentation leading to  the 
conclusion that ordinary fill elements are often preferred to 
more complicated forms. 

Section 5 deals with the conflict that arises  because a 
simple form of  fill is more effective in some applications and 
a more complex form in others. Essentially, the solution 
offered  is to make fill a specifiable quantity, and  that in turn 
rests on establishing fill as a concept independent of type. 
Curiously, it is also shown that specifiable fill provides an 
informal kind of abstract data typing. See [6, 1 11 for 
discussions of extensions to APL that permit more formal 
data abstractions. 

Section 3 is concerned with empty arrays and 

The index origin is assumed to be 1 unless stated 
otherwise. 
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2. Extended  operators 
In present  APL the primitive operators (reduction, scan, 
axis, outer product, and  inner product) apply  only to certain 
primitive functions. It is assumed in this section that these 
operators apply to all functions: primitive, derived, and 
defined. It is  also assumed that only simple homogeneous 
arrays are permitted, as in present  APL. The definitions 
adopted here for the extended primitive operators are as 
follows,  where f and g are any functions and, unless stated 
otherwise, A and B are nonempty arrays: 

Definition I-reduction 

if N > 1,  where N is a scalar  whose  value  is -1 t pA. 
Otherwise, 
f/A e A[;. . . ;I] 

or 

f/A w A 

if N = 1 or if A is a scalar,  respectively. 

Definition 2-scan 

(fW)[; . . . ; I ]  c-) f/A[; . . . ;LZ] 

where the scalar Z takes any valid index value.  Otherwise, if 
0 = -1 t p A ,  

fWC-)A 

Dejnition  3"axis 
If C c  f[l]B then 

C[Zl;. . . ;IN,;. . . ;] c* fB[;Zl;. . . ;ZNl 

where the integers Z 1 through IN take on all  valid  index 
values. The definition of f [ q B  is similar, except that 
individual subarrays of B to which f is applied lie along the 
Kth axis instead of the first. The length of the Kth  axis  may 
be zero.  Analogously, if C t Af[ I]B then 

C[Z1; * . . ;IN,; . . . ;] t, A[;Z1; . . . ;INJfB[;Il; . . . ;IN 
and A f [ q B  is similar. Presumably this operator would be 
extended to permit specification of more than one axis, as 
well as specification  of  different  axes  for the argument (or, in 
the dyadic case, both arguments) and the result. However, 
the additional generality adds nothing to the discussion  here. 

Dejnition 4-outer product 
If C c  A 0  .fB then 

C[II; . . . ;ZNJl; . . . ;JM,;. . . ;] 
C, A[Zl; . . . ;ZNlfB[Jl; . ;JMI 

where the integers I1 through JM take on all  valid  index 
414 values. 

Dejnition 5-inner product 
If C c Af.gB then 

C[Il; . . . ;ZN,Jl; . . . JM,; . . . ;] 
C, f/A[Zl; . . * ;ZN,]gB[;Jl; . . . ;JM] 

for ZI through JM as above. 
For example, if M + 2 2 ~ ~ 4 ,  then 

3 f [ 2 ] M c , 2 3 p I 2 0 3 4 0  

JMc, 1 3 2 4 

M[;l];o.,M[;2] c, 2 2 2 p 1  2 1 4 3 2 3 4 

Note that the utility of both outer product and inner 
product would  be enhanced significantly if the axis operator 
applied to these operators. Outer product applies its function 
argument to all pairs of scalars, one from the left argument 
array and the other from the right. The effect  of axis  would 
presumably be to apply the function argument to all  pairs of 
subarrays along specified  axes. The effect on inner product 
would be analogous. Similar behavior  is obtained by Iverson 
[ 101 through the concept of function rank. 

These definitions evidently give the same results as the 
present  APL operators when applied to the same restricted 
class  of functions and nonempty arrays. The problem to be 
considered in this section  is to define the extended operators 
for empty arguments in such a way as to agree  with the 
present operators whenever the latter are defined and to 
apply to as wide a range  of functions and empty arrays as 
possible. There are two  cases to the problem of empty 
arguments: Either the associated  result in present APL is 
nonempty, as can occur in reduction and inner product, or 
the result is empty. The case  of nonempty results is 
considered  first. 

Nonempty results 
In  present  APL  only reduction and inner product can 
produce nonempty results  from empty arguments. For 
example, +/LO is 0, x/2 OpO is 1 1, and (2 OpO) +.X (0 3pO) is 
2 3pO. It  is enough to discuss reduction because nonempty 
results of an inner product on empty arguments are due to 
the reduction therein. The following definition is based on 
the one in the IBM APL Standard [ 12,  Section  2.4.11; f is 
assumed to be a primitive scalar function. 

Dejnition 6 
If 0 = - 1  pA (i.e., there are no subarrays along the last 
axis), then ( I )  i f f  has no left or right identity, then f/A 
evokes a domain error; (2) iff has a right identity, denoted 
here by the scalar RI, then f/A is (-1 4 pA)pRI;  otherwise, (3) 
i f f  has a left identity LI, then f/A is (-1 J pA)pLZ. 

Note: I f f  has both a left and right identity, they are 
identical, and their common value  is  called the identity off. 

This  definition is motivated by the following  relation for 
arrays A with 1 < -1 t pA: 
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f/A - A [ ; .  . '  ;I]) ff/A[; .. . ; I  1 1 - 1  7 PA] (1) 

If 1 = - 1  7 p A ,  this relation takes the form 

A [ ;  . ' . ; I ]  c-f A [ ;  ' . . ;1] f f/A[; . . . ;lo] ( 2 )  

and is true iff has a right identity and f/A[; . . . ;LO] is 
appropriately defined  in terms of that identity. 

The expressions (-1 1 pw)pLI and (-1 1 pw)pRI in the 
above definition are called left and right identity-inducing 
expressions by  Brown and Jenkins [ 131. In addition, it is 
convenient to refer to g: (-1 1 pw)pLI and h: (-1 1 pw)pRZ as 
left and right identity-inducing  functions. Brown and Jenkins 
discuss identity-inducing expressions for nonscalar 
primitives, as well as the generation of such expressions for 
derived functions, and even though their definition of 
reduction differs from the one above (see Section 4), their 
basic idea can be adapted to our purposes here. 

Definition 7 
The function f is  said to have a right identity-inducing 
function g if for  every A with 1 = -1 7 PA, 

A [ ; .  . . ;I]  - A [ ; .  . . ;I]fgA[;. * .  $01 (3R) 

or a lt$ identity-inducing  function g if for  every such A ,  

A [ ;  . . . ; l ]  c, (@I[; . . . ;10])fA[; . . . ; I ]  (3L) 

Extended reduction is then defined as follows: 
If 0 = - 1  7 pA, then: (1) iff  has no right or left identity- 

inducing function, then f/A evokes a domain error; (2) iff  
has a right identity-inducing function g, then f/A is defined 
to be g A ;  otherwise, (3) iff has a left identity-inducing 
function g, then f/A is defined to be gA. 

2 2, then 

A c, A ,  2 O p A  and A c-f (2 OpA), A 

More generally, 

A t* A , ( ( - l  1 p A ) ,  0)pA and 

For example, consider the catenate primitive a, w. If p A  c, 

A - (((- 1 1 PA), O ) P A ) ,  '4 

for any array A .  In particular, and following the form of (3R) 
and (3L), if I t A [ ;  . . . ;LO] then 

A [ ;  . . . ;I]  * A [ ;  . . . ;l],((-2 1 PI) ,  0)pI 

4 ;  . ' . ; I 1  tf ( ( ( -2  1 PI) ,  O ) P Z ) ,  4 ;  . . . ;I1 

Consequently g: ((-2 1 pw) ,  0 )pw  is both the right and left 
identity-inducing function of catenate, and therefore , / A  is 
( ( -2  1 P A ) ,  0)pA whenever 0 = - 1  7 p A .  

To repeat, a scalar function with  right or left identity R I  
or L I  has the right or left identity-inducing expression 
(-1 1 pw)pRZ or ( - 1  1 pw)pLZ.  In addition, identity-inducing 
expressions  for the nonscalar primitives are as shown  in 
Table 1. 

Table 1 Identity-inducing  expressions  for  the  primitive 
functions. 

