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The problem of reducing the random noise from
multiband image data is examined, taking a
nine-band image data set of a terrestrial scene
and adding a significant amount of noise to the
original pixel value of each band. For each of
these data sets, data of three nearby bands

generally exhibit a high correlation among them.

Selected data for several sets of three nearby
bands are transformed from the spatial domain
to the frequency domain to study phase
relationships (i.e., coherency) among their
Fourier coefficients of various frequencies. It is
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shown that, in general, the addition of random
noise results in the rapid change, with
frequency, of a quantity called the coherency
measure. (This is a quantitative measure of the
phase agreement among the phases of various
Fourier coefficients at a given frequency.) The
coherency measure vs. frequency curve for a
given data line is then used to attenuate various
Fourier coefficients of the corresponding nearby
bands of that line. It is then shown that the
inverse transformation of such modified Fourier
coefficients results in a statistically significant
reduction of noise from the data of single lines,
or from those data of some finite areas of the
image. Results of a supervised boxcar
multispectral classification with the original as
well as various modified data sets of the
selected image are also presented to provide
additional guidance in the use of such a
sophisticated analytic procedure in image
processing.
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Introduction

Multiband digital image data of the terrestrial surfaces are
routinely acquired in geological and geophysical explorations
(e.g., [1]). Such measurements are generally taken with the
help of multispectral scanners aboard aircraft or advanced
spacecraft such as Landsat and Skylab. Such configurations
generally provide data from 2 to 10 spectral regions (bands)
in the visible near-infrared part of the electromagnetic
spectrum, and that with a ground-level resolution of 8 to 80
m. Measurements for several spectral intervals in the 0.4—
1.1-um region are generally taken with the hope of
determining and using unique spectral signatures of various
types of surfaces. However, in practice, a great degree of
redundancy develops due either to the nonexistence of such
unique signatures, the coarseness of the spectral intervals, or
the contamination of signals from stray light within the
optical system. Because of any or all of these reasons, data of
several nearby bands are generally found to be highly
correlated.

This type of image data contains some noise due to
various factors such as platform vibration, scene variability,
atmospheric inhomogeneity, and digitization. Techniques for
the reduction of noise from the image data are usually
restricted to spatial smoothing confined to a single band.
Smoothing along the wavelength direction is generally
shunned because of the probability of obliterating some
important image features.

One of the smoothing operations commonly used in signal
processing and looked upon with some interest in image
processing is the Fourier transformation of the data in a line
or an area (i.e., one- or two-dimensional transformation) of
the image in a given band [2, 3]. This transformation results
in vectors with complex elements which represent the real
image data in a spatial frequency domain. For the one-
dimensional transformation, the nth element of this complex
vector for an image line gives the coefficient of the nth
spatial frequency for that line. Since these coefficients are
complex quantities, they contain magnitude as well as phase
information. If the signal and noise are confined to different
frequency ranges with some overlap, the Weiner filter (4]
provides a weighting function determined by a least squares
criterion of the accuracy of results. The complex coefficients
can then be multiplied with the weighting function and the
result can be inverse Fourier transformed to retrieve the
filtered image data. However, it is very difficult to identify
the frequency ranges dominated by signal and noise in the
image data. Furthermore, especially for a large image, the
determination of filter characteristics for individual scan
lines becomes very time-consuming and costly.

The case of multiband data along an image line is, to
some extent, analogous to that of multichannel space-time
records (i.e., seismic traces) used in reflection seismology. In
the latter field, additional assistance in the geophysical
interpretation of seismic data is provided by computing a
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coherency measure as a function of time, from the
magnitude of the signals in different channels. Recently,
Gazdag and Sguazzero [5] quantitatively defined a coherency
measure to express the phase relationship among the Fourier
coefhicients of a given frequency. This coherency measure
defined for the space-frequency domain can be used with
significant advantage in the automatic extraction of the
velocity information from the seismic traces.

In this report, we examine the problem of the reduction of
random noise from the multispectral image-line data by
Fourier-transforming them from the wavelength-space
domain to the wavelength-frequency domain. A nine-band
image (with 512 scan lines and 256 pixels per scan line) of a
section of the Anadarko Basin of north central Oklahoma
acquired in April 1979 with the Bendix Aerospace Modular
Multispectral Scanner [6] is used for this purpose. The
rectangular geometry of the image enables a split-screen
comparison of the false-color images prepared with different
procedures on the standard color monitors, while the 256-
pixel length of a scan line permits the use of the efficient Fast
Fourier Transform (FFT) method for the forward and
inverse Fourier transformations [7, 8).