Dyadic 
function 

Catenate 
Reshape 
Take 
Drop 
Compress 
Expand 
Rotate 
Transpose 
Membership 
Index of 
Domino 
Encode 
Decode 
Deal 
Format 

Identity-inducing 
expression 

((-2.1 PW),  O)PW (Note 1 ) 

- 1  1 Pw 

-1 1 Pa 
(or-1 + ppW)po 
(-1 7 -1 1 pulp1 (Note 1) 

(-1 -1 -1 pw)pl (Note 1)  
(-2 1 pw)pO (Note 1 )  
tor-l + ppW 

(-1 1 pw)pl  (Note 2) 
LL/LO (Note 3 )  
(11 t pw)'.=ll t PO 

1/10 

Leji- 
right 

L R  
L 
L 
L 
L 
L 
L 
L 
R 
L 
R 
L 
None 
None 
None 

Note I: Relation (3)  holds only for A of rank  at least 2. 
Note 2: Relation (3) holds only ifall elements ofA have boolean values. 
Note 3 Relation (3) holds only if all elements of A have M t U d  number values. 

As for nonprimitive functions, consider first the simple 
derived functions; i.e., primitive operators applied to 
primitive functions. There would  be advantages to being able 
to formally generate identity-inducing functions of all the 
simple derived functions from those of the primitive 
functions, but unfortunately that is not possible. Some 
results in  that direction are 

A. 

B. 

r. 

Following [ 131, iff is a primitive function with a right 
(left) identity-inducing function g, then 0 .f has a right 
(left) identity-inducing function h if and only if g 
commutes with indexing, in which  case hw c, gOpw. (The 
function g commutes with indexing if p g A  c, -1  1 pA 
whenever 0 = -1 7 p A ,  and 

( g A ) [ I l ;  . . . ; I N  c, g A [ I I ;  . . . ;IN,10] 

for all valid indices I1 through IN.)  

commutes with indexing and the right or left identity- 
inducing expression of 0 .f  is identical to R I  or L I ,  
respectively. 
Analogously,  f[ppw] has a (right or kft) identity-inducing 
function h if and only if g commutes with indexing along 
all axes other than  the ppwth, in which  case 

ha * g[pp.l.. 

In particular, iff is a primitive scalar function, then g 

L. The results for inner product are not as  general. Some 
specific results are: e.f has the left identity-inducing 
function ID 1 7 pw for ID: ( L W )  0 .  = LW iff  is compress, 415 
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and also has identity-inducing functions based  on ID for 
certain combinations of primitive scalar functions (e.g., 
+.X, X.*, and #.A). 

Evidently  it  is  also not possible to formally generate 
identity-inducing functions for defined functions, except in a 
few simple  cases. A practical scheme is to permit defined 
identity-inducing functions that can somehow be associated 
with  defined functions (see,  e.g., [ 141. As for nonsimple 
derived functions (primitive operators applied to 
nonprimitive functions), apparently the only practical 
treatment is to define a function for any member of this 
class  when its use requires an identity-inducing function and 
then apply the mechanism for defined functions. In  fact, in 
view  of the rather sparse  results in (C), it may  be prudent to 
treat all functions derived from inner product, reduction, 
and scan in this manner as well. 

Empty results 
The other aspect  of the problem of applying functions 
derived from the extended primitive operators to empty 
arguments occurs when the comparable results in present 
APL are empty. There is no problem for reduction and scan. 
If 0 = -1  t pA, then f/A is  defined in terms of the identity- 
inducing function off, whether or not other axes of A are of 
length  zero,  while fw is A. If 0 # -1 t pA, then the 
definitions of  f/A and fw in Definitions 1 and 2 apply, 
whether or not A has axes  of  length  zero.  Difficulties occur 
in defining  values for the following: 

1. Af[K]B and f[K] B when an argument axis other than the 

2. A 0 .fB  when an argument is empty; and 
3. Ae.fB  when an axis  of A other than the last or an axis of 

B other than the first has length zero. 

Kth has length  zero; 

The difficulty in each  case  is due to the fact that there is 
nothing to which to apply the argument function f. [For 
example,  what is the result of (LO).  . p l  2 3)?] In  present APL 
these operators apply to a restricted  class of functions for 
which the above results are derived  formally  from  general 
shape and type rules, but there are no general shape and type 
rules for the extended operators. (Actually, the results of 1-3 
above can be derived from formal identities for the 
nonscalar primitives ,\&&LT, but that is not in general 
true of pTJ/Q?T, where shapes of  results can depend on 
values of the elements in element lists and,  in some cases, 
the index  origin.) 

More [4, Sections 15, 16,25, 291 has encountered this 
difficulty in a similar context, and has  proposed a solution 
that constructs nonempty arguments to which the function 
arguments can be applied. More’s scheme can be adapted to 
our purposes as follows: 

416 Step 1 “Fill in” empty arguments by applying the function 

FILLAZN:((po)T - (cppo)ecy) 1 w 

to them, with  left argument K for f[K], and LO for 0 .f and 
e.f; 

Step 2 Apply the derived functions to the resulting 
nonempty arguments; 

Step 3 Obtain the desired  results by “emptying” or 
“vacating” the results along those axes  where the arguments 
were  filled. That is,  if R is a result obtained by the first  two 
steps and S is pR, form T from S by replacing  each 1 in S 
with 0 whenever the I is due to a “filled-in”  axis of an 
argument; T t R is then the result  of the derived function. 

For example, outer product for empty arguments would 
be defined in terms of outer product for nonempty 
arguments as follows (the first  expression represents steps 1 
and 2, the fourth step 3): 

FA t (1O)FILLAINA 

FB - (c0)FILLAIN B 

IR c FA 0 .  fFB 

A 0  .fB - ( (pIR X 0 = ( p p I R )  t 0 = (pA),pB) t IR 

Thus in the case of (10)o.pl 2 3, Step 1 yields (,O)o.pl 2 3, 
Step 2 yields I 3 OpO, and Step 3 yields 0 3 OpO. 

because there are functions that do not apply to arrays of 
zeros or arrays of  blanks, such as the left argument of @ in 
origin 1; see also “Numerical applications” in Section 4. (In 
array theory a result  is  always returned, and in those cases 
where the function does not apply to zeros or blanks the 
elements of the results are “faults.”) This difficulty  would  be 
overcome in APL  if  it  were  possible to alter the contents of 
the “filled-in”  arrays.  Specifically, to each function f there 
could be an associatedjll-transforming function h, just as 
there is an associated identity-inducing function, that would 
be  applied to nonempty results of FILLAIN whenever 
certain derived functions involving fare applied to empty 
arguments. For example, in the above definition of outer 
product for empty arguments, the intermediate result ZR 
would  be  defined in  terms of the fill-transforming function h 
as follows: 

IR + (hFA)o.f(hFB) 

Thus the following  would  be  inserted  between  Steps 1 and 2. 

Step 1A Apply the fill-transforming function off to the 
results of Step 1. 

AS stated, More’s scheme will not work in general for APL 

Note that the procedure is now consistent with the present 
evaluation of these operators for primitive scalar functions 
and empty array arguments. The fill-transforming function h 
for a primitive scalar function f can simply be defined by 
h: (pw)pD,  where D is any scalar whose  value is the domain 
off. It  is also  worth noting that for many dyadic functions 
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such as the primitive structural functions it  would be far 
more effective to have separate fill-transforming functions 
for the left and right arguments. 

Further details of fill-transforming functions can be 
developed  in similar ways to those of identity-inducing 
functions and are left to the reader. 

3. Heterogeneous  arrays 
In this section  heterogeneous arrays are assumed to be 
available  in APL, i.e., arrays containing both numbers and 
characters as elements. This assumption has little effect on 
the considerations of the preceding section, and 
consequently the present  discussion  is mainly concerned 
with the primitives take and expand, and with fill. 

elements for  heterogeneous arrays. One way is to distinguish 
the heterogeneous type in the same way that numeric and 
character types are distinguished, and to define the fill 
element to be a distinguished element that is neither 
numeric nor character. However, there does not appear to be 
an obviously  useful  class  of  scalars  of heterogeneous type, as 
there is  for both character and numeric types. (In fact, any 
analogy of heterogeneous arrays with numeric and character 
arrays will ultimately  fail  because  heterogeneity  is not 
actually a third distinct type, but is instead the lack of a 
distinctive type.) A second approach is to choose a fill 
element for  heterogeneous arrays that is either a number or a 
character, but not necessarily zero or blank. Perhaps a 
special graphic could be created for that purpose. However, 
it would  most  likely  be  very cumbersome to account for 
such an exception in practical situations. A third approach is 
to use zero and blank as the fill elements for  all  arrays- 
homogeneous and heterogeneous-and to compute which  is 

There are several  fairly obvious ways to define fill 

In present  APL,  where  all arrays are homogeneous,  these  two 
viewpoints  lead to the same result, but this is not necessarily 
true when  heterogeneous arrays are permitted. Continuing 
the example, suppose that a numeric column is appended on 
the left  of the character matrix of names, containing, 
perhaps, the ages  of the people named in the corresponding 
rows  of the character matrix. If the resulting matrix is 
expanded and a fill element is  used, then each new  row 
created by expand consists entirely of copies of that fill 
element. However, thinking in terms of fill arrays, the fill 
could  typify  every  row  of the matrix by having  zero  as its 
first element and blanks as its remaining elements, and each 
new  row created by expand could be a copy  of this fill array. 

Applications  such as this suggest the following definitions. 

Definition 8 
A nonempty array A is said to be uniform with respect to  the 
Kth axes if  all elements of 

A[;. . . $1; .  . . ;IN,. . . ;] 

are either numbers or characters for  each  valid  set of values 
of the scalars I1  through IN, where  these  scalars  index the 
axes of A other than the Kth. For example, the matrix in the 
previous example is uniform with  respect to the first  axis 
because the first column consists entirely of numbers while 
all other columns consist entirely of characters. 

In particular, A is  said to be uniform if it is uniform with 
respect to all  axes,  ;.e.,  if  all elements of A are of the same 
type. 

Dejnition 9 
Thejill array of a nonempty array A with respect to  the Kth 
axes of A is defined to be 

to be  used  from the arrays to be filled. For example, one A[; . . . ; ,I; . . . ; , I ;  . . . ;] 
possibility  would be to use the blank as fill element for all 
heterogeneous  arrays,  thereby  distinguishing  between  purely 
numeric arrays and arrays  with at least one character 
element. Still another scheme, one that is Suggested  by array 
theory [3,4], would be to use zero for fill in a nonempty 
array A if lT,A is a number and blank if l f ,A is a character. 
(The use of the first element of ,A is  suggested  by the fact 
that every nonempty array A has a first element. One could 
just as well  use the last element, or the middle,  etc.) 

Still another possibility,  which  is  also  suggested by array 
theory [3,4], is that fill is not necessarily  based on a single 
element. This section is primarily concerned with the notion 
offill arrays, as opposed to fill elements. 

To appreciate the appeal of more elaborate fill,  consider a 
character matrix in present APL whose  rows contain names. 
When expand is applied along the first  axis of this matrix, 
new blank rows  may appear, which  consist of replications of 
the fill element (the scalar blank). In this case one could also 
conceive of the fill as a blank  vector (or blank one-row 
matrix) and of the new blank rows as copies of that fill array. 

with  every number replaced by zero and every character 
replaced by blank, where the Is index the axes specified in K.  
(The use of ,  1 instead of 1 has the useful  effect that the rank 
of the fill array is the same as the rank of the array it fills.) 

In terms of fill arrays, expand along the Kth  axis  of A 
would  be  defined just as it  is  now,  except that the subarrays 
of the result corresponding to zeros in the left argument 
would be copies of the fill array with  respect to axis K 
instead of replications of a fill element. For example, if 

A t 2 3p1, ‘A’, 2 ,  3, ’B’, 4 

then 

( 1  1 OiA)[3;] c, 0,’ ’,0 

(1 1 1 OW)[;4] c, 0 0 

In  general, if A is uniform with  respect to the Kth axis, then 
so is I\[K]A. 

nonempty arrays is take. Unlike expand, take does not apply 417 
The only other primitive function that uses  fill for 
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along an axis. (The extended axis operator, Definition 3, if 
available,  would  apply to take, and  the definition of 
N f [KIA would  follow  directly from the one for N f A 
suggested  below.)  However,  based on common usage  of the 
take function, it is assumed that there are implied axes along 
which take applies, and that these  axes depend on the 
arguments. Specifically, the implied axes for N t A are 
( N #  p A ) / ~ p p A ,  i.e., those for which there is a change in 
length.  Proceeding in the same manner as for expand, N f A 
would be defined so that each subarray of the result that lies 
along axes ( N  # p A ) / ~ p p A ,  and would  presently  be a 
replication of fill elements, is instead a copy of the fill array 
with  respect to axes ( N  # pA)/LppA. For example, if 

A e 2 3p1, ’A’ ,  2, 3, ’B’ ,  4 

then 

( 3  3 f A)[3 ; ]  c, 0,’ ’,0 

(2 4 t A ) [ ; 4 ]  c, 0 0 

and 3 4 f A is filled  with copies of 1 1pO. As with expand, if 
A is uniform with  respect to axes ( N  # p A ) / ~ p p A ,  then so is 
N f  A .  

for instance, by the previous example concerning matrices 
whose  first column is numeric and whose remaining 
columns are character. In such an application it would not 
be unreasonable to expect that all such matrices have the 
same fill arrays with  respect to the first  axis,  whether the 
matrices are empty or nonempty. Evidently,  such a 
requirement of empty arrays can be met only if  fill arrays 
and the axes  with  respect to which they apply are somehow 
associated  with empty arrays. (For example, one can think of 
an empty array in present  APL as having  associated  with it a 
one-element fill array that is either a zero or a blank, and 
that applies to all  axes.) Thus primitive functions that 
produce empty arrays would be responsible to establish  such 
associations for nonempty arguments and to transform 
existing associations for empty arguments. (In  present  APL 
the primitives are responsible for establishing the types  of 
empty results, and follow the type rule stated in [ 12, Section 
2.41.) 

Before  we deal  with the establishment and transformation 
of the suggested  associations, it may be worthwhile to give 
more thought to the underlying idea.  Specifically, there is the 
following question: What is to be done when an empty array 
is  associated  with a fill array and one particular set  of  axes, 
but a primitive is applied that requires a fill array  with 
respect to another set of  axes? One answer  is to associate  all 

The next question concerns empty arrays and is  suggested, 

necessarily a fill array with  respect to any set of  axes, but is 
the source from which those fill arrays can be constructed. 
Moreover, in order to simplify the definitions by removing 
unnecessary distinctions between empty and nonempty 
arrays, an array will also be associated  with  every nonempty 
array, one from which fill arrays with  respect to all sets of 
axes can also be constructed. If all fill arrays of a nonempty 
array A can be constructed from the array associated  with A ,  
then a reasonable choice for that associated array is the one 
obtained from A by replacing  every number in A with a zero 
and every character with a blank. As  was pointed out  in the 
introduction, the array associated  with A can be called the 
type array of A ,  or simply the type of A .  

The situation, then, is as follows. 

Definition IO 
The type TA of the nonempty array A is defined to be A 
with  every number replaced by a zero and every character 
replaced  by a blank. 

The type TA of an empty array A is nonempty, and is to 
be determined from the types of the nonempty arrays from 
which A is constructed, as well as the primitive functions 
and derived functions used in  the construction. Using the 
concept of fill arrays with  respect to certain axes as a guide, 
it will be required that p TA c, 1 [PA. 

Definition I I 
The fill array with  respect to the Kth axes of any array A 
(empty or nonempty) whose type is TA is  defined to be 

where the , Is index the axes  specified in K .  The following  is 
a detailed  proposal for nonscalar types  of empty arrays. 

There are five primitives that can produce empty arrays 
from nonempty ones:  compress, take and drop, reshape, and 
indexing. The following definitions apply for both empty 
and nonempty arguments, and for empty results, but not 
necessarily  for nonempty results. 

Compress ( Z / [ K ] A )  is  defined  for empty results so that if 
TA is the type of A ,  then the type of an empty result  is the 
fill array of TA with  respect to the Kth axes. 