Variations of the coherency measure as a function of
frequency are then studied for three different sets each of
three nearby (or adjacent) spectral bands, and for several
image lines with and without random noise added to the
data. The sums of the elements of the coeflicient vectors of
the nearby bands are then multiplied by the corresponding
elements of the coherency measure vector, and the resultant
complex vector is inverse transformed to retrieve the image
data for the middie of the three nearby bands. Results are
then presented to show the role of the FFT operations and
coherency measure in the reduction of random noise from
the image line or image area data. Results of a supervised
boxcar [9] multispectral classification performed with the
original data, with the original data with random noise, and
with both sets of data modified by two different procedures
(viz. straightforward arithmetic mean of pixel radiances in
nearby bands, and use of the FFT and coherency measure)
are presented to provide additional justification and
guidance for the use of such analytic procedures in image
processing.

Fourier transformations
Any real periodic function Y{(x) can be expressed as a
Fourier series of the form

®

Y(x) = a2 + ¥ [a, cos Qunvx) + b, sin Qwxnrx)], o))

n=1

where » is the fundamental frequency. The same expression
can be rewritten in exponential form by applying the
identities representing these trigonometric functions in terms
of complex exponentials,
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Accordingly,
Y(x) = T a, exp (V—127nwx), %))
n=0
with
a, = 0.5(a, ~ V=1b)). (3)

The phase angle 6 of the complex Fourier coefficient o, is
given by

tan 6 = b,/a, , “)

and with the appropriate quadrant for the vector determined
from the signs of a, and b,

The FFT (Fast Fourier Transform) is a very efficient
procedure for transforming discrete data such as pixel values
along an image line, especially when the number of data
points can be represented by a power of 2 [8]. It is sufficient
to state here that a periodic function is developed using 2™
measurements. It is then analyzed to derive 2™ complex
coefficients a,,. For the real data of concern to us in the
present context, a_, = a,, and b_, = ~b,. We therefore
restrict our discussion to the coefficients with zero and
positive subscripts only. For convenience, it is customary to
refer to the o, cocflicient as the amplitude of the first
frequency. Thus, for an image with 256 pixels per line, we
are interested in phase relationships among the Fourier
coeflicients of various bands for the first 129 frequencies
only.

Following [5], we define the coherency measure T,
among the nth frequency Fourier coefficients of three bands,
K —1to K+ 1, by the equation

2

K+1
2 an,k
k=K—1
F"v’( I 2 &)
[ E |an,k |]
k=K~1

where a,, , is the nth~frequency Fourier coefficient for the
data of the kth band. This coherency measure assumes a
value of unity if all «, , for a given » are in phase [see Eq.
(4)], and a value very close to zero if their phases are
randomly oriented.

A basis for the use of this coherency measure as a filter is
given in the next section. Accordingly, we accept the
quantity T, . defined by Eq. (5) as the scalar attenuation
factor for the coefficients of K — 1 to K + 1 bands at the nth
frequency. Then the modified Fourier coefficient g, . for the
Kth band is given by

K+1

ﬁn,l( = [I‘n,l(/3] z an,k' (6)

k=K-1

Thus, we have an automatic determination of the filter
vector T, . for a weighting of all coefficients for K — 1 to K
+ 1 bands. The modified (or attenuated) coefficients (8, . for
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various ») can then be inverse transformed to obtain the
Kth-band modified data for the image line under scrutiny.

In the image science discipline, pixel radiances are usually
represented by an eight-bit (byte) word which ranges from 0
to 255. The inverse transform of the complex 8, , vector
results in another complex vector whose real parts represent
the modified pixel radiances. In order to conform to one-
byte representation, real parts of this other complex vector
are forced to 0 if they are negative and to 255 if they are
greater than 255.

If the quantity T, x is equal to unity for all values of n for
a given K, the combined process of the forward Fourier
transform, the filtering of the Fourier coefficients, and the
inverse Fourier transform of the resultant vector is
equivalent to taking the arithmetic mean of the radiances of
a pixel, in the selected line, in K — 1 to K + 1 bands.