Analogously, the primitives take ( N  T A )  and  drop ( N  1 A )  
are defined so that the type of an empty result  is the fill array 
of TA with  respect to axes ( N  # p A ) / ~ p p A  and ( N  # 0 ) / ~ p p A ,  
respectively. 

As for reshape (SPA) ,  and again  following common usage 
of the function, the type of an empty result is 

possible  fill arrays and their axes with each empty array, but ( 1 r slP TA [, 1 ;, 1 ; . . . ;, 11 
a more practical  answer,  perhaps,  is to associate one array, 
from which fill arrays with  respect to all  sets  of  axes can be  unless (-S t 0 l ) / S  equals ( - (PA)  t 0 1) pA, in which  case 
constructed. We  follow the latter suggestion,  which means the type of empty result  is (1  r S)p TA. 
that with  each empty array there is  associated a second array And  finally, for indexing ( A [ I  1 ;  . . ;I& . . . ;ZNl), the 

418 but not a set of axes, and that the associated array is not implied axes of application are those axes J for which either 
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ZJ C, ~(pA)[4  or ZJ is elided, and the type of an empty result 
isTA[Kl;...;KJ;...;KN],whereKJis,lifJisanimplied 
axis of application, and is ZJ otherwise. 

As for expand (I\[K]A) of an empty array A, if the result 
is  also empty, then its type  is TA if Z contains no Is, and 
A[K]TA otherwise.  If the result  is nonempty, it is defined in 
the same way  as for nonempty A, except that the fill array is 
that of TA with  respect to the Kth axis. The definition of 
N t A is  analogous. If the result is empty, then its type is 
(1 r N) t TA! while  if the result is nonempty it is  defined in 
the same way as for nonempty A, except that the fill array is 
that of TA with  respect to axes ( N  # pA)/cppA. 

Rules to produce the types of empty results of the other 
nonscalar primitives can be derived in a fairly 
straightforward manner, and we only illustrate them here; 
for example, if TA is the type of the empty array A, then 
4TA is the type of  $A,  while  (q5pA) p0 is the type of HA 
(which  is  defined  for matrices A with ?/PA), and TA is the 
type of  B,A if B is also empty. In addition, for a primitive 
scalar function f, (p  TA) p0 is the type of the empty results 
fA,  AfB, and BM, where B is either a scalar or is empty and 
of the same shape as A. There are also straightforward rules 
to define the types of empty results of derived functions that 
are valid  in  present  APL. 

As for the extended operators, identity-inducing and fill- 
transforming functions apply just as  well  in the presence  of 
fill arrays as arrays of fill elements. In  fact, their use  might  be 
enhanced-particularly  for  defined  functions-because they 
would  apply to a richer  class of arrays.  In particular, 
K FILLAZN A would  be identical to the fill of A with  respect 
to the Kth axes. 

Each  of the fill element definitions at the beginning of this 
section  can be analyzed  in the same way as the fill arrays 
definition. For example, the above three-point scheme for 
type and fill arrays would appear as follows  for the last  of the 
suggested fill element definitions. 

Definition 12 
The type TA of the nonempty array A is  defined to be 
((ppA ) p 1)pO  if 1 ?,A is a number and ((ppA)p I)p’ ‘ if 1 T,A is 
a character. 

The type TA of an empty array A is to be determined by 
analyzing the appropriate primitives, as  with  fill  arrays.  Since 
it  is  formally convenient for the rank of  TA to be the same 
as the rank of A, it  would  be required that ( p  TA) c, (ppA)p 1. 

Definition 13 
The fill with  respect to the Kth axes of the array A (empty or 
nonempty) whose type is TA is  defined to be 

((PA )r - ( r p p ~  ) m p  TA 

The rest  of the analysis is  left to the reader,  since  it  only 
involves  defining certain primitives  in ways  very similar to 
present  APL. 

4. General arrays 
It appears (so far, at least) that APL  general array 
implementations fall into two  general  categories,  which are 
usually  referred to as permissive  systems and strict systems. 
Permissive  systems are discussed  first,  since they tend to 
contain more extensive  general array features than strict 
systems, and as far as the topics of this paper are concerned, 
are more  closely  related to the preceding  section. 

Permissive  general arrays 
In this section it is  assumed that APL has been extended to 
include extended operators, heterogeneous arrays, and 
(permissive)  general  arrays. Our purpose is to examine the 
concepts of identity-inducing functions, fill-transforming 
functions, and fill arrays in this context. For convenience we 
begin  by introducing some of the basic functions that apply 
to general  arrays. 

First of all, there are new primitive functions denoted by 
cw and >W and called enclose and disclose, such that for any 
array A, C A is a scalar holding A, and 301 is A.  An array 
that contains no enclosed elements is said to  beflat. Both the 
enclose and disclose  of a flat  scalar A are assumed to be 
identical to A. The function called LIST produces a flat 
vector of the numbers and characters in its argument. That 
is, LIST A is  ,A  if A is flat, and otherwise LIST A is 
(LIST > (,A)[ I]), followed  by LIST 3 (,A)[2],  etc. 

With  regard to operators, the existence  is assumed of the 
primitive scalar extension operator called each and denoted 
by ”. That is, for  every monadic function f the shape of f A  
is the same as the shape of  A, and every element of f A  is 
obtained by disclosing the corresponding element of A, 
applying f to the disclosed contents, and enclosing the result. 
The description for dyadic f is similar. Moreover, f is 
applied to empty arrays by using f‘s fill-transforming 
function h and the technique in Section 2. In the monadic 
case, 

f B  C, (pf‘B) t f’h(t0)FZLLAZN B 

and the dyadic  case  is similar. In addition, if g is the identity- 
inducing function of the dyadic function f, then g “  is the 
identity-inducing function o f f .  

disclose. The elements of  C[K]A  hold the subarrays of A 
along the Kth axes,  while the subarrays of >[K]B along the 
Kth  axes are the elements held by  B. Consequently, for 
nonempty A and B 

A *-* >[K] C [KIA (44  

B-C[K]>[K]B (4b) 

The axis operator is assumed to apply to both enclose and 

These identities are important because the functions in- 
volved in them provide fundamental transitions between 
simple and general  arrays.  More  generally 

f[K]A >[L]f C [KIA  (Sa) 419 
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f”B - C [ L ] f [ K ]  3 [ K ] B  

for any appropriate function f; L is the set  of axes along 
which the individual results  of f [ K ]  lie.  Disclose  of a nonsca- 
lar and nonempty array is defined to be disclose along those 
axes which position the individual disclosed elements along 
the last axes of the result. Note that C A  c* C[tppA]A. 

Finally, every primitive scalar function f is assumed to be 
pervasive, in that f2 is identical to fA for every appropriate 
array A. Consequently, the primitive scalar functions are 
referred to instead as the primitive pervasive functions. 

The concepts of type and fill arrays introduced in Section 
3 can be extended to APL  systems  with both general and 
heterogeneous arrays. In this section the following four defi- 
nitions of type and fill for a nonempty array A are consid- 
ered. 

(5b) 

Dejinition 14”flatfill elements 
The type and fill element of A is ((ppA)pl)pO if 1 t LISTA is 
a number and ((ppA)p 1)p’ ‘ if I T LIST A is a character. 

Definition 1S”nestedfill elements 
The type and fill element of A is obtained from 
A [ , l ; , l ; .  . . ; , 1 ]  by replacing each number in this scalar with a 
zero and each character with a blank. 

Note: This definition, which introduces general arrays as 
fill elements, is based on  the array theory concept of 
prototype [4]; if TA is the type of A by Definition 15, then 
I T A  is the prototype of A. 

Definition I6”fatfiN arrays 
The type TA of A is obtained from A by replacing each 
element E with a scalar blank if 1 T LIST E is a character 
and with a scalar zero if 1 1 LIST E is a number.  The fill 
array of A with  respect to the Kth axes is 

where the 1s index the axes  specified  in K. 

Definition I7”nestedfiN arrays 
The type TA of A is obtained from A by replacing each 
character in A with a blank and each number with a zero. 
The fill array of A with  respect to  the Kth axes is 

where the 1 s index the axes  specified in K.  
Note that Definitions 14 and 15 are identical for  flat 

arrays, as are Definitions 16 and 17. Moreover, Definitions 
I6 and 17 for flat arrays provide the same fill arrays as those 
in Definition 9. 