Filtering of muitichannel data using coherency
measures
Let

r(x) = s(x) + n,(x) k=1,2,-.-,K ™

denote K independent observations or measurements of the
same event; the quantities s(x) and n,(x) denote the signal
and noise components of the observation, respectively. It can
be thought of as a correlated subset of the multispectral data
along a straight line defined over the image domain, where x
is the distance along the line. Let o, , be the Fourier
transform of r,(x) given by

a,, = L r{x)exp (s/—-—l 2nnvXx), 8)

where the summation is carried out over all samples x =
[Ax, and [ assumes integer values between 0 and some upper
limit 2 L. The Fourier coefficients a,, , are computed for
angular frequencies —n/Ax to +w/AX.

Following Eq. (7), the Fourier coefficients can also be
thought of as those due to signal and noise, i.e.,

an,k = Sn + Nn,k‘ (9)

S, is independent of the subscript k (i.e., spectral band
number), while N, , varies from band to band. Evidently,
both of these quantities are also complex. When «,, , is
summed over all values of &, the summation over S, is KS,,
but the sum of the uncorrelated noise vectors gives a
composite vector that is less than the sum of their absolute
values; 1.€.,

K K

L Nu| < ZIN, (10)
k=1 k=1

These considerations suggest a quantitative measure for

discriminating among the Fourier coefhicients that represent
signal as well as noise. Gazdag and Sguazzero [5] have
shown that the ratio between the absolute value of the sum
of vectors, and the sum of the absolute values thereof, is an
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Table 1 Nominal bandwidths of various spectral bands
available on the airborne Modular Multispectral Scanner (Lowe,
1980).

Band Nominal spectral width Descriptive
number (um) color

1 0.38-0.44 violet
2 0.44-0.49 blue
3 0.49-0.54 green
4 0.54-0.58 greenish yellow
5 0.58-0.62 orange
6 0.62-0.66 red
7 0.66-0.70 red
8 0.70-0.74 red-infrared
9 0.76-0.86 infrared

10 0.97-1.05 infrared

11 8.00-12.00 thermal infrared

effective measure of the collective phase agreement among
the o, , for a given n. Accordingly, the quantity T', [the
second subscript K is omitted here for brevity; see Eq. (5)],
which is defined by

2

Zan.k
[ =——— (11)

[2 Ian,kl]

can be regarded as the measure of coherency. This is because
I', attains its maximum value of unity if all the «, , for a
given n have the same direction; i.e., they have the same
phase angle, implying that they are coherent. As the phase
agreement among the «, , for a given n decreases, I, also
decreases, and it eventually becomes close to zero when
these coefficients are randomly oriented; i.e., they are out of
phase.

The coherency measure T, as defined by Eq. (11) can be
used to improve the signal-to-noise ratio of any band
provided that this filtering operation consists of multiplying
the Fourier transform of the kth band by T',. Let the signal-
to-noise ratio be defined as the ratio of their respective
energies, i.e.,

SNR, =3 S./3 N2, (12)

when the summation is carried out over all values of n. Let
us now examine the effect of multiplying e, , with T, given
by Eq. (11). Since T, is applied to both S, and N, ,, the
signal-to-noise ratio of the processed signal is given by

SNRY = 3 [S,T,J/3 [N, ,T,1 (13)

Since T', attains higher values for those frequencies that
are least contaminated by noise and vice versa, its
correlation with the signal component is expected to be
greater than that with the noise component. It can therefore
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be shown that the normalized signal given by

TISTI/E S, 2T, (14)
is greater than the normalized noise given by
SN, LIS N, ST, (15)

From this inequality relationship, it can be easily shown that

SNR} is greater than SNR,.

The improved signal-to-noise ratio obtained by
multiplying the Fourier coefficients of a signal with the
corresponding I', need not be restricted to the individual
bands. This approach can also be taken for the composite
signal resulting from the summation of all bands under
consideration. For the type of data used in our investigation,
the latter approach was found to be more satisfactory than
the first one.

Multispectral classification

The multispectral classification procedure used in our
analysis is a modified form of the standard boxcar or
parallelepiped classification scheme [9]. Classes are
numbered in powers of 2, i.e., 1, 2, 4, 8, and so on. With this
modified form, the results are independent of the order in
which the classes are specified.

The count-range C;, for the kth band and the jth class is
determined from the histogram of the radiance of the pixels
in the training site for that class. For our work, this count-
range is defined as the range containing 90 percent of the
total pixels in the training site. If the values of a pixel in
bands b,, b,, - - -, b, are located within the corresponding
count-ranges C,,, C,,, - - -, C;,, the pixel is said to belong to
the jth class.

Before setting up the classification procedure, all of the
elements of a matrix of the size of the image are set to zero.
Then, if a pixel is judged to belong to a given class, the
corresponding class number is added to the contents of the
corresponding element of the matrix. If a pixel is judged to
belong to more than one class, the corresponding matrix
element carries a value of the sum of the number of all
classes to which that pixel is found to belong. For the eight-
class classification, we have a total of 256 classes, viz., the
first for the unidentified pixels, the next eight for the eight
original classes specified by the investigator, and the
remaining 247 possible mixed classes containing pixels
belonging to any two or more of the eight classes.

Basic data sets

The first basic data set used in our investigation was
extracted from data acquired in April 1979 (with the help of
the Modular Multispectral Scanner [6]) over the Anadarko
Basin of north central Oklahoma. Nominal spectral
bandwidths of the eleven channels recorded by this
instrument are shown in Table 1. It can be seen that the first
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nine bands are located in the visible near-infrared (0.38-0.86
um) part of the electromagnetic spectrum. From a full flight-
line data set consisting of 3800 scan lines with 803 pixels per
scan line, a subset consisting of 512 scan lines with 256
pixels per scan line was selected as the first basic data set for
our investigation.

A black and white photograph of a false-color image of the
selected area, prepared after linear contrast-stretch
operations on the data of bands 2, 5, and 8, is shown in the
left half of Figure 1. The selected region contains eight to ten
different features such as water, small hills, and fields in
different stages of growth. The pixel size for this area is about
8§-10 m.

For this image, data for bands 10 and 11 were found to be
very highly correlated (correlation coefficient of 0.99) and
had practically the same values for mean brightness and
standard deviation. Therefore, data of these two bands were
omitted in further analysis. Another reason for omission of
these two bands is the desire to obtain three-band false-color
images after each operation on the data. Consistency
considerations then require working with nine or 15 bands
[see Eq. (5)]. For the first nine bands, the correlation
coeflicient of the first band data with any of the remaining
bands was found to decrease with an increase in band order
from 0.98 to —0.3. The correlation coefficient of the image
data for the second band with those of any two nearby bands
(i.e., first and third bands) was found to be about 0.95. The
same high correlation was also observed for the data of the
fifth band with those of its nearby bands. On the other hand,
the values of band 8 were found to be highly correlated
(=0.9) with those of band 9, but only weakly correlated
(=0.5) with those of band 7. Thus, the selection of values of
2, 5, and 8 for the subscript K appearing in Eq. (5) provides
us with several significantly different cases of phase
relationships among the multiband Fourier coefficients of
various frequencies.

Various types of analysis of this first basic data set
suggested the data to be, relatively speaking, free of random
noise. Therefore, a second basic data set was generated by
adding random noise (range: +20 units) to each of the
131072 (= 256 x 512) pixel values of each of the nine
bands. Original pixel radiances are given in arbitrary units
and, because of the one-byte representation mentioned
earlier, they can carry any value in the range 0-255.
Therefore, the addition of 20 units of random noise,
though somewhat arbitrary, is quite significant from the
quantitative point of view. The histogram of the random
noise values added to any image band is flat for all practical
purposes.

A black and white photograph of the false-color image,
prepared after linear contrast-stretch operations on the data
of bands 2, 5, and 8 of this second set (i.e., with random
noise), is shown on the right-hand side of Fig. 1. A trained
eye can detect some subtle differences between the original
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A black and white photograph of the three-band false-color image
of a small section of the Anadarko Basin of north central
Oklahoma. Left: original data; right: with random noise (range:
+20 units) added to each pixel value of each band.

and noisy black and white images shown in this figure; there
is also some degradation in quality.

Line and area regions of the selected image used in the
quantitative analysis are shown in the left half of Fig. 1.
There are four lines designated A, B, C, and D, and eight
polygon areas used as training sites for the multispectral
classification. These areas are numbered 1, 2, 4, 8, 16, 32,
64, and 128. Some of these identification marks are omitted
for clarity.

Variations of the pixel radiance (in arbitrary units) as a
function of its position on the lines A and B in Fig. 1 are
shown in Figures 2 and 3, respectively, for a few selected
bands. The x-axis parameter refers to the pixel number
which referred to the data in the original data set from which
the image was extracted. The left and right ends of the
curves in these diagrams correspond to the left and right
edges of the left half of Fig. 1, respectively. From the data
presented in Fig. 2 for bands 1-3, we see that the
measurements of these three bands are highly correlated.
However, from the data presented in Fig. 3 for bands 7-9,
we find a fairly good correlation among measurements of
bands 8 and 9, but a somewhat weak correlation for those of
bands 7 and 8.