The definitions of uniformity and uniformity with  respect 
to specific axes (Definition 8) carry over to general arrays 
simply by requiring that the word “type” in those definitions 
refer to one of Definitions 14 to 17. Enclose and disclose 

420 along axes provide transformations between nonempty 

uniform arrays and nonempty arrays that are uniform with 
respect to specific  axes. That is,  if A is uniform with  respect 
to the Kth axes, then C [ K ] A  is uniform, while if B is 
uniform, then 3 [ K ] B  is uniform with  respect to the Kth 
axes. 

Each  of the above definitions can be extended to empty 
arrays by the technique used in Section 3, but care must be 
taken in accounting for the behavior of  enclose and disclose 
along axes. For example, the expression C[K]O 0 1pO 
indicates the potential for forming empty arrays that hold 
empty arrays ( K  equals 2 3), empty arrays that hold 
nonempty arrays ( K  equals 3), and nonempty arrays that 
hold empty arrays ( K  equals I 2). Whether or not empty 
arrays holding other arrays can actually be formed depends 
on which type definition is adopted, for in such cases  only 
the type can provide information about  the arrays to be  held. 

The first problem to be  discussed  is that of extending the 
definitions of ol and >B to empty A and B, as well as those 
of C [ K ] A  and 3 [ K ] B ,  so as  to maintain identities (4a) and 
(4b). The behavior of functions derived from the each 
operator on empty arguments can subsequently be derived 
from (5b) by assuming that that identity holds for empty B 
and applying the evaluation procedure in “Empty results.” 

For each of the above types, proposed definitions of CA, 
3 B ,   C [ K ] A ,  and 3 [ K ] B  for empty arguments A and B, and 
the validity  of relations (4a) and (4b), are as follows,  where 
TA and TB are  the types of A and B, and ZB is the two- 
element vector 0,’ ’. 

1. Based on Definition 14, C A  is a scalar with type TA and 
>B is identical to B. More generally, C [ K ] A  has shape 
(-( ~ppA)tK)/pA and type (pp C [KIA )p 1 )p TA, while 
> [ a B  has shape S[ 9 4 ( lpS)tK],  where S c) (pB),  
( p ,  K ) p l ,  and type ( (pp 3 [K]B)pl)pTB. For example, 

C[2 310 0 2pZB c.* OpZB[ I ]  

and 

>[3]0 Op C ZB c, 0 0 IpZB[ I ]  

In general, (4b) holds but (4A)  fails,  e.g., 

I[ 3 J C [ 310 0 2pZB c, 0 0 pZB[ I ]  

2. Definition 15 provides a richer class  of types for  nested 
arrays than flat arrays. Based on this definition, C A is a 
scalar  with type C(pA)pTA, while 3 B  has shape 
(pB),p 3 (r0)pTB and type ( (pp 3 B)pl)p 3 TB. More 
generally, C [ K ] A  has shape as in ( 1 )  and type 
( (pp C [K]A)pl )p  C (pA)[K]pTA, while > [ K ] B  has shape 
as in (1) but with S c, (pB),  p 3 TB, and type 
( ( p p  3 [K]B)pl )p  I TB. For example, 

C[2  310 0 2pZB c, Op C 0 2pZB[ 1 1  

where Op C 0 2pZB[ I J is the empty vector with type 
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3. 

c 0 2pZB[ I ]  (whose content 0 2pZB[ I ]  has type ZB[ I ] ) ,  
and 

>[3]0 O p  C ZB t, 0 0 2pZB[ 11 

where 0 0 2pZB[ I ]  has type ZB[ I ] .  In  general, (4a) holds 
but (4b) fails,  e.g., 

c [ 3 ]  3 [3]0 O p  C ZB t, 0 O p  C (pZB)pZB[ 11 

Definition 16 provides a richer  class of types  for  flat 
arrays than nested  arrays. Based on this definition, C A  is 
a scalar  with type (~0)p   TA and 3 B  is identical to B. More 
generally, the shapes of C[K]A and >[K]B are as in ( I ) ,  
the type of C[K]A is TA[;. . .;,l;. . . ; , I ; .  . . ; I  (where the 
Is index the Kth  axes), and the type of >[K]B is 
( 1 [ p 3 [ a B ) p T B .  The examples for  Definition 14 are 
the same  here. In general, (4b) holds but (4a) fails. 

4.  Based on  Definition  17, C A  is a scalar  with  type 
c(pA)  f TA, while >B has shape (pB), p 3 (r0)pTB and 
type >D”TB, where D: ( 1  [ P W )  f W .  More  generally, 
C [ q A  has shape as in ( I ) ,  3 [ K ] B  has shape as in ( I )  but 
with Sc* (pB), p 3 (lO)pTB, the type of C[K]A is 
E” c [KITA, where E: (pA)[K] f W ,  and the type of 
>[aB is >[KID.’  TB. For example, 

C[2 310 0 2pZB c, O p  C 0 2pZB 

where O p  C 0 2pZB is the empty vector  with type 
CO 2pZB (whose content 0 2pZB has type 1 2pZB), and 

>[3]0 O p  C ZB t, 0 0 2pZB 

where 0 0 2pZB has type 1 1 2pZB. Both (4a) and (4b) 
hold  in  general. 

Note that each definition of C [ ~ W  is consistent with the 
three-step evaluation procedure in “Empty results.” 

We turn now to the identity-inducing and fill- 
transforming functions of the primitive pervasive functions. 
Recall that for a primitive scalar function f with a (right or 
left) identity element I ,  and for a scalar D whose  value  is the 
domain off, the identity-inducing function g and the fill- 
transforming function h can be  defined as follows: 

g: (-1 .1 PW)PI 
h: (PW)PD ( 6 4  

The question to be  considered is whether or not these 
definitions should be  modified to reflect  nested  types for the 
primitive pervasive functions. Presumably, the new 
definitions would  be as follows: 

g: I + (-1 4 pw)p(  TYPEw) # TYPEw 
h:D+w#w (6b) 

where TYPE A is the type of A for all A. (The expression 
X # X has the effect  of  replacing  each number and each 
character in X with a zero.) 

is reasonable  because  it  is consistent with the description of 
The proposed definition for the fill-transforming functions 

pervasiveness in terms of the each operator and with the 
definition of the each operator for empty array arguments. 
The  proposed definition for the identity-inducing functions, 
however,  is not acceptable. For example, consider the array 

A+2Ip(C12) ,C22p3456 

and the relation (2) of Section 2 for +. If types are defined by 
Definition 15, then 

A[;rO] t, 2 O p  C 0 0 

and therefore,  according to the identity-inducing function 
(6b), 

+/A[;lO] t, 2p C 0 0 

Therefore relation (2) fails  for A because it requires 
evaluating (2 2p3 4 5 6)+0 0, which  evokes a rank error. 
Relation (2) does not fail  for A and Definition 17 because 

A[;LO] t, 2 Op(C0 0), C2 2pO 

and 

+/A[;LO] t, (CO 0), C2 2pO 

In this case,  however, the identity-inducing expression for 
0 .+, which  is  simply 0, cannot be produced by applying the 
method described in (A), “Nonempty results,” to the 
identity-inducing expression for +. If  we restrict our 
attention to uniform arrays, then Definitions 15 and 17 have 
the same  effects  with  respect to the proposal at hand, relation 
(2) holds, and (A) in “Nonempty results” will produce an 
identity-inducing expression of ”.+. However, there is no 
point in accepting such a restriction because the identity- 
inducing expressions  for the primitive scalar functions given 
in (6a) can also be  used for the primitive pervasive functions, 
and apply  for nonuniform general arrays as well as uniform 
ones. These identity-inducing expressions are evidently the 
most  generally  useful  ones. 

With  regard to operators, there is another set of 
straightforward definitions for the extended primitive 
operators. This set,  which depends on the presence of general 
arrays, can  be  defined simply by changing the appropriate 
lines of Definitions 1-5. 

2. Scan 
Same definition, but in terms of the new reduction 
definition. 

3. Axis 
Unchanged. 42 1 
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4. Outer product Following the form established for the permissive  system 

422 

alternatives, we have the following definition of type and fill 
for a nonempty array A .  