Phase relationships
As mentioned earlier in the section on Fourier
transformations, FFT operations on data of a given band of
a given line with 256 pixels provide independent complex
Fourier coefficients for 129 frequencies.

Phase relationships among the Fourier coefficients of eight
selected frequencies of data of bands 1-3 of line A (see Fig.
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2), and of data of bands 7-9 of line B (see Fig. 3), are shown
in Figures 4 and 5, respectively. In each case, the results for
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the first (i.e., original) and second (i.e., with the random
noise added) data sets are shown in the left half and right
half of the figure, respectively. Thus, there are 16 squares in
each figure. Appropriate frequency numbers are shown in
the top left corner of the squares. Values of a,, and b, ,,
required in computations of a given T, ., are divided by the
maximum of the absolute values of that particular set. This
maximum value, later referred to as the normalization
factor, is shown in the bottom left corner of the square. The
computed value of T', , is given in the bottom right corner.
Coeflicient vectors of the K — 1, K, and K + | bands are
shown by the solid, broken, and dotted lines, respectively.
From the results presented in Fig. 4 for the data of bands
1 to 3, it can be seen that the addition of random noise
results in a separation of the vectors and a decrease in the
coherency measure T, ,. The only exception to this
statement is the 67th frequency, for which the normalization
factor is very small. On the other hand, several values of T, ¢
(see Figure 5) increase by a significant amount with the
addition of the random noise to the original data. Some of
these trends may be due to the weak correlation among the
values of bands 7 and 8 mentioned earlier, or due to the
presence of some significant amount of noise in the first set.

Coherency measure varidtions

Variations of T, for line A, of T, ¢ for line B, and of T, ,
and I, ¢ for line D are shown, as a function of frequency n,
in Figures 6, 7, 8, and 9, respectively. Each of these figures
consists of two sections with the results for the data of the
first and second basic set shown in the bottom and top
sections, respectively.

From the results presented in Fig. 6 for T, , vs. » for line
A, the effect of random noise on the values of T, , at higher
frequencies is very evident. Such an effect is also present, to
some extent, in variations of T, ; vs. # for line B shown in
Fig. 7. As one would anticipate, such variations are highly
data-dependent. Variations of T, vs. # for line D (see Fig. 8)
show a strong decreasing trend at higher frequencies in the
lower section, but a very weak decreasing trend, if any, in
the upper section of the diagram. On the other hand,
variations of I',, ; vs. n for line D (see Fig. 9) show several
very significant cases of decrease in T, ; with the addition of
random noise.

Procedures 1 and 2
Computations of the Fourier coefficients and of the modified
image data from them, for the multiband cases, require a
fairly significant amount of computational resources. It is
therefore advisable to compare the results obtained after
such sophisticated operations with those obtained with the
one requiring minimal operations. With this in mind, we
have defined procedures 1 and 2 as follows.

In procedure 1, an arithmetic mean of the radiances of an
image pixel in bands K — 1, K, and K + 1 is taken;
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Figure 8

Variations of the coherency measure, as a function of the frequency,
among the data of bands I, 2, and 3 of line D in Fig. 1. Bottom:
original data; top: after random noise (range: *20 units) is added to

each pixel value of each band.

Pixel radiance or rad. diff. (arbitrary units)

< Arbitrary data.
SN CENRRLA W I
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Pixel number

Variations, as a function of the pixel position, of the pixel radiance
(arbitrary data without any noise), and of the random noise remain-
ing after procedures I and 2 (middle and top sections, respectively)
are applied to three data sets generated after adding random noise to
the original data.
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Coherency measure

16 32 48 64 80 96 112 128

Frequency

Variations of the coherency measure, as a function of the frequency,
among the data of bands 7, 8, and 9 of line D in Fig. 1. Bottom:
original data; top: after random noise (range: *20 units) is added to
each pixel value of each band.

evidently, K equals 2, 5, and 8. In procedure 2, real data of
an image line in bands K — 1, K, and K + 1 are transformed
from the spatial domain to the frequency domain, and
complex Fourier coefficients are computed for each band. A
filter is then computed automatically by making use of Eq.
(5). The modified Fourier coefficients [see Eq. (6)] are then
inverse-transformed to obtain the modified image data for
the Kth band. This procedure is then repeated for each line
of the image.

Noise reduction for the single-line cases

The lowest section of Figure 10 shows the variations of pixel
radiance along a line with some arbitrary data generated by
taking into account only the first three Fourier components.
A random noise of +20 units was then added to this
arbitrary data line, and three more lines with noisy arbitrary
data were generated. Procedures 1 and 2 were then applied
to these three-line data treated as three-band data.
Differences between the pixel values obtained with
procedures 1 (and 2) and the original line data are plotted in
the middle (and the upper) sections of Fig. 10. In other
words, these two curves represent the random noise
remaining after application of the corresponding smoothing
procedure. The statistical parameters of the mean brightness
() and the standard deviation (¢) for the added noise are
about —0.77 and 10.97, respectively. The value of ¢
decreases to 6.5 and 4.4 after application of smoothing
procedures 1 and 2, respectively. Thus, it can be seen that
the second procedure does provide better smoothing than
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Variations, as a function of the pixel position, of the pixel radiance
(original data of band 2, line C in Fig. 1), and of the random noise
remaining after procedures 1 and 2 (middle and top sections, re-
spectively) are applied to three data sets generated after adding
random noise to the original data.

the first, especially when the signal is confined to a few lower
frequencies only.

It can be shown that the decrease in ¢ for the random
noise after the use of procedure 1 is in agreement with what
can be expected from the consideration of the wave energy
which is proportional to the square of the amplitude. If three
identical waves (or signals) are added and the resultant wave
is integrated over a sufficiently large interval of its
independent variable, its energy increases by a factor of 9
over that of a single wave. On the other hand, if these three
waves carry some random noise, the integrals over the
product terms can be expected to vanish over a sufficiently
large interval of integration. Accordingly, the energy of the
resultant wave in this latter case is about three times greater
than that of any single wave. Thus, the gain is about 3 in
energy, or the square root of 3 in the case of amplitude of
the wave. Assuming that the standard deviation values
provided in the preceding paragraph are related to the
noise amplitudes, we have an improvement by a factor of
10.97/6.5 = 1.69, which is comparabie to the square root of
3. A still better improvement can be obtained by taking
more than three sets.
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Figure 12

Variations, as a function of the pixel position, of the pixel radiance
(original data of band 5, line C in Fig. 1), and of the random noise
remaining after procedures 1 and 2 (middle and top sections, re-
spectively) are applied to three data sets generated after adding
random noise to the original data.

Results similar to those presented in Fig. 10 but for the
actual image data along line C in Fig. 1 are shown in Figures
11, 12, and 13 for bands 2, 5, and 8, respectively. The
respective standard deviations in the original random noise
are about 11.6, 11.4, and 11.9 for these three cases. From the
values of ¢ given inside these figures, it can be seen that in
general the application of procedure 2 results in a better
reduction in random noise than that of procedure 1.
However, the improvement is not as large as in the case of
data with signals confined to the low frequency only (i.e.,
results of Fig. 10).

Noise reduction for the training sites

For the results presented in the preceding section, three lines
of data with random noise were generated from the original
line data for the selected band. On the other hand, results
presented in this and the following sections were obtained
after the use of procedure 1 or 2 as defined earlier.

For multispectral classification analysis, we have selected
eight training sites whose class numbers are given in powers
of2,ie., 1, 2, 4, 8, and so on. The total number of pixels in
each of these training areas is given in column 3 of Table 2.
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Variations, as a function of the pixel position, of the pixel radiance
(original data of band 8, line C in Fig. 1), and of the random noise
remaining after procedures | and 2 (middle and top sections, re-
spectively) are applied to three data sets generated after adding
random noise to the original data.

This table consists of two sections with the ¢ values for
bands 2 and 8 given in columns 4 through 7 of its upper and
lower sections, respectively. Column 4 contains the standard
deviation for the original (i.e., basic data set without any
noise added to it) radiances of the pixels inside the training
areas. Similar results, but with £20 units of random noise
added to each pixel value of each band (i.e., basic data set 2),
are given in column 5 of this table. It can be seen that the
addition of the random noise results in a significant increase
in the standard deviation in all cases.

Values of the standard deviation obtained after
application of procedures 1 and 2 are shown in columns 6
and 7, respectively. The use of either smoothing procedure
results in a significant reduction of the noise level (as
interpreted from a decrease in the standard deviation) in all
cases. The second procedure provides lower values of ¢ than
the first procedure for all eight training areas for band 2, but
not for band 8.