5. Inner product (in terms of the new definition of reduction) Definition 18”strictfill elements 
The type and fill element ofA is the ( ( p p A ) p I ) p O  if 1 T A is a 

The development of identity-inducing functions in Section 
2 can be camed out for this definition of reduction as well; 
in fact, this is the definition used in [ 131. It should be clear 
that g is the (right or left) identity-inducing function off with 
respect to reduction as in Definition 1 if and only if g ”  is the 
(right or left) identity-inducing function off with  respect to 
this reduction definition. The above discussion of nested 
types and identity-inducing functions for the primitive 
pervasive functions applies equally well to this definition, 
with the same conclusion. Unlike Definitions 1-5, the shape 
rules  for the present operators also apply to these extensions. 
However, the type rules do not, so that fill-transforming 
functions and the three-step evaluation procedure in “Empty 
results” are just as necessary here for producing types of 
empty results in a consistent way. 

number, the ( ( p p A ) p l ) p ’  ’ if 1 T A is a character, or 
((ppA)pl)pGF if 1 T A is nested. 

This definition can be extended to empty arrays by the 
technique in Section 3. Based on Definition 18, the proposed 
definitions of o l ,  >B, C [ K ) A ,  and >[KIA for empty 
arguments A and B, and  the validity  of identities (4a) and 
(4b), are as follows,  where TA and TB are the types  of A and 
B. 

5. Based on Definition 18, C A  is a scalar with  type GF and 
>B is identical to B. More generally, C [ K ] A  and C [ K ] B  
have the same shapes as described for Definition 14. The 
type of C[WA is GF, while the type of > [ K ] B  is 
( ( p p  3 [K]B)pI)pGF. As with Definitions 14 and 16, (4b) 
holds but (4a) fails in general. 

presented in the next section. 
A recommendation for the value of the fill element GF is 

Strict general arrays 
For the purposes of this paper, the main differences between We turn now to a less formal question, namely, the utility of 
a strict array system and a permissive system are the more elaborate fill definitions in actual applications. In 
that, in a strict system, this section nested  types and fill are examined in the context 

Numerical applications 

a. Enclose of a simple scalar is not identical to that simple 

b. The primitive scalar functions are not pervasive. 
c. General arrays are uniform in the sense that if at least 

scalar, e.g., C3 +/+ 3. 

one element of an array is  nested, then all elements must 
be nested. 

In this section it is assumed that APL has been extended to 
include extended operators (Definitions 1-5) and (strict) 
general arrays. 

arrays are heterogeneous, while strict general arrays are 
homogeneous and therefore can be considered a third APL 
type, along with simple numeric arrays and simple character 
arrays. Consequently, a nested scalar (say GF) could be 
chosen for fill in general arrays that would  be the 
counterpart of 0 for simple numeric arrays and ’ ’ for simple 
character arrays. In analyzing this definition we follow a 
parallel course to the section on permissive general arrays so 
as to make comparisons easy: A strict general array system 
may in fact not contain some of the features discussed  here. 

The definitions of the each operator, as well as enclose 
and disclose along axes, can be included in a strict system 
and identities (4a) and (4b) hold for nonempty A and B. It 
should be noted, however, that not all arrays B are in the 
domain of > [ K ] w  because the result must be homogeneous. 

The basic point to be made here is that permissive  general 

of numerical applications, where  it is not uncommon for fill 
to become involved in computations. The effects  of 
Definitions 15 and I7 are examined in terms of a class  of 
numerical applications that can be handled particularly well 
in APL with extended operators and general arrays, which 
we call alternate arithmetic applications. This class  of 
applications also provides some insight into identity- 
inducing and fill-transforming functions, and we  begin there. 

To illustrate these applications, we  first point out  it is not 
uncommon for an algorithm using floating-point arithmetic 
to behave unacceptably because that arithmetic is  only an 
approximation to real number arithmetic. In such cases it 
would  be very helpful to execute the algorithm with a more 
accurate arithmetic such as rational number arithmetic or 
higher-precision floating-point arithmetic. Either of these 
alternate arithmetics can be employed simply by defining the 
desired arithmetic functions in an appropriate way and 
substituting the names of these functions for the 
corresponding primitive arithmetic symbols in the 
algorithm’s definition. Evidently this can lead to derived 
functions defined in terms of primitive operators and defined 
functions, and thereby to the problems discussed  in Section 
n L. 

The first point to be discussed  is actually a continuation of 
the discussion  of  permissive general arrays and concerns the 
definition of the identity-inducing functions of the primitive 
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pervasive functions (6b) when types are based on either 
Definition I5  or 17. It can happen that  an alternate 
arithmetic function is simply the corresponding pervasive 
primitive, and in such cases the function in (6b) produces 
the desired  effect. Examples include vectorspace addition (on 
which  is  based one of the principal supporting arguments for 
that definition) and rational number multiplication. In 
vectorspace arithmetic all arrays A under consideration are 
uniform with  all elements holding vectors of a given length, 
and this would  be true as well for  values  of + / A [ ; L ~ ]  if those 
values are based on (6b), but would not be true of (6a). 
Rational number arithmetic and X/A[ ; rO]  are similar. In 
most cases,  however, an alternate arithmetic function is not 
simply a primitive, and therefore the identity-inducing 
functions for the pervasive primitives are not generally 
relevant to alternate arithmetic applications; the required 
general solution to the problem of providing identity- 
inducing functions for alternate arithmetics will involve a 
mechanism for controlling the behavior of reduction for 
defined functions, such as the one proposed in Section 2 .  
Moreover, even  when the alternate arithmetic function can 
be expressed as a pervasive primitive, that primitive is being 
used in a restricted context. It therefore seems appropriate 
that a defined function such as PLUS: (Y + w or TIMES: 
(Y x w should be  used instead and the desired reduction 
behavior obtained through whatever mechanism is available 
for  defined functions. 

Rational arithmetic provides a significant example of the 
problem that can occur when fill-transforming functions are 
not used in the evaluation procedure in “Empty results” for 
producing results of derived functions in empty arguments. 
Arrays of rational numbers are conveniently represented by 
uniform general arrays whose elements all hold two-element 
vectors, the first of which represents the  numerator, and the 
second, the denominator. The fill for such an array is, 
according to Definition 15 or 17, an array whose elements 
all  hold the two-element vector 0 0. But 0 0 is not a valid 
representation of a rational number because the 
denominator is 0, and therefore the fill is not a valid array of 
rational numbers. Consequently, functions that perform 
rational number arithmetic will evoke a domain error when 
applied to the fill. Fill-transforming functions are required 
here: an effective one is (pa)p C 0 1. 

The fill provided by Definitions 15 and 17 can be pleasing 
in appearance for applications of uniform arrays, but can 
have detrimental effects  when the arrays are nonuniform. In 
general, Definitions 14 and 16 provide more effective  fill 
than Definitions 15 and 17 for numerical applications. To 
illustrate this point, consider polynomial arithmetic, which  is 
another instance of alternate arithmetic. Polynomials can be 
represented by coejicienf vectors C whose corresponding 
polynomials are +/C X w*lpC (in zero origin). The terms of 
a polynomial are 

C[O] C [ l ]  x 0 C [ 2 ]  x w*2 

etc., and the terms are said to be in increasing order (with 
respect to powers of w). In many applications it is preferable 
for the terms to be in decreasing order: 

D[O] x w*2 D [ I ]  x w 0 [ 2 ]  

in which  case the polynomials are expressed as 
+/D X w*qhpD. General arrays permit analogous 
representations of polynomials of several  variables,  i.e.,  when 
w stands for a vector instead of a scalar. The coefficient 
vectors of such polynomials, arranged in increasing order, 
would be general arrays C for  which pp 3 C [ I ]  t, I for  every 
scalar index I ,  and the terms would be 

C[O] ( > C [ l ] )  x w ( 3 C [ 2 ] )  x w 0 .  x w 

etc. The polynomial itself could be expressed as 

+/LIST C X  (( o . x ) ) \ l ,  (-1 + pC)p  C w 

As in the case of a single variable, decreasing order of the 
multiple-variable terms is preferred in many applications: 

(>D[O])XwO  .xw ( I D [  I ] )  x w 0121 

If A and C are coefficient vectors of two polynomials of a 
single  variable  whose terms are  in increasing order, the sum 
of the two polynomials has coefficient vector 