Multispectral classification results

One of the main purposes in the acquisition and analysis of
multiband image data in geophysical and agricultural
exploration is to identify areas (i.e., pixels) with the same
optical characteristics as those of the selected training sites.
Such identification assists in the location of other regions of
economic importance. In the boxcar multispectral
classification, these characteristics are specified by the count-
ranges. Even though an improvement in the quality of the
results obtained after the application of a particular
procedure to the image data can be readily associated with a

Table 2 Total number of pixels in the training sites of various classes, and the standard deviation () for their band 2 and band 8 data.

Band Class Number o for the o after o after o after
number number of pixels original adding applying applying
data random Proc. 1 Proc. 2
noise

2 1 1008 5.74 8.24 6.93 6.45

2 2 1037 3.28 6.57 4.87 4.67

2 4 305 6.06 8.49 7.12 6.47

2 8 409 1.96 6.18 443 4.06

2 16 593 4.46 7.12 5.57 5.11
2 32 728 5.94 8.02 7.24 6.74

2 64 44 4.21 7.90 6.74 6.45

2 128 595 9.18 10.87 9.84 8.97

8 1 1008 341 6.64 492 5.03

8 2 1037 3.17 6.63 5.05 5.53

8 4 305 18.98 19.97 12.68 11.18
8 8 409 4.24 6.61 5.98 5.96

8 16 593 5.79 8.11 5.30 4.92

8 32 728 5.50 8.25 7.79 6.33

8 64 44 2.85 7.54 6.03 6.09

8 128 595 5.45 8.02 5.51 5.02
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decrease in the standard deviation (or the count-range
width), it is not possible to determine the quality of the
classification products without access to the detailed ground-
truth information about the scene at the time of observation.
Differences in the number of pixels assigned to a particular
class with two different mathematical operations on the data
cannot be used in the judgment of their relative merits. If
one operation results in the random geographic distribution
of pixels assigneii to a given class (the so-called salt-and-
pepper effect), one can assign a lower figure of merit to that
operation. However, the determination of the randomness of
a given geographic distribution of pixel positions is likely to
be subjective unless sophisticated mathematical procedures
are used for this purpose.

When the different multispectral classification products
obtained with two different mathematical operations on the
data are compared, one can find any or all of the following
three cases:

1. A pixel is assigned to the same class in both products.

2. A pixel is assigned to a given class in one product, but to
no class in the second product.

3. A pixel is assigned to one class in one product, but to some
other class in the second product.

The classification results obtained after different
operations on the data were analyzed in such detail.
However, it was not possible to arrive at any definite
conclusion about the relative figures of merit of various
operations. With this in mind, only a few selected results of
the classification product comparison are reproduced in this
section.

Tables 3 and 4 contain the number of pixels assigned to a
given class when the original (i.e., noise-free, basic data set 1)
and the noisy (i.e., with £20 units of random noise, basic
data set 2) data are used in the multispectral classification,
respectively, Each table consists of five columns with the
class number given in the first column. For the noise-free
case, we have eight original classes, plus a mixed class 40 due
to the assignment of the same pixel to class 8 and class 32.
An additional mixed class (No. 129) appears after random
noise is added to the data (see Table 4).

The results presented in columns 2 and 3 of Tables 3 and
4 were obtained after making use of the data of all nine
bands, and those of bands 2, 5, and 8 only, respectively. The
use of all nine bands in multispectral classification leads to
rather drastic constraints, which in turn results in a smaller
number of pixels being assigned to a given class.
Furthermore, no pixels are assigned to mixed class 40 for the
nine-band noise-free case, but 110 pixels are assigned to this
mixed class for the three-band noise-free case. The addition
of random noise to the data results in the assignment of 194
pixels to class 40 for the nine-band case, and the insurgence
of mixed class 129 with 1181 pixels for the three-band case.
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Table 3 Results of the modified boxcar multispectral
classification as obtained with the original data.

Class All nine Bands Procedure Procedure
number bands 2,5 and 8 1 2

1 3,851 6,023 7,702 7,864

2 3,585 4,294 4,643 4,381

4 1,448 1,780 1,825 1,770

8 1,614 2,276 1,638 2,097

16 1,644 2,216 2,406 2,829

32 4,220 5,490 7,078 6,707

64 152 188 314 317
128 14,331 20,187 18,167 18,124

40 0 110 920 183

Table 4 Results of the modified boxcar multispectral
classification as obtained with the noisy (i.e., with £20 units of
random noise added to each original pixel value of each band) data.

Class All nine Bands Procedure  Procedure
number bands 2,5 and 8 1 2

1 4,937 11,154 10,441 10,653

2 2,983 5,687 5,204 4850

4 1,368 2,080 1,930 1,731

8 1,259 2,081 1,654 2,328

16 1,454 3,416 2,745 2,847
32 4,009 7,245 7,549 7,032
64 236 811 562 477
128 14,145 24,171 20,178 19,776
40 194 1,566 1,719 838

129 0 1,181 0 0

The results of the multispectral classification with image
data smoothed after the application of procedures 1 and 2
are given in columns 4 and 5, respectively, of these two
tables. It is interesting to note that the application of the
second procedure results in the assignment of fewer pixels to
the mixed classes, i.e., fewer doubtful pixels. To that extent,
one can state that there are some advantages in the use of
the sophisticated procedure 2 over that of the simple-minded
procedure 1.

In Table 5, the results of an analysis are presented to show
the number of pixels that can be assigned to the same class
before and after the addition of random noise. Identical
operations (viz. nine-band, three-band, or procedure 1 or 2)
are performed in both cases. Again, it can be seen that, on
the average, the use of the second procedure results in the
reassignment of more pixels to the same class, However,
whether the additional effort required in Fourier
transformation is worth the gain or not remains debatable.

Concluding remarks

In the preceding sections, the reduction of random noise
from multiband image data with a good degree of correlation
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Table 5 Number of pixels that can be reassigned to the same
class after £20 units of random noise is added to each pixel value of
each band, and identical operations are performed to obtain the
multispectral classification results in both cases.

Class All nine Bands 2, Procedure  Procedure
number bands 5, and 8 1 2

1 2,702 4,715 6,579 6,868
2 2,317 3,549 4,033 3,723
4 1,107 1,611 1,603 1,501
8 884 1,140 1,036 1,580
16 1,046 1,824 2,033 2,272
32 2,871 3,983 5,604 5,424
64 104 174 275 276
128 10,804 16,784 16,049 16,162
Totals 21,835 33,780 37,212 37,806

among the nearby bands is examined in several alternate
manners. A 256 X 512 nine-band image data set acquired
with the aircraft-mounted multispectral scanner was used for
this purpose. For this numerical experiment, an additional
data set was generated by adding a significant amount of
random noise to each measured value in each spectral band.
Two different smoothing procedures were used in our
analysis: 1) arithmetic means of pixel values in bands K ~ 1,
K, and K + 1 with K =2, 5, and 8; and 2) one-dimensional
Fourier transformation of the image data in the X — 1, K,
and X + | bands, automatic development of a filter based on
the phase coherency of the Fourier coefficients in these three
bands, and the use of the inverse Fourier transformation to
obtain the data with a reduced noise level.

It has been shown that the application of the second
smoothing procedure results in a significant reduction of the
noise level in most cases. The results of a modified boxcar
multispectral classification on the original as well as on the
noisy data smoothed using these procedures are also
presented to show the degree of improvement that can be
achieved in various cases. Conclusions derived from these
latter tests are, to some extent, inconclusive because of the
unavailability of the ground-truth information at the time of
observation. However, this is the first known attempt at
smoothing the correlated multiband image data using the
phase relationships among various bands. Its findings are
encouraging enough to justify further investigations on the
potential of this technique. This may include the collection
of extensive ground-truth information at the time of
imaging, or the generation of simulated data sets providing
100 percent ground truth.

As mentioned earlier, we have restricted ourselves to a
one-dimensional transformation of the data from the spatial
to the frequency domain, and back to the spatial domain
after the appropriate weighting of the Fourier coefficients. It
is expected that such transformations in two dimensions will
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provide still better results. In the discussion of the results
presented in Fig. 10, it was implied that the level of
improvement would increase with an increase in the number
of bands. Therefore, this technique may offer some
advantages in the analysis of very poor-quality sequential
images of the same scene, e.g., some medical images. The
smoothing procedures developed for our investigation also
offer alternate tools for the reduction of the dimensionality
of the multidimensional data sets. It may therefore be of
some interest to compare the results of such smoothing
procedures with those obtained with the well-known
principal component analysis [10].
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