(MT A )  + (M+ (PAYPC)  t c (74  

The fill provided in this expression by all four definitions 
has a single element, which  is 0. For example, the sum of the 
polynomials with  coefficient vectors 2 5 and - 1  0 3 has 
coefficient vector 2 5 0 + -1 0 3, or 1 5 3. If the terms were 
organized in decreasing order, the  sum would have 
coefficient vector 

( M  t B )  + (M+ - (pB) rpD)  t D (7b) 

Expression (7a) also applies when A and C are coefficient 
vectors of two polynomials of several  variables  with terms in 
increasing order. Once again, the fill provided by all four 
definitions has a single element 0 because the first element of 
a coefficient  vector  is a simple scalar. For example, the sum 
of the polynomials with  coefficient  vectors A + 2 ,   C 5  6 and 
B e -1, (C0 I ) ,  C 2  2p3 5 0 -6 has coefficient vector 
( A ,  0) + B, or I ,  (C5 7), C 2  2p3 5 0 -6. However, if the terms 
are in decreasing order, only Definitions 14 and 16 
consistently provide a single-element fill.  Using  Expression 
(7b)  and either Definition 15 or 17, the sum of the 
coefficient vectors A t (C5   6 ) ,  2 and B +- (C2  2p3 5 0 -6), 
(cO l ) , - l  would  be produced by evaluating the expression 

((C0 O), A 1 + B 

(c0 0 is the fill)  which  evokes a rank error when evaluating 

In this application the nested fill could be avoided by 
0 0 + 2 2 p 3 5 0 - 6 .  

replacing  Expression (7b) with 

$ m  + ( M +  w ) w )  t w 423 
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but simple  scalar elements are not always so readily 
available. The primitive scalar (or pervasive) functions are 
the building  blocks  for all numerical applications and, with 
respect to these functions, only  flat  scalars are universal 
arguments, i.e., compatible with  all (numeric) arrays. As a 
consequence, the most  generally  useful  fill arrays for 
numerical primitives are flat. 

This completes the analysis of the alternative arithmetic 
applications and permissive  general  arrays. A similar analysis 
for a strict general  system  leads to the recommendation that 
the fill element GF be  given the value CO. 

Nonnumerical applications 
Fill  plays a more static role in nonnumerical applications 
than in numerical ones, but even there the definitions of fill 
arrays and nested fill elements in Section 4 can cause 
difficulties in applications of nonuniform arrays. For 
example, employee information may be kept in a general 
array of rank 1 with one element for each  employee. As  is 
common  in  data base applications, there may  also  be  special 
information, pertaining, perhaps, to the organization of the 
data, or containing a separate representation of employee 
names for  efficient  sorting, or any of a number of things. If 
this special information is stored in reserved elements at the 
front of the general array, as  would  be natural, then the fill 
will  be the type of some portion of the special information 
and will most  likely  bear little resemblance to the 
organization of the employee data, which  would  probably be 
quite regular.  In addition, it could be quite expensive to 
detect the fill and replace it, should that be  necessary. 
Evidently a simple fill element would be  best here,  since it is 
economical as far as space is concerned, and it is also  easily 
detected in case  it  is to be replaced. 

5. A fill primitive 
Iverson [ 10, Section F] points out in his  discussion  of 
function rank that in  the application of a general nonscalar 
APL function, the axes of an argument w will  be split at 
some point K such that  the function is applied to each 
subarray along axes K 1 Lppw. In the monadic case the rank 
of the function is  defined to be the nonnegative integer MF 
for which (ppw) - MF equals K, and the dyadic  case  is 
similar. We  call these subarrays the units to which the 
function applies, and we say that the complementary axes 
KT ~ p p w  represent a collection of units. Applications often 
deal  with  collections of logical units, i.e., subarrays which the 
user views as units, and Iverson  goes on to describe a rank 
operator by which the ranks of functions can be controlled 
so that the resulting units to which functions apply  coincide 
with the logical units of the applications. 

As  we have seen, a potential use  of  fill is to provide a 
means of associating “typical” units with empty collections 
so that they will  be  processed in a consistent manner with 

424 nonempty collections, and fill derived from type arrays 

guarantees this consistency for sequences of primitives in 
which  each function applies to a collection of units and 
produces a collection of units. In particular, the units may  be 
transformed as the processing  proceeds.  Array theory 
provides fill elements, and thereby a way  of associating 
“typical” elements with empty general arrays (hence the 
name prototype). Thus, in the context of extended APL  with 
fill elements, consistent behavior for empty collections of 
nonscalar units cannot be expected. 

representing  typical units. In  most applications not only are 
collections of units processed, but the units themselves as 
well, and it  is very often the case that the units have no 
logical units of their own. For example, an employee data 
base  may  keep a pair of arrays as information on each 
person,  such as name (a character vector) and salary  history 
(a numeric matrix). Consequently a character vector, 
numeric matrix pair  may be viewed as a logical unit of the 
data base, but neither a character vector nor a numeric 
matrix would be considered as the logical unit of a pair. 
Another example  is  provided by the coefficient  vectors 
described in “Numerical applications,” where the enclosed 
elements are all  of different  ranks. As illustrated in Section 4, 
in processing the units themselves, or when arrays do not 
consist  entirely of  logical units, the most  useful  type 
definitions are those that provide the most universally 
applicable, elementary fill quantities. 

goals,  i.e., to permit “typical” units of empty collections to 
be represented by  fill, and  at the same time to provide 
elementary fill for irregular arrays. The key is to remove the 
dependency of fill on type arrays and to require the primitive 
functions to propagate fill, which  is consistent with  present 
APL (see the “type” rules in [ 12, Section 2.41). We  begin 
again  with  present  APL, but describe  things so as to prepare 
the way for the admission of heterogeneous and general 
arrays, and consequently the descriptions at first contain 
redundancies for  present  APL. 

A useful  classification  of  APL arrays is as follows. The 
class NN of  APL arrays consists of all arrays whose  fill is a 
scalar  zero and, if nonempty, whose elements are all 
numbers, while the class  CC  of  APL arrays consists of  all 
arrays whose  fill  is a scalar blank and, if nonempty, whose 
elements are all characters. The class  NA  of  APL arrays 
consists of all empty arrays together with all nonempty 
arrays whose elements are all numbers, i.e., there are no 
restrictions on fill; the class CA  of  APL arrays consists of all 
empty arrays together with  all nonempty arrays whose 
elements are all characters. Class AA arrays are all APL 
arrays.  Using this classification, the following  is a complete 
description of fill for the results of the primitive functions in 
present  APL. 

Unfortunately, not all  uses  of fill have to  do with 

The goal  of this section is to reconcile  these  two disparate 

1. The  scalar primitives other than = and # apply to class 
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2. 

3 .  

4. 

5 .  

6. 

7 .  

8. 

NA arrays and produce class NN arrays; the scalar 
primitives = and # apply to class AA arrays and produce 
class NN arrays. 
The nonscalar primitives BITAV? and monadic L apply 
to class NA arrays and produce class NN arrays; the 
nonscalar primitives t, monadic p, and dyadic L apply to 
class AA arrays and produce class NN arrays. 
Monadic ;6 applies to class AA arrays and produces class 
CC arrays; dyadic ;6 applies to class NA left and right 
arguments and produces class CC arrays; 2 applies to 
class CA arrays and produces class AA arrays. 
The nonscalar dyadic primitives 7J/\+$ and dyadic p 
apply to class NA left arguments and class AA right 
arguments, and a result array has the  same fill as that of 
the right argument; the nonscalar monadic primitives 1$4, 
apply to class AA arrays and a result array has the same 
fill as that of the argument. 
If both arguments of catenate (,) are nonempty, then they 
are both class NA or they are both class CA, and  the 
result has their common fill;  if one argument is empty, 
then both arguments are of  class AA and  the fill  of the 
result is the same as the fill  of the nonempty argument; if 
both arguments are empty, they are of  class AA and the 
fill  of the result is the same as the fill  of the right 
argument. 
The fill of a result of indexing is the same as the fill  of the 
array being indexed; the fill  of an array altered by index- 
specification  is the same as the fill of the array before 
alteration unless the entire array is replaced, in which 
case the fill is the same as the fill of the replacement. 
The fill arrays for take and expand are defined  as  follows 
(see  Section 3):  Let 

FXw + (-w) X pa 

Then the fill array for A [ K ] A  is ( A  F S  K # tppA)pTA, 
where TA is the fill  of A ,  and the fill array for N 7 A is 
( A  FS ( N  # pA)/rppA)pTA. 
The fill for numeric constants is the scalar  zero and the 
fill for character constants is  the scalar blank. 

In order to admit heterogeneous and general arrays, this 
eight-part description is  simply accepted as the definition of 
fill for the results  of the primitive functions, where the only 
required change is to the definition of catenate for  two 
nonempty arguments. Thus (5) should now  read as follows: 

5’. The arguments of catenate are of  class AA, and if both 
arguments are nonempty or if both are empty, then the 
fill  of the result is the same as the fill  of the right 
argument, while  if one argument is empty, then the fill 
of the result  is the same as the fill of the nonempty 
argument. 

In addition to this change, general arrays require 
definitions for  enclose ( C w )  and disclose (>w) analogous to 

those for the other primitives, which are taken to be the 
following. 

9. Enclose (C) applies to arrays of class AA, and if TA is the 
fill  of an argument, then CTA is the fill of the result; 3 
applies to arrays of  class AA, and if TA is the fill of an 
argument, then >TA is the fill  of the result. 

Thus a permissive  general array extension admits  no new 
fill elements, while a strict one admits CO, C’ ’, CCO, CC’ ’, 
etc. Note that enclose and disclose are the only primitives 
that actually transform the fill: the others simply pass it 
along or replace it. 

create some interesting effects that may at first  seem 
counterintuitive. For example, if 

A t 2 3  

then the fill  of A is the scalar zero (8). According to (6), the 
result of 

A[  I ]  t ’A‘ 

A[2 ]  t ‘B’  

still  has fill zero  even though A is ’AB’ ,  so that  in particular 

1 0 1 \A tr, ‘A ‘, 0, ‘B‘ 

Once fill becomes a truly independent characteristic of APL 
arrays, one must expect to encounter pairs of sequences of 
primitives that yield arrays with the same shape and element 
list but with different fill. 

In the presence of heterogeneous arrays it is possible to 

c [ K ] w  can be  defined  for empty arguments by the 
procedure in “Empty results.” >[K]w is not a conventional 
application of the axis operator, but is simply >w followed 
by a dyadic transpose, so its definition for empty arguments 
is straightforward. As with other fill element definitions (see 
“Permissive general arrays”), identity (4a) holds but identity 
(4b) fails in general for empty arrays. Of course this brings us 
to the topic of consistent behavior for empty collections, and 
we  have  seen that any fill element scheme will  be deficient in 
this area. What one should be able to  do here is specify  fill 
arrays that replace the default fill elements. Iverson [ 10, 
Section HI has defined variant forms of take and expand 
that provide this capability, and that may well be sufficient if 
these forms are extended to permit fill arrays as well as fill 
elements, and if an alternative to the evaluation procedure in 
“Empty results” is provided. Another approach is suggested 
here, which is more in keeping  with the developments in this 
paper, and which we  believe  will  be more general and more 
convenient to use. 

Definition 19 
A new primitive function called FILL  is defined  which is 
analogous to p and for  which FILL  A is the fill  of A ,  while 425 
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F FILL A is the array whose shape and element list are the 
same as those of A but whose fill is F. Thus for all arrays A, 

A c, (FILL A )  FILL (pA)p, A 

Given such a primitive, and assuming that specified fill is 
propagated by the same rules as default fill, consistent 
behavior of empty collections  of units can be obtained. If 
TU is a typical unit of an application and the units lie along 
certain axes  within their collections, thon all that must be 
done is to specify TU as the fill of a collection  when 
processing  begins;  if the units are enclosed  scalars, then CTU 
should be  specified as fill. When an individual unit is 
removed from a collection  for  processing, then respecify the 
fill if  necessary. 

The properties of specifiable fill are examined by  briefly 
surveying the individual aspects of empty arrays discussed in 
the preceding  sections.  Fill  plays a minimal role in identity- 
inducing functions because  these functions tend to be 
dependent only on shapes and  the function argument of 
reduction. However,  it  is probably not difficult to construct 
examples where fill arrays, and in particular specifiable  fill, 
would  be  of  use. On the other hand, specifiable fill eliminates 
the need for fill-transforming functions associated  with 
defined functions because  specifiable fill  need not only 
consist of zeros and blanks. For example, it was pointed out 
in “Numerical applications” that ( p a ) p  C 0 1 is an effective 
fill-transforming function for rational arithmetic functions, 
but the same effect can be obtained by assigning CO 1 as the 
fill for arrays of rational numbers. 

The type arrays of  Sections 3 and 4 maintain the same 
ranks as the arrays to which they are associated in order that 
transformations on the associated arrays can be mirrored on 
the types  themselves. This manipulation of types  is required 
so as to maintain constant relations between the axes of type 
arrays and  the axes of the arrays to which they are 
associated.  These constant relations guarantee to the greatest 
extent possible that any logical decomposition of arrays into 
units and collections of units is mirrored in their types, and 
therefore when a computation applied to an empty 
collection requires fill, that the fill  will have the form of a 
“typical” logical unit. 

In contrast, specifiable fill requires typical units to be 
provided  explicitly, but in so doing permits a greater  variety 
of possibilities, if only  because it need not consist  only of 
zeros and blanks. The above descriptions of the primitives 
are designed to pass along these typical units whenever it is 
reasonable to  do so, and to use them in the gaps created by 
take and expand in  the expected manner. In particular, 
identities (4a) and (4b)  hold  for empty arrays when the 
shapes of the empty arrays and  the shapes of their specified 
fill are correctly  related.  Since fill is  specifiable, it has no 
required relation to shape and element list, and therefore the 
primitives cannot be expected to apply to fill in the same 

426 way that they applied to type arrays. Consequently, when the 

form of the logical units of an application changes, the form 
of the fill must  be  explicitly  changed as well. 

The ability to specify the fill used  by take and expand for 
nonempty arrays is obviously  useful. Other applications to 
nonempty arrays arise  from the fact that specifiable fill is an 
independent quantity and therefore represents additional 
information. For instance, it is sometimes difficult to know 
whether or not an array represents a logical unit or a 
collection  of  logical units. As an example,  consider the 
alternate arithmetic application of replacing the real 
arithmetic camed out by the primitive functions with 
rational arithmetic carried out by defined functions. If the 
name PLUS everywhere  replaces the symbol + (and 
similarly for other arithmetic primitives) in an algorithm, 
then the function PLUS must serve as an extension  of + that 
does ordinary real addition when  it should as well as rational 
number addition when  it should. Suppose that fill is not 
specifiable and that rational numbers are represented by  two- 
element vectors,  while arrays of rational numbers are 
represented by general arrays of  two-element  vectors. Then 
the global replacement of + by PLUS can be guaranteed to 
have the desired behavior only  for operator extensions such 
as Definitions 1-5 and only for algorithms that do not 
themselves use general  arrays. For if the algorithm uses 
general arrays, then how is PLUS supposed to differentiate 
between  general arrays of pairs of real numbers and general 
arrays representing arrays of rational numbers? And  if the 
operators apply  disclose  before function arguments are 
applied, then how  is PLUS supposed to determine whether 
an ordinary two-element vector holds two real numbers or 
one rational number? Both  of  these situations can  be 
clarified by allowing  specifiable  fill, and by specifying the fill 
for any two-element vector  representing a rational number 
to be a two-element  vector that represents a valid rational 
number in the common domain of the arithmetic functions, 
and  that does not coincide with  any other specified  fill in  the 
algorithm. 

Thus  the following  general conclusions can  be  made:  Fill 
arrays based on types  provide the expected  behavior for 
empty collections of  logical units, but do not generally 
provide  useful fill in other circumstances; just the opposite is 
true of simple fill elements based on type; and specifiable  fill 
permits the user to control the behavior of empty collections 
while providing a default fill that is generally  useful in other 
circumstances. In addition, specifiable fill can replace  fill- 
transforming functions and is  of  use in dealing  with 
nonempty arrays. 
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